|  | /* | 
|  | * QEMU NVM Express Controller | 
|  | * | 
|  | * Copyright (c) 2012, Intel Corporation | 
|  | * | 
|  | * Written by Keith Busch <keith.busch@intel.com> | 
|  | * | 
|  | * This code is licensed under the GNU GPL v2 or later. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e | 
|  | * | 
|  | *  https://nvmexpress.org/developers/nvme-specification/ | 
|  | * | 
|  | * | 
|  | * Notes on coding style | 
|  | * --------------------- | 
|  | * While QEMU coding style prefers lowercase hexadecimals in constants, the | 
|  | * NVMe subsystem use this format from the NVMe specifications in the comments | 
|  | * (i.e. 'h' suffix instead of '0x' prefix). | 
|  | * | 
|  | * Usage | 
|  | * ----- | 
|  | * See docs/system/nvme.rst for extensive documentation. | 
|  | * | 
|  | * Add options: | 
|  | *      -drive file=<file>,if=none,id=<drive_id> | 
|  | *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> | 
|  | *      -device nvme,serial=<serial>,id=<bus_name>, \ | 
|  | *              cmb_size_mb=<cmb_size_mb[optional]>, \ | 
|  | *              [pmrdev=<mem_backend_file_id>,] \ | 
|  | *              max_ioqpairs=<N[optional]>, \ | 
|  | *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ | 
|  | *              mdts=<N[optional]>,vsl=<N[optional]>, \ | 
|  | *              zoned.zasl=<N[optional]>, \ | 
|  | *              zoned.auto_transition=<on|off[optional]>, \ | 
|  | *              sriov_max_vfs=<N[optional]> \ | 
|  | *              sriov_vq_flexible=<N[optional]> \ | 
|  | *              sriov_vi_flexible=<N[optional]> \ | 
|  | *              sriov_max_vi_per_vf=<N[optional]> \ | 
|  | *              sriov_max_vq_per_vf=<N[optional]> \ | 
|  | *              subsys=<subsys_id> | 
|  | *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ | 
|  | *              zoned=<true|false[optional]>, \ | 
|  | *              subsys=<subsys_id>,shared=<true|false[optional]>, \ | 
|  | *              detached=<true|false[optional]>, \ | 
|  | *              zoned.zone_size=<N[optional]>, \ | 
|  | *              zoned.zone_capacity=<N[optional]>, \ | 
|  | *              zoned.descr_ext_size=<N[optional]>, \ | 
|  | *              zoned.max_active=<N[optional]>, \ | 
|  | *              zoned.max_open=<N[optional]>, \ | 
|  | *              zoned.cross_read=<true|false[optional]> | 
|  | * | 
|  | * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at | 
|  | * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the | 
|  | * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to | 
|  | * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). | 
|  | * | 
|  | * Enabling pmr emulation can be achieved by pointing to memory-backend-file. | 
|  | * For example: | 
|  | * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ | 
|  | *  size=<size> .... -device nvme,...,pmrdev=<mem_id> | 
|  | * | 
|  | * The PMR will use BAR 4/5 exclusively. | 
|  | * | 
|  | * To place controller(s) and namespace(s) to a subsystem, then provide | 
|  | * nvme-subsys device as above. | 
|  | * | 
|  | * nvme subsystem device parameters | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * - `nqn` | 
|  | *   This parameter provides the `<nqn_id>` part of the string | 
|  | *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field | 
|  | *   of subsystem controllers. Note that `<nqn_id>` should be unique per | 
|  | *   subsystem, but this is not enforced by QEMU. If not specified, it will | 
|  | *   default to the value of the `id` parameter (`<subsys_id>`). | 
|  | * | 
|  | * nvme device parameters | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * - `subsys` | 
|  | *   Specifying this parameter attaches the controller to the subsystem and | 
|  | *   the SUBNQN field in the controller will report the NQN of the subsystem | 
|  | *   device. This also enables multi controller capability represented in | 
|  | *   Identify Controller data structure in CMIC (Controller Multi-path I/O and | 
|  | *   Namespace Sharing Capabilities). | 
|  | * | 
|  | * - `aerl` | 
|  | *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number | 
|  | *   of concurrently outstanding Asynchronous Event Request commands support | 
|  | *   by the controller. This is a 0's based value. | 
|  | * | 
|  | * - `aer_max_queued` | 
|  | *   This is the maximum number of events that the device will enqueue for | 
|  | *   completion when there are no outstanding AERs. When the maximum number of | 
|  | *   enqueued events are reached, subsequent events will be dropped. | 
|  | * | 
|  | * - `mdts` | 
|  | *   Indicates the maximum data transfer size for a command that transfers data | 
|  | *   between host-accessible memory and the controller. The value is specified | 
|  | *   as a power of two (2^n) and is in units of the minimum memory page size | 
|  | *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). | 
|  | * | 
|  | * - `vsl` | 
|  | *   Indicates the maximum data size limit for the Verify command. Like `mdts`, | 
|  | *   this value is specified as a power of two (2^n) and is in units of the | 
|  | *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 | 
|  | *   KiB). | 
|  | * | 
|  | * - `zoned.zasl` | 
|  | *   Indicates the maximum data transfer size for the Zone Append command. Like | 
|  | *   `mdts`, the value is specified as a power of two (2^n) and is in units of | 
|  | *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. | 
|  | *   defaulting to the value of `mdts`). | 
|  | * | 
|  | * - `zoned.auto_transition` | 
|  | *   Indicates if zones in zone state implicitly opened can be automatically | 
|  | *   transitioned to zone state closed for resource management purposes. | 
|  | *   Defaults to 'on'. | 
|  | * | 
|  | * - `sriov_max_vfs` | 
|  | *   Indicates the maximum number of PCIe virtual functions supported | 
|  | *   by the controller. The default value is 0. Specifying a non-zero value | 
|  | *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device. | 
|  | *   Virtual function controllers will not report SR-IOV capability. | 
|  | * | 
|  | *   NOTE: Single Root I/O Virtualization support is experimental. | 
|  | *   All the related parameters may be subject to change. | 
|  | * | 
|  | * - `sriov_vq_flexible` | 
|  | *   Indicates the total number of flexible queue resources assignable to all | 
|  | *   the secondary controllers. Implicitly sets the number of primary | 
|  | *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`. | 
|  | * | 
|  | * - `sriov_vi_flexible` | 
|  | *   Indicates the total number of flexible interrupt resources assignable to | 
|  | *   all the secondary controllers. Implicitly sets the number of primary | 
|  | *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`. | 
|  | * | 
|  | * - `sriov_max_vi_per_vf` | 
|  | *   Indicates the maximum number of virtual interrupt resources assignable | 
|  | *   to a secondary controller. The default 0 resolves to | 
|  | *   `(sriov_vi_flexible / sriov_max_vfs)`. | 
|  | * | 
|  | * - `sriov_max_vq_per_vf` | 
|  | *   Indicates the maximum number of virtual queue resources assignable to | 
|  | *   a secondary controller. The default 0 resolves to | 
|  | *   `(sriov_vq_flexible / sriov_max_vfs)`. | 
|  | * | 
|  | * nvme namespace device parameters | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * - `shared` | 
|  | *   When the parent nvme device (as defined explicitly by the 'bus' parameter | 
|  | *   or implicitly by the most recently defined NvmeBus) is linked to an | 
|  | *   nvme-subsys device, the namespace will be attached to all controllers in | 
|  | *   the subsystem. If set to 'off' (the default), the namespace will remain a | 
|  | *   private namespace and may only be attached to a single controller at a | 
|  | *   time. | 
|  | * | 
|  | * - `detached` | 
|  | *   This parameter is only valid together with the `subsys` parameter. If left | 
|  | *   at the default value (`false/off`), the namespace will be attached to all | 
|  | *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the | 
|  | *   namespace will be available in the subsystem but not attached to any | 
|  | *   controllers. | 
|  | * | 
|  | * Setting `zoned` to true selects Zoned Command Set at the namespace. | 
|  | * In this case, the following namespace properties are available to configure | 
|  | * zoned operation: | 
|  | *     zoned.zone_size=<zone size in bytes, default: 128MiB> | 
|  | *         The number may be followed by K, M, G as in kilo-, mega- or giga-. | 
|  | * | 
|  | *     zoned.zone_capacity=<zone capacity in bytes, default: zone size> | 
|  | *         The value 0 (default) forces zone capacity to be the same as zone | 
|  | *         size. The value of this property may not exceed zone size. | 
|  | * | 
|  | *     zoned.descr_ext_size=<zone descriptor extension size, default 0> | 
|  | *         This value needs to be specified in 64B units. If it is zero, | 
|  | *         namespace(s) will not support zone descriptor extensions. | 
|  | * | 
|  | *     zoned.max_active=<Maximum Active Resources (zones), default: 0> | 
|  | *         The default value means there is no limit to the number of | 
|  | *         concurrently active zones. | 
|  | * | 
|  | *     zoned.max_open=<Maximum Open Resources (zones), default: 0> | 
|  | *         The default value means there is no limit to the number of | 
|  | *         concurrently open zones. | 
|  | * | 
|  | *     zoned.cross_read=<enable RAZB, default: false> | 
|  | *         Setting this property to true enables Read Across Zone Boundaries. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/cutils.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/units.h" | 
|  | #include "qemu/range.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qapi/visitor.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "sysemu/block-backend.h" | 
|  | #include "sysemu/hostmem.h" | 
|  | #include "hw/pci/msix.h" | 
|  | #include "hw/pci/pcie_sriov.h" | 
|  | #include "migration/vmstate.h" | 
|  |  | 
|  | #include "nvme.h" | 
|  | #include "dif.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | #define NVME_MAX_IOQPAIRS 0xffff | 
|  | #define NVME_DB_SIZE  4 | 
|  | #define NVME_SPEC_VER 0x00010400 | 
|  | #define NVME_CMB_BIR 2 | 
|  | #define NVME_PMR_BIR 4 | 
|  | #define NVME_TEMPERATURE 0x143 | 
|  | #define NVME_TEMPERATURE_WARNING 0x157 | 
|  | #define NVME_TEMPERATURE_CRITICAL 0x175 | 
|  | #define NVME_NUM_FW_SLOTS 1 | 
|  | #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) | 
|  | #define NVME_MAX_VFS 127 | 
|  | #define NVME_VF_RES_GRANULARITY 1 | 
|  | #define NVME_VF_OFFSET 0x1 | 
|  | #define NVME_VF_STRIDE 1 | 
|  |  | 
|  | #define NVME_GUEST_ERR(trace, fmt, ...) \ | 
|  | do { \ | 
|  | (trace_##trace)(__VA_ARGS__); \ | 
|  | qemu_log_mask(LOG_GUEST_ERROR, #trace \ | 
|  | " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ | 
|  | } while (0) | 
|  |  | 
|  | static const bool nvme_feature_support[NVME_FID_MAX] = { | 
|  | [NVME_ARBITRATION]              = true, | 
|  | [NVME_POWER_MANAGEMENT]         = true, | 
|  | [NVME_TEMPERATURE_THRESHOLD]    = true, | 
|  | [NVME_ERROR_RECOVERY]           = true, | 
|  | [NVME_VOLATILE_WRITE_CACHE]     = true, | 
|  | [NVME_NUMBER_OF_QUEUES]         = true, | 
|  | [NVME_INTERRUPT_COALESCING]     = true, | 
|  | [NVME_INTERRUPT_VECTOR_CONF]    = true, | 
|  | [NVME_WRITE_ATOMICITY]          = true, | 
|  | [NVME_ASYNCHRONOUS_EVENT_CONF]  = true, | 
|  | [NVME_TIMESTAMP]                = true, | 
|  | [NVME_HOST_BEHAVIOR_SUPPORT]    = true, | 
|  | [NVME_COMMAND_SET_PROFILE]      = true, | 
|  | [NVME_FDP_MODE]                 = true, | 
|  | [NVME_FDP_EVENTS]               = true, | 
|  | }; | 
|  |  | 
|  | static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { | 
|  | [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE, | 
|  | [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, | 
|  | [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE, | 
|  | [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE, | 
|  | [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE, | 
|  | [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE, | 
|  | [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE, | 
|  | [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE, | 
|  | [NVME_FDP_MODE]                 = NVME_FEAT_CAP_CHANGE, | 
|  | [NVME_FDP_EVENTS]               = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, | 
|  | }; | 
|  |  | 
|  | static const uint32_t nvme_cse_acs[256] = { | 
|  | [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, | 
|  | [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_ADM_CMD_DIRECTIVE_RECV]   = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_ADM_CMD_DIRECTIVE_SEND]   = NVME_CMD_EFF_CSUPP, | 
|  | }; | 
|  |  | 
|  | static const uint32_t nvme_cse_iocs_none[256]; | 
|  |  | 
|  | static const uint32_t nvme_cse_iocs_nvm[256] = { | 
|  | [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_CMD_IO_MGMT_RECV]         = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_CMD_IO_MGMT_SEND]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | }; | 
|  |  | 
|  | static const uint32_t nvme_cse_iocs_zoned[256] = { | 
|  | [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP, | 
|  | [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, | 
|  | [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP, | 
|  | }; | 
|  |  | 
|  | static void nvme_process_sq(void *opaque); | 
|  | static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst); | 
|  | static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n); | 
|  |  | 
|  | static uint16_t nvme_sqid(NvmeRequest *req) | 
|  | { | 
|  | return le16_to_cpu(req->sq->sqid); | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg, | 
|  | uint16_t ph) | 
|  | { | 
|  | uint16_t rgif = ns->endgrp->fdp.rgif; | 
|  |  | 
|  | if (!rgif) { | 
|  | return ph; | 
|  | } | 
|  |  | 
|  | return (rg << (16 - rgif)) | ph; | 
|  | } | 
|  |  | 
|  | static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph) | 
|  | { | 
|  | return ph < ns->fdp.nphs; | 
|  | } | 
|  |  | 
|  | static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg) | 
|  | { | 
|  | return rg < endgrp->fdp.nrg; | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid) | 
|  | { | 
|  | uint16_t rgif = ns->endgrp->fdp.rgif; | 
|  |  | 
|  | if (!rgif) { | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | return pid & ((1 << (15 - rgif)) - 1); | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid) | 
|  | { | 
|  | uint16_t rgif = ns->endgrp->fdp.rgif; | 
|  |  | 
|  | if (!rgif) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return pid >> (16 - rgif); | 
|  | } | 
|  |  | 
|  | static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid, | 
|  | uint16_t *ph, uint16_t *rg) | 
|  | { | 
|  | *rg = nvme_pid2rg(ns, pid); | 
|  | *ph = nvme_pid2ph(ns, pid); | 
|  |  | 
|  | return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg); | 
|  | } | 
|  |  | 
|  | static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, | 
|  | NvmeZoneState state) | 
|  | { | 
|  | if (QTAILQ_IN_USE(zone, entry)) { | 
|  | switch (nvme_get_zone_state(zone)) { | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); | 
|  | break; | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); | 
|  | break; | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | QTAILQ_REMOVE(&ns->closed_zones, zone, entry); | 
|  | break; | 
|  | case NVME_ZONE_STATE_FULL: | 
|  | QTAILQ_REMOVE(&ns->full_zones, zone, entry); | 
|  | default: | 
|  | ; | 
|  | } | 
|  | } | 
|  |  | 
|  | nvme_set_zone_state(zone, state); | 
|  |  | 
|  | switch (state) { | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); | 
|  | break; | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); | 
|  | break; | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); | 
|  | break; | 
|  | case NVME_ZONE_STATE_FULL: | 
|  | QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); | 
|  | case NVME_ZONE_STATE_READ_ONLY: | 
|  | break; | 
|  | default: | 
|  | zone->d.za = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, | 
|  | uint32_t opn, uint32_t zrwa) | 
|  | { | 
|  | if (ns->params.max_active_zones != 0 && | 
|  | ns->nr_active_zones + act > ns->params.max_active_zones) { | 
|  | trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); | 
|  | return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (ns->params.max_open_zones != 0 && | 
|  | ns->nr_open_zones + opn > ns->params.max_open_zones) { | 
|  | trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); | 
|  | return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (zrwa > ns->zns.numzrwa) { | 
|  | return NVME_NOZRWA | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we can open a zone without exceeding open/active limits. | 
|  | * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). | 
|  | */ | 
|  | static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) | 
|  | { | 
|  | return nvme_zns_check_resources(ns, act, opn, 0); | 
|  | } | 
|  |  | 
|  | static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf) | 
|  | { | 
|  | NvmeFdpEvent *ret = NULL; | 
|  | bool is_full = ebuf->next == ebuf->start && ebuf->nelems; | 
|  |  | 
|  | ret = &ebuf->events[ebuf->next++]; | 
|  | if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) { | 
|  | ebuf->next = 0; | 
|  | } | 
|  | if (is_full) { | 
|  | ebuf->start = ebuf->next; | 
|  | } else { | 
|  | ebuf->nelems++; | 
|  | } | 
|  |  | 
|  | memset(ret, 0, sizeof(NvmeFdpEvent)); | 
|  | ret->timestamp = nvme_get_timestamp(n); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type) | 
|  | { | 
|  | return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1; | 
|  | } | 
|  |  | 
|  | static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid) | 
|  | { | 
|  | NvmeEnduranceGroup *endgrp = ns->endgrp; | 
|  | NvmeRuHandle *ruh; | 
|  | NvmeReclaimUnit *ru; | 
|  | NvmeFdpEvent *e = NULL; | 
|  | uint16_t ph, rg, ruhid; | 
|  |  | 
|  | if (!nvme_parse_pid(ns, pid, &ph, &rg)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ruhid = ns->fdp.phs[ph]; | 
|  |  | 
|  | ruh = &endgrp->fdp.ruhs[ruhid]; | 
|  | ru = &ruh->rus[rg]; | 
|  |  | 
|  | if (ru->ruamw) { | 
|  | if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) { | 
|  | e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events); | 
|  | e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN; | 
|  | e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV; | 
|  | e->pid = cpu_to_le16(pid); | 
|  | e->nsid = cpu_to_le32(ns->params.nsid); | 
|  | e->rgid = cpu_to_le16(rg); | 
|  | e->ruhid = cpu_to_le16(ruhid); | 
|  | } | 
|  |  | 
|  | /* log (eventual) GC overhead of prematurely swapping the RU */ | 
|  | nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw)); | 
|  | } | 
|  |  | 
|  | ru->ruamw = ruh->ruamw; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) | 
|  | { | 
|  | hwaddr hi, lo; | 
|  |  | 
|  | if (!n->cmb.cmse) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; | 
|  | hi = lo + int128_get64(n->cmb.mem.size); | 
|  |  | 
|  | return addr >= lo && addr < hi; | 
|  | } | 
|  |  | 
|  | static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) | 
|  | { | 
|  | hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; | 
|  | return &n->cmb.buf[addr - base]; | 
|  | } | 
|  |  | 
|  | static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) | 
|  | { | 
|  | hwaddr hi; | 
|  |  | 
|  | if (!n->pmr.cmse) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); | 
|  |  | 
|  | return addr >= n->pmr.cba && addr < hi; | 
|  | } | 
|  |  | 
|  | static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) | 
|  | { | 
|  | return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); | 
|  | } | 
|  |  | 
|  | static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) | 
|  | { | 
|  | hwaddr hi, lo; | 
|  |  | 
|  | /* | 
|  | * The purpose of this check is to guard against invalid "local" access to | 
|  | * the iomem (i.e. controller registers). Thus, we check against the range | 
|  | * covered by the 'bar0' MemoryRegion since that is currently composed of | 
|  | * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, | 
|  | * that if the device model is ever changed to allow the CMB to be located | 
|  | * in BAR0 as well, then this must be changed. | 
|  | */ | 
|  | lo = n->bar0.addr; | 
|  | hi = lo + int128_get64(n->bar0.size); | 
|  |  | 
|  | return addr >= lo && addr < hi; | 
|  | } | 
|  |  | 
|  | static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) | 
|  | { | 
|  | hwaddr hi = addr + size - 1; | 
|  | if (hi < addr) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { | 
|  | memcpy(buf, nvme_addr_to_cmb(n, addr), size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { | 
|  | memcpy(buf, nvme_addr_to_pmr(n, addr), size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return pci_dma_read(PCI_DEVICE(n), addr, buf, size); | 
|  | } | 
|  |  | 
|  | static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) | 
|  | { | 
|  | hwaddr hi = addr + size - 1; | 
|  | if (hi < addr) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { | 
|  | memcpy(nvme_addr_to_cmb(n, addr), buf, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { | 
|  | memcpy(nvme_addr_to_pmr(n, addr), buf, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return pci_dma_write(PCI_DEVICE(n), addr, buf, size); | 
|  | } | 
|  |  | 
|  | static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) | 
|  | { | 
|  | return nsid && | 
|  | (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); | 
|  | } | 
|  |  | 
|  | static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) | 
|  | { | 
|  | return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; | 
|  | } | 
|  |  | 
|  | static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) | 
|  | { | 
|  | return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; | 
|  | } | 
|  |  | 
|  | static void nvme_inc_cq_tail(NvmeCQueue *cq) | 
|  | { | 
|  | cq->tail++; | 
|  | if (cq->tail >= cq->size) { | 
|  | cq->tail = 0; | 
|  | cq->phase = !cq->phase; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_inc_sq_head(NvmeSQueue *sq) | 
|  | { | 
|  | sq->head = (sq->head + 1) % sq->size; | 
|  | } | 
|  |  | 
|  | static uint8_t nvme_cq_full(NvmeCQueue *cq) | 
|  | { | 
|  | return (cq->tail + 1) % cq->size == cq->head; | 
|  | } | 
|  |  | 
|  | static uint8_t nvme_sq_empty(NvmeSQueue *sq) | 
|  | { | 
|  | return sq->head == sq->tail; | 
|  | } | 
|  |  | 
|  | static void nvme_irq_check(NvmeCtrl *n) | 
|  | { | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  | uint32_t intms = ldl_le_p(&n->bar.intms); | 
|  |  | 
|  | if (msix_enabled(pci)) { | 
|  | return; | 
|  | } | 
|  | if (~intms & n->irq_status) { | 
|  | pci_irq_assert(pci); | 
|  | } else { | 
|  | pci_irq_deassert(pci); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) | 
|  | { | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  |  | 
|  | if (cq->irq_enabled) { | 
|  | if (msix_enabled(pci)) { | 
|  | trace_pci_nvme_irq_msix(cq->vector); | 
|  | msix_notify(pci, cq->vector); | 
|  | } else { | 
|  | trace_pci_nvme_irq_pin(); | 
|  | assert(cq->vector < 32); | 
|  | n->irq_status |= 1 << cq->vector; | 
|  | nvme_irq_check(n); | 
|  | } | 
|  | } else { | 
|  | trace_pci_nvme_irq_masked(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) | 
|  | { | 
|  | if (cq->irq_enabled) { | 
|  | if (msix_enabled(PCI_DEVICE(n))) { | 
|  | return; | 
|  | } else { | 
|  | assert(cq->vector < 32); | 
|  | if (!n->cq_pending) { | 
|  | n->irq_status &= ~(1 << cq->vector); | 
|  | } | 
|  | nvme_irq_check(n); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_req_clear(NvmeRequest *req) | 
|  | { | 
|  | req->ns = NULL; | 
|  | req->opaque = NULL; | 
|  | req->aiocb = NULL; | 
|  | memset(&req->cqe, 0x0, sizeof(req->cqe)); | 
|  | req->status = NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) | 
|  | { | 
|  | if (dma) { | 
|  | pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0); | 
|  | sg->flags = NVME_SG_DMA; | 
|  | } else { | 
|  | qemu_iovec_init(&sg->iov, 0); | 
|  | } | 
|  |  | 
|  | sg->flags |= NVME_SG_ALLOC; | 
|  | } | 
|  |  | 
|  | static inline void nvme_sg_unmap(NvmeSg *sg) | 
|  | { | 
|  | if (!(sg->flags & NVME_SG_ALLOC)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (sg->flags & NVME_SG_DMA) { | 
|  | qemu_sglist_destroy(&sg->qsg); | 
|  | } else { | 
|  | qemu_iovec_destroy(&sg->iov); | 
|  | } | 
|  |  | 
|  | memset(sg, 0x0, sizeof(*sg)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When metadata is transferred as extended LBAs, the DPTR mapped into `sg` | 
|  | * holds both data and metadata. This function splits the data and metadata | 
|  | * into two separate QSG/IOVs. | 
|  | */ | 
|  | static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, | 
|  | NvmeSg *mdata) | 
|  | { | 
|  | NvmeSg *dst = data; | 
|  | uint32_t trans_len, count = ns->lbasz; | 
|  | uint64_t offset = 0; | 
|  | bool dma = sg->flags & NVME_SG_DMA; | 
|  | size_t sge_len; | 
|  | size_t sg_len = dma ? sg->qsg.size : sg->iov.size; | 
|  | int sg_idx = 0; | 
|  |  | 
|  | assert(sg->flags & NVME_SG_ALLOC); | 
|  |  | 
|  | while (sg_len) { | 
|  | sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; | 
|  |  | 
|  | trans_len = MIN(sg_len, count); | 
|  | trans_len = MIN(trans_len, sge_len - offset); | 
|  |  | 
|  | if (dst) { | 
|  | if (dma) { | 
|  | qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, | 
|  | trans_len); | 
|  | } else { | 
|  | qemu_iovec_add(&dst->iov, | 
|  | sg->iov.iov[sg_idx].iov_base + offset, | 
|  | trans_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | sg_len -= trans_len; | 
|  | count -= trans_len; | 
|  | offset += trans_len; | 
|  |  | 
|  | if (count == 0) { | 
|  | dst = (dst == data) ? mdata : data; | 
|  | count = (dst == data) ? ns->lbasz : ns->lbaf.ms; | 
|  | } | 
|  |  | 
|  | if (sge_len == offset) { | 
|  | offset = 0; | 
|  | sg_idx++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, | 
|  | size_t len) | 
|  | { | 
|  | if (!len) { | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_map_addr_cmb(addr, len); | 
|  |  | 
|  | if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { | 
|  | return NVME_DATA_TRAS_ERROR; | 
|  | } | 
|  |  | 
|  | qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, | 
|  | size_t len) | 
|  | { | 
|  | if (!len) { | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { | 
|  | return NVME_DATA_TRAS_ERROR; | 
|  | } | 
|  |  | 
|  | qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) | 
|  | { | 
|  | bool cmb = false, pmr = false; | 
|  |  | 
|  | if (!len) { | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_map_addr(addr, len); | 
|  |  | 
|  | if (nvme_addr_is_iomem(n, addr)) { | 
|  | return NVME_DATA_TRAS_ERROR; | 
|  | } | 
|  |  | 
|  | if (nvme_addr_is_cmb(n, addr)) { | 
|  | cmb = true; | 
|  | } else if (nvme_addr_is_pmr(n, addr)) { | 
|  | pmr = true; | 
|  | } | 
|  |  | 
|  | if (cmb || pmr) { | 
|  | if (sg->flags & NVME_SG_DMA) { | 
|  | return NVME_INVALID_USE_OF_CMB | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (sg->iov.niov + 1 > IOV_MAX) { | 
|  | goto max_mappings_exceeded; | 
|  | } | 
|  |  | 
|  | if (cmb) { | 
|  | return nvme_map_addr_cmb(n, &sg->iov, addr, len); | 
|  | } else { | 
|  | return nvme_map_addr_pmr(n, &sg->iov, addr, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(sg->flags & NVME_SG_DMA)) { | 
|  | return NVME_INVALID_USE_OF_CMB | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (sg->qsg.nsg + 1 > IOV_MAX) { | 
|  | goto max_mappings_exceeded; | 
|  | } | 
|  |  | 
|  | qemu_sglist_add(&sg->qsg, addr, len); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  |  | 
|  | max_mappings_exceeded: | 
|  | NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, | 
|  | "number of mappings exceed 1024"); | 
|  | return NVME_INTERNAL_DEV_ERROR | NVME_DNR; | 
|  | } | 
|  |  | 
|  | static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) | 
|  | { | 
|  | return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, | 
|  | uint64_t prp2, uint32_t len) | 
|  | { | 
|  | hwaddr trans_len = n->page_size - (prp1 % n->page_size); | 
|  | trans_len = MIN(len, trans_len); | 
|  | int num_prps = (len >> n->page_bits) + 1; | 
|  | uint16_t status; | 
|  | int ret; | 
|  |  | 
|  | trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); | 
|  |  | 
|  | nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); | 
|  |  | 
|  | status = nvme_map_addr(n, sg, prp1, trans_len); | 
|  | if (status) { | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | len -= trans_len; | 
|  | if (len) { | 
|  | if (len > n->page_size) { | 
|  | g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents); | 
|  | uint32_t nents, prp_trans; | 
|  | int i = 0; | 
|  |  | 
|  | /* | 
|  | * The first PRP list entry, pointed to by PRP2 may contain offset. | 
|  | * Hence, we need to calculate the number of entries in based on | 
|  | * that offset. | 
|  | */ | 
|  | nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; | 
|  | prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); | 
|  | ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); | 
|  | if (ret) { | 
|  | trace_pci_nvme_err_addr_read(prp2); | 
|  | status = NVME_DATA_TRAS_ERROR; | 
|  | goto unmap; | 
|  | } | 
|  | while (len != 0) { | 
|  | uint64_t prp_ent = le64_to_cpu(prp_list[i]); | 
|  |  | 
|  | if (i == nents - 1 && len > n->page_size) { | 
|  | if (unlikely(prp_ent & (n->page_size - 1))) { | 
|  | trace_pci_nvme_err_invalid_prplist_ent(prp_ent); | 
|  | status = NVME_INVALID_PRP_OFFSET | NVME_DNR; | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | i = 0; | 
|  | nents = (len + n->page_size - 1) >> n->page_bits; | 
|  | nents = MIN(nents, n->max_prp_ents); | 
|  | prp_trans = nents * sizeof(uint64_t); | 
|  | ret = nvme_addr_read(n, prp_ent, (void *)prp_list, | 
|  | prp_trans); | 
|  | if (ret) { | 
|  | trace_pci_nvme_err_addr_read(prp_ent); | 
|  | status = NVME_DATA_TRAS_ERROR; | 
|  | goto unmap; | 
|  | } | 
|  | prp_ent = le64_to_cpu(prp_list[i]); | 
|  | } | 
|  |  | 
|  | if (unlikely(prp_ent & (n->page_size - 1))) { | 
|  | trace_pci_nvme_err_invalid_prplist_ent(prp_ent); | 
|  | status = NVME_INVALID_PRP_OFFSET | NVME_DNR; | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | trans_len = MIN(len, n->page_size); | 
|  | status = nvme_map_addr(n, sg, prp_ent, trans_len); | 
|  | if (status) { | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | len -= trans_len; | 
|  | i++; | 
|  | } | 
|  | } else { | 
|  | if (unlikely(prp2 & (n->page_size - 1))) { | 
|  | trace_pci_nvme_err_invalid_prp2_align(prp2); | 
|  | status = NVME_INVALID_PRP_OFFSET | NVME_DNR; | 
|  | goto unmap; | 
|  | } | 
|  | status = nvme_map_addr(n, sg, prp2, len); | 
|  | if (status) { | 
|  | goto unmap; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  |  | 
|  | unmap: | 
|  | nvme_sg_unmap(sg); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map 'nsgld' data descriptors from 'segment'. The function will subtract the | 
|  | * number of bytes mapped in len. | 
|  | */ | 
|  | static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, | 
|  | NvmeSglDescriptor *segment, uint64_t nsgld, | 
|  | size_t *len, NvmeCmd *cmd) | 
|  | { | 
|  | dma_addr_t addr, trans_len; | 
|  | uint32_t dlen; | 
|  | uint16_t status; | 
|  |  | 
|  | for (int i = 0; i < nsgld; i++) { | 
|  | uint8_t type = NVME_SGL_TYPE(segment[i].type); | 
|  |  | 
|  | switch (type) { | 
|  | case NVME_SGL_DESCR_TYPE_DATA_BLOCK: | 
|  | break; | 
|  | case NVME_SGL_DESCR_TYPE_SEGMENT: | 
|  | case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: | 
|  | return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; | 
|  | default: | 
|  | return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | dlen = le32_to_cpu(segment[i].len); | 
|  |  | 
|  | if (!dlen) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (*len == 0) { | 
|  | /* | 
|  | * All data has been mapped, but the SGL contains additional | 
|  | * segments and/or descriptors. The controller might accept | 
|  | * ignoring the rest of the SGL. | 
|  | */ | 
|  | uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); | 
|  | if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_err_invalid_sgl_excess_length(dlen); | 
|  | return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | trans_len = MIN(*len, dlen); | 
|  |  | 
|  | addr = le64_to_cpu(segment[i].addr); | 
|  |  | 
|  | if (UINT64_MAX - addr < dlen) { | 
|  | return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | status = nvme_map_addr(n, sg, addr, trans_len); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | *len -= trans_len; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, | 
|  | size_t len, NvmeCmd *cmd) | 
|  | { | 
|  | /* | 
|  | * Read the segment in chunks of 256 descriptors (one 4k page) to avoid | 
|  | * dynamically allocating a potentially huge SGL. The spec allows the SGL | 
|  | * to be larger (as in number of bytes required to describe the SGL | 
|  | * descriptors and segment chain) than the command transfer size, so it is | 
|  | * not bounded by MDTS. | 
|  | */ | 
|  | #define SEG_CHUNK_SIZE 256 | 
|  |  | 
|  | NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; | 
|  | uint64_t nsgld; | 
|  | uint32_t seg_len; | 
|  | uint16_t status; | 
|  | hwaddr addr; | 
|  | int ret; | 
|  |  | 
|  | sgld = &sgl; | 
|  | addr = le64_to_cpu(sgl.addr); | 
|  |  | 
|  | trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); | 
|  |  | 
|  | nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); | 
|  |  | 
|  | /* | 
|  | * If the entire transfer can be described with a single data block it can | 
|  | * be mapped directly. | 
|  | */ | 
|  | if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { | 
|  | status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); | 
|  | if (status) { | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | switch (NVME_SGL_TYPE(sgld->type)) { | 
|  | case NVME_SGL_DESCR_TYPE_SEGMENT: | 
|  | case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: | 
|  | break; | 
|  | default: | 
|  | return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; | 
|  | } | 
|  |  | 
|  | seg_len = le32_to_cpu(sgld->len); | 
|  |  | 
|  | /* check the length of the (Last) Segment descriptor */ | 
|  | if (!seg_len || seg_len & 0xf) { | 
|  | return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (UINT64_MAX - addr < seg_len) { | 
|  | return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | nsgld = seg_len / sizeof(NvmeSglDescriptor); | 
|  |  | 
|  | while (nsgld > SEG_CHUNK_SIZE) { | 
|  | if (nvme_addr_read(n, addr, segment, sizeof(segment))) { | 
|  | trace_pci_nvme_err_addr_read(addr); | 
|  | status = NVME_DATA_TRAS_ERROR; | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, | 
|  | &len, cmd); | 
|  | if (status) { | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | nsgld -= SEG_CHUNK_SIZE; | 
|  | addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); | 
|  | } | 
|  |  | 
|  | ret = nvme_addr_read(n, addr, segment, nsgld * | 
|  | sizeof(NvmeSglDescriptor)); | 
|  | if (ret) { | 
|  | trace_pci_nvme_err_addr_read(addr); | 
|  | status = NVME_DATA_TRAS_ERROR; | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | last_sgld = &segment[nsgld - 1]; | 
|  |  | 
|  | /* | 
|  | * If the segment ends with a Data Block, then we are done. | 
|  | */ | 
|  | if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { | 
|  | status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); | 
|  | if (status) { | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the last descriptor was not a Data Block, then the current | 
|  | * segment must not be a Last Segment. | 
|  | */ | 
|  | if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { | 
|  | status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | sgld = last_sgld; | 
|  | addr = le64_to_cpu(sgld->addr); | 
|  |  | 
|  | /* | 
|  | * Do not map the last descriptor; it will be a Segment or Last Segment | 
|  | * descriptor and is handled by the next iteration. | 
|  | */ | 
|  | status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); | 
|  | if (status) { | 
|  | goto unmap; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* if there is any residual left in len, the SGL was too short */ | 
|  | if (len) { | 
|  | status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  |  | 
|  | unmap: | 
|  | nvme_sg_unmap(sg); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, | 
|  | NvmeCmd *cmd) | 
|  | { | 
|  | uint64_t prp1, prp2; | 
|  |  | 
|  | switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { | 
|  | case NVME_PSDT_PRP: | 
|  | prp1 = le64_to_cpu(cmd->dptr.prp1); | 
|  | prp2 = le64_to_cpu(cmd->dptr.prp2); | 
|  |  | 
|  | return nvme_map_prp(n, sg, prp1, prp2, len); | 
|  | case NVME_PSDT_SGL_MPTR_CONTIGUOUS: | 
|  | case NVME_PSDT_SGL_MPTR_SGL: | 
|  | return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); | 
|  | default: | 
|  | return NVME_INVALID_FIELD; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, | 
|  | NvmeCmd *cmd) | 
|  | { | 
|  | int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); | 
|  | hwaddr mptr = le64_to_cpu(cmd->mptr); | 
|  | uint16_t status; | 
|  |  | 
|  | if (psdt == NVME_PSDT_SGL_MPTR_SGL) { | 
|  | NvmeSglDescriptor sgl; | 
|  |  | 
|  | if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { | 
|  | return NVME_DATA_TRAS_ERROR; | 
|  | } | 
|  |  | 
|  | status = nvme_map_sgl(n, sg, sgl, len, cmd); | 
|  | if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { | 
|  | status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); | 
|  | status = nvme_map_addr(n, sg, mptr, len); | 
|  | if (status) { | 
|  | nvme_sg_unmap(sg); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); | 
|  | bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); | 
|  | size_t len = nvme_l2b(ns, nlb); | 
|  | uint16_t status; | 
|  |  | 
|  | if (nvme_ns_ext(ns) && | 
|  | !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { | 
|  | NvmeSg sg; | 
|  |  | 
|  | len += nvme_m2b(ns, nlb); | 
|  |  | 
|  | status = nvme_map_dptr(n, &sg, len, &req->cmd); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); | 
|  | nvme_sg_split(&sg, ns, &req->sg, NULL); | 
|  | nvme_sg_unmap(&sg); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | return nvme_map_dptr(n, &req->sg, len, &req->cmd); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | size_t len = nvme_m2b(ns, nlb); | 
|  | uint16_t status; | 
|  |  | 
|  | if (nvme_ns_ext(ns)) { | 
|  | NvmeSg sg; | 
|  |  | 
|  | len += nvme_l2b(ns, nlb); | 
|  |  | 
|  | status = nvme_map_dptr(n, &sg, len, &req->cmd); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); | 
|  | nvme_sg_split(&sg, ns, NULL, &req->sg); | 
|  | nvme_sg_unmap(&sg); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | return nvme_map_mptr(n, &req->sg, len, &req->cmd); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, | 
|  | uint32_t len, uint32_t bytes, | 
|  | int32_t skip_bytes, int64_t offset, | 
|  | NvmeTxDirection dir) | 
|  | { | 
|  | hwaddr addr; | 
|  | uint32_t trans_len, count = bytes; | 
|  | bool dma = sg->flags & NVME_SG_DMA; | 
|  | int64_t sge_len; | 
|  | int sg_idx = 0; | 
|  | int ret; | 
|  |  | 
|  | assert(sg->flags & NVME_SG_ALLOC); | 
|  |  | 
|  | while (len) { | 
|  | sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; | 
|  |  | 
|  | if (sge_len - offset < 0) { | 
|  | offset -= sge_len; | 
|  | sg_idx++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (sge_len == offset) { | 
|  | offset = 0; | 
|  | sg_idx++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | trans_len = MIN(len, count); | 
|  | trans_len = MIN(trans_len, sge_len - offset); | 
|  |  | 
|  | if (dma) { | 
|  | addr = sg->qsg.sg[sg_idx].base + offset; | 
|  | } else { | 
|  | addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; | 
|  | } | 
|  |  | 
|  | if (dir == NVME_TX_DIRECTION_TO_DEVICE) { | 
|  | ret = nvme_addr_read(n, addr, ptr, trans_len); | 
|  | } else { | 
|  | ret = nvme_addr_write(n, addr, ptr, trans_len); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | return NVME_DATA_TRAS_ERROR; | 
|  | } | 
|  |  | 
|  | ptr += trans_len; | 
|  | len -= trans_len; | 
|  | count -= trans_len; | 
|  | offset += trans_len; | 
|  |  | 
|  | if (count == 0) { | 
|  | count = bytes; | 
|  | offset += skip_bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, | 
|  | NvmeTxDirection dir) | 
|  | { | 
|  | assert(sg->flags & NVME_SG_ALLOC); | 
|  |  | 
|  | if (sg->flags & NVME_SG_DMA) { | 
|  | const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; | 
|  | dma_addr_t residual; | 
|  |  | 
|  | if (dir == NVME_TX_DIRECTION_TO_DEVICE) { | 
|  | dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); | 
|  | } else { | 
|  | dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); | 
|  | } | 
|  |  | 
|  | if (unlikely(residual)) { | 
|  | trace_pci_nvme_err_invalid_dma(); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } else { | 
|  | size_t bytes; | 
|  |  | 
|  | if (dir == NVME_TX_DIRECTION_TO_DEVICE) { | 
|  | bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); | 
|  | } else { | 
|  | bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); | 
|  | } | 
|  |  | 
|  | if (unlikely(bytes != len)) { | 
|  | trace_pci_nvme_err_invalid_dma(); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, | 
|  | NvmeRequest *req) | 
|  | { | 
|  | uint16_t status; | 
|  |  | 
|  | status = nvme_map_dptr(n, &req->sg, len, &req->cmd); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, | 
|  | NvmeRequest *req) | 
|  | { | 
|  | uint16_t status; | 
|  |  | 
|  | status = nvme_map_dptr(n, &req->sg, len, &req->cmd); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, | 
|  | NvmeTxDirection dir, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); | 
|  | bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); | 
|  |  | 
|  | if (nvme_ns_ext(ns) && | 
|  | !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { | 
|  | return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, | 
|  | ns->lbaf.ms, 0, dir); | 
|  | } | 
|  |  | 
|  | return nvme_tx(n, &req->sg, ptr, len, dir); | 
|  | } | 
|  |  | 
|  | uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, | 
|  | NvmeTxDirection dir, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint16_t status; | 
|  |  | 
|  | if (nvme_ns_ext(ns)) { | 
|  | return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, | 
|  | ns->lbasz, ns->lbasz, dir); | 
|  | } | 
|  |  | 
|  | nvme_sg_unmap(&req->sg); | 
|  |  | 
|  | status = nvme_map_mptr(n, &req->sg, len, &req->cmd); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | return nvme_tx(n, &req->sg, ptr, len, dir); | 
|  | } | 
|  |  | 
|  | static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, | 
|  | uint32_t align, BlockCompletionFunc *cb, | 
|  | NvmeRequest *req) | 
|  | { | 
|  | assert(req->sg.flags & NVME_SG_ALLOC); | 
|  |  | 
|  | if (req->sg.flags & NVME_SG_DMA) { | 
|  | req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req); | 
|  | } else { | 
|  | req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, | 
|  | uint32_t align, BlockCompletionFunc *cb, | 
|  | NvmeRequest *req) | 
|  | { | 
|  | assert(req->sg.flags & NVME_SG_ALLOC); | 
|  |  | 
|  | if (req->sg.flags & NVME_SG_DMA) { | 
|  | req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req); | 
|  | } else { | 
|  | req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_update_cq_eventidx(const NvmeCQueue *cq) | 
|  | { | 
|  | trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head); | 
|  |  | 
|  | stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  | } | 
|  |  | 
|  | static void nvme_update_cq_head(NvmeCQueue *cq) | 
|  | { | 
|  | ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  |  | 
|  | trace_pci_nvme_update_cq_head(cq->cqid, cq->head); | 
|  | } | 
|  |  | 
|  | static void nvme_post_cqes(void *opaque) | 
|  | { | 
|  | NvmeCQueue *cq = opaque; | 
|  | NvmeCtrl *n = cq->ctrl; | 
|  | NvmeRequest *req, *next; | 
|  | bool pending = cq->head != cq->tail; | 
|  | int ret; | 
|  |  | 
|  | QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { | 
|  | NvmeSQueue *sq; | 
|  | hwaddr addr; | 
|  |  | 
|  | if (n->dbbuf_enabled) { | 
|  | nvme_update_cq_eventidx(cq); | 
|  | nvme_update_cq_head(cq); | 
|  | } | 
|  |  | 
|  | if (nvme_cq_full(cq)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | sq = req->sq; | 
|  | req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); | 
|  | req->cqe.sq_id = cpu_to_le16(sq->sqid); | 
|  | req->cqe.sq_head = cpu_to_le16(sq->head); | 
|  | addr = cq->dma_addr + (cq->tail << NVME_CQES); | 
|  | ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe, | 
|  | sizeof(req->cqe)); | 
|  | if (ret) { | 
|  | trace_pci_nvme_err_addr_write(addr); | 
|  | trace_pci_nvme_err_cfs(); | 
|  | stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); | 
|  | break; | 
|  | } | 
|  | QTAILQ_REMOVE(&cq->req_list, req, entry); | 
|  | nvme_inc_cq_tail(cq); | 
|  | nvme_sg_unmap(&req->sg); | 
|  | QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); | 
|  | } | 
|  | if (cq->tail != cq->head) { | 
|  | if (cq->irq_enabled && !pending) { | 
|  | n->cq_pending++; | 
|  | } | 
|  |  | 
|  | nvme_irq_assert(n, cq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) | 
|  | { | 
|  | assert(cq->cqid == req->sq->cqid); | 
|  | trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, | 
|  | le32_to_cpu(req->cqe.result), | 
|  | le32_to_cpu(req->cqe.dw1), | 
|  | req->status); | 
|  |  | 
|  | if (req->status) { | 
|  | trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), | 
|  | req->status, req->cmd.opcode); | 
|  | } | 
|  |  | 
|  | QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); | 
|  | QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); | 
|  |  | 
|  | qemu_bh_schedule(cq->bh); | 
|  | } | 
|  |  | 
|  | static void nvme_process_aers(void *opaque) | 
|  | { | 
|  | NvmeCtrl *n = opaque; | 
|  | NvmeAsyncEvent *event, *next; | 
|  |  | 
|  | trace_pci_nvme_process_aers(n->aer_queued); | 
|  |  | 
|  | QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { | 
|  | NvmeRequest *req; | 
|  | NvmeAerResult *result; | 
|  |  | 
|  | /* can't post cqe if there is nothing to complete */ | 
|  | if (!n->outstanding_aers) { | 
|  | trace_pci_nvme_no_outstanding_aers(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* ignore if masked (cqe posted, but event not cleared) */ | 
|  | if (n->aer_mask & (1 << event->result.event_type)) { | 
|  | trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | QTAILQ_REMOVE(&n->aer_queue, event, entry); | 
|  | n->aer_queued--; | 
|  |  | 
|  | n->aer_mask |= 1 << event->result.event_type; | 
|  | n->outstanding_aers--; | 
|  |  | 
|  | req = n->aer_reqs[n->outstanding_aers]; | 
|  |  | 
|  | result = (NvmeAerResult *) &req->cqe.result; | 
|  | result->event_type = event->result.event_type; | 
|  | result->event_info = event->result.event_info; | 
|  | result->log_page = event->result.log_page; | 
|  | g_free(event); | 
|  |  | 
|  | trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, | 
|  | result->log_page); | 
|  |  | 
|  | nvme_enqueue_req_completion(&n->admin_cq, req); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, | 
|  | uint8_t event_info, uint8_t log_page) | 
|  | { | 
|  | NvmeAsyncEvent *event; | 
|  |  | 
|  | trace_pci_nvme_enqueue_event(event_type, event_info, log_page); | 
|  |  | 
|  | if (n->aer_queued == n->params.aer_max_queued) { | 
|  | trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); | 
|  | return; | 
|  | } | 
|  |  | 
|  | event = g_new(NvmeAsyncEvent, 1); | 
|  | event->result = (NvmeAerResult) { | 
|  | .event_type = event_type, | 
|  | .event_info = event_info, | 
|  | .log_page   = log_page, | 
|  | }; | 
|  |  | 
|  | QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); | 
|  | n->aer_queued++; | 
|  |  | 
|  | nvme_process_aers(n); | 
|  | } | 
|  |  | 
|  | static void nvme_smart_event(NvmeCtrl *n, uint8_t event) | 
|  | { | 
|  | uint8_t aer_info; | 
|  |  | 
|  | /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ | 
|  | if (!(NVME_AEC_SMART(n->features.async_config) & event)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (event) { | 
|  | case NVME_SMART_SPARE: | 
|  | aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; | 
|  | break; | 
|  | case NVME_SMART_TEMPERATURE: | 
|  | aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; | 
|  | break; | 
|  | case NVME_SMART_RELIABILITY: | 
|  | case NVME_SMART_MEDIA_READ_ONLY: | 
|  | case NVME_SMART_FAILED_VOLATILE_MEDIA: | 
|  | case NVME_SMART_PMR_UNRELIABLE: | 
|  | aer_info = NVME_AER_INFO_SMART_RELIABILITY; | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); | 
|  | } | 
|  |  | 
|  | static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) | 
|  | { | 
|  | n->aer_mask &= ~(1 << event_type); | 
|  | if (!QTAILQ_EMPTY(&n->aer_queue)) { | 
|  | nvme_process_aers(n); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) | 
|  | { | 
|  | uint8_t mdts = n->params.mdts; | 
|  |  | 
|  | if (mdts && len > n->page_size << mdts) { | 
|  | trace_pci_nvme_err_mdts(len); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, | 
|  | uint32_t nlb) | 
|  | { | 
|  | uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); | 
|  |  | 
|  | if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { | 
|  | trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); | 
|  | return NVME_LBA_RANGE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, | 
|  | uint32_t nlb, int flags) | 
|  | { | 
|  | BlockDriverState *bs = blk_bs(ns->blkconf.blk); | 
|  |  | 
|  | int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); | 
|  | int64_t offset = nvme_l2b(ns, slba); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * `pnum` holds the number of bytes after offset that shares the same | 
|  | * allocation status as the byte at offset. If `pnum` is different from | 
|  | * `bytes`, we should check the allocation status of the next range and | 
|  | * continue this until all bytes have been checked. | 
|  | */ | 
|  | do { | 
|  | bytes -= pnum; | 
|  |  | 
|  | ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | trace_pci_nvme_block_status(offset, bytes, pnum, ret, | 
|  | !!(ret & BDRV_BLOCK_ZERO)); | 
|  |  | 
|  | if (!(ret & flags)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | offset += pnum; | 
|  | } while (pnum != bytes); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, | 
|  | uint32_t nlb) | 
|  | { | 
|  | int ret; | 
|  | Error *err = NULL; | 
|  |  | 
|  | ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); | 
|  | if (ret) { | 
|  | if (ret < 0) { | 
|  | error_setg_errno(&err, -ret, "unable to get block status"); | 
|  | error_report_err(err); | 
|  |  | 
|  | return NVME_INTERNAL_DEV_ERROR; | 
|  | } | 
|  |  | 
|  | return NVME_DULB; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void nvme_aio_err(NvmeRequest *req, int ret) | 
|  | { | 
|  | uint16_t status = NVME_SUCCESS; | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | switch (req->cmd.opcode) { | 
|  | case NVME_CMD_READ: | 
|  | status = NVME_UNRECOVERED_READ; | 
|  | break; | 
|  | case NVME_CMD_FLUSH: | 
|  | case NVME_CMD_WRITE: | 
|  | case NVME_CMD_WRITE_ZEROES: | 
|  | case NVME_CMD_ZONE_APPEND: | 
|  | case NVME_CMD_COPY: | 
|  | status = NVME_WRITE_FAULT; | 
|  | break; | 
|  | default: | 
|  | status = NVME_INTERNAL_DEV_ERROR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); | 
|  |  | 
|  | error_setg_errno(&local_err, -ret, "aio failed"); | 
|  | error_report_err(local_err); | 
|  |  | 
|  | /* | 
|  | * Set the command status code to the first encountered error but allow a | 
|  | * subsequent Internal Device Error to trump it. | 
|  | */ | 
|  | if (req->status && status != NVME_INTERNAL_DEV_ERROR) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | req->status = status; | 
|  | } | 
|  |  | 
|  | static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) | 
|  | { | 
|  | return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : | 
|  | slba / ns->zone_size; | 
|  | } | 
|  |  | 
|  | static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) | 
|  | { | 
|  | uint32_t zone_idx = nvme_zone_idx(ns, slba); | 
|  |  | 
|  | if (zone_idx >= ns->num_zones) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return &ns->zone_array[zone_idx]; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) | 
|  | { | 
|  | uint64_t zslba = zone->d.zslba; | 
|  |  | 
|  | switch (nvme_get_zone_state(zone)) { | 
|  | case NVME_ZONE_STATE_EMPTY: | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | return NVME_SUCCESS; | 
|  | case NVME_ZONE_STATE_FULL: | 
|  | trace_pci_nvme_err_zone_is_full(zslba); | 
|  | return NVME_ZONE_FULL; | 
|  | case NVME_ZONE_STATE_OFFLINE: | 
|  | trace_pci_nvme_err_zone_is_offline(zslba); | 
|  | return NVME_ZONE_OFFLINE; | 
|  | case NVME_ZONE_STATE_READ_ONLY: | 
|  | trace_pci_nvme_err_zone_is_read_only(zslba); | 
|  | return NVME_ZONE_READ_ONLY; | 
|  | default: | 
|  | assert(false); | 
|  | } | 
|  |  | 
|  | return NVME_INTERNAL_DEV_ERROR; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, | 
|  | uint64_t slba, uint32_t nlb) | 
|  | { | 
|  | uint64_t zcap = nvme_zone_wr_boundary(zone); | 
|  | uint16_t status; | 
|  |  | 
|  | status = nvme_check_zone_state_for_write(zone); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (zone->d.za & NVME_ZA_ZRWA_VALID) { | 
|  | uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; | 
|  |  | 
|  | if (slba < zone->w_ptr || slba + nlb > ezrwa) { | 
|  | trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); | 
|  | return NVME_ZONE_INVALID_WRITE; | 
|  | } | 
|  | } else { | 
|  | if (unlikely(slba != zone->w_ptr)) { | 
|  | trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, | 
|  | zone->w_ptr); | 
|  | return NVME_ZONE_INVALID_WRITE; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely((slba + nlb) > zcap)) { | 
|  | trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); | 
|  | return NVME_ZONE_BOUNDARY_ERROR; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) | 
|  | { | 
|  | switch (nvme_get_zone_state(zone)) { | 
|  | case NVME_ZONE_STATE_EMPTY: | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_FULL: | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | case NVME_ZONE_STATE_READ_ONLY: | 
|  | return NVME_SUCCESS; | 
|  | case NVME_ZONE_STATE_OFFLINE: | 
|  | trace_pci_nvme_err_zone_is_offline(zone->d.zslba); | 
|  | return NVME_ZONE_OFFLINE; | 
|  | default: | 
|  | assert(false); | 
|  | } | 
|  |  | 
|  | return NVME_INTERNAL_DEV_ERROR; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, | 
|  | uint32_t nlb) | 
|  | { | 
|  | NvmeZone *zone; | 
|  | uint64_t bndry, end; | 
|  | uint16_t status; | 
|  |  | 
|  | zone = nvme_get_zone_by_slba(ns, slba); | 
|  | assert(zone); | 
|  |  | 
|  | bndry = nvme_zone_rd_boundary(ns, zone); | 
|  | end = slba + nlb; | 
|  |  | 
|  | status = nvme_check_zone_state_for_read(zone); | 
|  | if (status) { | 
|  | ; | 
|  | } else if (unlikely(end > bndry)) { | 
|  | if (!ns->params.cross_zone_read) { | 
|  | status = NVME_ZONE_BOUNDARY_ERROR; | 
|  | } else { | 
|  | /* | 
|  | * Read across zone boundary - check that all subsequent | 
|  | * zones that are being read have an appropriate state. | 
|  | */ | 
|  | do { | 
|  | zone++; | 
|  | status = nvme_check_zone_state_for_read(zone); | 
|  | if (status) { | 
|  | break; | 
|  | } | 
|  | } while (end > nvme_zone_rd_boundary(ns, zone)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) | 
|  | { | 
|  | switch (nvme_get_zone_state(zone)) { | 
|  | case NVME_ZONE_STATE_FULL: | 
|  | return NVME_SUCCESS; | 
|  |  | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | nvme_aor_dec_open(ns); | 
|  | /* fallthrough */ | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | nvme_aor_dec_active(ns); | 
|  |  | 
|  | if (zone->d.za & NVME_ZA_ZRWA_VALID) { | 
|  | zone->d.za &= ~NVME_ZA_ZRWA_VALID; | 
|  | if (ns->params.numzrwa) { | 
|  | ns->zns.numzrwa++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fallthrough */ | 
|  | case NVME_ZONE_STATE_EMPTY: | 
|  | nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); | 
|  | return NVME_SUCCESS; | 
|  |  | 
|  | default: | 
|  | return NVME_ZONE_INVAL_TRANSITION; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) | 
|  | { | 
|  | switch (nvme_get_zone_state(zone)) { | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | nvme_aor_dec_open(ns); | 
|  | nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); | 
|  | /* fall through */ | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | return NVME_SUCCESS; | 
|  |  | 
|  | default: | 
|  | return NVME_ZONE_INVAL_TRANSITION; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) | 
|  | { | 
|  | switch (nvme_get_zone_state(zone)) { | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | nvme_aor_dec_open(ns); | 
|  | /* fallthrough */ | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | nvme_aor_dec_active(ns); | 
|  |  | 
|  | if (zone->d.za & NVME_ZA_ZRWA_VALID) { | 
|  | if (ns->params.numzrwa) { | 
|  | ns->zns.numzrwa++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fallthrough */ | 
|  | case NVME_ZONE_STATE_FULL: | 
|  | zone->w_ptr = zone->d.zslba; | 
|  | zone->d.wp = zone->w_ptr; | 
|  | nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); | 
|  | /* fallthrough */ | 
|  | case NVME_ZONE_STATE_EMPTY: | 
|  | return NVME_SUCCESS; | 
|  |  | 
|  | default: | 
|  | return NVME_ZONE_INVAL_TRANSITION; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) | 
|  | { | 
|  | NvmeZone *zone; | 
|  |  | 
|  | if (ns->params.max_open_zones && | 
|  | ns->nr_open_zones == ns->params.max_open_zones) { | 
|  | zone = QTAILQ_FIRST(&ns->imp_open_zones); | 
|  | if (zone) { | 
|  | /* | 
|  | * Automatically close this implicitly open zone. | 
|  | */ | 
|  | QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); | 
|  | nvme_zrm_close(ns, zone); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | enum { | 
|  | NVME_ZRM_AUTO = 1 << 0, | 
|  | NVME_ZRM_ZRWA = 1 << 1, | 
|  | }; | 
|  |  | 
|  | static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, | 
|  | NvmeZone *zone, int flags) | 
|  | { | 
|  | int act = 0; | 
|  | uint16_t status; | 
|  |  | 
|  | switch (nvme_get_zone_state(zone)) { | 
|  | case NVME_ZONE_STATE_EMPTY: | 
|  | act = 1; | 
|  |  | 
|  | /* fallthrough */ | 
|  |  | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | if (n->params.auto_transition_zones) { | 
|  | nvme_zrm_auto_transition_zone(ns); | 
|  | } | 
|  | status = nvme_zns_check_resources(ns, act, 1, | 
|  | (flags & NVME_ZRM_ZRWA) ? 1 : 0); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (act) { | 
|  | nvme_aor_inc_active(ns); | 
|  | } | 
|  |  | 
|  | nvme_aor_inc_open(ns); | 
|  |  | 
|  | if (flags & NVME_ZRM_AUTO) { | 
|  | nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* fallthrough */ | 
|  |  | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | if (flags & NVME_ZRM_AUTO) { | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); | 
|  |  | 
|  | /* fallthrough */ | 
|  |  | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | if (flags & NVME_ZRM_ZRWA) { | 
|  | ns->zns.numzrwa--; | 
|  |  | 
|  | zone->d.za |= NVME_ZA_ZRWA_VALID; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  |  | 
|  | default: | 
|  | return NVME_ZONE_INVAL_TRANSITION; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, | 
|  | NvmeZone *zone) | 
|  | { | 
|  | return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); | 
|  | } | 
|  |  | 
|  | static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, | 
|  | uint32_t nlb) | 
|  | { | 
|  | zone->d.wp += nlb; | 
|  |  | 
|  | if (zone->d.wp == nvme_zone_wr_boundary(zone)) { | 
|  | nvme_zrm_finish(ns, zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, | 
|  | uint32_t nlbc) | 
|  | { | 
|  | uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); | 
|  |  | 
|  | nlbc = nzrwafgs * ns->zns.zrwafg; | 
|  |  | 
|  | trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); | 
|  |  | 
|  | zone->w_ptr += nlbc; | 
|  |  | 
|  | nvme_advance_zone_wp(ns, zone, nlbc); | 
|  | } | 
|  |  | 
|  | static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) | 
|  | { | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | NvmeZone *zone; | 
|  | uint64_t slba; | 
|  | uint32_t nlb; | 
|  |  | 
|  | slba = le64_to_cpu(rw->slba); | 
|  | nlb = le16_to_cpu(rw->nlb) + 1; | 
|  | zone = nvme_get_zone_by_slba(ns, slba); | 
|  | assert(zone); | 
|  |  | 
|  | if (zone->d.za & NVME_ZA_ZRWA_VALID) { | 
|  | uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; | 
|  | uint64_t elba = slba + nlb - 1; | 
|  |  | 
|  | if (elba > ezrwa) { | 
|  | nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvme_advance_zone_wp(ns, zone, nlb); | 
|  | } | 
|  |  | 
|  | static inline bool nvme_is_write(NvmeRequest *req) | 
|  | { | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  |  | 
|  | return rw->opcode == NVME_CMD_WRITE || | 
|  | rw->opcode == NVME_CMD_ZONE_APPEND || | 
|  | rw->opcode == NVME_CMD_WRITE_ZEROES; | 
|  | } | 
|  |  | 
|  | static void nvme_misc_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeRequest *req = opaque; | 
|  |  | 
|  | trace_pci_nvme_misc_cb(nvme_cid(req)); | 
|  |  | 
|  | if (ret) { | 
|  | nvme_aio_err(req, ret); | 
|  | } | 
|  |  | 
|  | nvme_enqueue_req_completion(nvme_cq(req), req); | 
|  | } | 
|  |  | 
|  | void nvme_rw_complete_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeRequest *req = opaque; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  | BlockAcctCookie *acct = &req->acct; | 
|  | BlockAcctStats *stats = blk_get_stats(blk); | 
|  |  | 
|  | trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); | 
|  |  | 
|  | if (ret) { | 
|  | block_acct_failed(stats, acct); | 
|  | nvme_aio_err(req, ret); | 
|  | } else { | 
|  | block_acct_done(stats, acct); | 
|  | } | 
|  |  | 
|  | if (ns->params.zoned && nvme_is_write(req)) { | 
|  | nvme_finalize_zoned_write(ns, req); | 
|  | } | 
|  |  | 
|  | nvme_enqueue_req_completion(nvme_cq(req), req); | 
|  | } | 
|  |  | 
|  | static void nvme_rw_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeRequest *req = opaque; | 
|  | NvmeNamespace *ns = req->ns; | 
|  |  | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  |  | 
|  | trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); | 
|  |  | 
|  | if (ret) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ns->lbaf.ms) { | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; | 
|  | uint64_t offset = nvme_moff(ns, slba); | 
|  |  | 
|  | if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { | 
|  | size_t mlen = nvme_m2b(ns, nlb); | 
|  |  | 
|  | req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, | 
|  | BDRV_REQ_MAY_UNMAP, | 
|  | nvme_rw_complete_cb, req); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (nvme_ns_ext(ns) || req->cmd.mptr) { | 
|  | uint16_t status; | 
|  |  | 
|  | nvme_sg_unmap(&req->sg); | 
|  | status = nvme_map_mdata(nvme_ctrl(req), nlb, req); | 
|  | if (status) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (req->cmd.opcode == NVME_CMD_READ) { | 
|  | return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req); | 
|  | } | 
|  |  | 
|  | return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | nvme_rw_complete_cb(req, ret); | 
|  | } | 
|  |  | 
|  | static void nvme_verify_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeBounceContext *ctx = opaque; | 
|  | NvmeRequest *req = ctx->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  | BlockAcctCookie *acct = &req->acct; | 
|  | BlockAcctStats *stats = blk_get_stats(blk); | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); | 
|  | uint16_t apptag = le16_to_cpu(rw->apptag); | 
|  | uint16_t appmask = le16_to_cpu(rw->appmask); | 
|  | uint64_t reftag = le32_to_cpu(rw->reftag); | 
|  | uint64_t cdw3 = le32_to_cpu(rw->cdw3); | 
|  | uint16_t status; | 
|  |  | 
|  | reftag |= cdw3 << 32; | 
|  |  | 
|  | trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); | 
|  |  | 
|  | if (ret) { | 
|  | block_acct_failed(stats, acct); | 
|  | nvme_aio_err(req, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | block_acct_done(stats, acct); | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, | 
|  | ctx->mdata.iov.size, slba); | 
|  | if (status) { | 
|  | req->status = status; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, | 
|  | ctx->mdata.bounce, ctx->mdata.iov.size, | 
|  | prinfo, slba, apptag, appmask, &reftag); | 
|  | } | 
|  |  | 
|  | out: | 
|  | qemu_iovec_destroy(&ctx->data.iov); | 
|  | g_free(ctx->data.bounce); | 
|  |  | 
|  | qemu_iovec_destroy(&ctx->mdata.iov); | 
|  | g_free(ctx->mdata.bounce); | 
|  |  | 
|  | g_free(ctx); | 
|  |  | 
|  | nvme_enqueue_req_completion(nvme_cq(req), req); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void nvme_verify_mdata_in_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeBounceContext *ctx = opaque; | 
|  | NvmeRequest *req = ctx->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint32_t nlb = le16_to_cpu(rw->nlb) + 1; | 
|  | size_t mlen = nvme_m2b(ns, nlb); | 
|  | uint64_t offset = nvme_moff(ns, slba); | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  |  | 
|  | trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); | 
|  |  | 
|  | if (ret) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ctx->mdata.bounce = g_malloc(mlen); | 
|  |  | 
|  | qemu_iovec_reset(&ctx->mdata.iov); | 
|  | qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); | 
|  |  | 
|  | req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, | 
|  | nvme_verify_cb, ctx); | 
|  | return; | 
|  |  | 
|  | out: | 
|  | nvme_verify_cb(ctx, ret); | 
|  | } | 
|  |  | 
|  | struct nvme_compare_ctx { | 
|  | struct { | 
|  | QEMUIOVector iov; | 
|  | uint8_t *bounce; | 
|  | } data; | 
|  |  | 
|  | struct { | 
|  | QEMUIOVector iov; | 
|  | uint8_t *bounce; | 
|  | } mdata; | 
|  | }; | 
|  |  | 
|  | static void nvme_compare_mdata_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeRequest *req = opaque; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeCtrl *n = nvme_ctrl(req); | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); | 
|  | uint16_t apptag = le16_to_cpu(rw->apptag); | 
|  | uint16_t appmask = le16_to_cpu(rw->appmask); | 
|  | uint64_t reftag = le32_to_cpu(rw->reftag); | 
|  | uint64_t cdw3 = le32_to_cpu(rw->cdw3); | 
|  | struct nvme_compare_ctx *ctx = req->opaque; | 
|  | g_autofree uint8_t *buf = NULL; | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  | BlockAcctCookie *acct = &req->acct; | 
|  | BlockAcctStats *stats = blk_get_stats(blk); | 
|  | uint16_t status = NVME_SUCCESS; | 
|  |  | 
|  | reftag |= cdw3 << 32; | 
|  |  | 
|  | trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); | 
|  |  | 
|  | if (ret) { | 
|  | block_acct_failed(stats, acct); | 
|  | nvme_aio_err(req, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | buf = g_malloc(ctx->mdata.iov.size); | 
|  |  | 
|  | status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, | 
|  | NVME_TX_DIRECTION_TO_DEVICE, req); | 
|  | if (status) { | 
|  | req->status = status; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint8_t *bufp; | 
|  | uint8_t *mbufp = ctx->mdata.bounce; | 
|  | uint8_t *end = mbufp + ctx->mdata.iov.size; | 
|  | int16_t pil = 0; | 
|  |  | 
|  | status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, | 
|  | ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, | 
|  | slba, apptag, appmask, &reftag); | 
|  | if (status) { | 
|  | req->status = status; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When formatted with protection information, do not compare the DIF | 
|  | * tuple. | 
|  | */ | 
|  | if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { | 
|  | pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); | 
|  | } | 
|  |  | 
|  | for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { | 
|  | if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { | 
|  | req->status = NVME_CMP_FAILURE | NVME_DNR; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { | 
|  | req->status = NVME_CMP_FAILURE | NVME_DNR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | block_acct_done(stats, acct); | 
|  |  | 
|  | out: | 
|  | qemu_iovec_destroy(&ctx->data.iov); | 
|  | g_free(ctx->data.bounce); | 
|  |  | 
|  | qemu_iovec_destroy(&ctx->mdata.iov); | 
|  | g_free(ctx->mdata.bounce); | 
|  |  | 
|  | g_free(ctx); | 
|  |  | 
|  | nvme_enqueue_req_completion(nvme_cq(req), req); | 
|  | } | 
|  |  | 
|  | static void nvme_compare_data_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeRequest *req = opaque; | 
|  | NvmeCtrl *n = nvme_ctrl(req); | 
|  | NvmeNamespace *ns = req->ns; | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  | BlockAcctCookie *acct = &req->acct; | 
|  | BlockAcctStats *stats = blk_get_stats(blk); | 
|  |  | 
|  | struct nvme_compare_ctx *ctx = req->opaque; | 
|  | g_autofree uint8_t *buf = NULL; | 
|  | uint16_t status; | 
|  |  | 
|  | trace_pci_nvme_compare_data_cb(nvme_cid(req)); | 
|  |  | 
|  | if (ret) { | 
|  | block_acct_failed(stats, acct); | 
|  | nvme_aio_err(req, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | buf = g_malloc(ctx->data.iov.size); | 
|  |  | 
|  | status = nvme_bounce_data(n, buf, ctx->data.iov.size, | 
|  | NVME_TX_DIRECTION_TO_DEVICE, req); | 
|  | if (status) { | 
|  | req->status = status; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { | 
|  | req->status = NVME_CMP_FAILURE | NVME_DNR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ns->lbaf.ms) { | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint32_t nlb = le16_to_cpu(rw->nlb) + 1; | 
|  | size_t mlen = nvme_m2b(ns, nlb); | 
|  | uint64_t offset = nvme_moff(ns, slba); | 
|  |  | 
|  | ctx->mdata.bounce = g_malloc(mlen); | 
|  |  | 
|  | qemu_iovec_init(&ctx->mdata.iov, 1); | 
|  | qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); | 
|  |  | 
|  | req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, | 
|  | nvme_compare_mdata_cb, req); | 
|  | return; | 
|  | } | 
|  |  | 
|  | block_acct_done(stats, acct); | 
|  |  | 
|  | out: | 
|  | qemu_iovec_destroy(&ctx->data.iov); | 
|  | g_free(ctx->data.bounce); | 
|  | g_free(ctx); | 
|  |  | 
|  | nvme_enqueue_req_completion(nvme_cq(req), req); | 
|  | } | 
|  |  | 
|  | typedef struct NvmeDSMAIOCB { | 
|  | BlockAIOCB common; | 
|  | BlockAIOCB *aiocb; | 
|  | NvmeRequest *req; | 
|  | int ret; | 
|  |  | 
|  | NvmeDsmRange *range; | 
|  | unsigned int nr; | 
|  | unsigned int idx; | 
|  | } NvmeDSMAIOCB; | 
|  |  | 
|  | static void nvme_dsm_cancel(BlockAIOCB *aiocb) | 
|  | { | 
|  | NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); | 
|  |  | 
|  | /* break nvme_dsm_cb loop */ | 
|  | iocb->idx = iocb->nr; | 
|  | iocb->ret = -ECANCELED; | 
|  |  | 
|  | if (iocb->aiocb) { | 
|  | blk_aio_cancel_async(iocb->aiocb); | 
|  | iocb->aiocb = NULL; | 
|  | } else { | 
|  | /* | 
|  | * We only reach this if nvme_dsm_cancel() has already been called or | 
|  | * the command ran to completion. | 
|  | */ | 
|  | assert(iocb->idx == iocb->nr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const AIOCBInfo nvme_dsm_aiocb_info = { | 
|  | .aiocb_size   = sizeof(NvmeDSMAIOCB), | 
|  | .cancel_async = nvme_dsm_cancel, | 
|  | }; | 
|  |  | 
|  | static void nvme_dsm_cb(void *opaque, int ret); | 
|  |  | 
|  | static void nvme_dsm_md_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeDSMAIOCB *iocb = opaque; | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeDsmRange *range; | 
|  | uint64_t slba; | 
|  | uint32_t nlb; | 
|  |  | 
|  | if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | range = &iocb->range[iocb->idx - 1]; | 
|  | slba = le64_to_cpu(range->slba); | 
|  | nlb = le32_to_cpu(range->nlb); | 
|  |  | 
|  | /* | 
|  | * Check that all block were discarded (zeroed); otherwise we do not zero | 
|  | * the metadata. | 
|  | */ | 
|  |  | 
|  | ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); | 
|  | if (ret) { | 
|  | if (ret < 0) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | nvme_dsm_cb(iocb, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), | 
|  | nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, | 
|  | nvme_dsm_cb, iocb); | 
|  | return; | 
|  |  | 
|  | done: | 
|  | nvme_dsm_cb(iocb, ret); | 
|  | } | 
|  |  | 
|  | static void nvme_dsm_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeDSMAIOCB *iocb = opaque; | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeCtrl *n = nvme_ctrl(req); | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeDsmRange *range; | 
|  | uint64_t slba; | 
|  | uint32_t nlb; | 
|  |  | 
|  | if (iocb->ret < 0) { | 
|  | goto done; | 
|  | } else if (ret < 0) { | 
|  | iocb->ret = ret; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | next: | 
|  | if (iocb->idx == iocb->nr) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | range = &iocb->range[iocb->idx++]; | 
|  | slba = le64_to_cpu(range->slba); | 
|  | nlb = le32_to_cpu(range->nlb); | 
|  |  | 
|  | trace_pci_nvme_dsm_deallocate(slba, nlb); | 
|  |  | 
|  | if (nlb > n->dmrsl) { | 
|  | trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (nvme_check_bounds(ns, slba, nlb)) { | 
|  | trace_pci_nvme_err_invalid_lba_range(slba, nlb, | 
|  | ns->id_ns.nsze); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), | 
|  | nvme_l2b(ns, nlb), | 
|  | nvme_dsm_md_cb, iocb); | 
|  | return; | 
|  |  | 
|  | done: | 
|  | iocb->aiocb = NULL; | 
|  | iocb->common.cb(iocb->common.opaque, iocb->ret); | 
|  | qemu_aio_unref(iocb); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; | 
|  | uint32_t attr = le32_to_cpu(dsm->attributes); | 
|  | uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; | 
|  | uint16_t status = NVME_SUCCESS; | 
|  |  | 
|  | trace_pci_nvme_dsm(nr, attr); | 
|  |  | 
|  | if (attr & NVME_DSMGMT_AD) { | 
|  | NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, | 
|  | nvme_misc_cb, req); | 
|  |  | 
|  | iocb->req = req; | 
|  | iocb->ret = 0; | 
|  | iocb->range = g_new(NvmeDsmRange, nr); | 
|  | iocb->nr = nr; | 
|  | iocb->idx = 0; | 
|  |  | 
|  | status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, | 
|  | req); | 
|  | if (status) { | 
|  | g_free(iocb->range); | 
|  | qemu_aio_unref(iocb); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | req->aiocb = &iocb->common; | 
|  | nvme_dsm_cb(iocb, 0); | 
|  |  | 
|  | return NVME_NO_COMPLETE; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint32_t nlb = le16_to_cpu(rw->nlb) + 1; | 
|  | size_t len = nvme_l2b(ns, nlb); | 
|  | int64_t offset = nvme_l2b(ns, slba); | 
|  | uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); | 
|  | uint32_t reftag = le32_to_cpu(rw->reftag); | 
|  | NvmeBounceContext *ctx = NULL; | 
|  | uint16_t status; | 
|  |  | 
|  | trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | status = nvme_check_prinfo(ns, prinfo, slba, reftag); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (prinfo & NVME_PRINFO_PRACT) { | 
|  | return NVME_INVALID_PROT_INFO | NVME_DNR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (len > n->page_size << n->params.vsl) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | status = nvme_check_bounds(ns, slba, nlb); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { | 
|  | status = nvme_check_dulbe(ns, slba, nlb); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx = g_new0(NvmeBounceContext, 1); | 
|  | ctx->req = req; | 
|  |  | 
|  | ctx->data.bounce = g_malloc(len); | 
|  |  | 
|  | qemu_iovec_init(&ctx->data.iov, 1); | 
|  | qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); | 
|  |  | 
|  | block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, | 
|  | BLOCK_ACCT_READ); | 
|  |  | 
|  | req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, | 
|  | nvme_verify_mdata_in_cb, ctx); | 
|  | return NVME_NO_COMPLETE; | 
|  | } | 
|  |  | 
|  | typedef struct NvmeCopyAIOCB { | 
|  | BlockAIOCB common; | 
|  | BlockAIOCB *aiocb; | 
|  | NvmeRequest *req; | 
|  | int ret; | 
|  |  | 
|  | void *ranges; | 
|  | unsigned int format; | 
|  | int nr; | 
|  | int idx; | 
|  |  | 
|  | uint8_t *bounce; | 
|  | QEMUIOVector iov; | 
|  | struct { | 
|  | BlockAcctCookie read; | 
|  | BlockAcctCookie write; | 
|  | } acct; | 
|  |  | 
|  | uint64_t reftag; | 
|  | uint64_t slba; | 
|  |  | 
|  | NvmeZone *zone; | 
|  | } NvmeCopyAIOCB; | 
|  |  | 
|  | static void nvme_copy_cancel(BlockAIOCB *aiocb) | 
|  | { | 
|  | NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); | 
|  |  | 
|  | iocb->ret = -ECANCELED; | 
|  |  | 
|  | if (iocb->aiocb) { | 
|  | blk_aio_cancel_async(iocb->aiocb); | 
|  | iocb->aiocb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const AIOCBInfo nvme_copy_aiocb_info = { | 
|  | .aiocb_size   = sizeof(NvmeCopyAIOCB), | 
|  | .cancel_async = nvme_copy_cancel, | 
|  | }; | 
|  |  | 
|  | static void nvme_copy_done(NvmeCopyAIOCB *iocb) | 
|  | { | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); | 
|  |  | 
|  | if (iocb->idx != iocb->nr) { | 
|  | req->cqe.result = cpu_to_le32(iocb->idx); | 
|  | } | 
|  |  | 
|  | qemu_iovec_destroy(&iocb->iov); | 
|  | g_free(iocb->bounce); | 
|  |  | 
|  | if (iocb->ret < 0) { | 
|  | block_acct_failed(stats, &iocb->acct.read); | 
|  | block_acct_failed(stats, &iocb->acct.write); | 
|  | } else { | 
|  | block_acct_done(stats, &iocb->acct.read); | 
|  | block_acct_done(stats, &iocb->acct.write); | 
|  | } | 
|  |  | 
|  | iocb->common.cb(iocb->common.opaque, iocb->ret); | 
|  | qemu_aio_unref(iocb); | 
|  | } | 
|  |  | 
|  | static void nvme_do_copy(NvmeCopyAIOCB *iocb); | 
|  |  | 
|  | static void nvme_copy_source_range_parse_format0(void *ranges, int idx, | 
|  | uint64_t *slba, uint32_t *nlb, | 
|  | uint16_t *apptag, | 
|  | uint16_t *appmask, | 
|  | uint64_t *reftag) | 
|  | { | 
|  | NvmeCopySourceRangeFormat0 *_ranges = ranges; | 
|  |  | 
|  | if (slba) { | 
|  | *slba = le64_to_cpu(_ranges[idx].slba); | 
|  | } | 
|  |  | 
|  | if (nlb) { | 
|  | *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; | 
|  | } | 
|  |  | 
|  | if (apptag) { | 
|  | *apptag = le16_to_cpu(_ranges[idx].apptag); | 
|  | } | 
|  |  | 
|  | if (appmask) { | 
|  | *appmask = le16_to_cpu(_ranges[idx].appmask); | 
|  | } | 
|  |  | 
|  | if (reftag) { | 
|  | *reftag = le32_to_cpu(_ranges[idx].reftag); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_copy_source_range_parse_format1(void *ranges, int idx, | 
|  | uint64_t *slba, uint32_t *nlb, | 
|  | uint16_t *apptag, | 
|  | uint16_t *appmask, | 
|  | uint64_t *reftag) | 
|  | { | 
|  | NvmeCopySourceRangeFormat1 *_ranges = ranges; | 
|  |  | 
|  | if (slba) { | 
|  | *slba = le64_to_cpu(_ranges[idx].slba); | 
|  | } | 
|  |  | 
|  | if (nlb) { | 
|  | *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; | 
|  | } | 
|  |  | 
|  | if (apptag) { | 
|  | *apptag = le16_to_cpu(_ranges[idx].apptag); | 
|  | } | 
|  |  | 
|  | if (appmask) { | 
|  | *appmask = le16_to_cpu(_ranges[idx].appmask); | 
|  | } | 
|  |  | 
|  | if (reftag) { | 
|  | *reftag = 0; | 
|  |  | 
|  | *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; | 
|  | *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; | 
|  | *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; | 
|  | *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; | 
|  | *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; | 
|  | *reftag |= (uint64_t)_ranges[idx].sr[9]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, | 
|  | uint64_t *slba, uint32_t *nlb, | 
|  | uint16_t *apptag, uint16_t *appmask, | 
|  | uint64_t *reftag) | 
|  | { | 
|  | switch (format) { | 
|  | case NVME_COPY_FORMAT_0: | 
|  | nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag, | 
|  | appmask, reftag); | 
|  | break; | 
|  |  | 
|  | case NVME_COPY_FORMAT_1: | 
|  | nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag, | 
|  | appmask, reftag); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns, | 
|  | NvmeCopyAIOCB *iocb, uint16_t nr) | 
|  | { | 
|  | uint32_t copy_len = 0; | 
|  |  | 
|  | for (int idx = 0; idx < nr; idx++) { | 
|  | uint32_t nlb; | 
|  | nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL, | 
|  | &nlb, NULL, NULL, NULL); | 
|  | copy_len += nlb + 1; | 
|  | } | 
|  |  | 
|  | if (copy_len > ns->id_ns.mcl) { | 
|  | return NVME_CMD_SIZE_LIMIT | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void nvme_copy_out_completed_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeCopyAIOCB *iocb = opaque; | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint32_t nlb; | 
|  |  | 
|  | nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, | 
|  | &nlb, NULL, NULL, NULL); | 
|  |  | 
|  | if (ret < 0) { | 
|  | iocb->ret = ret; | 
|  | goto out; | 
|  | } else if (iocb->ret < 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ns->params.zoned) { | 
|  | nvme_advance_zone_wp(ns, iocb->zone, nlb); | 
|  | } | 
|  |  | 
|  | iocb->idx++; | 
|  | iocb->slba += nlb; | 
|  | out: | 
|  | nvme_do_copy(iocb); | 
|  | } | 
|  |  | 
|  | static void nvme_copy_out_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeCopyAIOCB *iocb = opaque; | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint32_t nlb; | 
|  | size_t mlen; | 
|  | uint8_t *mbounce; | 
|  |  | 
|  | if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, | 
|  | &nlb, NULL, NULL, NULL); | 
|  |  | 
|  | mlen = nvme_m2b(ns, nlb); | 
|  | mbounce = iocb->bounce + nvme_l2b(ns, nlb); | 
|  |  | 
|  | qemu_iovec_reset(&iocb->iov); | 
|  | qemu_iovec_add(&iocb->iov, mbounce, mlen); | 
|  |  | 
|  | iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba), | 
|  | &iocb->iov, 0, nvme_copy_out_completed_cb, | 
|  | iocb); | 
|  |  | 
|  | return; | 
|  |  | 
|  | out: | 
|  | nvme_copy_out_completed_cb(iocb, ret); | 
|  | } | 
|  |  | 
|  | static void nvme_copy_in_completed_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeCopyAIOCB *iocb = opaque; | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint32_t nlb; | 
|  | uint64_t slba; | 
|  | uint16_t apptag, appmask; | 
|  | uint64_t reftag; | 
|  | size_t len; | 
|  | uint16_t status; | 
|  |  | 
|  | if (ret < 0) { | 
|  | iocb->ret = ret; | 
|  | goto out; | 
|  | } else if (iocb->ret < 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, | 
|  | &nlb, &apptag, &appmask, &reftag); | 
|  | len = nvme_l2b(ns, nlb); | 
|  |  | 
|  | trace_pci_nvme_copy_out(iocb->slba, nlb); | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; | 
|  |  | 
|  | uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); | 
|  | uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); | 
|  |  | 
|  | size_t mlen = nvme_m2b(ns, nlb); | 
|  | uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb); | 
|  |  | 
|  | status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  | status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor, | 
|  | slba, apptag, appmask, &reftag); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | apptag = le16_to_cpu(copy->apptag); | 
|  | appmask = le16_to_cpu(copy->appmask); | 
|  |  | 
|  | if (prinfow & NVME_PRINFO_PRACT) { | 
|  | status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen, | 
|  | apptag, &iocb->reftag); | 
|  | } else { | 
|  | status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, | 
|  | prinfow, iocb->slba, apptag, appmask, | 
|  | &iocb->reftag); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | status = nvme_check_bounds(ns, iocb->slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (ns->params.zoned) { | 
|  | status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { | 
|  | iocb->zone->w_ptr += nlb; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_iovec_reset(&iocb->iov); | 
|  | qemu_iovec_add(&iocb->iov, iocb->bounce, len); | 
|  |  | 
|  | iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba), | 
|  | &iocb->iov, 0, nvme_copy_out_cb, iocb); | 
|  |  | 
|  | return; | 
|  |  | 
|  | invalid: | 
|  | req->status = status; | 
|  | iocb->ret = -1; | 
|  | out: | 
|  | nvme_do_copy(iocb); | 
|  | } | 
|  |  | 
|  | static void nvme_copy_in_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeCopyAIOCB *iocb = opaque; | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint64_t slba; | 
|  | uint32_t nlb; | 
|  |  | 
|  | if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, | 
|  | &nlb, NULL, NULL, NULL); | 
|  |  | 
|  | qemu_iovec_reset(&iocb->iov); | 
|  | qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb), | 
|  | nvme_m2b(ns, nlb)); | 
|  |  | 
|  | iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba), | 
|  | &iocb->iov, 0, nvme_copy_in_completed_cb, | 
|  | iocb); | 
|  | return; | 
|  |  | 
|  | out: | 
|  | nvme_copy_in_completed_cb(iocb, ret); | 
|  | } | 
|  |  | 
|  | static void nvme_do_copy(NvmeCopyAIOCB *iocb) | 
|  | { | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint64_t slba; | 
|  | uint32_t nlb; | 
|  | size_t len; | 
|  | uint16_t status; | 
|  |  | 
|  | if (iocb->ret < 0) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (iocb->idx == iocb->nr) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, | 
|  | &nlb, NULL, NULL, NULL); | 
|  | len = nvme_l2b(ns, nlb); | 
|  |  | 
|  | trace_pci_nvme_copy_source_range(slba, nlb); | 
|  |  | 
|  | if (nlb > le16_to_cpu(ns->id_ns.mssrl)) { | 
|  | status = NVME_CMD_SIZE_LIMIT | NVME_DNR; | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | status = nvme_check_bounds(ns, slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { | 
|  | status = nvme_check_dulbe(ns, slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ns->params.zoned) { | 
|  | status = nvme_check_zone_read(ns, slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_iovec_reset(&iocb->iov); | 
|  | qemu_iovec_add(&iocb->iov, iocb->bounce, len); | 
|  |  | 
|  | iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba), | 
|  | &iocb->iov, 0, nvme_copy_in_cb, iocb); | 
|  | return; | 
|  |  | 
|  | invalid: | 
|  | req->status = status; | 
|  | iocb->ret = -1; | 
|  | done: | 
|  | nvme_copy_done(iocb); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; | 
|  | NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, | 
|  | nvme_misc_cb, req); | 
|  | uint16_t nr = copy->nr + 1; | 
|  | uint8_t format = copy->control[0] & 0xf; | 
|  | uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); | 
|  | uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); | 
|  | size_t len = sizeof(NvmeCopySourceRangeFormat0); | 
|  |  | 
|  | uint16_t status; | 
|  |  | 
|  | trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); | 
|  |  | 
|  | iocb->ranges = NULL; | 
|  | iocb->zone = NULL; | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && | 
|  | ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { | 
|  | status = NVME_INVALID_FIELD | NVME_DNR; | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (!(n->id_ctrl.ocfs & (1 << format))) { | 
|  | trace_pci_nvme_err_copy_invalid_format(format); | 
|  | status = NVME_INVALID_FIELD | NVME_DNR; | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (nr > ns->id_ns.msrc + 1) { | 
|  | status = NVME_CMD_SIZE_LIMIT | NVME_DNR; | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if ((ns->pif == 0x0 && format != 0x0) || | 
|  | (ns->pif != 0x0 && format != 0x1)) { | 
|  | status = NVME_INVALID_FORMAT | NVME_DNR; | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (ns->pif) { | 
|  | len = sizeof(NvmeCopySourceRangeFormat1); | 
|  | } | 
|  |  | 
|  | iocb->format = format; | 
|  | iocb->ranges = g_malloc_n(nr, len); | 
|  | status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | iocb->slba = le64_to_cpu(copy->sdlba); | 
|  |  | 
|  | if (ns->params.zoned) { | 
|  | iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); | 
|  | if (!iocb->zone) { | 
|  | status = NVME_LBA_RANGE | NVME_DNR; | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | status = nvme_zrm_auto(n, ns, iocb->zone); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = nvme_check_copy_mcl(ns, iocb, nr); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | iocb->req = req; | 
|  | iocb->ret = 0; | 
|  | iocb->nr = nr; | 
|  | iocb->idx = 0; | 
|  | iocb->reftag = le32_to_cpu(copy->reftag); | 
|  | iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; | 
|  | iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl), | 
|  | ns->lbasz + ns->lbaf.ms); | 
|  |  | 
|  | qemu_iovec_init(&iocb->iov, 1); | 
|  |  | 
|  | block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0, | 
|  | BLOCK_ACCT_READ); | 
|  | block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0, | 
|  | BLOCK_ACCT_WRITE); | 
|  |  | 
|  | req->aiocb = &iocb->common; | 
|  | nvme_do_copy(iocb); | 
|  |  | 
|  | return NVME_NO_COMPLETE; | 
|  |  | 
|  | invalid: | 
|  | g_free(iocb->ranges); | 
|  | qemu_aio_unref(iocb); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint32_t nlb = le16_to_cpu(rw->nlb) + 1; | 
|  | uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); | 
|  | size_t data_len = nvme_l2b(ns, nlb); | 
|  | size_t len = data_len; | 
|  | int64_t offset = nvme_l2b(ns, slba); | 
|  | struct nvme_compare_ctx *ctx = NULL; | 
|  | uint16_t status; | 
|  |  | 
|  | trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { | 
|  | return NVME_INVALID_PROT_INFO | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (nvme_ns_ext(ns)) { | 
|  | len += nvme_m2b(ns, nlb); | 
|  | } | 
|  |  | 
|  | status = nvme_check_mdts(n, len); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | status = nvme_check_bounds(ns, slba, nlb); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { | 
|  | status = nvme_check_dulbe(ns, slba, nlb); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = nvme_map_dptr(n, &req->sg, len, &req->cmd); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | ctx = g_new(struct nvme_compare_ctx, 1); | 
|  | ctx->data.bounce = g_malloc(data_len); | 
|  |  | 
|  | req->opaque = ctx; | 
|  |  | 
|  | qemu_iovec_init(&ctx->data.iov, 1); | 
|  | qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); | 
|  |  | 
|  | block_acct_start(blk_get_stats(blk), &req->acct, data_len, | 
|  | BLOCK_ACCT_READ); | 
|  | req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, | 
|  | nvme_compare_data_cb, req); | 
|  |  | 
|  | return NVME_NO_COMPLETE; | 
|  | } | 
|  |  | 
|  | typedef struct NvmeFlushAIOCB { | 
|  | BlockAIOCB common; | 
|  | BlockAIOCB *aiocb; | 
|  | NvmeRequest *req; | 
|  | int ret; | 
|  |  | 
|  | NvmeNamespace *ns; | 
|  | uint32_t nsid; | 
|  | bool broadcast; | 
|  | } NvmeFlushAIOCB; | 
|  |  | 
|  | static void nvme_flush_cancel(BlockAIOCB *acb) | 
|  | { | 
|  | NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); | 
|  |  | 
|  | iocb->ret = -ECANCELED; | 
|  |  | 
|  | if (iocb->aiocb) { | 
|  | blk_aio_cancel_async(iocb->aiocb); | 
|  | iocb->aiocb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const AIOCBInfo nvme_flush_aiocb_info = { | 
|  | .aiocb_size = sizeof(NvmeFlushAIOCB), | 
|  | .cancel_async = nvme_flush_cancel, | 
|  | }; | 
|  |  | 
|  | static void nvme_do_flush(NvmeFlushAIOCB *iocb); | 
|  |  | 
|  | static void nvme_flush_ns_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeFlushAIOCB *iocb = opaque; | 
|  | NvmeNamespace *ns = iocb->ns; | 
|  |  | 
|  | if (ret < 0) { | 
|  | iocb->ret = ret; | 
|  | goto out; | 
|  | } else if (iocb->ret < 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ns) { | 
|  | trace_pci_nvme_flush_ns(iocb->nsid); | 
|  |  | 
|  | iocb->ns = NULL; | 
|  | iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | out: | 
|  | nvme_do_flush(iocb); | 
|  | } | 
|  |  | 
|  | static void nvme_do_flush(NvmeFlushAIOCB *iocb) | 
|  | { | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeCtrl *n = nvme_ctrl(req); | 
|  | int i; | 
|  |  | 
|  | if (iocb->ret < 0) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (iocb->broadcast) { | 
|  | for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | iocb->ns = nvme_ns(n, i); | 
|  | if (iocb->ns) { | 
|  | iocb->nsid = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!iocb->ns) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | nvme_flush_ns_cb(iocb, 0); | 
|  | return; | 
|  |  | 
|  | done: | 
|  | iocb->common.cb(iocb->common.opaque, iocb->ret); | 
|  | qemu_aio_unref(iocb); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeFlushAIOCB *iocb; | 
|  | uint32_t nsid = le32_to_cpu(req->cmd.nsid); | 
|  | uint16_t status; | 
|  |  | 
|  | iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); | 
|  |  | 
|  | iocb->req = req; | 
|  | iocb->ret = 0; | 
|  | iocb->ns = NULL; | 
|  | iocb->nsid = 0; | 
|  | iocb->broadcast = (nsid == NVME_NSID_BROADCAST); | 
|  |  | 
|  | if (!iocb->broadcast) { | 
|  | if (!nvme_nsid_valid(n, nsid)) { | 
|  | status = NVME_INVALID_NSID | NVME_DNR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | iocb->ns = nvme_ns(n, nsid); | 
|  | if (!iocb->ns) { | 
|  | status = NVME_INVALID_FIELD | NVME_DNR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | iocb->nsid = nsid; | 
|  | } | 
|  |  | 
|  | req->aiocb = &iocb->common; | 
|  | nvme_do_flush(iocb); | 
|  |  | 
|  | return NVME_NO_COMPLETE; | 
|  |  | 
|  | out: | 
|  | qemu_aio_unref(iocb); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; | 
|  | uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); | 
|  | uint64_t data_size = nvme_l2b(ns, nlb); | 
|  | uint64_t mapped_size = data_size; | 
|  | uint64_t data_offset; | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  | uint16_t status; | 
|  |  | 
|  | if (nvme_ns_ext(ns)) { | 
|  | mapped_size += nvme_m2b(ns, nlb); | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | bool pract = prinfo & NVME_PRINFO_PRACT; | 
|  |  | 
|  | if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { | 
|  | mapped_size = data_size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); | 
|  |  | 
|  | status = nvme_check_mdts(n, mapped_size); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | status = nvme_check_bounds(ns, slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (ns->params.zoned) { | 
|  | status = nvme_check_zone_read(ns, slba, nlb); | 
|  | if (status) { | 
|  | trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); | 
|  | goto invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { | 
|  | status = nvme_check_dulbe(ns, slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | return nvme_dif_rw(n, req); | 
|  | } | 
|  |  | 
|  | status = nvme_map_data(n, nlb, req); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | data_offset = nvme_l2b(ns, slba); | 
|  |  | 
|  | block_acct_start(blk_get_stats(blk), &req->acct, data_size, | 
|  | BLOCK_ACCT_READ); | 
|  | nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); | 
|  | return NVME_NO_COMPLETE; | 
|  |  | 
|  | invalid: | 
|  | block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); | 
|  | return status | NVME_DNR; | 
|  | } | 
|  |  | 
|  | static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba, | 
|  | uint32_t nlb) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | uint64_t data_size = nvme_l2b(ns, nlb); | 
|  | uint32_t dw12 = le32_to_cpu(req->cmd.cdw12); | 
|  | uint8_t dtype = (dw12 >> 20) & 0xf; | 
|  | uint16_t pid = le16_to_cpu(rw->dspec); | 
|  | uint16_t ph, rg, ruhid; | 
|  | NvmeReclaimUnit *ru; | 
|  |  | 
|  | if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT || | 
|  | !nvme_parse_pid(ns, pid, &ph, &rg)) { | 
|  | ph = 0; | 
|  | rg = 0; | 
|  | } | 
|  |  | 
|  | ruhid = ns->fdp.phs[ph]; | 
|  | ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg]; | 
|  |  | 
|  | nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size); | 
|  | nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size); | 
|  |  | 
|  | while (nlb) { | 
|  | if (nlb < ru->ruamw) { | 
|  | ru->ruamw -= nlb; | 
|  | break; | 
|  | } | 
|  |  | 
|  | nlb -= ru->ruamw; | 
|  | nvme_update_ruh(n, ns, pid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, | 
|  | bool wrz) | 
|  | { | 
|  | NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint64_t slba = le64_to_cpu(rw->slba); | 
|  | uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; | 
|  | uint16_t ctrl = le16_to_cpu(rw->control); | 
|  | uint8_t prinfo = NVME_RW_PRINFO(ctrl); | 
|  | uint64_t data_size = nvme_l2b(ns, nlb); | 
|  | uint64_t mapped_size = data_size; | 
|  | uint64_t data_offset; | 
|  | NvmeZone *zone; | 
|  | NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; | 
|  | BlockBackend *blk = ns->blkconf.blk; | 
|  | uint16_t status; | 
|  |  | 
|  | if (nvme_ns_ext(ns)) { | 
|  | mapped_size += nvme_m2b(ns, nlb); | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | bool pract = prinfo & NVME_PRINFO_PRACT; | 
|  |  | 
|  | if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { | 
|  | mapped_size -= nvme_m2b(ns, nlb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), | 
|  | nvme_nsid(ns), nlb, mapped_size, slba); | 
|  |  | 
|  | if (!wrz) { | 
|  | status = nvme_check_mdts(n, mapped_size); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = nvme_check_bounds(ns, slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (ns->params.zoned) { | 
|  | zone = nvme_get_zone_by_slba(ns, slba); | 
|  | assert(zone); | 
|  |  | 
|  | if (append) { | 
|  | bool piremap = !!(ctrl & NVME_RW_PIREMAP); | 
|  |  | 
|  | if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { | 
|  | return NVME_INVALID_ZONE_OP | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (unlikely(slba != zone->d.zslba)) { | 
|  | trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); | 
|  | status = NVME_INVALID_FIELD; | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (n->params.zasl && | 
|  | data_size > (uint64_t)n->page_size << n->params.zasl) { | 
|  | trace_pci_nvme_err_zasl(data_size); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | slba = zone->w_ptr; | 
|  | rw->slba = cpu_to_le64(slba); | 
|  | res->slba = cpu_to_le64(slba); | 
|  |  | 
|  | switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | case NVME_ID_NS_DPS_TYPE_1: | 
|  | if (!piremap) { | 
|  | return NVME_INVALID_PROT_INFO | NVME_DNR; | 
|  | } | 
|  |  | 
|  | /* fallthrough */ | 
|  |  | 
|  | case NVME_ID_NS_DPS_TYPE_2: | 
|  | if (piremap) { | 
|  | uint32_t reftag = le32_to_cpu(rw->reftag); | 
|  | rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case NVME_ID_NS_DPS_TYPE_3: | 
|  | if (piremap) { | 
|  | return NVME_INVALID_PROT_INFO | NVME_DNR; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = nvme_check_zone_write(ns, zone, slba, nlb); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | status = nvme_zrm_auto(n, ns, zone); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { | 
|  | zone->w_ptr += nlb; | 
|  | } | 
|  | } else if (ns->endgrp && ns->endgrp->fdp.enabled) { | 
|  | nvme_do_write_fdp(n, req, slba, nlb); | 
|  | } | 
|  |  | 
|  | data_offset = nvme_l2b(ns, slba); | 
|  |  | 
|  | if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { | 
|  | return nvme_dif_rw(n, req); | 
|  | } | 
|  |  | 
|  | if (!wrz) { | 
|  | status = nvme_map_data(n, nlb, req); | 
|  | if (status) { | 
|  | goto invalid; | 
|  | } | 
|  |  | 
|  | block_acct_start(blk_get_stats(blk), &req->acct, data_size, | 
|  | BLOCK_ACCT_WRITE); | 
|  | nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); | 
|  | } else { | 
|  | req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, | 
|  | BDRV_REQ_MAY_UNMAP, nvme_rw_cb, | 
|  | req); | 
|  | } | 
|  |  | 
|  | return NVME_NO_COMPLETE; | 
|  |  | 
|  | invalid: | 
|  | block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); | 
|  | return status | NVME_DNR; | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | return nvme_do_write(n, req, false, false); | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | return nvme_do_write(n, req, false, true); | 
|  | } | 
|  |  | 
|  | static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | return nvme_do_write(n, req, true, false); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, | 
|  | uint64_t *slba, uint32_t *zone_idx) | 
|  | { | 
|  | uint32_t dw10 = le32_to_cpu(c->cdw10); | 
|  | uint32_t dw11 = le32_to_cpu(c->cdw11); | 
|  |  | 
|  | if (!ns->params.zoned) { | 
|  | trace_pci_nvme_err_invalid_opc(c->opcode); | 
|  | return NVME_INVALID_OPCODE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | *slba = ((uint64_t)dw11) << 32 | dw10; | 
|  | if (unlikely(*slba >= ns->id_ns.nsze)) { | 
|  | trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); | 
|  | *slba = 0; | 
|  | return NVME_LBA_RANGE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | *zone_idx = nvme_zone_idx(ns, *slba); | 
|  | assert(*zone_idx < ns->num_zones); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, | 
|  | NvmeRequest *); | 
|  |  | 
|  | enum NvmeZoneProcessingMask { | 
|  | NVME_PROC_CURRENT_ZONE    = 0, | 
|  | NVME_PROC_OPENED_ZONES    = 1 << 0, | 
|  | NVME_PROC_CLOSED_ZONES    = 1 << 1, | 
|  | NVME_PROC_READ_ONLY_ZONES = 1 << 2, | 
|  | NVME_PROC_FULL_ZONES      = 1 << 3, | 
|  | }; | 
|  |  | 
|  | static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, | 
|  | NvmeZoneState state, NvmeRequest *req) | 
|  | { | 
|  | NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; | 
|  | int flags = 0; | 
|  |  | 
|  | if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { | 
|  | uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); | 
|  |  | 
|  | if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { | 
|  | return NVME_INVALID_ZONE_OP | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (zone->w_ptr % ns->zns.zrwafg) { | 
|  | return NVME_NOZRWA | NVME_DNR; | 
|  | } | 
|  |  | 
|  | flags = NVME_ZRM_ZRWA; | 
|  | } | 
|  |  | 
|  | return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, | 
|  | NvmeZoneState state, NvmeRequest *req) | 
|  | { | 
|  | return nvme_zrm_close(ns, zone); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, | 
|  | NvmeZoneState state, NvmeRequest *req) | 
|  | { | 
|  | return nvme_zrm_finish(ns, zone); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, | 
|  | NvmeZoneState state, NvmeRequest *req) | 
|  | { | 
|  | switch (state) { | 
|  | case NVME_ZONE_STATE_READ_ONLY: | 
|  | nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); | 
|  | /* fall through */ | 
|  | case NVME_ZONE_STATE_OFFLINE: | 
|  | return NVME_SUCCESS; | 
|  | default: | 
|  | return NVME_ZONE_INVAL_TRANSITION; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) | 
|  | { | 
|  | uint16_t status; | 
|  | uint8_t state = nvme_get_zone_state(zone); | 
|  |  | 
|  | if (state == NVME_ZONE_STATE_EMPTY) { | 
|  | status = nvme_aor_check(ns, 1, 0); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  | nvme_aor_inc_active(ns); | 
|  | zone->d.za |= NVME_ZA_ZD_EXT_VALID; | 
|  | nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | return NVME_ZONE_INVAL_TRANSITION; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, | 
|  | enum NvmeZoneProcessingMask proc_mask, | 
|  | op_handler_t op_hndlr, NvmeRequest *req) | 
|  | { | 
|  | uint16_t status = NVME_SUCCESS; | 
|  | NvmeZoneState zs = nvme_get_zone_state(zone); | 
|  | bool proc_zone; | 
|  |  | 
|  | switch (zs) { | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; | 
|  | break; | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; | 
|  | break; | 
|  | case NVME_ZONE_STATE_READ_ONLY: | 
|  | proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; | 
|  | break; | 
|  | case NVME_ZONE_STATE_FULL: | 
|  | proc_zone = proc_mask & NVME_PROC_FULL_ZONES; | 
|  | break; | 
|  | default: | 
|  | proc_zone = false; | 
|  | } | 
|  |  | 
|  | if (proc_zone) { | 
|  | status = op_hndlr(ns, zone, zs, req); | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, | 
|  | enum NvmeZoneProcessingMask proc_mask, | 
|  | op_handler_t op_hndlr, NvmeRequest *req) | 
|  | { | 
|  | NvmeZone *next; | 
|  | uint16_t status = NVME_SUCCESS; | 
|  | int i; | 
|  |  | 
|  | if (!proc_mask) { | 
|  | status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); | 
|  | } else { | 
|  | if (proc_mask & NVME_PROC_CLOSED_ZONES) { | 
|  | QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { | 
|  | status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, | 
|  | req); | 
|  | if (status && status != NVME_NO_COMPLETE) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (proc_mask & NVME_PROC_OPENED_ZONES) { | 
|  | QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { | 
|  | status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, | 
|  | req); | 
|  | if (status && status != NVME_NO_COMPLETE) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { | 
|  | status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, | 
|  | req); | 
|  | if (status && status != NVME_NO_COMPLETE) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (proc_mask & NVME_PROC_FULL_ZONES) { | 
|  | QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { | 
|  | status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, | 
|  | req); | 
|  | if (status && status != NVME_NO_COMPLETE) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { | 
|  | for (i = 0; i < ns->num_zones; i++, zone++) { | 
|  | status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, | 
|  | req); | 
|  | if (status && status != NVME_NO_COMPLETE) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | typedef struct NvmeZoneResetAIOCB { | 
|  | BlockAIOCB common; | 
|  | BlockAIOCB *aiocb; | 
|  | NvmeRequest *req; | 
|  | int ret; | 
|  |  | 
|  | bool all; | 
|  | int idx; | 
|  | NvmeZone *zone; | 
|  | } NvmeZoneResetAIOCB; | 
|  |  | 
|  | static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) | 
|  | { | 
|  | NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  |  | 
|  | iocb->idx = ns->num_zones; | 
|  |  | 
|  | iocb->ret = -ECANCELED; | 
|  |  | 
|  | if (iocb->aiocb) { | 
|  | blk_aio_cancel_async(iocb->aiocb); | 
|  | iocb->aiocb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const AIOCBInfo nvme_zone_reset_aiocb_info = { | 
|  | .aiocb_size = sizeof(NvmeZoneResetAIOCB), | 
|  | .cancel_async = nvme_zone_reset_cancel, | 
|  | }; | 
|  |  | 
|  | static void nvme_zone_reset_cb(void *opaque, int ret); | 
|  |  | 
|  | static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeZoneResetAIOCB *iocb = opaque; | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | int64_t moff; | 
|  | int count; | 
|  |  | 
|  | if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | moff = nvme_moff(ns, iocb->zone->d.zslba); | 
|  | count = nvme_m2b(ns, ns->zone_size); | 
|  |  | 
|  | iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, | 
|  | BDRV_REQ_MAY_UNMAP, | 
|  | nvme_zone_reset_cb, iocb); | 
|  | return; | 
|  |  | 
|  | out: | 
|  | nvme_zone_reset_cb(iocb, ret); | 
|  | } | 
|  |  | 
|  | static void nvme_zone_reset_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeZoneResetAIOCB *iocb = opaque; | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeNamespace *ns = req->ns; | 
|  |  | 
|  | if (iocb->ret < 0) { | 
|  | goto done; | 
|  | } else if (ret < 0) { | 
|  | iocb->ret = ret; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (iocb->zone) { | 
|  | nvme_zrm_reset(ns, iocb->zone); | 
|  |  | 
|  | if (!iocb->all) { | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (iocb->idx < ns->num_zones) { | 
|  | NvmeZone *zone = &ns->zone_array[iocb->idx++]; | 
|  |  | 
|  | switch (nvme_get_zone_state(zone)) { | 
|  | case NVME_ZONE_STATE_EMPTY: | 
|  | if (!iocb->all) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | continue; | 
|  |  | 
|  | case NVME_ZONE_STATE_EXPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_IMPLICITLY_OPEN: | 
|  | case NVME_ZONE_STATE_CLOSED: | 
|  | case NVME_ZONE_STATE_FULL: | 
|  | iocb->zone = zone; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | continue; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_zns_zone_reset(zone->d.zslba); | 
|  |  | 
|  | iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, | 
|  | nvme_l2b(ns, zone->d.zslba), | 
|  | nvme_l2b(ns, ns->zone_size), | 
|  | BDRV_REQ_MAY_UNMAP, | 
|  | nvme_zone_reset_epilogue_cb, | 
|  | iocb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | done: | 
|  | iocb->aiocb = NULL; | 
|  |  | 
|  | iocb->common.cb(iocb->common.opaque, iocb->ret); | 
|  | qemu_aio_unref(iocb); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, | 
|  | uint64_t elba, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); | 
|  | uint64_t wp = zone->d.wp; | 
|  | uint32_t nlb = elba - wp + 1; | 
|  | uint16_t status; | 
|  |  | 
|  |  | 
|  | if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { | 
|  | return NVME_INVALID_ZONE_OP | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (elba < wp || elba > wp + ns->zns.zrwas) { | 
|  | return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (nlb % ns->zns.zrwafg) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | status = nvme_zrm_auto(n, ns, zone); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | zone->w_ptr += nlb; | 
|  |  | 
|  | nvme_advance_zone_wp(ns, zone, nlb); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeZone *zone; | 
|  | NvmeZoneResetAIOCB *iocb; | 
|  | uint8_t *zd_ext; | 
|  | uint64_t slba = 0; | 
|  | uint32_t zone_idx = 0; | 
|  | uint16_t status; | 
|  | uint8_t action = cmd->zsa; | 
|  | bool all; | 
|  | enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; | 
|  |  | 
|  | all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; | 
|  |  | 
|  | req->status = NVME_SUCCESS; | 
|  |  | 
|  | if (!all) { | 
|  | status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  | } | 
|  |  | 
|  | zone = &ns->zone_array[zone_idx]; | 
|  | if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { | 
|  | trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | switch (action) { | 
|  |  | 
|  | case NVME_ZONE_ACTION_OPEN: | 
|  | if (all) { | 
|  | proc_mask = NVME_PROC_CLOSED_ZONES; | 
|  | } | 
|  | trace_pci_nvme_open_zone(slba, zone_idx, all); | 
|  | status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); | 
|  | break; | 
|  |  | 
|  | case NVME_ZONE_ACTION_CLOSE: | 
|  | if (all) { | 
|  | proc_mask = NVME_PROC_OPENED_ZONES; | 
|  | } | 
|  | trace_pci_nvme_close_zone(slba, zone_idx, all); | 
|  | status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); | 
|  | break; | 
|  |  | 
|  | case NVME_ZONE_ACTION_FINISH: | 
|  | if (all) { | 
|  | proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; | 
|  | } | 
|  | trace_pci_nvme_finish_zone(slba, zone_idx, all); | 
|  | status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); | 
|  | break; | 
|  |  | 
|  | case NVME_ZONE_ACTION_RESET: | 
|  | trace_pci_nvme_reset_zone(slba, zone_idx, all); | 
|  |  | 
|  | iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, | 
|  | nvme_misc_cb, req); | 
|  |  | 
|  | iocb->req = req; | 
|  | iocb->ret = 0; | 
|  | iocb->all = all; | 
|  | iocb->idx = zone_idx; | 
|  | iocb->zone = NULL; | 
|  |  | 
|  | req->aiocb = &iocb->common; | 
|  | nvme_zone_reset_cb(iocb, 0); | 
|  |  | 
|  | return NVME_NO_COMPLETE; | 
|  |  | 
|  | case NVME_ZONE_ACTION_OFFLINE: | 
|  | if (all) { | 
|  | proc_mask = NVME_PROC_READ_ONLY_ZONES; | 
|  | } | 
|  | trace_pci_nvme_offline_zone(slba, zone_idx, all); | 
|  | status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); | 
|  | break; | 
|  |  | 
|  | case NVME_ZONE_ACTION_SET_ZD_EXT: | 
|  | trace_pci_nvme_set_descriptor_extension(slba, zone_idx); | 
|  | if (all || !ns->params.zd_extension_size) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | zd_ext = nvme_get_zd_extension(ns, zone_idx); | 
|  | status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); | 
|  | if (status) { | 
|  | trace_pci_nvme_err_zd_extension_map_error(zone_idx); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | status = nvme_set_zd_ext(ns, zone); | 
|  | if (status == NVME_SUCCESS) { | 
|  | trace_pci_nvme_zd_extension_set(zone_idx); | 
|  | return status; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NVME_ZONE_ACTION_ZRWA_FLUSH: | 
|  | if (all) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); | 
|  |  | 
|  | default: | 
|  | trace_pci_nvme_err_invalid_mgmt_action(action); | 
|  | status = NVME_INVALID_FIELD; | 
|  | } | 
|  |  | 
|  | if (status == NVME_ZONE_INVAL_TRANSITION) { | 
|  | trace_pci_nvme_err_invalid_zone_state_transition(action, slba, | 
|  | zone->d.za); | 
|  | } | 
|  | if (status) { | 
|  | status |= NVME_DNR; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) | 
|  | { | 
|  | NvmeZoneState zs = nvme_get_zone_state(zl); | 
|  |  | 
|  | switch (zafs) { | 
|  | case NVME_ZONE_REPORT_ALL: | 
|  | return true; | 
|  | case NVME_ZONE_REPORT_EMPTY: | 
|  | return zs == NVME_ZONE_STATE_EMPTY; | 
|  | case NVME_ZONE_REPORT_IMPLICITLY_OPEN: | 
|  | return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; | 
|  | case NVME_ZONE_REPORT_EXPLICITLY_OPEN: | 
|  | return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; | 
|  | case NVME_ZONE_REPORT_CLOSED: | 
|  | return zs == NVME_ZONE_STATE_CLOSED; | 
|  | case NVME_ZONE_REPORT_FULL: | 
|  | return zs == NVME_ZONE_STATE_FULL; | 
|  | case NVME_ZONE_REPORT_READ_ONLY: | 
|  | return zs == NVME_ZONE_STATE_READ_ONLY; | 
|  | case NVME_ZONE_REPORT_OFFLINE: | 
|  | return zs == NVME_ZONE_STATE_OFFLINE; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeCmd *cmd = (NvmeCmd *)&req->cmd; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | /* cdw12 is zero-based number of dwords to return. Convert to bytes */ | 
|  | uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; | 
|  | uint32_t dw13 = le32_to_cpu(cmd->cdw13); | 
|  | uint32_t zone_idx, zra, zrasf, partial; | 
|  | uint64_t max_zones, nr_zones = 0; | 
|  | uint16_t status; | 
|  | uint64_t slba; | 
|  | NvmeZoneDescr *z; | 
|  | NvmeZone *zone; | 
|  | NvmeZoneReportHeader *header; | 
|  | void *buf, *buf_p; | 
|  | size_t zone_entry_sz; | 
|  | int i; | 
|  |  | 
|  | req->status = NVME_SUCCESS; | 
|  |  | 
|  | status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | zra = dw13 & 0xff; | 
|  | if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | zrasf = (dw13 >> 8) & 0xff; | 
|  | if (zrasf > NVME_ZONE_REPORT_OFFLINE) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (data_size < sizeof(NvmeZoneReportHeader)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | status = nvme_check_mdts(n, data_size); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | partial = (dw13 >> 16) & 0x01; | 
|  |  | 
|  | zone_entry_sz = sizeof(NvmeZoneDescr); | 
|  | if (zra == NVME_ZONE_REPORT_EXTENDED) { | 
|  | zone_entry_sz += ns->params.zd_extension_size; | 
|  | } | 
|  |  | 
|  | max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; | 
|  | buf = g_malloc0(data_size); | 
|  |  | 
|  | zone = &ns->zone_array[zone_idx]; | 
|  | for (i = zone_idx; i < ns->num_zones; i++) { | 
|  | if (partial && nr_zones >= max_zones) { | 
|  | break; | 
|  | } | 
|  | if (nvme_zone_matches_filter(zrasf, zone++)) { | 
|  | nr_zones++; | 
|  | } | 
|  | } | 
|  | header = buf; | 
|  | header->nr_zones = cpu_to_le64(nr_zones); | 
|  |  | 
|  | buf_p = buf + sizeof(NvmeZoneReportHeader); | 
|  | for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { | 
|  | zone = &ns->zone_array[zone_idx]; | 
|  | if (nvme_zone_matches_filter(zrasf, zone)) { | 
|  | z = buf_p; | 
|  | buf_p += sizeof(NvmeZoneDescr); | 
|  |  | 
|  | z->zt = zone->d.zt; | 
|  | z->zs = zone->d.zs; | 
|  | z->zcap = cpu_to_le64(zone->d.zcap); | 
|  | z->zslba = cpu_to_le64(zone->d.zslba); | 
|  | z->za = zone->d.za; | 
|  |  | 
|  | if (nvme_wp_is_valid(zone)) { | 
|  | z->wp = cpu_to_le64(zone->d.wp); | 
|  | } else { | 
|  | z->wp = cpu_to_le64(~0ULL); | 
|  | } | 
|  |  | 
|  | if (zra == NVME_ZONE_REPORT_EXTENDED) { | 
|  | if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { | 
|  | memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), | 
|  | ns->params.zd_extension_size); | 
|  | } | 
|  | buf_p += ns->params.zd_extension_size; | 
|  | } | 
|  |  | 
|  | max_zones--; | 
|  | } | 
|  | } | 
|  |  | 
|  | status = nvme_c2h(n, (uint8_t *)buf, data_size, req); | 
|  |  | 
|  | g_free(buf); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req, | 
|  | size_t len) | 
|  | { | 
|  | NvmeNamespace *ns = req->ns; | 
|  | NvmeEnduranceGroup *endgrp; | 
|  | NvmeRuhStatus *hdr; | 
|  | NvmeRuhStatusDescr *ruhsd; | 
|  | unsigned int nruhsd; | 
|  | uint16_t rg, ph, *ruhid; | 
|  | size_t trans_len; | 
|  | g_autofree uint8_t *buf = NULL; | 
|  |  | 
|  | if (!n->subsys) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!n->subsys->endgrp.fdp.enabled) { | 
|  | return NVME_FDP_DISABLED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | endgrp = ns->endgrp; | 
|  |  | 
|  | nruhsd = ns->fdp.nphs * endgrp->fdp.nrg; | 
|  | trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr); | 
|  | buf = g_malloc(trans_len); | 
|  |  | 
|  | trans_len = MIN(trans_len, len); | 
|  |  | 
|  | hdr = (NvmeRuhStatus *)buf; | 
|  | ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus)); | 
|  |  | 
|  | hdr->nruhsd = cpu_to_le16(nruhsd); | 
|  |  | 
|  | ruhid = ns->fdp.phs; | 
|  |  | 
|  | for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) { | 
|  | NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid]; | 
|  |  | 
|  | for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) { | 
|  | uint16_t pid = nvme_make_pid(ns, rg, ph); | 
|  |  | 
|  | ruhsd->pid = cpu_to_le16(pid); | 
|  | ruhsd->ruhid = *ruhid; | 
|  | ruhsd->earutr = 0; | 
|  | ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, buf, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  | uint32_t cdw10 = le32_to_cpu(cmd->cdw10); | 
|  | uint32_t numd = le32_to_cpu(cmd->cdw11); | 
|  | uint8_t mo = (cdw10 & 0xff); | 
|  | size_t len = (numd + 1) << 2; | 
|  |  | 
|  | switch (mo) { | 
|  | case NVME_IOMR_MO_NOP: | 
|  | return 0; | 
|  | case NVME_IOMR_MO_RUH_STATUS: | 
|  | return nvme_io_mgmt_recv_ruhs(n, req, len); | 
|  | default: | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  | NvmeNamespace *ns = req->ns; | 
|  | uint32_t cdw10 = le32_to_cpu(cmd->cdw10); | 
|  | uint16_t ret = NVME_SUCCESS; | 
|  | uint32_t npid = (cdw10 >> 1) + 1; | 
|  | unsigned int i = 0; | 
|  | g_autofree uint16_t *pids = NULL; | 
|  | uint32_t maxnpid; | 
|  |  | 
|  | if (!ns->endgrp || !ns->endgrp->fdp.enabled) { | 
|  | return NVME_FDP_DISABLED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh; | 
|  |  | 
|  | if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | pids = g_new(uint16_t, npid); | 
|  |  | 
|  | ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (; i < npid; i++) { | 
|  | if (!nvme_update_ruh(n, ns, pids[i])) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  | uint32_t cdw10 = le32_to_cpu(cmd->cdw10); | 
|  | uint8_t mo = (cdw10 & 0xff); | 
|  |  | 
|  | switch (mo) { | 
|  | case NVME_IOMS_MO_NOP: | 
|  | return 0; | 
|  | case NVME_IOMS_MO_RUH_UPDATE: | 
|  | return nvme_io_mgmt_send_ruh_update(n, req); | 
|  | default: | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | uint32_t nsid = le32_to_cpu(req->cmd.nsid); | 
|  |  | 
|  | trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), | 
|  | req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); | 
|  |  | 
|  | if (!nvme_nsid_valid(n, nsid)) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the base NVM command set, Flush may apply to all namespaces | 
|  | * (indicated by NSID being set to FFFFFFFFh). But if that feature is used | 
|  | * along with TP 4056 (Namespace Types), it may be pretty screwed up. | 
|  | * | 
|  | * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the | 
|  | * opcode with a specific command since we cannot determine a unique I/O | 
|  | * command set. Opcode 0h could have any other meaning than something | 
|  | * equivalent to flushing and say it DOES have completely different | 
|  | * semantics in some other command set - does an NSID of FFFFFFFFh then | 
|  | * mean "for all namespaces, apply whatever command set specific command | 
|  | * that uses the 0h opcode?" Or does it mean "for all namespaces, apply | 
|  | * whatever command that uses the 0h opcode if, and only if, it allows NSID | 
|  | * to be FFFFFFFFh"? | 
|  | * | 
|  | * Anyway (and luckily), for now, we do not care about this since the | 
|  | * device only supports namespace types that includes the NVM Flush command | 
|  | * (NVM and Zoned), so always do an NVM Flush. | 
|  | */ | 
|  | if (req->cmd.opcode == NVME_CMD_FLUSH) { | 
|  | return nvme_flush(n, req); | 
|  | } | 
|  |  | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (unlikely(!ns)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { | 
|  | trace_pci_nvme_err_invalid_opc(req->cmd.opcode); | 
|  | return NVME_INVALID_OPCODE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (ns->status) { | 
|  | return ns->status; | 
|  | } | 
|  |  | 
|  | if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { | 
|  | return NVME_INVALID_FIELD; | 
|  | } | 
|  |  | 
|  | req->ns = ns; | 
|  |  | 
|  | switch (req->cmd.opcode) { | 
|  | case NVME_CMD_WRITE_ZEROES: | 
|  | return nvme_write_zeroes(n, req); | 
|  | case NVME_CMD_ZONE_APPEND: | 
|  | return nvme_zone_append(n, req); | 
|  | case NVME_CMD_WRITE: | 
|  | return nvme_write(n, req); | 
|  | case NVME_CMD_READ: | 
|  | return nvme_read(n, req); | 
|  | case NVME_CMD_COMPARE: | 
|  | return nvme_compare(n, req); | 
|  | case NVME_CMD_DSM: | 
|  | return nvme_dsm(n, req); | 
|  | case NVME_CMD_VERIFY: | 
|  | return nvme_verify(n, req); | 
|  | case NVME_CMD_COPY: | 
|  | return nvme_copy(n, req); | 
|  | case NVME_CMD_ZONE_MGMT_SEND: | 
|  | return nvme_zone_mgmt_send(n, req); | 
|  | case NVME_CMD_ZONE_MGMT_RECV: | 
|  | return nvme_zone_mgmt_recv(n, req); | 
|  | case NVME_CMD_IO_MGMT_RECV: | 
|  | return nvme_io_mgmt_recv(n, req); | 
|  | case NVME_CMD_IO_MGMT_SEND: | 
|  | return nvme_io_mgmt_send(n, req); | 
|  | default: | 
|  | assert(false); | 
|  | } | 
|  |  | 
|  | return NVME_INVALID_OPCODE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | static void nvme_cq_notifier(EventNotifier *e) | 
|  | { | 
|  | NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier); | 
|  | NvmeCtrl *n = cq->ctrl; | 
|  |  | 
|  | if (!event_notifier_test_and_clear(e)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvme_update_cq_head(cq); | 
|  |  | 
|  | if (cq->tail == cq->head) { | 
|  | if (cq->irq_enabled) { | 
|  | n->cq_pending--; | 
|  | } | 
|  |  | 
|  | nvme_irq_deassert(n, cq); | 
|  | } | 
|  |  | 
|  | qemu_bh_schedule(cq->bh); | 
|  | } | 
|  |  | 
|  | static int nvme_init_cq_ioeventfd(NvmeCQueue *cq) | 
|  | { | 
|  | NvmeCtrl *n = cq->ctrl; | 
|  | uint16_t offset = (cq->cqid << 3) + (1 << 2); | 
|  | int ret; | 
|  |  | 
|  | ret = event_notifier_init(&cq->notifier, 0); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | event_notifier_set_handler(&cq->notifier, nvme_cq_notifier); | 
|  | memory_region_add_eventfd(&n->iomem, | 
|  | 0x1000 + offset, 4, false, 0, &cq->notifier); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nvme_sq_notifier(EventNotifier *e) | 
|  | { | 
|  | NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier); | 
|  |  | 
|  | if (!event_notifier_test_and_clear(e)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvme_process_sq(sq); | 
|  | } | 
|  |  | 
|  | static int nvme_init_sq_ioeventfd(NvmeSQueue *sq) | 
|  | { | 
|  | NvmeCtrl *n = sq->ctrl; | 
|  | uint16_t offset = sq->sqid << 3; | 
|  | int ret; | 
|  |  | 
|  | ret = event_notifier_init(&sq->notifier, 0); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | event_notifier_set_handler(&sq->notifier, nvme_sq_notifier); | 
|  | memory_region_add_eventfd(&n->iomem, | 
|  | 0x1000 + offset, 4, false, 0, &sq->notifier); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) | 
|  | { | 
|  | uint16_t offset = sq->sqid << 3; | 
|  |  | 
|  | n->sq[sq->sqid] = NULL; | 
|  | qemu_bh_delete(sq->bh); | 
|  | if (sq->ioeventfd_enabled) { | 
|  | memory_region_del_eventfd(&n->iomem, | 
|  | 0x1000 + offset, 4, false, 0, &sq->notifier); | 
|  | event_notifier_set_handler(&sq->notifier, NULL); | 
|  | event_notifier_cleanup(&sq->notifier); | 
|  | } | 
|  | g_free(sq->io_req); | 
|  | if (sq->sqid) { | 
|  | g_free(sq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; | 
|  | NvmeRequest *r, *next; | 
|  | NvmeSQueue *sq; | 
|  | NvmeCQueue *cq; | 
|  | uint16_t qid = le16_to_cpu(c->qid); | 
|  |  | 
|  | if (unlikely(!qid || nvme_check_sqid(n, qid))) { | 
|  | trace_pci_nvme_err_invalid_del_sq(qid); | 
|  | return NVME_INVALID_QID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_del_sq(qid); | 
|  |  | 
|  | sq = n->sq[qid]; | 
|  | while (!QTAILQ_EMPTY(&sq->out_req_list)) { | 
|  | r = QTAILQ_FIRST(&sq->out_req_list); | 
|  | assert(r->aiocb); | 
|  | blk_aio_cancel(r->aiocb); | 
|  | } | 
|  |  | 
|  | assert(QTAILQ_EMPTY(&sq->out_req_list)); | 
|  |  | 
|  | if (!nvme_check_cqid(n, sq->cqid)) { | 
|  | cq = n->cq[sq->cqid]; | 
|  | QTAILQ_REMOVE(&cq->sq_list, sq, entry); | 
|  |  | 
|  | nvme_post_cqes(cq); | 
|  | QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { | 
|  | if (r->sq == sq) { | 
|  | QTAILQ_REMOVE(&cq->req_list, r, entry); | 
|  | QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | nvme_free_sq(sq, n); | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, | 
|  | uint16_t sqid, uint16_t cqid, uint16_t size) | 
|  | { | 
|  | int i; | 
|  | NvmeCQueue *cq; | 
|  |  | 
|  | sq->ctrl = n; | 
|  | sq->dma_addr = dma_addr; | 
|  | sq->sqid = sqid; | 
|  | sq->size = size; | 
|  | sq->cqid = cqid; | 
|  | sq->head = sq->tail = 0; | 
|  | sq->io_req = g_new0(NvmeRequest, sq->size); | 
|  |  | 
|  | QTAILQ_INIT(&sq->req_list); | 
|  | QTAILQ_INIT(&sq->out_req_list); | 
|  | for (i = 0; i < sq->size; i++) { | 
|  | sq->io_req[i].sq = sq; | 
|  | QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); | 
|  | } | 
|  |  | 
|  | sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq, | 
|  | &DEVICE(sq->ctrl)->mem_reentrancy_guard); | 
|  |  | 
|  | if (n->dbbuf_enabled) { | 
|  | sq->db_addr = n->dbbuf_dbs + (sqid << 3); | 
|  | sq->ei_addr = n->dbbuf_eis + (sqid << 3); | 
|  |  | 
|  | if (n->params.ioeventfd && sq->sqid != 0) { | 
|  | if (!nvme_init_sq_ioeventfd(sq)) { | 
|  | sq->ioeventfd_enabled = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(n->cq[cqid]); | 
|  | cq = n->cq[cqid]; | 
|  | QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); | 
|  | n->sq[sqid] = sq; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeSQueue *sq; | 
|  | NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; | 
|  |  | 
|  | uint16_t cqid = le16_to_cpu(c->cqid); | 
|  | uint16_t sqid = le16_to_cpu(c->sqid); | 
|  | uint16_t qsize = le16_to_cpu(c->qsize); | 
|  | uint16_t qflags = le16_to_cpu(c->sq_flags); | 
|  | uint64_t prp1 = le64_to_cpu(c->prp1); | 
|  |  | 
|  | trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); | 
|  |  | 
|  | if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { | 
|  | trace_pci_nvme_err_invalid_create_sq_cqid(cqid); | 
|  | return NVME_INVALID_CQID | NVME_DNR; | 
|  | } | 
|  | if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) { | 
|  | trace_pci_nvme_err_invalid_create_sq_sqid(sqid); | 
|  | return NVME_INVALID_QID | NVME_DNR; | 
|  | } | 
|  | if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { | 
|  | trace_pci_nvme_err_invalid_create_sq_size(qsize); | 
|  | return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; | 
|  | } | 
|  | if (unlikely(prp1 & (n->page_size - 1))) { | 
|  | trace_pci_nvme_err_invalid_create_sq_addr(prp1); | 
|  | return NVME_INVALID_PRP_OFFSET | NVME_DNR; | 
|  | } | 
|  | if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { | 
|  | trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | sq = g_malloc0(sizeof(*sq)); | 
|  | nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | struct nvme_stats { | 
|  | uint64_t units_read; | 
|  | uint64_t units_written; | 
|  | uint64_t read_commands; | 
|  | uint64_t write_commands; | 
|  | }; | 
|  |  | 
|  | static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) | 
|  | { | 
|  | BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); | 
|  |  | 
|  | stats->units_read += s->nr_bytes[BLOCK_ACCT_READ]; | 
|  | stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE]; | 
|  | stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; | 
|  | stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, | 
|  | uint64_t off, NvmeRequest *req) | 
|  | { | 
|  | uint32_t nsid = le32_to_cpu(req->cmd.nsid); | 
|  | struct nvme_stats stats = { 0 }; | 
|  | NvmeSmartLog smart = { 0 }; | 
|  | uint32_t trans_len; | 
|  | NvmeNamespace *ns; | 
|  | time_t current_ms; | 
|  | uint64_t u_read, u_written; | 
|  |  | 
|  | if (off >= sizeof(smart)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (nsid != 0xffffffff) { | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (!ns) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  | nvme_set_blk_stats(ns, &stats); | 
|  | } else { | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  | nvme_set_blk_stats(ns, &stats); | 
|  | } | 
|  | } | 
|  |  | 
|  | trans_len = MIN(sizeof(smart) - off, buf_len); | 
|  | smart.critical_warning = n->smart_critical_warning; | 
|  |  | 
|  | u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000); | 
|  | u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000); | 
|  |  | 
|  | smart.data_units_read[0] = cpu_to_le64(u_read); | 
|  | smart.data_units_written[0] = cpu_to_le64(u_written); | 
|  | smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); | 
|  | smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); | 
|  |  | 
|  | smart.temperature = cpu_to_le16(n->temperature); | 
|  |  | 
|  | if ((n->temperature >= n->features.temp_thresh_hi) || | 
|  | (n->temperature <= n->features.temp_thresh_low)) { | 
|  | smart.critical_warning |= NVME_SMART_TEMPERATURE; | 
|  | } | 
|  |  | 
|  | current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); | 
|  | smart.power_on_hours[0] = | 
|  | cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); | 
|  |  | 
|  | if (!rae) { | 
|  | nvme_clear_events(n, NVME_AER_TYPE_SMART); | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_endgrp_info(NvmeCtrl *n,  uint8_t rae, uint32_t buf_len, | 
|  | uint64_t off, NvmeRequest *req) | 
|  | { | 
|  | uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); | 
|  | uint16_t endgrpid = (dw11 >> 16) & 0xffff; | 
|  | struct nvme_stats stats = {}; | 
|  | NvmeEndGrpLog info = {}; | 
|  | int i; | 
|  |  | 
|  | if (!n->subsys || endgrpid != 0x1) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (off >= sizeof(info)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nvme_set_blk_stats(ns, &stats); | 
|  | } | 
|  |  | 
|  | info.data_units_read[0] = | 
|  | cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000)); | 
|  | info.data_units_written[0] = | 
|  | cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); | 
|  | info.media_units_written[0] = | 
|  | cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); | 
|  |  | 
|  | info.host_read_commands[0] = cpu_to_le64(stats.read_commands); | 
|  | info.host_write_commands[0] = cpu_to_le64(stats.write_commands); | 
|  |  | 
|  | buf_len = MIN(sizeof(info) - off, buf_len); | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req); | 
|  | } | 
|  |  | 
|  |  | 
|  | static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, | 
|  | NvmeRequest *req) | 
|  | { | 
|  | uint32_t trans_len; | 
|  | NvmeFwSlotInfoLog fw_log = { | 
|  | .afi = 0x1, | 
|  | }; | 
|  |  | 
|  | if (off >= sizeof(fw_log)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); | 
|  | trans_len = MIN(sizeof(fw_log) - off, buf_len); | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, | 
|  | uint64_t off, NvmeRequest *req) | 
|  | { | 
|  | uint32_t trans_len; | 
|  | NvmeErrorLog errlog; | 
|  |  | 
|  | if (off >= sizeof(errlog)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!rae) { | 
|  | nvme_clear_events(n, NVME_AER_TYPE_ERROR); | 
|  | } | 
|  |  | 
|  | memset(&errlog, 0x0, sizeof(errlog)); | 
|  | trans_len = MIN(sizeof(errlog) - off, buf_len); | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, | 
|  | uint64_t off, NvmeRequest *req) | 
|  | { | 
|  | uint32_t nslist[1024]; | 
|  | uint32_t trans_len; | 
|  | int i = 0; | 
|  | uint32_t nsid; | 
|  |  | 
|  | if (off >= sizeof(nslist)) { | 
|  | trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | memset(nslist, 0x0, sizeof(nslist)); | 
|  | trans_len = MIN(sizeof(nslist) - off, buf_len); | 
|  |  | 
|  | while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != | 
|  | NVME_CHANGED_NSID_SIZE) { | 
|  | /* | 
|  | * If more than 1024 namespaces, the first entry in the log page should | 
|  | * be set to FFFFFFFFh and the others to 0 as spec. | 
|  | */ | 
|  | if (i == ARRAY_SIZE(nslist)) { | 
|  | memset(nslist, 0x0, sizeof(nslist)); | 
|  | nslist[0] = 0xffffffff; | 
|  | break; | 
|  | } | 
|  |  | 
|  | nslist[i++] = nsid; | 
|  | clear_bit(nsid, n->changed_nsids); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove all the remaining list entries in case returns directly due to | 
|  | * more than 1024 namespaces. | 
|  | */ | 
|  | if (nslist[0] == 0xffffffff) { | 
|  | bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); | 
|  | } | 
|  |  | 
|  | if (!rae) { | 
|  | nvme_clear_events(n, NVME_AER_TYPE_NOTICE); | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, | 
|  | uint64_t off, NvmeRequest *req) | 
|  | { | 
|  | NvmeEffectsLog log = {}; | 
|  | const uint32_t *src_iocs = NULL; | 
|  | uint32_t trans_len; | 
|  |  | 
|  | if (off >= sizeof(log)) { | 
|  | trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { | 
|  | case NVME_CC_CSS_NVM: | 
|  | src_iocs = nvme_cse_iocs_nvm; | 
|  | /* fall through */ | 
|  | case NVME_CC_CSS_ADMIN_ONLY: | 
|  | break; | 
|  | case NVME_CC_CSS_CSI: | 
|  | switch (csi) { | 
|  | case NVME_CSI_NVM: | 
|  | src_iocs = nvme_cse_iocs_nvm; | 
|  | break; | 
|  | case NVME_CSI_ZONED: | 
|  | src_iocs = nvme_cse_iocs_zoned; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); | 
|  |  | 
|  | if (src_iocs) { | 
|  | memcpy(log.iocs, src_iocs, sizeof(log.iocs)); | 
|  | } | 
|  |  | 
|  | trans_len = MIN(sizeof(log) - off, buf_len); | 
|  |  | 
|  | return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); | 
|  | } | 
|  |  | 
|  | static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss) | 
|  | { | 
|  | size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr) | 
|  | + vss; | 
|  | return ROUND_UP(entry_siz, 8); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, | 
|  | uint64_t off, NvmeRequest *req) | 
|  | { | 
|  | uint32_t log_size, trans_len; | 
|  | g_autofree uint8_t *buf = NULL; | 
|  | NvmeFdpDescrHdr *hdr; | 
|  | NvmeRuhDescr *ruhd; | 
|  | NvmeEnduranceGroup *endgrp; | 
|  | NvmeFdpConfsHdr *log; | 
|  | size_t nruh, fdp_descr_size; | 
|  | int i; | 
|  |  | 
|  | if (endgrpid != 1 || !n->subsys) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | endgrp = &n->subsys->endgrp; | 
|  |  | 
|  | if (endgrp->fdp.enabled) { | 
|  | nruh = endgrp->fdp.nruh; | 
|  | } else { | 
|  | nruh = 1; | 
|  | } | 
|  |  | 
|  | fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS); | 
|  | log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size; | 
|  |  | 
|  | if (off >= log_size) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | trans_len = MIN(log_size - off, buf_len); | 
|  |  | 
|  | buf = g_malloc0(log_size); | 
|  | log = (NvmeFdpConfsHdr *)buf; | 
|  | hdr = (NvmeFdpDescrHdr *)(log + 1); | 
|  | ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr)); | 
|  |  | 
|  | log->num_confs = cpu_to_le16(0); | 
|  | log->size = cpu_to_le32(log_size); | 
|  |  | 
|  | hdr->descr_size = cpu_to_le16(fdp_descr_size); | 
|  | if (endgrp->fdp.enabled) { | 
|  | hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1); | 
|  | hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif); | 
|  | hdr->nrg = cpu_to_le16(endgrp->fdp.nrg); | 
|  | hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); | 
|  | hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); | 
|  | hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES); | 
|  | hdr->runs = cpu_to_le64(endgrp->fdp.runs); | 
|  |  | 
|  | for (i = 0; i < nruh; i++) { | 
|  | ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; | 
|  | ruhd++; | 
|  | } | 
|  | } else { | 
|  | /* 1 bit for RUH in PIF -> 2 RUHs max. */ | 
|  | hdr->nrg = cpu_to_le16(1); | 
|  | hdr->nruh = cpu_to_le16(1); | 
|  | hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); | 
|  | hdr->nnss = cpu_to_le32(1); | 
|  | hdr->runs = cpu_to_le64(96 * MiB); | 
|  |  | 
|  | ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid, | 
|  | uint32_t dw10, uint32_t dw12, | 
|  | uint32_t buf_len, uint64_t off, | 
|  | NvmeRequest *req) | 
|  | { | 
|  | NvmeRuHandle *ruh; | 
|  | NvmeRuhuLog *hdr; | 
|  | NvmeRuhuDescr *ruhud; | 
|  | NvmeEnduranceGroup *endgrp; | 
|  | g_autofree uint8_t *buf = NULL; | 
|  | uint32_t log_size, trans_len; | 
|  | uint16_t i; | 
|  |  | 
|  | if (endgrpid != 1 || !n->subsys) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | endgrp = &n->subsys->endgrp; | 
|  |  | 
|  | if (!endgrp->fdp.enabled) { | 
|  | return NVME_FDP_DISABLED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr); | 
|  |  | 
|  | if (off >= log_size) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | trans_len = MIN(log_size - off, buf_len); | 
|  |  | 
|  | buf = g_malloc0(log_size); | 
|  | hdr = (NvmeRuhuLog *)buf; | 
|  | ruhud = (NvmeRuhuDescr *)(hdr + 1); | 
|  |  | 
|  | ruh = endgrp->fdp.ruhs; | 
|  | hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); | 
|  |  | 
|  | for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) { | 
|  | ruhud->ruha = ruh->ruha; | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, | 
|  | uint64_t off, NvmeRequest *req) | 
|  | { | 
|  | NvmeEnduranceGroup *endgrp; | 
|  | NvmeFdpStatsLog log = {}; | 
|  | uint32_t trans_len; | 
|  |  | 
|  | if (off >= sizeof(NvmeFdpStatsLog)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (endgrpid != 1 || !n->subsys) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!n->subsys->endgrp.fdp.enabled) { | 
|  | return NVME_FDP_DISABLED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | endgrp = &n->subsys->endgrp; | 
|  |  | 
|  | trans_len = MIN(sizeof(log) - off, buf_len); | 
|  |  | 
|  | /* spec value is 128 bit, we only use 64 bit */ | 
|  | log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw); | 
|  | log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw); | 
|  | log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe); | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid, | 
|  | uint32_t buf_len, uint64_t off, | 
|  | NvmeRequest *req) | 
|  | { | 
|  | NvmeEnduranceGroup *endgrp; | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  | bool host_events = (cmd->cdw10 >> 8) & 0x1; | 
|  | uint32_t log_size, trans_len; | 
|  | NvmeFdpEventBuffer *ebuf; | 
|  | g_autofree NvmeFdpEventsLog *elog = NULL; | 
|  | NvmeFdpEvent *event; | 
|  |  | 
|  | if (endgrpid != 1 || !n->subsys) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | endgrp = &n->subsys->endgrp; | 
|  |  | 
|  | if (!endgrp->fdp.enabled) { | 
|  | return NVME_FDP_DISABLED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (host_events) { | 
|  | ebuf = &endgrp->fdp.host_events; | 
|  | } else { | 
|  | ebuf = &endgrp->fdp.ctrl_events; | 
|  | } | 
|  |  | 
|  | log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent); | 
|  |  | 
|  | if (off >= log_size) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | trans_len = MIN(log_size - off, buf_len); | 
|  | elog = g_malloc0(log_size); | 
|  | elog->num_events = cpu_to_le32(ebuf->nelems); | 
|  | event = (NvmeFdpEvent *)(elog + 1); | 
|  |  | 
|  | if (ebuf->nelems && ebuf->start == ebuf->next) { | 
|  | unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start); | 
|  | /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */ | 
|  | memcpy(event, &ebuf->events[ebuf->start], | 
|  | sizeof(NvmeFdpEvent) * nelems); | 
|  | memcpy(event + nelems, ebuf->events, | 
|  | sizeof(NvmeFdpEvent) * ebuf->next); | 
|  | } else if (ebuf->start < ebuf->next) { | 
|  | memcpy(event, &ebuf->events[ebuf->start], | 
|  | sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start)); | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  |  | 
|  | uint32_t dw10 = le32_to_cpu(cmd->cdw10); | 
|  | uint32_t dw11 = le32_to_cpu(cmd->cdw11); | 
|  | uint32_t dw12 = le32_to_cpu(cmd->cdw12); | 
|  | uint32_t dw13 = le32_to_cpu(cmd->cdw13); | 
|  | uint8_t  lid = dw10 & 0xff; | 
|  | uint8_t  lsp = (dw10 >> 8) & 0xf; | 
|  | uint8_t  rae = (dw10 >> 15) & 0x1; | 
|  | uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24; | 
|  | uint32_t numdl, numdu, lspi; | 
|  | uint64_t off, lpol, lpou; | 
|  | size_t   len; | 
|  | uint16_t status; | 
|  |  | 
|  | numdl = (dw10 >> 16); | 
|  | numdu = (dw11 & 0xffff); | 
|  | lspi = (dw11 >> 16); | 
|  | lpol = dw12; | 
|  | lpou = dw13; | 
|  |  | 
|  | len = (((numdu << 16) | numdl) + 1) << 2; | 
|  | off = (lpou << 32ULL) | lpol; | 
|  |  | 
|  | if (off & 0x3) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); | 
|  |  | 
|  | status = nvme_check_mdts(n, len); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | switch (lid) { | 
|  | case NVME_LOG_ERROR_INFO: | 
|  | return nvme_error_info(n, rae, len, off, req); | 
|  | case NVME_LOG_SMART_INFO: | 
|  | return nvme_smart_info(n, rae, len, off, req); | 
|  | case NVME_LOG_FW_SLOT_INFO: | 
|  | return nvme_fw_log_info(n, len, off, req); | 
|  | case NVME_LOG_CHANGED_NSLIST: | 
|  | return nvme_changed_nslist(n, rae, len, off, req); | 
|  | case NVME_LOG_CMD_EFFECTS: | 
|  | return nvme_cmd_effects(n, csi, len, off, req); | 
|  | case NVME_LOG_ENDGRP: | 
|  | return nvme_endgrp_info(n, rae, len, off, req); | 
|  | case NVME_LOG_FDP_CONFS: | 
|  | return nvme_fdp_confs(n, lspi, len, off, req); | 
|  | case NVME_LOG_FDP_RUH_USAGE: | 
|  | return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req); | 
|  | case NVME_LOG_FDP_STATS: | 
|  | return nvme_fdp_stats(n, lspi, len, off, req); | 
|  | case NVME_LOG_FDP_EVENTS: | 
|  | return nvme_fdp_events(n, lspi, len, off, req); | 
|  | default: | 
|  | trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) | 
|  | { | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  | uint16_t offset = (cq->cqid << 3) + (1 << 2); | 
|  |  | 
|  | n->cq[cq->cqid] = NULL; | 
|  | qemu_bh_delete(cq->bh); | 
|  | if (cq->ioeventfd_enabled) { | 
|  | memory_region_del_eventfd(&n->iomem, | 
|  | 0x1000 + offset, 4, false, 0, &cq->notifier); | 
|  | event_notifier_set_handler(&cq->notifier, NULL); | 
|  | event_notifier_cleanup(&cq->notifier); | 
|  | } | 
|  | if (msix_enabled(pci)) { | 
|  | msix_vector_unuse(pci, cq->vector); | 
|  | } | 
|  | if (cq->cqid) { | 
|  | g_free(cq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; | 
|  | NvmeCQueue *cq; | 
|  | uint16_t qid = le16_to_cpu(c->qid); | 
|  |  | 
|  | if (unlikely(!qid || nvme_check_cqid(n, qid))) { | 
|  | trace_pci_nvme_err_invalid_del_cq_cqid(qid); | 
|  | return NVME_INVALID_CQID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | cq = n->cq[qid]; | 
|  | if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { | 
|  | trace_pci_nvme_err_invalid_del_cq_notempty(qid); | 
|  | return NVME_INVALID_QUEUE_DEL; | 
|  | } | 
|  |  | 
|  | if (cq->irq_enabled && cq->tail != cq->head) { | 
|  | n->cq_pending--; | 
|  | } | 
|  |  | 
|  | nvme_irq_deassert(n, cq); | 
|  | trace_pci_nvme_del_cq(qid); | 
|  | nvme_free_cq(cq, n); | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, | 
|  | uint16_t cqid, uint16_t vector, uint16_t size, | 
|  | uint16_t irq_enabled) | 
|  | { | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  |  | 
|  | if (msix_enabled(pci)) { | 
|  | msix_vector_use(pci, vector); | 
|  | } | 
|  | cq->ctrl = n; | 
|  | cq->cqid = cqid; | 
|  | cq->size = size; | 
|  | cq->dma_addr = dma_addr; | 
|  | cq->phase = 1; | 
|  | cq->irq_enabled = irq_enabled; | 
|  | cq->vector = vector; | 
|  | cq->head = cq->tail = 0; | 
|  | QTAILQ_INIT(&cq->req_list); | 
|  | QTAILQ_INIT(&cq->sq_list); | 
|  | if (n->dbbuf_enabled) { | 
|  | cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2); | 
|  | cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2); | 
|  |  | 
|  | if (n->params.ioeventfd && cqid != 0) { | 
|  | if (!nvme_init_cq_ioeventfd(cq)) { | 
|  | cq->ioeventfd_enabled = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | n->cq[cqid] = cq; | 
|  | cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq, | 
|  | &DEVICE(cq->ctrl)->mem_reentrancy_guard); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeCQueue *cq; | 
|  | NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; | 
|  | uint16_t cqid = le16_to_cpu(c->cqid); | 
|  | uint16_t vector = le16_to_cpu(c->irq_vector); | 
|  | uint16_t qsize = le16_to_cpu(c->qsize); | 
|  | uint16_t qflags = le16_to_cpu(c->cq_flags); | 
|  | uint64_t prp1 = le64_to_cpu(c->prp1); | 
|  | uint32_t cc = ldq_le_p(&n->bar.cc); | 
|  | uint8_t iocqes = NVME_CC_IOCQES(cc); | 
|  | uint8_t iosqes = NVME_CC_IOSQES(cc); | 
|  |  | 
|  | trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, | 
|  | NVME_CQ_FLAGS_IEN(qflags) != 0); | 
|  |  | 
|  | if (iosqes != NVME_SQES || iocqes != NVME_CQES) { | 
|  | trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes); | 
|  | return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) { | 
|  | trace_pci_nvme_err_invalid_create_cq_cqid(cqid); | 
|  | return NVME_INVALID_QID | NVME_DNR; | 
|  | } | 
|  | if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { | 
|  | trace_pci_nvme_err_invalid_create_cq_size(qsize); | 
|  | return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; | 
|  | } | 
|  | if (unlikely(prp1 & (n->page_size - 1))) { | 
|  | trace_pci_nvme_err_invalid_create_cq_addr(prp1); | 
|  | return NVME_INVALID_PRP_OFFSET | NVME_DNR; | 
|  | } | 
|  | if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) { | 
|  | trace_pci_nvme_err_invalid_create_cq_vector(vector); | 
|  | return NVME_INVALID_IRQ_VECTOR | NVME_DNR; | 
|  | } | 
|  | if (unlikely(vector >= n->conf_msix_qsize)) { | 
|  | trace_pci_nvme_err_invalid_create_cq_vector(vector); | 
|  | return NVME_INVALID_IRQ_VECTOR | NVME_DNR; | 
|  | } | 
|  | if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { | 
|  | trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | cq = g_malloc0(sizeof(*cq)); | 
|  | nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, | 
|  | NVME_CQ_FLAGS_IEN(qflags)); | 
|  |  | 
|  | /* | 
|  | * It is only required to set qs_created when creating a completion queue; | 
|  | * creating a submission queue without a matching completion queue will | 
|  | * fail. | 
|  | */ | 
|  | n->qs_created = true; | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; | 
|  |  | 
|  | return nvme_c2h(n, id, sizeof(id), req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | trace_pci_nvme_identify_ctrl(); | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  | uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; | 
|  | NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; | 
|  |  | 
|  | trace_pci_nvme_identify_ctrl_csi(c->csi); | 
|  |  | 
|  | switch (c->csi) { | 
|  | case NVME_CSI_NVM: | 
|  | id_nvm->vsl = n->params.vsl; | 
|  | id_nvm->dmrsl = cpu_to_le32(n->dmrsl); | 
|  | break; | 
|  |  | 
|  | case NVME_CSI_ZONED: | 
|  | ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, id, sizeof(id), req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  | uint32_t nsid = le32_to_cpu(c->nsid); | 
|  |  | 
|  | trace_pci_nvme_identify_ns(nsid); | 
|  |  | 
|  | if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (unlikely(!ns)) { | 
|  | if (!active) { | 
|  | ns = nvme_subsys_ns(n->subsys, nsid); | 
|  | if (!ns) { | 
|  | return nvme_rpt_empty_id_struct(n, req); | 
|  | } | 
|  | } else { | 
|  | return nvme_rpt_empty_id_struct(n, req); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (active || ns->csi == NVME_CSI_NVM) { | 
|  | return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); | 
|  | } | 
|  |  | 
|  | return NVME_INVALID_CMD_SET | NVME_DNR; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, | 
|  | bool attached) | 
|  | { | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  | uint32_t nsid = le32_to_cpu(c->nsid); | 
|  | uint16_t min_id = le16_to_cpu(c->ctrlid); | 
|  | uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; | 
|  | uint16_t *ids = &list[1]; | 
|  | NvmeNamespace *ns; | 
|  | NvmeCtrl *ctrl; | 
|  | int cntlid, nr_ids = 0; | 
|  |  | 
|  | trace_pci_nvme_identify_ctrl_list(c->cns, min_id); | 
|  |  | 
|  | if (!n->subsys) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (attached) { | 
|  | if (nsid == NVME_NSID_BROADCAST) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_subsys_ns(n->subsys, nsid); | 
|  | if (!ns) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { | 
|  | ctrl = nvme_subsys_ctrl(n->subsys, cntlid); | 
|  | if (!ctrl) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (attached && !nvme_ns(ctrl, nsid)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ids[nr_ids++] = cntlid; | 
|  | } | 
|  |  | 
|  | list[0] = nr_ids; | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid)); | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap, | 
|  | sizeof(NvmePriCtrlCap), req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  | uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid); | 
|  | uint16_t min_id = le16_to_cpu(c->ctrlid); | 
|  | uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl; | 
|  | NvmeSecCtrlList list = {0}; | 
|  | uint8_t i; | 
|  |  | 
|  | for (i = 0; i < num_sec_ctrl; i++) { | 
|  | if (n->sec_ctrl_list.sec[i].scid >= min_id) { | 
|  | list.numcntl = num_sec_ctrl - i; | 
|  | memcpy(&list.sec, n->sec_ctrl_list.sec + i, | 
|  | list.numcntl * sizeof(NvmeSecCtrlEntry)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl); | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, | 
|  | bool active) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  | uint32_t nsid = le32_to_cpu(c->nsid); | 
|  |  | 
|  | trace_pci_nvme_identify_ns_csi(nsid, c->csi); | 
|  |  | 
|  | if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (unlikely(!ns)) { | 
|  | if (!active) { | 
|  | ns = nvme_subsys_ns(n->subsys, nsid); | 
|  | if (!ns) { | 
|  | return nvme_rpt_empty_id_struct(n, req); | 
|  | } | 
|  | } else { | 
|  | return nvme_rpt_empty_id_struct(n, req); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (c->csi == NVME_CSI_NVM) { | 
|  | return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), | 
|  | req); | 
|  | } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { | 
|  | return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), | 
|  | req); | 
|  | } | 
|  |  | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, | 
|  | bool active) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  | uint32_t min_nsid = le32_to_cpu(c->nsid); | 
|  | uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; | 
|  | static const int data_len = sizeof(list); | 
|  | uint32_t *list_ptr = (uint32_t *)list; | 
|  | int i, j = 0; | 
|  |  | 
|  | trace_pci_nvme_identify_nslist(min_nsid); | 
|  |  | 
|  | /* | 
|  | * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values | 
|  | * since the Active Namespace ID List should return namespaces with ids | 
|  | * *higher* than the NSID specified in the command. This is also specified | 
|  | * in the spec (NVM Express v1.3d, Section 5.15.4). | 
|  | */ | 
|  | if (min_nsid >= NVME_NSID_BROADCAST - 1) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (!ns) { | 
|  | if (!active) { | 
|  | ns = nvme_subsys_ns(n->subsys, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (ns->params.nsid <= min_nsid) { | 
|  | continue; | 
|  | } | 
|  | list_ptr[j++] = cpu_to_le32(ns->params.nsid); | 
|  | if (j == data_len / sizeof(uint32_t)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, list, data_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, | 
|  | bool active) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  | uint32_t min_nsid = le32_to_cpu(c->nsid); | 
|  | uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; | 
|  | static const int data_len = sizeof(list); | 
|  | uint32_t *list_ptr = (uint32_t *)list; | 
|  | int i, j = 0; | 
|  |  | 
|  | trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); | 
|  |  | 
|  | /* | 
|  | * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. | 
|  | */ | 
|  | if (min_nsid >= NVME_NSID_BROADCAST - 1) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (!ns) { | 
|  | if (!active) { | 
|  | ns = nvme_subsys_ns(n->subsys, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { | 
|  | continue; | 
|  | } | 
|  | list_ptr[j++] = cpu_to_le32(ns->params.nsid); | 
|  | if (j == data_len / sizeof(uint32_t)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, list, data_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  | uint32_t nsid = le32_to_cpu(c->nsid); | 
|  | uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; | 
|  | uint8_t *pos = list; | 
|  | struct { | 
|  | NvmeIdNsDescr hdr; | 
|  | uint8_t v[NVME_NIDL_UUID]; | 
|  | } QEMU_PACKED uuid = {}; | 
|  | struct { | 
|  | NvmeIdNsDescr hdr; | 
|  | uint64_t v; | 
|  | } QEMU_PACKED eui64 = {}; | 
|  | struct { | 
|  | NvmeIdNsDescr hdr; | 
|  | uint8_t v; | 
|  | } QEMU_PACKED csi = {}; | 
|  |  | 
|  | trace_pci_nvme_identify_ns_descr_list(nsid); | 
|  |  | 
|  | if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (unlikely(!ns)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!qemu_uuid_is_null(&ns->params.uuid)) { | 
|  | uuid.hdr.nidt = NVME_NIDT_UUID; | 
|  | uuid.hdr.nidl = NVME_NIDL_UUID; | 
|  | memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); | 
|  | memcpy(pos, &uuid, sizeof(uuid)); | 
|  | pos += sizeof(uuid); | 
|  | } | 
|  |  | 
|  | if (ns->params.eui64) { | 
|  | eui64.hdr.nidt = NVME_NIDT_EUI64; | 
|  | eui64.hdr.nidl = NVME_NIDL_EUI64; | 
|  | eui64.v = cpu_to_be64(ns->params.eui64); | 
|  | memcpy(pos, &eui64, sizeof(eui64)); | 
|  | pos += sizeof(eui64); | 
|  | } | 
|  |  | 
|  | csi.hdr.nidt = NVME_NIDT_CSI; | 
|  | csi.hdr.nidl = NVME_NIDL_CSI; | 
|  | csi.v = ns->csi; | 
|  | memcpy(pos, &csi, sizeof(csi)); | 
|  | pos += sizeof(csi); | 
|  |  | 
|  | return nvme_c2h(n, list, sizeof(list), req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; | 
|  | static const int data_len = sizeof(list); | 
|  |  | 
|  | trace_pci_nvme_identify_cmd_set(); | 
|  |  | 
|  | NVME_SET_CSI(*list, NVME_CSI_NVM); | 
|  | NVME_SET_CSI(*list, NVME_CSI_ZONED); | 
|  |  | 
|  | return nvme_c2h(n, list, data_len, req); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeIdentify *c = (NvmeIdentify *)&req->cmd; | 
|  |  | 
|  | trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), | 
|  | c->csi); | 
|  |  | 
|  | switch (c->cns) { | 
|  | case NVME_ID_CNS_NS: | 
|  | return nvme_identify_ns(n, req, true); | 
|  | case NVME_ID_CNS_NS_PRESENT: | 
|  | return nvme_identify_ns(n, req, false); | 
|  | case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: | 
|  | return nvme_identify_ctrl_list(n, req, true); | 
|  | case NVME_ID_CNS_CTRL_LIST: | 
|  | return nvme_identify_ctrl_list(n, req, false); | 
|  | case NVME_ID_CNS_PRIMARY_CTRL_CAP: | 
|  | return nvme_identify_pri_ctrl_cap(n, req); | 
|  | case NVME_ID_CNS_SECONDARY_CTRL_LIST: | 
|  | return nvme_identify_sec_ctrl_list(n, req); | 
|  | case NVME_ID_CNS_CS_NS: | 
|  | return nvme_identify_ns_csi(n, req, true); | 
|  | case NVME_ID_CNS_CS_NS_PRESENT: | 
|  | return nvme_identify_ns_csi(n, req, false); | 
|  | case NVME_ID_CNS_CTRL: | 
|  | return nvme_identify_ctrl(n, req); | 
|  | case NVME_ID_CNS_CS_CTRL: | 
|  | return nvme_identify_ctrl_csi(n, req); | 
|  | case NVME_ID_CNS_NS_ACTIVE_LIST: | 
|  | return nvme_identify_nslist(n, req, true); | 
|  | case NVME_ID_CNS_NS_PRESENT_LIST: | 
|  | return nvme_identify_nslist(n, req, false); | 
|  | case NVME_ID_CNS_CS_NS_ACTIVE_LIST: | 
|  | return nvme_identify_nslist_csi(n, req, true); | 
|  | case NVME_ID_CNS_CS_NS_PRESENT_LIST: | 
|  | return nvme_identify_nslist_csi(n, req, false); | 
|  | case NVME_ID_CNS_NS_DESCR_LIST: | 
|  | return nvme_identify_ns_descr_list(n, req); | 
|  | case NVME_ID_CNS_IO_COMMAND_SET: | 
|  | return nvme_identify_cmd_set(n, req); | 
|  | default: | 
|  | trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; | 
|  |  | 
|  | req->cqe.result = 1; | 
|  | if (nvme_check_sqid(n, sqid)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) | 
|  | { | 
|  | trace_pci_nvme_setfeat_timestamp(ts); | 
|  |  | 
|  | n->host_timestamp = le64_to_cpu(ts); | 
|  | n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); | 
|  | } | 
|  |  | 
|  | static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) | 
|  | { | 
|  | uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); | 
|  | uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; | 
|  |  | 
|  | union nvme_timestamp { | 
|  | struct { | 
|  | uint64_t timestamp:48; | 
|  | uint64_t sync:1; | 
|  | uint64_t origin:3; | 
|  | uint64_t rsvd1:12; | 
|  | }; | 
|  | uint64_t all; | 
|  | }; | 
|  |  | 
|  | union nvme_timestamp ts; | 
|  | ts.all = 0; | 
|  | ts.timestamp = n->host_timestamp + elapsed_time; | 
|  |  | 
|  | /* If the host timestamp is non-zero, set the timestamp origin */ | 
|  | ts.origin = n->host_timestamp ? 0x01 : 0x00; | 
|  |  | 
|  | trace_pci_nvme_getfeat_timestamp(ts.all); | 
|  |  | 
|  | return cpu_to_le64(ts.all); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | uint64_t timestamp = nvme_get_timestamp(n); | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); | 
|  | } | 
|  |  | 
|  | static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid, | 
|  | uint32_t *result) | 
|  | { | 
|  | *result = 0; | 
|  |  | 
|  | if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1); | 
|  | *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, | 
|  | NvmeRequest *req, uint32_t *result) | 
|  | { | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  | uint32_t cdw11 = le32_to_cpu(cmd->cdw11); | 
|  | uint16_t ph = cdw11 & 0xffff; | 
|  | uint8_t noet = (cdw11 >> 16) & 0xff; | 
|  | uint16_t ruhid, ret; | 
|  | uint32_t nentries = 0; | 
|  | uint8_t s_events_ndx = 0; | 
|  | size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet; | 
|  | g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz); | 
|  | NvmeRuHandle *ruh; | 
|  | NvmeFdpEventDescr *s_event; | 
|  |  | 
|  | if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { | 
|  | return NVME_FDP_DISABLED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!nvme_ph_valid(ns, ph)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ruhid = ns->fdp.phs[ph]; | 
|  | ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; | 
|  |  | 
|  | assert(ruh); | 
|  |  | 
|  | if (unlikely(noet == 0)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) { | 
|  | uint8_t shift = nvme_fdp_evf_shifts[event_type]; | 
|  | if (!shift && event_type) { | 
|  | /* | 
|  | * only first entry (event_type == 0) has a shift value of 0 | 
|  | * other entries are simply unpopulated. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nentries++; | 
|  |  | 
|  | s_event = &s_events[s_events_ndx]; | 
|  | s_event->evt = event_type; | 
|  | s_event->evta = (ruh->event_filter >> shift) & 0x1; | 
|  |  | 
|  | /* break if all `noet` entries are filled */ | 
|  | if ((++s_events_ndx) == noet) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = nvme_c2h(n, s_events, s_events_siz, req); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *result = nentries; | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  | uint32_t dw10 = le32_to_cpu(cmd->cdw10); | 
|  | uint32_t dw11 = le32_to_cpu(cmd->cdw11); | 
|  | uint32_t nsid = le32_to_cpu(cmd->nsid); | 
|  | uint32_t result; | 
|  | uint8_t fid = NVME_GETSETFEAT_FID(dw10); | 
|  | NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); | 
|  | uint16_t iv; | 
|  | NvmeNamespace *ns; | 
|  | int i; | 
|  | uint16_t endgrpid = 0, ret = NVME_SUCCESS; | 
|  |  | 
|  | static const uint32_t nvme_feature_default[NVME_FID_MAX] = { | 
|  | [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, | 
|  | }; | 
|  |  | 
|  | trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); | 
|  |  | 
|  | if (!nvme_feature_support[fid]) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { | 
|  | if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { | 
|  | /* | 
|  | * The Reservation Notification Mask and Reservation Persistence | 
|  | * features require a status code of Invalid Field in Command when | 
|  | * NSID is FFFFFFFFh. Since the device does not support those | 
|  | * features we can always return Invalid Namespace or Format as we | 
|  | * should do for all other features. | 
|  | */ | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!nvme_ns(n, nsid)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (sel) { | 
|  | case NVME_GETFEAT_SELECT_CURRENT: | 
|  | break; | 
|  | case NVME_GETFEAT_SELECT_SAVED: | 
|  | /* no features are saveable by the controller; fallthrough */ | 
|  | case NVME_GETFEAT_SELECT_DEFAULT: | 
|  | goto defaults; | 
|  | case NVME_GETFEAT_SELECT_CAP: | 
|  | result = nvme_feature_cap[fid]; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (fid) { | 
|  | case NVME_TEMPERATURE_THRESHOLD: | 
|  | result = 0; | 
|  |  | 
|  | /* | 
|  | * The controller only implements the Composite Temperature sensor, so | 
|  | * return 0 for all other sensors. | 
|  | */ | 
|  | if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (NVME_TEMP_THSEL(dw11)) { | 
|  | case NVME_TEMP_THSEL_OVER: | 
|  | result = n->features.temp_thresh_hi; | 
|  | goto out; | 
|  | case NVME_TEMP_THSEL_UNDER: | 
|  | result = n->features.temp_thresh_low; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | case NVME_ERROR_RECOVERY: | 
|  | if (!nvme_nsid_valid(n, nsid)) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (unlikely(!ns)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | result = ns->features.err_rec; | 
|  | goto out; | 
|  | case NVME_VOLATILE_WRITE_CACHE: | 
|  | result = 0; | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | result = blk_enable_write_cache(ns->blkconf.blk); | 
|  | if (result) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); | 
|  | goto out; | 
|  | case NVME_ASYNCHRONOUS_EVENT_CONF: | 
|  | result = n->features.async_config; | 
|  | goto out; | 
|  | case NVME_TIMESTAMP: | 
|  | return nvme_get_feature_timestamp(n, req); | 
|  | case NVME_HOST_BEHAVIOR_SUPPORT: | 
|  | return nvme_c2h(n, (uint8_t *)&n->features.hbs, | 
|  | sizeof(n->features.hbs), req); | 
|  | case NVME_FDP_MODE: | 
|  | endgrpid = dw11 & 0xff; | 
|  |  | 
|  | if (endgrpid != 0x1) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ret = nvme_get_feature_fdp(n, endgrpid, &result); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | goto out; | 
|  | case NVME_FDP_EVENTS: | 
|  | if (!nvme_nsid_valid(n, nsid)) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (unlikely(!ns)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ret = nvme_get_feature_fdp_events(n, ns, req, &result); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | goto out; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | defaults: | 
|  | switch (fid) { | 
|  | case NVME_TEMPERATURE_THRESHOLD: | 
|  | result = 0; | 
|  |  | 
|  | if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { | 
|  | result = NVME_TEMPERATURE_WARNING; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case NVME_NUMBER_OF_QUEUES: | 
|  | result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16); | 
|  | trace_pci_nvme_getfeat_numq(result); | 
|  | break; | 
|  | case NVME_INTERRUPT_VECTOR_CONF: | 
|  | iv = dw11 & 0xffff; | 
|  | if (iv >= n->conf_ioqpairs + 1) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | result = iv; | 
|  | if (iv == n->admin_cq.vector) { | 
|  | result |= NVME_INTVC_NOCOALESCING; | 
|  | } | 
|  | break; | 
|  | case NVME_FDP_MODE: | 
|  | endgrpid = dw11 & 0xff; | 
|  |  | 
|  | if (endgrpid != 0x1) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ret = nvme_get_feature_fdp(n, endgrpid, &result); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | goto out; | 
|  |  | 
|  | break; | 
|  | default: | 
|  | result = nvme_feature_default[fid]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | out: | 
|  | req->cqe.result = cpu_to_le32(result); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | uint16_t ret; | 
|  | uint64_t timestamp; | 
|  |  | 
|  | ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | nvme_set_timestamp(n, timestamp); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, | 
|  | NvmeRequest *req) | 
|  | { | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  | uint32_t cdw11 = le32_to_cpu(cmd->cdw11); | 
|  | uint16_t ph = cdw11 & 0xffff; | 
|  | uint8_t noet = (cdw11 >> 16) & 0xff; | 
|  | uint16_t ret, ruhid; | 
|  | uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1; | 
|  | uint8_t event_mask = 0; | 
|  | unsigned int i; | 
|  | g_autofree uint8_t *events = g_malloc0(noet); | 
|  | NvmeRuHandle *ruh = NULL; | 
|  |  | 
|  | assert(ns); | 
|  |  | 
|  | if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { | 
|  | return NVME_FDP_DISABLED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!nvme_ph_valid(ns, ph)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ruhid = ns->fdp.phs[ph]; | 
|  | ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; | 
|  |  | 
|  | ret = nvme_h2c(n, events, noet, req); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < noet; i++) { | 
|  | event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]); | 
|  | } | 
|  |  | 
|  | if (enable) { | 
|  | ruh->event_filter |= event_mask; | 
|  | } else { | 
|  | ruh->event_filter = ruh->event_filter & ~event_mask; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns = NULL; | 
|  |  | 
|  | NvmeCmd *cmd = &req->cmd; | 
|  | uint32_t dw10 = le32_to_cpu(cmd->cdw10); | 
|  | uint32_t dw11 = le32_to_cpu(cmd->cdw11); | 
|  | uint32_t nsid = le32_to_cpu(cmd->nsid); | 
|  | uint8_t fid = NVME_GETSETFEAT_FID(dw10); | 
|  | uint8_t save = NVME_SETFEAT_SAVE(dw10); | 
|  | uint16_t status; | 
|  | int i; | 
|  |  | 
|  | trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); | 
|  |  | 
|  | if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { | 
|  | return NVME_FID_NOT_SAVEABLE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!nvme_feature_support[fid]) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { | 
|  | if (nsid != NVME_NSID_BROADCAST) { | 
|  | if (!nvme_nsid_valid(n, nsid)) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (unlikely(!ns)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } | 
|  | } else if (nsid && nsid != NVME_NSID_BROADCAST) { | 
|  | if (!nvme_nsid_valid(n, nsid)) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { | 
|  | return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | switch (fid) { | 
|  | case NVME_TEMPERATURE_THRESHOLD: | 
|  | if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (NVME_TEMP_THSEL(dw11)) { | 
|  | case NVME_TEMP_THSEL_OVER: | 
|  | n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); | 
|  | break; | 
|  | case NVME_TEMP_THSEL_UNDER: | 
|  | n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); | 
|  | break; | 
|  | default: | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if ((n->temperature >= n->features.temp_thresh_hi) || | 
|  | (n->temperature <= n->features.temp_thresh_low)) { | 
|  | nvme_smart_event(n, NVME_SMART_TEMPERATURE); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case NVME_ERROR_RECOVERY: | 
|  | if (nsid == NVME_NSID_BROADCAST) { | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  |  | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { | 
|  | ns->features.err_rec = dw11; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(ns); | 
|  | if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  { | 
|  | ns->features.err_rec = dw11; | 
|  | } | 
|  | break; | 
|  | case NVME_VOLATILE_WRITE_CACHE: | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { | 
|  | blk_flush(ns->blkconf.blk); | 
|  | } | 
|  |  | 
|  | blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case NVME_NUMBER_OF_QUEUES: | 
|  | if (n->qs_created) { | 
|  | return NVME_CMD_SEQ_ERROR | NVME_DNR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR | 
|  | * and NSQR. | 
|  | */ | 
|  | if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, | 
|  | ((dw11 >> 16) & 0xffff) + 1, | 
|  | n->conf_ioqpairs, | 
|  | n->conf_ioqpairs); | 
|  | req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) | | 
|  | ((n->conf_ioqpairs - 1) << 16)); | 
|  | break; | 
|  | case NVME_ASYNCHRONOUS_EVENT_CONF: | 
|  | n->features.async_config = dw11; | 
|  | break; | 
|  | case NVME_TIMESTAMP: | 
|  | return nvme_set_feature_timestamp(n, req); | 
|  | case NVME_HOST_BEHAVIOR_SUPPORT: | 
|  | status = nvme_h2c(n, (uint8_t *)&n->features.hbs, | 
|  | sizeof(n->features.hbs), req); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  |  | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ns->id_ns.nlbaf = ns->nlbaf - 1; | 
|  | if (!n->features.hbs.lbafee) { | 
|  | ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); | 
|  | } | 
|  | } | 
|  |  | 
|  | return status; | 
|  | case NVME_COMMAND_SET_PROFILE: | 
|  | if (dw11 & 0x1ff) { | 
|  | trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); | 
|  | return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; | 
|  | } | 
|  | break; | 
|  | case NVME_FDP_MODE: | 
|  | /* spec: abort with cmd seq err if there's one or more NS' in endgrp */ | 
|  | return NVME_CMD_SEQ_ERROR | NVME_DNR; | 
|  | case NVME_FDP_EVENTS: | 
|  | return nvme_set_feature_fdp_events(n, ns, req); | 
|  | default: | 
|  | return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; | 
|  | } | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | trace_pci_nvme_aer(nvme_cid(req)); | 
|  |  | 
|  | if (n->outstanding_aers > n->params.aerl) { | 
|  | trace_pci_nvme_aer_aerl_exceeded(); | 
|  | return NVME_AER_LIMIT_EXCEEDED; | 
|  | } | 
|  |  | 
|  | n->aer_reqs[n->outstanding_aers] = req; | 
|  | n->outstanding_aers++; | 
|  |  | 
|  | if (!QTAILQ_EMPTY(&n->aer_queue)) { | 
|  | nvme_process_aers(n); | 
|  | } | 
|  |  | 
|  | return NVME_NO_COMPLETE; | 
|  | } | 
|  |  | 
|  | static void nvme_update_dmrsl(NvmeCtrl *n) | 
|  | { | 
|  | int nsid; | 
|  |  | 
|  | for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { | 
|  | NvmeNamespace *ns = nvme_ns(n, nsid); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | n->dmrsl = MIN_NON_ZERO(n->dmrsl, | 
|  | BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) | 
|  | { | 
|  | uint32_t cc = ldl_le_p(&n->bar.cc); | 
|  |  | 
|  | ns->iocs = nvme_cse_iocs_none; | 
|  | switch (ns->csi) { | 
|  | case NVME_CSI_NVM: | 
|  | if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { | 
|  | ns->iocs = nvme_cse_iocs_nvm; | 
|  | } | 
|  | break; | 
|  | case NVME_CSI_ZONED: | 
|  | if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { | 
|  | ns->iocs = nvme_cse_iocs_zoned; | 
|  | } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { | 
|  | ns->iocs = nvme_cse_iocs_nvm; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | NvmeCtrl *ctrl; | 
|  | uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; | 
|  | uint32_t nsid = le32_to_cpu(req->cmd.nsid); | 
|  | uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); | 
|  | uint8_t sel = dw10 & 0xf; | 
|  | uint16_t *nr_ids = &list[0]; | 
|  | uint16_t *ids = &list[1]; | 
|  | uint16_t ret; | 
|  | int i; | 
|  |  | 
|  | trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); | 
|  |  | 
|  | if (!nvme_nsid_valid(n, nsid)) { | 
|  | return NVME_INVALID_NSID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_subsys_ns(n->subsys, nsid); | 
|  | if (!ns) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ret = nvme_h2c(n, (uint8_t *)list, 4096, req); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!*nr_ids) { | 
|  | return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); | 
|  | for (i = 0; i < *nr_ids; i++) { | 
|  | ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); | 
|  | if (!ctrl) { | 
|  | return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | switch (sel) { | 
|  | case NVME_NS_ATTACHMENT_ATTACH: | 
|  | if (nvme_ns(ctrl, nsid)) { | 
|  | return NVME_NS_ALREADY_ATTACHED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (ns->attached && !ns->params.shared) { | 
|  | return NVME_NS_PRIVATE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | nvme_attach_ns(ctrl, ns); | 
|  | nvme_select_iocs_ns(ctrl, ns); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case NVME_NS_ATTACHMENT_DETACH: | 
|  | if (!nvme_ns(ctrl, nsid)) { | 
|  | return NVME_NS_NOT_ATTACHED | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ctrl->namespaces[nsid] = NULL; | 
|  | ns->attached--; | 
|  |  | 
|  | nvme_update_dmrsl(ctrl); | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add namespace id to the changed namespace id list for event clearing | 
|  | * via Get Log Page command. | 
|  | */ | 
|  | if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { | 
|  | nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, | 
|  | NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, | 
|  | NVME_LOG_CHANGED_NSLIST); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | typedef struct NvmeFormatAIOCB { | 
|  | BlockAIOCB common; | 
|  | BlockAIOCB *aiocb; | 
|  | NvmeRequest *req; | 
|  | int ret; | 
|  |  | 
|  | NvmeNamespace *ns; | 
|  | uint32_t nsid; | 
|  | bool broadcast; | 
|  | int64_t offset; | 
|  |  | 
|  | uint8_t lbaf; | 
|  | uint8_t mset; | 
|  | uint8_t pi; | 
|  | uint8_t pil; | 
|  | } NvmeFormatAIOCB; | 
|  |  | 
|  | static void nvme_format_cancel(BlockAIOCB *aiocb) | 
|  | { | 
|  | NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); | 
|  |  | 
|  | iocb->ret = -ECANCELED; | 
|  |  | 
|  | if (iocb->aiocb) { | 
|  | blk_aio_cancel_async(iocb->aiocb); | 
|  | iocb->aiocb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const AIOCBInfo nvme_format_aiocb_info = { | 
|  | .aiocb_size = sizeof(NvmeFormatAIOCB), | 
|  | .cancel_async = nvme_format_cancel, | 
|  | }; | 
|  |  | 
|  | static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, | 
|  | uint8_t pi, uint8_t pil) | 
|  | { | 
|  | uint8_t lbafl = lbaf & 0xf; | 
|  | uint8_t lbafu = lbaf >> 4; | 
|  |  | 
|  | trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); | 
|  |  | 
|  | ns->id_ns.dps = (pil << 3) | pi; | 
|  | ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; | 
|  |  | 
|  | nvme_ns_init_format(ns); | 
|  | } | 
|  |  | 
|  | static void nvme_do_format(NvmeFormatAIOCB *iocb); | 
|  |  | 
|  | static void nvme_format_ns_cb(void *opaque, int ret) | 
|  | { | 
|  | NvmeFormatAIOCB *iocb = opaque; | 
|  | NvmeNamespace *ns = iocb->ns; | 
|  | int bytes; | 
|  |  | 
|  | if (iocb->ret < 0) { | 
|  | goto done; | 
|  | } else if (ret < 0) { | 
|  | iocb->ret = ret; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | assert(ns); | 
|  |  | 
|  | if (iocb->offset < ns->size) { | 
|  | bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); | 
|  |  | 
|  | iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, | 
|  | bytes, BDRV_REQ_MAY_UNMAP, | 
|  | nvme_format_ns_cb, iocb); | 
|  |  | 
|  | iocb->offset += bytes; | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); | 
|  | ns->status = 0x0; | 
|  | iocb->ns = NULL; | 
|  | iocb->offset = 0; | 
|  |  | 
|  | done: | 
|  | nvme_do_format(iocb); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) | 
|  | { | 
|  | if (ns->params.zoned) { | 
|  | return NVME_INVALID_FORMAT | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (lbaf > ns->id_ns.nlbaf) { | 
|  | return NVME_INVALID_FORMAT | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { | 
|  | return NVME_INVALID_FORMAT | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void nvme_do_format(NvmeFormatAIOCB *iocb) | 
|  | { | 
|  | NvmeRequest *req = iocb->req; | 
|  | NvmeCtrl *n = nvme_ctrl(req); | 
|  | uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); | 
|  | uint8_t lbaf = dw10 & 0xf; | 
|  | uint8_t pi = (dw10 >> 5) & 0x7; | 
|  | uint16_t status; | 
|  | int i; | 
|  |  | 
|  | if (iocb->ret < 0) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (iocb->broadcast) { | 
|  | for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | iocb->ns = nvme_ns(n, i); | 
|  | if (iocb->ns) { | 
|  | iocb->nsid = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!iocb->ns) { | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | status = nvme_format_check(iocb->ns, lbaf, pi); | 
|  | if (status) { | 
|  | req->status = status; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | iocb->ns->status = NVME_FORMAT_IN_PROGRESS; | 
|  | nvme_format_ns_cb(iocb, 0); | 
|  | return; | 
|  |  | 
|  | done: | 
|  | iocb->common.cb(iocb->common.opaque, iocb->ret); | 
|  | qemu_aio_unref(iocb); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeFormatAIOCB *iocb; | 
|  | uint32_t nsid = le32_to_cpu(req->cmd.nsid); | 
|  | uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); | 
|  | uint8_t lbaf = dw10 & 0xf; | 
|  | uint8_t mset = (dw10 >> 4) & 0x1; | 
|  | uint8_t pi = (dw10 >> 5) & 0x7; | 
|  | uint8_t pil = (dw10 >> 8) & 0x1; | 
|  | uint8_t lbafu = (dw10 >> 12) & 0x3; | 
|  | uint16_t status; | 
|  |  | 
|  | iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); | 
|  |  | 
|  | iocb->req = req; | 
|  | iocb->ret = 0; | 
|  | iocb->ns = NULL; | 
|  | iocb->nsid = 0; | 
|  | iocb->lbaf = lbaf; | 
|  | iocb->mset = mset; | 
|  | iocb->pi = pi; | 
|  | iocb->pil = pil; | 
|  | iocb->broadcast = (nsid == NVME_NSID_BROADCAST); | 
|  | iocb->offset = 0; | 
|  |  | 
|  | if (n->features.hbs.lbafee) { | 
|  | iocb->lbaf |= lbafu << 4; | 
|  | } | 
|  |  | 
|  | if (!iocb->broadcast) { | 
|  | if (!nvme_nsid_valid(n, nsid)) { | 
|  | status = NVME_INVALID_NSID | NVME_DNR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | iocb->ns = nvme_ns(n, nsid); | 
|  | if (!iocb->ns) { | 
|  | status = NVME_INVALID_FIELD | NVME_DNR; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | req->aiocb = &iocb->common; | 
|  | nvme_do_format(iocb); | 
|  |  | 
|  | return NVME_NO_COMPLETE; | 
|  |  | 
|  | out: | 
|  | qemu_aio_unref(iocb); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total, | 
|  | int *num_prim, int *num_sec) | 
|  | { | 
|  | *num_total = le32_to_cpu(rt ? | 
|  | n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt); | 
|  | *num_prim = le16_to_cpu(rt ? | 
|  | n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap); | 
|  | *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa); | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req, | 
|  | uint16_t cntlid, uint8_t rt, | 
|  | int nr) | 
|  | { | 
|  | int num_total, num_prim, num_sec; | 
|  |  | 
|  | if (cntlid != n->cntlid) { | 
|  | return NVME_INVALID_CTRL_ID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); | 
|  |  | 
|  | if (nr > num_total) { | 
|  | return NVME_INVALID_NUM_RESOURCES | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (nr > num_total - num_sec) { | 
|  | return NVME_INVALID_RESOURCE_ID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (rt) { | 
|  | n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr); | 
|  | } else { | 
|  | n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr); | 
|  | } | 
|  |  | 
|  | req->cqe.result = cpu_to_le32(nr); | 
|  | return req->status; | 
|  | } | 
|  |  | 
|  | static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl, | 
|  | uint8_t rt, int nr) | 
|  | { | 
|  | int prev_nr, prev_total; | 
|  |  | 
|  | if (rt) { | 
|  | prev_nr = le16_to_cpu(sctrl->nvi); | 
|  | prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa); | 
|  | sctrl->nvi = cpu_to_le16(nr); | 
|  | n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr); | 
|  | } else { | 
|  | prev_nr = le16_to_cpu(sctrl->nvq); | 
|  | prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa); | 
|  | sctrl->nvq = cpu_to_le16(nr); | 
|  | n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req, | 
|  | uint16_t cntlid, uint8_t rt, int nr) | 
|  | { | 
|  | int num_total, num_prim, num_sec, num_free, diff, limit; | 
|  | NvmeSecCtrlEntry *sctrl; | 
|  |  | 
|  | sctrl = nvme_sctrl_for_cntlid(n, cntlid); | 
|  | if (!sctrl) { | 
|  | return NVME_INVALID_CTRL_ID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (sctrl->scs) { | 
|  | return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm); | 
|  | if (nr > limit) { | 
|  | return NVME_INVALID_NUM_RESOURCES | NVME_DNR; | 
|  | } | 
|  |  | 
|  | nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); | 
|  | num_free = num_total - num_prim - num_sec; | 
|  | diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq); | 
|  |  | 
|  | if (diff > num_free) { | 
|  | return NVME_INVALID_RESOURCE_ID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | nvme_update_virt_res(n, sctrl, rt, nr); | 
|  | req->cqe.result = cpu_to_le32(nr); | 
|  |  | 
|  | return req->status; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online) | 
|  | { | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  | NvmeCtrl *sn = NULL; | 
|  | NvmeSecCtrlEntry *sctrl; | 
|  | int vf_index; | 
|  |  | 
|  | sctrl = nvme_sctrl_for_cntlid(n, cntlid); | 
|  | if (!sctrl) { | 
|  | return NVME_INVALID_CTRL_ID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!pci_is_vf(pci)) { | 
|  | vf_index = le16_to_cpu(sctrl->vfn) - 1; | 
|  | sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index)); | 
|  | } | 
|  |  | 
|  | if (online) { | 
|  | if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) { | 
|  | return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (!sctrl->scs) { | 
|  | sctrl->scs = 0x1; | 
|  | nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); | 
|  | } | 
|  | } else { | 
|  | nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0); | 
|  | nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0); | 
|  |  | 
|  | if (sctrl->scs) { | 
|  | sctrl->scs = 0x0; | 
|  | if (sn) { | 
|  | nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); | 
|  | uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); | 
|  | uint8_t act = dw10 & 0xf; | 
|  | uint8_t rt = (dw10 >> 8) & 0x7; | 
|  | uint16_t cntlid = (dw10 >> 16) & 0xffff; | 
|  | int nr = dw11 & 0xffff; | 
|  |  | 
|  | trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr); | 
|  |  | 
|  | if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) { | 
|  | return NVME_INVALID_RESOURCE_ID | NVME_DNR; | 
|  | } | 
|  |  | 
|  | switch (act) { | 
|  | case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN: | 
|  | return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr); | 
|  | case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC: | 
|  | return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr); | 
|  | case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE: | 
|  | return nvme_virt_set_state(n, cntlid, true); | 
|  | case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE: | 
|  | return nvme_virt_set_state(n, cntlid, false); | 
|  | default: | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req) | 
|  | { | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  | uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1); | 
|  | uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2); | 
|  | int i; | 
|  |  | 
|  | /* Address should be page aligned */ | 
|  | if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | /* Save shadow buffer base addr for use during queue creation */ | 
|  | n->dbbuf_dbs = dbs_addr; | 
|  | n->dbbuf_eis = eis_addr; | 
|  | n->dbbuf_enabled = true; | 
|  |  | 
|  | for (i = 0; i < n->params.max_ioqpairs + 1; i++) { | 
|  | NvmeSQueue *sq = n->sq[i]; | 
|  | NvmeCQueue *cq = n->cq[i]; | 
|  |  | 
|  | if (sq) { | 
|  | /* | 
|  | * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3) | 
|  | * nvme_process_db() uses this hard-coded way to calculate | 
|  | * doorbell offsets. Be consistent with that here. | 
|  | */ | 
|  | sq->db_addr = dbs_addr + (i << 3); | 
|  | sq->ei_addr = eis_addr + (i << 3); | 
|  | stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); | 
|  |  | 
|  | if (n->params.ioeventfd && sq->sqid != 0) { | 
|  | if (!nvme_init_sq_ioeventfd(sq)) { | 
|  | sq->ioeventfd_enabled = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cq) { | 
|  | /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */ | 
|  | cq->db_addr = dbs_addr + (i << 3) + (1 << 2); | 
|  | cq->ei_addr = eis_addr + (i << 3) + (1 << 2); | 
|  | stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); | 
|  |  | 
|  | if (n->params.ioeventfd && cq->cqid != 0) { | 
|  | if (!nvme_init_cq_ioeventfd(cq)) { | 
|  | cq->ioeventfd_enabled = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr); | 
|  |  | 
|  | return NVME_SUCCESS; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); | 
|  | uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); | 
|  | uint32_t nsid = le32_to_cpu(req->cmd.nsid); | 
|  | uint8_t doper, dtype; | 
|  | uint32_t numd, trans_len; | 
|  | NvmeDirectiveIdentify id = { | 
|  | .supported = 1 << NVME_DIRECTIVE_IDENTIFY, | 
|  | .enabled = 1 << NVME_DIRECTIVE_IDENTIFY, | 
|  | }; | 
|  |  | 
|  | numd = dw10 + 1; | 
|  | doper = dw11 & 0xff; | 
|  | dtype = (dw11 >> 8) & 0xff; | 
|  |  | 
|  | trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2); | 
|  |  | 
|  | if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY || | 
|  | doper != NVME_DIRECTIVE_RETURN_PARAMS) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | ns = nvme_ns(n, nsid); | 
|  | if (!ns) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | switch (dtype) { | 
|  | case NVME_DIRECTIVE_IDENTIFY: | 
|  | switch (doper) { | 
|  | case NVME_DIRECTIVE_RETURN_PARAMS: | 
|  | if (ns->endgrp && ns->endgrp->fdp.enabled) { | 
|  | id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; | 
|  | id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; | 
|  | id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; | 
|  | } | 
|  |  | 
|  | return nvme_c2h(n, (uint8_t *)&id, trans_len, req); | 
|  |  | 
|  | default: | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return NVME_INVALID_FIELD; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) | 
|  | { | 
|  | trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, | 
|  | nvme_adm_opc_str(req->cmd.opcode)); | 
|  |  | 
|  | if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { | 
|  | trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); | 
|  | return NVME_INVALID_OPCODE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | /* SGLs shall not be used for Admin commands in NVMe over PCIe */ | 
|  | if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { | 
|  | return NVME_INVALID_FIELD | NVME_DNR; | 
|  | } | 
|  |  | 
|  | if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { | 
|  | return NVME_INVALID_FIELD; | 
|  | } | 
|  |  | 
|  | switch (req->cmd.opcode) { | 
|  | case NVME_ADM_CMD_DELETE_SQ: | 
|  | return nvme_del_sq(n, req); | 
|  | case NVME_ADM_CMD_CREATE_SQ: | 
|  | return nvme_create_sq(n, req); | 
|  | case NVME_ADM_CMD_GET_LOG_PAGE: | 
|  | return nvme_get_log(n, req); | 
|  | case NVME_ADM_CMD_DELETE_CQ: | 
|  | return nvme_del_cq(n, req); | 
|  | case NVME_ADM_CMD_CREATE_CQ: | 
|  | return nvme_create_cq(n, req); | 
|  | case NVME_ADM_CMD_IDENTIFY: | 
|  | return nvme_identify(n, req); | 
|  | case NVME_ADM_CMD_ABORT: | 
|  | return nvme_abort(n, req); | 
|  | case NVME_ADM_CMD_SET_FEATURES: | 
|  | return nvme_set_feature(n, req); | 
|  | case NVME_ADM_CMD_GET_FEATURES: | 
|  | return nvme_get_feature(n, req); | 
|  | case NVME_ADM_CMD_ASYNC_EV_REQ: | 
|  | return nvme_aer(n, req); | 
|  | case NVME_ADM_CMD_NS_ATTACHMENT: | 
|  | return nvme_ns_attachment(n, req); | 
|  | case NVME_ADM_CMD_VIRT_MNGMT: | 
|  | return nvme_virt_mngmt(n, req); | 
|  | case NVME_ADM_CMD_DBBUF_CONFIG: | 
|  | return nvme_dbbuf_config(n, req); | 
|  | case NVME_ADM_CMD_FORMAT_NVM: | 
|  | return nvme_format(n, req); | 
|  | case NVME_ADM_CMD_DIRECTIVE_SEND: | 
|  | return nvme_directive_send(n, req); | 
|  | case NVME_ADM_CMD_DIRECTIVE_RECV: | 
|  | return nvme_directive_receive(n, req); | 
|  | default: | 
|  | assert(false); | 
|  | } | 
|  |  | 
|  | return NVME_INVALID_OPCODE | NVME_DNR; | 
|  | } | 
|  |  | 
|  | static void nvme_update_sq_eventidx(const NvmeSQueue *sq) | 
|  | { | 
|  | trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail); | 
|  |  | 
|  | stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  | } | 
|  |  | 
|  | static void nvme_update_sq_tail(NvmeSQueue *sq) | 
|  | { | 
|  | ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  |  | 
|  | trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail); | 
|  | } | 
|  |  | 
|  | static void nvme_process_sq(void *opaque) | 
|  | { | 
|  | NvmeSQueue *sq = opaque; | 
|  | NvmeCtrl *n = sq->ctrl; | 
|  | NvmeCQueue *cq = n->cq[sq->cqid]; | 
|  |  | 
|  | uint16_t status; | 
|  | hwaddr addr; | 
|  | NvmeCmd cmd; | 
|  | NvmeRequest *req; | 
|  |  | 
|  | if (n->dbbuf_enabled) { | 
|  | nvme_update_sq_tail(sq); | 
|  | } | 
|  |  | 
|  | while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { | 
|  | addr = sq->dma_addr + (sq->head << NVME_SQES); | 
|  | if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { | 
|  | trace_pci_nvme_err_addr_read(addr); | 
|  | trace_pci_nvme_err_cfs(); | 
|  | stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); | 
|  | break; | 
|  | } | 
|  | nvme_inc_sq_head(sq); | 
|  |  | 
|  | req = QTAILQ_FIRST(&sq->req_list); | 
|  | QTAILQ_REMOVE(&sq->req_list, req, entry); | 
|  | QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); | 
|  | nvme_req_clear(req); | 
|  | req->cqe.cid = cmd.cid; | 
|  | memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); | 
|  |  | 
|  | status = sq->sqid ? nvme_io_cmd(n, req) : | 
|  | nvme_admin_cmd(n, req); | 
|  | if (status != NVME_NO_COMPLETE) { | 
|  | req->status = status; | 
|  | nvme_enqueue_req_completion(cq, req); | 
|  | } | 
|  |  | 
|  | if (n->dbbuf_enabled) { | 
|  | nvme_update_sq_eventidx(sq); | 
|  | nvme_update_sq_tail(sq); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size) | 
|  | { | 
|  | uint8_t *config; | 
|  |  | 
|  | if (!msix_present(pci_dev)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr); | 
|  |  | 
|  | config = pci_dev->config + pci_dev->msix_cap; | 
|  | pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE, | 
|  | table_size - 1); | 
|  | } | 
|  |  | 
|  | static void nvme_activate_virt_res(NvmeCtrl *n) | 
|  | { | 
|  | PCIDevice *pci_dev = PCI_DEVICE(n); | 
|  | NvmePriCtrlCap *cap = &n->pri_ctrl_cap; | 
|  | NvmeSecCtrlEntry *sctrl; | 
|  |  | 
|  | /* -1 to account for the admin queue */ | 
|  | if (pci_is_vf(pci_dev)) { | 
|  | sctrl = nvme_sctrl(n); | 
|  | cap->vqprt = sctrl->nvq; | 
|  | cap->viprt = sctrl->nvi; | 
|  | n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; | 
|  | n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; | 
|  | } else { | 
|  | cap->vqrfap = n->next_pri_ctrl_cap.vqrfap; | 
|  | cap->virfap = n->next_pri_ctrl_cap.virfap; | 
|  | n->conf_ioqpairs = le16_to_cpu(cap->vqprt) + | 
|  | le16_to_cpu(cap->vqrfap) - 1; | 
|  | n->conf_msix_qsize = le16_to_cpu(cap->viprt) + | 
|  | le16_to_cpu(cap->virfap); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst) | 
|  | { | 
|  | PCIDevice *pci_dev = PCI_DEVICE(n); | 
|  | NvmeSecCtrlEntry *sctrl; | 
|  | NvmeNamespace *ns; | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nvme_ns_drain(ns); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n->params.max_ioqpairs + 1; i++) { | 
|  | if (n->sq[i] != NULL) { | 
|  | nvme_free_sq(n->sq[i], n); | 
|  | } | 
|  | } | 
|  | for (i = 0; i < n->params.max_ioqpairs + 1; i++) { | 
|  | if (n->cq[i] != NULL) { | 
|  | nvme_free_cq(n->cq[i], n); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (!QTAILQ_EMPTY(&n->aer_queue)) { | 
|  | NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); | 
|  | QTAILQ_REMOVE(&n->aer_queue, event, entry); | 
|  | g_free(event); | 
|  | } | 
|  |  | 
|  | if (n->params.sriov_max_vfs) { | 
|  | if (!pci_is_vf(pci_dev)) { | 
|  | for (i = 0; i < n->sec_ctrl_list.numcntl; i++) { | 
|  | sctrl = &n->sec_ctrl_list.sec[i]; | 
|  | nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); | 
|  | } | 
|  |  | 
|  | if (rst != NVME_RESET_CONTROLLER) { | 
|  | pcie_sriov_pf_disable_vfs(pci_dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rst != NVME_RESET_CONTROLLER) { | 
|  | nvme_activate_virt_res(n); | 
|  | } | 
|  | } | 
|  |  | 
|  | n->aer_queued = 0; | 
|  | n->aer_mask = 0; | 
|  | n->outstanding_aers = 0; | 
|  | n->qs_created = false; | 
|  |  | 
|  | nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); | 
|  |  | 
|  | if (pci_is_vf(pci_dev)) { | 
|  | sctrl = nvme_sctrl(n); | 
|  |  | 
|  | stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED); | 
|  | } else { | 
|  | stl_le_p(&n->bar.csts, 0); | 
|  | } | 
|  |  | 
|  | stl_le_p(&n->bar.intms, 0); | 
|  | stl_le_p(&n->bar.intmc, 0); | 
|  | stl_le_p(&n->bar.cc, 0); | 
|  |  | 
|  | n->dbbuf_dbs = 0; | 
|  | n->dbbuf_eis = 0; | 
|  | n->dbbuf_enabled = false; | 
|  | } | 
|  |  | 
|  | static void nvme_ctrl_shutdown(NvmeCtrl *n) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | int i; | 
|  |  | 
|  | if (n->pmr.dev) { | 
|  | memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); | 
|  | } | 
|  |  | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nvme_ns_shutdown(ns); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_select_iocs(NvmeCtrl *n) | 
|  | { | 
|  | NvmeNamespace *ns; | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (!ns) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nvme_select_iocs_ns(n, ns); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int nvme_start_ctrl(NvmeCtrl *n) | 
|  | { | 
|  | uint64_t cap = ldq_le_p(&n->bar.cap); | 
|  | uint32_t cc = ldl_le_p(&n->bar.cc); | 
|  | uint32_t aqa = ldl_le_p(&n->bar.aqa); | 
|  | uint64_t asq = ldq_le_p(&n->bar.asq); | 
|  | uint64_t acq = ldq_le_p(&n->bar.acq); | 
|  | uint32_t page_bits = NVME_CC_MPS(cc) + 12; | 
|  | uint32_t page_size = 1 << page_bits; | 
|  | NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); | 
|  |  | 
|  | if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) { | 
|  | trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi), | 
|  | le16_to_cpu(sctrl->nvq)); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(n->cq[0])) { | 
|  | trace_pci_nvme_err_startfail_cq(); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(n->sq[0])) { | 
|  | trace_pci_nvme_err_startfail_sq(); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(asq & (page_size - 1))) { | 
|  | trace_pci_nvme_err_startfail_asq_misaligned(asq); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(acq & (page_size - 1))) { | 
|  | trace_pci_nvme_err_startfail_acq_misaligned(acq); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { | 
|  | trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { | 
|  | trace_pci_nvme_err_startfail_page_too_small( | 
|  | NVME_CC_MPS(cc), | 
|  | NVME_CAP_MPSMIN(cap)); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(NVME_CC_MPS(cc) > | 
|  | NVME_CAP_MPSMAX(cap))) { | 
|  | trace_pci_nvme_err_startfail_page_too_large( | 
|  | NVME_CC_MPS(cc), | 
|  | NVME_CAP_MPSMAX(cap)); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(!NVME_AQA_ASQS(aqa))) { | 
|  | trace_pci_nvme_err_startfail_asqent_sz_zero(); | 
|  | return -1; | 
|  | } | 
|  | if (unlikely(!NVME_AQA_ACQS(aqa))) { | 
|  | trace_pci_nvme_err_startfail_acqent_sz_zero(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | n->page_bits = page_bits; | 
|  | n->page_size = page_size; | 
|  | n->max_prp_ents = n->page_size / sizeof(uint64_t); | 
|  | nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); | 
|  | nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); | 
|  |  | 
|  | nvme_set_timestamp(n, 0ULL); | 
|  |  | 
|  | nvme_select_iocs(n); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nvme_cmb_enable_regs(NvmeCtrl *n) | 
|  | { | 
|  | uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); | 
|  | uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); | 
|  |  | 
|  | NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); | 
|  | NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); | 
|  | NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); | 
|  | stl_le_p(&n->bar.cmbloc, cmbloc); | 
|  |  | 
|  | NVME_CMBSZ_SET_SQS(cmbsz, 1); | 
|  | NVME_CMBSZ_SET_CQS(cmbsz, 0); | 
|  | NVME_CMBSZ_SET_LISTS(cmbsz, 1); | 
|  | NVME_CMBSZ_SET_RDS(cmbsz, 1); | 
|  | NVME_CMBSZ_SET_WDS(cmbsz, 1); | 
|  | NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ | 
|  | NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); | 
|  | stl_le_p(&n->bar.cmbsz, cmbsz); | 
|  | } | 
|  |  | 
|  | static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, | 
|  | unsigned size) | 
|  | { | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  | uint64_t cap = ldq_le_p(&n->bar.cap); | 
|  | uint32_t cc = ldl_le_p(&n->bar.cc); | 
|  | uint32_t intms = ldl_le_p(&n->bar.intms); | 
|  | uint32_t csts = ldl_le_p(&n->bar.csts); | 
|  | uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); | 
|  |  | 
|  | if (unlikely(offset & (sizeof(uint32_t) - 1))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, | 
|  | "MMIO write not 32-bit aligned," | 
|  | " offset=0x%"PRIx64"", offset); | 
|  | /* should be ignored, fall through for now */ | 
|  | } | 
|  |  | 
|  | if (unlikely(size < sizeof(uint32_t))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, | 
|  | "MMIO write smaller than 32-bits," | 
|  | " offset=0x%"PRIx64", size=%u", | 
|  | offset, size); | 
|  | /* should be ignored, fall through for now */ | 
|  | } | 
|  |  | 
|  | switch (offset) { | 
|  | case NVME_REG_INTMS: | 
|  | if (unlikely(msix_enabled(pci))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, | 
|  | "undefined access to interrupt mask set" | 
|  | " when MSI-X is enabled"); | 
|  | /* should be ignored, fall through for now */ | 
|  | } | 
|  | intms |= data; | 
|  | stl_le_p(&n->bar.intms, intms); | 
|  | n->bar.intmc = n->bar.intms; | 
|  | trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); | 
|  | nvme_irq_check(n); | 
|  | break; | 
|  | case NVME_REG_INTMC: | 
|  | if (unlikely(msix_enabled(pci))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, | 
|  | "undefined access to interrupt mask clr" | 
|  | " when MSI-X is enabled"); | 
|  | /* should be ignored, fall through for now */ | 
|  | } | 
|  | intms &= ~data; | 
|  | stl_le_p(&n->bar.intms, intms); | 
|  | n->bar.intmc = n->bar.intms; | 
|  | trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); | 
|  | nvme_irq_check(n); | 
|  | break; | 
|  | case NVME_REG_CC: | 
|  | stl_le_p(&n->bar.cc, data); | 
|  |  | 
|  | trace_pci_nvme_mmio_cfg(data & 0xffffffff); | 
|  |  | 
|  | if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { | 
|  | trace_pci_nvme_mmio_shutdown_set(); | 
|  | nvme_ctrl_shutdown(n); | 
|  | csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); | 
|  | csts |= NVME_CSTS_SHST_COMPLETE; | 
|  | } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { | 
|  | trace_pci_nvme_mmio_shutdown_cleared(); | 
|  | csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); | 
|  | } | 
|  |  | 
|  | if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { | 
|  | if (unlikely(nvme_start_ctrl(n))) { | 
|  | trace_pci_nvme_err_startfail(); | 
|  | csts = NVME_CSTS_FAILED; | 
|  | } else { | 
|  | trace_pci_nvme_mmio_start_success(); | 
|  | csts = NVME_CSTS_READY; | 
|  | } | 
|  | } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { | 
|  | trace_pci_nvme_mmio_stopped(); | 
|  | nvme_ctrl_reset(n, NVME_RESET_CONTROLLER); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | stl_le_p(&n->bar.csts, csts); | 
|  |  | 
|  | break; | 
|  | case NVME_REG_CSTS: | 
|  | if (data & (1 << 4)) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, | 
|  | "attempted to W1C CSTS.NSSRO" | 
|  | " but CAP.NSSRS is zero (not supported)"); | 
|  | } else if (data != 0) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, | 
|  | "attempted to set a read only bit" | 
|  | " of controller status"); | 
|  | } | 
|  | break; | 
|  | case NVME_REG_NSSR: | 
|  | if (data == 0x4e564d65) { | 
|  | trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); | 
|  | } else { | 
|  | /* The spec says that writes of other values have no effect */ | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case NVME_REG_AQA: | 
|  | stl_le_p(&n->bar.aqa, data); | 
|  | trace_pci_nvme_mmio_aqattr(data & 0xffffffff); | 
|  | break; | 
|  | case NVME_REG_ASQ: | 
|  | stn_le_p(&n->bar.asq, size, data); | 
|  | trace_pci_nvme_mmio_asqaddr(data); | 
|  | break; | 
|  | case NVME_REG_ASQ + 4: | 
|  | stl_le_p((uint8_t *)&n->bar.asq + 4, data); | 
|  | trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); | 
|  | break; | 
|  | case NVME_REG_ACQ: | 
|  | trace_pci_nvme_mmio_acqaddr(data); | 
|  | stn_le_p(&n->bar.acq, size, data); | 
|  | break; | 
|  | case NVME_REG_ACQ + 4: | 
|  | stl_le_p((uint8_t *)&n->bar.acq + 4, data); | 
|  | trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); | 
|  | break; | 
|  | case NVME_REG_CMBLOC: | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, | 
|  | "invalid write to reserved CMBLOC" | 
|  | " when CMBSZ is zero, ignored"); | 
|  | return; | 
|  | case NVME_REG_CMBSZ: | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, | 
|  | "invalid write to read only CMBSZ, ignored"); | 
|  | return; | 
|  | case NVME_REG_CMBMSC: | 
|  | if (!NVME_CAP_CMBS(cap)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | stn_le_p(&n->bar.cmbmsc, size, data); | 
|  | n->cmb.cmse = false; | 
|  |  | 
|  | if (NVME_CMBMSC_CRE(data)) { | 
|  | nvme_cmb_enable_regs(n); | 
|  |  | 
|  | if (NVME_CMBMSC_CMSE(data)) { | 
|  | uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); | 
|  | hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; | 
|  | if (cba + int128_get64(n->cmb.mem.size) < cba) { | 
|  | uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); | 
|  | NVME_CMBSTS_SET_CBAI(cmbsts, 1); | 
|  | stl_le_p(&n->bar.cmbsts, cmbsts); | 
|  | return; | 
|  | } | 
|  |  | 
|  | n->cmb.cba = cba; | 
|  | n->cmb.cmse = true; | 
|  | } | 
|  | } else { | 
|  | n->bar.cmbsz = 0; | 
|  | n->bar.cmbloc = 0; | 
|  | } | 
|  |  | 
|  | return; | 
|  | case NVME_REG_CMBMSC + 4: | 
|  | stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); | 
|  | return; | 
|  |  | 
|  | case NVME_REG_PMRCAP: | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, | 
|  | "invalid write to PMRCAP register, ignored"); | 
|  | return; | 
|  | case NVME_REG_PMRCTL: | 
|  | if (!NVME_CAP_PMRS(cap)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | stl_le_p(&n->bar.pmrctl, data); | 
|  | if (NVME_PMRCTL_EN(data)) { | 
|  | memory_region_set_enabled(&n->pmr.dev->mr, true); | 
|  | pmrsts = 0; | 
|  | } else { | 
|  | memory_region_set_enabled(&n->pmr.dev->mr, false); | 
|  | NVME_PMRSTS_SET_NRDY(pmrsts, 1); | 
|  | n->pmr.cmse = false; | 
|  | } | 
|  | stl_le_p(&n->bar.pmrsts, pmrsts); | 
|  | return; | 
|  | case NVME_REG_PMRSTS: | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, | 
|  | "invalid write to PMRSTS register, ignored"); | 
|  | return; | 
|  | case NVME_REG_PMREBS: | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, | 
|  | "invalid write to PMREBS register, ignored"); | 
|  | return; | 
|  | case NVME_REG_PMRSWTP: | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, | 
|  | "invalid write to PMRSWTP register, ignored"); | 
|  | return; | 
|  | case NVME_REG_PMRMSCL: | 
|  | if (!NVME_CAP_PMRS(cap)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | stl_le_p(&n->bar.pmrmscl, data); | 
|  | n->pmr.cmse = false; | 
|  |  | 
|  | if (NVME_PMRMSCL_CMSE(data)) { | 
|  | uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); | 
|  | hwaddr cba = pmrmscu << 32 | | 
|  | (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); | 
|  | if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { | 
|  | NVME_PMRSTS_SET_CBAI(pmrsts, 1); | 
|  | stl_le_p(&n->bar.pmrsts, pmrsts); | 
|  | return; | 
|  | } | 
|  |  | 
|  | n->pmr.cmse = true; | 
|  | n->pmr.cba = cba; | 
|  | } | 
|  |  | 
|  | return; | 
|  | case NVME_REG_PMRMSCU: | 
|  | if (!NVME_CAP_PMRS(cap)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | stl_le_p(&n->bar.pmrmscu, data); | 
|  | return; | 
|  | default: | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, | 
|  | "invalid MMIO write," | 
|  | " offset=0x%"PRIx64", data=%"PRIx64"", | 
|  | offset, data); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) | 
|  | { | 
|  | NvmeCtrl *n = (NvmeCtrl *)opaque; | 
|  | uint8_t *ptr = (uint8_t *)&n->bar; | 
|  |  | 
|  | trace_pci_nvme_mmio_read(addr, size); | 
|  |  | 
|  | if (unlikely(addr & (sizeof(uint32_t) - 1))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, | 
|  | "MMIO read not 32-bit aligned," | 
|  | " offset=0x%"PRIx64"", addr); | 
|  | /* should RAZ, fall through for now */ | 
|  | } else if (unlikely(size < sizeof(uint32_t))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, | 
|  | "MMIO read smaller than 32-bits," | 
|  | " offset=0x%"PRIx64"", addr); | 
|  | /* should RAZ, fall through for now */ | 
|  | } | 
|  |  | 
|  | if (addr > sizeof(n->bar) - size) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, | 
|  | "MMIO read beyond last register," | 
|  | " offset=0x%"PRIx64", returning 0", addr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && | 
|  | addr != NVME_REG_CSTS) { | 
|  | trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When PMRWBM bit 1 is set then read from | 
|  | * from PMRSTS should ensure prior writes | 
|  | * made it to persistent media | 
|  | */ | 
|  | if (addr == NVME_REG_PMRSTS && | 
|  | (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { | 
|  | memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); | 
|  | } | 
|  |  | 
|  | return ldn_le_p(ptr + addr, size); | 
|  | } | 
|  |  | 
|  | static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) | 
|  | { | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  | uint32_t qid; | 
|  |  | 
|  | if (unlikely(addr & ((1 << 2) - 1))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, | 
|  | "doorbell write not 32-bit aligned," | 
|  | " offset=0x%"PRIx64", ignoring", addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (((addr - 0x1000) >> 2) & 1) { | 
|  | /* Completion queue doorbell write */ | 
|  |  | 
|  | uint16_t new_head = val & 0xffff; | 
|  | int start_sqs; | 
|  | NvmeCQueue *cq; | 
|  |  | 
|  | qid = (addr - (0x1000 + (1 << 2))) >> 3; | 
|  | if (unlikely(nvme_check_cqid(n, qid))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, | 
|  | "completion queue doorbell write" | 
|  | " for nonexistent queue," | 
|  | " sqid=%"PRIu32", ignoring", qid); | 
|  |  | 
|  | /* | 
|  | * NVM Express v1.3d, Section 4.1 state: "If host software writes | 
|  | * an invalid value to the Submission Queue Tail Doorbell or | 
|  | * Completion Queue Head Doorbell register and an Asynchronous Event | 
|  | * Request command is outstanding, then an asynchronous event is | 
|  | * posted to the Admin Completion Queue with a status code of | 
|  | * Invalid Doorbell Write Value." | 
|  | * | 
|  | * Also note that the spec includes the "Invalid Doorbell Register" | 
|  | * status code, but nowhere does it specify when to use it. | 
|  | * However, it seems reasonable to use it here in a similar | 
|  | * fashion. | 
|  | */ | 
|  | if (n->outstanding_aers) { | 
|  | nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, | 
|  | NVME_AER_INFO_ERR_INVALID_DB_REGISTER, | 
|  | NVME_LOG_ERROR_INFO); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | cq = n->cq[qid]; | 
|  | if (unlikely(new_head >= cq->size)) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, | 
|  | "completion queue doorbell write value" | 
|  | " beyond queue size, sqid=%"PRIu32"," | 
|  | " new_head=%"PRIu16", ignoring", | 
|  | qid, new_head); | 
|  |  | 
|  | if (n->outstanding_aers) { | 
|  | nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, | 
|  | NVME_AER_INFO_ERR_INVALID_DB_VALUE, | 
|  | NVME_LOG_ERROR_INFO); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); | 
|  |  | 
|  | start_sqs = nvme_cq_full(cq) ? 1 : 0; | 
|  | cq->head = new_head; | 
|  | if (!qid && n->dbbuf_enabled) { | 
|  | stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); | 
|  | } | 
|  | if (start_sqs) { | 
|  | NvmeSQueue *sq; | 
|  | QTAILQ_FOREACH(sq, &cq->sq_list, entry) { | 
|  | qemu_bh_schedule(sq->bh); | 
|  | } | 
|  | qemu_bh_schedule(cq->bh); | 
|  | } | 
|  |  | 
|  | if (cq->tail == cq->head) { | 
|  | if (cq->irq_enabled) { | 
|  | n->cq_pending--; | 
|  | } | 
|  |  | 
|  | nvme_irq_deassert(n, cq); | 
|  | } | 
|  | } else { | 
|  | /* Submission queue doorbell write */ | 
|  |  | 
|  | uint16_t new_tail = val & 0xffff; | 
|  | NvmeSQueue *sq; | 
|  |  | 
|  | qid = (addr - 0x1000) >> 3; | 
|  | if (unlikely(nvme_check_sqid(n, qid))) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, | 
|  | "submission queue doorbell write" | 
|  | " for nonexistent queue," | 
|  | " sqid=%"PRIu32", ignoring", qid); | 
|  |  | 
|  | if (n->outstanding_aers) { | 
|  | nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, | 
|  | NVME_AER_INFO_ERR_INVALID_DB_REGISTER, | 
|  | NVME_LOG_ERROR_INFO); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | sq = n->sq[qid]; | 
|  | if (unlikely(new_tail >= sq->size)) { | 
|  | NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, | 
|  | "submission queue doorbell write value" | 
|  | " beyond queue size, sqid=%"PRIu32"," | 
|  | " new_tail=%"PRIu16", ignoring", | 
|  | qid, new_tail); | 
|  |  | 
|  | if (n->outstanding_aers) { | 
|  | nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, | 
|  | NVME_AER_INFO_ERR_INVALID_DB_VALUE, | 
|  | NVME_LOG_ERROR_INFO); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); | 
|  |  | 
|  | sq->tail = new_tail; | 
|  | if (!qid && n->dbbuf_enabled) { | 
|  | /* | 
|  | * The spec states "the host shall also update the controller's | 
|  | * corresponding doorbell property to match the value of that entry | 
|  | * in the Shadow Doorbell buffer." | 
|  | * | 
|  | * Since this context is currently a VM trap, we can safely enforce | 
|  | * the requirement from the device side in case the host is | 
|  | * misbehaving. | 
|  | * | 
|  | * Note, we shouldn't have to do this, but various drivers | 
|  | * including ones that run on Linux, are not updating Admin Queues, | 
|  | * so we can't trust reading it for an appropriate sq tail. | 
|  | */ | 
|  | stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); | 
|  | } | 
|  |  | 
|  | qemu_bh_schedule(sq->bh); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, | 
|  | unsigned size) | 
|  | { | 
|  | NvmeCtrl *n = (NvmeCtrl *)opaque; | 
|  |  | 
|  | trace_pci_nvme_mmio_write(addr, data, size); | 
|  |  | 
|  | if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && | 
|  | addr != NVME_REG_CSTS) { | 
|  | trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (addr < sizeof(n->bar)) { | 
|  | nvme_write_bar(n, addr, data, size); | 
|  | } else { | 
|  | nvme_process_db(n, addr, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps nvme_mmio_ops = { | 
|  | .read = nvme_mmio_read, | 
|  | .write = nvme_mmio_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | .impl = { | 
|  | .min_access_size = 2, | 
|  | .max_access_size = 8, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, | 
|  | unsigned size) | 
|  | { | 
|  | NvmeCtrl *n = (NvmeCtrl *)opaque; | 
|  | stn_le_p(&n->cmb.buf[addr], size, data); | 
|  | } | 
|  |  | 
|  | static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) | 
|  | { | 
|  | NvmeCtrl *n = (NvmeCtrl *)opaque; | 
|  | return ldn_le_p(&n->cmb.buf[addr], size); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps nvme_cmb_ops = { | 
|  | .read = nvme_cmb_read, | 
|  | .write = nvme_cmb_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | .impl = { | 
|  | .min_access_size = 1, | 
|  | .max_access_size = 8, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static bool nvme_check_params(NvmeCtrl *n, Error **errp) | 
|  | { | 
|  | NvmeParams *params = &n->params; | 
|  |  | 
|  | if (params->num_queues) { | 
|  | warn_report("num_queues is deprecated; please use max_ioqpairs " | 
|  | "instead"); | 
|  |  | 
|  | params->max_ioqpairs = params->num_queues - 1; | 
|  | } | 
|  |  | 
|  | if (n->namespace.blkconf.blk && n->subsys) { | 
|  | error_setg(errp, "subsystem support is unavailable with legacy " | 
|  | "namespace ('drive' property)"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->max_ioqpairs < 1 || | 
|  | params->max_ioqpairs > NVME_MAX_IOQPAIRS) { | 
|  | error_setg(errp, "max_ioqpairs must be between 1 and %d", | 
|  | NVME_MAX_IOQPAIRS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->msix_qsize < 1 || | 
|  | params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { | 
|  | error_setg(errp, "msix_qsize must be between 1 and %d", | 
|  | PCI_MSIX_FLAGS_QSIZE + 1); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!params->serial) { | 
|  | error_setg(errp, "serial property not set"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (n->pmr.dev) { | 
|  | if (host_memory_backend_is_mapped(n->pmr.dev)) { | 
|  | error_setg(errp, "can't use already busy memdev: %s", | 
|  | object_get_canonical_path_component(OBJECT(n->pmr.dev))); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!is_power_of_2(n->pmr.dev->size)) { | 
|  | error_setg(errp, "pmr backend size needs to be power of 2 in size"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | host_memory_backend_set_mapped(n->pmr.dev, true); | 
|  | } | 
|  |  | 
|  | if (n->params.zasl > n->params.mdts) { | 
|  | error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " | 
|  | "than or equal to mdts (Maximum Data Transfer Size)"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!n->params.vsl) { | 
|  | error_setg(errp, "vsl must be non-zero"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->sriov_max_vfs) { | 
|  | if (!n->subsys) { | 
|  | error_setg(errp, "subsystem is required for the use of SR-IOV"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->sriov_max_vfs > NVME_MAX_VFS) { | 
|  | error_setg(errp, "sriov_max_vfs must be between 0 and %d", | 
|  | NVME_MAX_VFS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->cmb_size_mb) { | 
|  | error_setg(errp, "CMB is not supported with SR-IOV"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (n->pmr.dev) { | 
|  | error_setg(errp, "PMR is not supported with SR-IOV"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) { | 
|  | error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible" | 
|  | " must be set for the use of SR-IOV"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) { | 
|  | error_setg(errp, "sriov_vq_flexible must be greater than or equal" | 
|  | " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->max_ioqpairs < params->sriov_vq_flexible + 2) { | 
|  | error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be" | 
|  | " greater than or equal to 2"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->sriov_vi_flexible < params->sriov_max_vfs) { | 
|  | error_setg(errp, "sriov_vi_flexible must be greater than or equal" | 
|  | " to %d (sriov_max_vfs)", params->sriov_max_vfs); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->msix_qsize < params->sriov_vi_flexible + 1) { | 
|  | error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be" | 
|  | " greater than or equal to 1"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->sriov_max_vi_per_vf && | 
|  | (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) { | 
|  | error_setg(errp, "sriov_max_vi_per_vf must meet:" | 
|  | " (sriov_max_vi_per_vf - 1) %% %d == 0 and" | 
|  | " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (params->sriov_max_vq_per_vf && | 
|  | (params->sriov_max_vq_per_vf < 2 || | 
|  | (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) { | 
|  | error_setg(errp, "sriov_max_vq_per_vf must meet:" | 
|  | " (sriov_max_vq_per_vf - 1) %% %d == 0 and" | 
|  | " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void nvme_init_state(NvmeCtrl *n) | 
|  | { | 
|  | NvmePriCtrlCap *cap = &n->pri_ctrl_cap; | 
|  | NvmeSecCtrlList *list = &n->sec_ctrl_list; | 
|  | NvmeSecCtrlEntry *sctrl; | 
|  | PCIDevice *pci = PCI_DEVICE(n); | 
|  | uint8_t max_vfs; | 
|  | int i; | 
|  |  | 
|  | if (pci_is_vf(pci)) { | 
|  | sctrl = nvme_sctrl(n); | 
|  | max_vfs = 0; | 
|  | n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; | 
|  | n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; | 
|  | } else { | 
|  | max_vfs = n->params.sriov_max_vfs; | 
|  | n->conf_ioqpairs = n->params.max_ioqpairs; | 
|  | n->conf_msix_qsize = n->params.msix_qsize; | 
|  | } | 
|  |  | 
|  | n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); | 
|  | n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); | 
|  | n->temperature = NVME_TEMPERATURE; | 
|  | n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; | 
|  | n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); | 
|  | n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); | 
|  | QTAILQ_INIT(&n->aer_queue); | 
|  |  | 
|  | list->numcntl = cpu_to_le16(max_vfs); | 
|  | for (i = 0; i < max_vfs; i++) { | 
|  | sctrl = &list->sec[i]; | 
|  | sctrl->pcid = cpu_to_le16(n->cntlid); | 
|  | sctrl->vfn = cpu_to_le16(i + 1); | 
|  | } | 
|  |  | 
|  | cap->cntlid = cpu_to_le16(n->cntlid); | 
|  | cap->crt = NVME_CRT_VQ | NVME_CRT_VI; | 
|  |  | 
|  | if (pci_is_vf(pci)) { | 
|  | cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs); | 
|  | } else { | 
|  | cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs - | 
|  | n->params.sriov_vq_flexible); | 
|  | cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible); | 
|  | cap->vqrfap = cap->vqfrt; | 
|  | cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY); | 
|  | cap->vqfrsm = n->params.sriov_max_vq_per_vf ? | 
|  | cpu_to_le16(n->params.sriov_max_vq_per_vf) : | 
|  | cap->vqfrt / MAX(max_vfs, 1); | 
|  | } | 
|  |  | 
|  | if (pci_is_vf(pci)) { | 
|  | cap->viprt = cpu_to_le16(n->conf_msix_qsize); | 
|  | } else { | 
|  | cap->viprt = cpu_to_le16(n->params.msix_qsize - | 
|  | n->params.sriov_vi_flexible); | 
|  | cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible); | 
|  | cap->virfap = cap->vifrt; | 
|  | cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY); | 
|  | cap->vifrsm = n->params.sriov_max_vi_per_vf ? | 
|  | cpu_to_le16(n->params.sriov_max_vi_per_vf) : | 
|  | cap->vifrt / MAX(max_vfs, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) | 
|  | { | 
|  | uint64_t cmb_size = n->params.cmb_size_mb * MiB; | 
|  | uint64_t cap = ldq_le_p(&n->bar.cap); | 
|  |  | 
|  | n->cmb.buf = g_malloc0(cmb_size); | 
|  | memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, | 
|  | "nvme-cmb", cmb_size); | 
|  | pci_register_bar(pci_dev, NVME_CMB_BIR, | 
|  | PCI_BASE_ADDRESS_SPACE_MEMORY | | 
|  | PCI_BASE_ADDRESS_MEM_TYPE_64 | | 
|  | PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); | 
|  |  | 
|  | NVME_CAP_SET_CMBS(cap, 1); | 
|  | stq_le_p(&n->bar.cap, cap); | 
|  |  | 
|  | if (n->params.legacy_cmb) { | 
|  | nvme_cmb_enable_regs(n); | 
|  | n->cmb.cmse = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) | 
|  | { | 
|  | uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); | 
|  |  | 
|  | NVME_PMRCAP_SET_RDS(pmrcap, 1); | 
|  | NVME_PMRCAP_SET_WDS(pmrcap, 1); | 
|  | NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); | 
|  | /* Turn on bit 1 support */ | 
|  | NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); | 
|  | NVME_PMRCAP_SET_CMSS(pmrcap, 1); | 
|  | stl_le_p(&n->bar.pmrcap, pmrcap); | 
|  |  | 
|  | pci_register_bar(pci_dev, NVME_PMR_BIR, | 
|  | PCI_BASE_ADDRESS_SPACE_MEMORY | | 
|  | PCI_BASE_ADDRESS_MEM_TYPE_64 | | 
|  | PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); | 
|  |  | 
|  | memory_region_set_enabled(&n->pmr.dev->mr, false); | 
|  | } | 
|  |  | 
|  | static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs, | 
|  | unsigned *msix_table_offset, | 
|  | unsigned *msix_pba_offset) | 
|  | { | 
|  | uint64_t bar_size, msix_table_size, msix_pba_size; | 
|  |  | 
|  | bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE; | 
|  | bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); | 
|  |  | 
|  | if (msix_table_offset) { | 
|  | *msix_table_offset = bar_size; | 
|  | } | 
|  |  | 
|  | msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs; | 
|  | bar_size += msix_table_size; | 
|  | bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); | 
|  |  | 
|  | if (msix_pba_offset) { | 
|  | *msix_pba_offset = bar_size; | 
|  | } | 
|  |  | 
|  | msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8; | 
|  | bar_size += msix_pba_size; | 
|  |  | 
|  | bar_size = pow2ceil(bar_size); | 
|  | return bar_size; | 
|  | } | 
|  |  | 
|  | static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset) | 
|  | { | 
|  | uint16_t vf_dev_id = n->params.use_intel_id ? | 
|  | PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME; | 
|  | NvmePriCtrlCap *cap = &n->pri_ctrl_cap; | 
|  | uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm), | 
|  | le16_to_cpu(cap->vifrsm), | 
|  | NULL, NULL); | 
|  |  | 
|  | pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id, | 
|  | n->params.sriov_max_vfs, n->params.sriov_max_vfs, | 
|  | NVME_VF_OFFSET, NVME_VF_STRIDE); | 
|  |  | 
|  | pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | | 
|  | PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size); | 
|  | } | 
|  |  | 
|  | static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset) | 
|  | { | 
|  | Error *err = NULL; | 
|  | int ret; | 
|  |  | 
|  | ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset, | 
|  | PCI_PM_SIZEOF, &err); | 
|  | if (err) { | 
|  | error_report_err(err); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pci_set_word(pci_dev->config + offset + PCI_PM_PMC, | 
|  | PCI_PM_CAP_VER_1_2); | 
|  | pci_set_word(pci_dev->config + offset + PCI_PM_CTRL, | 
|  | PCI_PM_CTRL_NO_SOFT_RESET); | 
|  | pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL, | 
|  | PCI_PM_CTRL_STATE_MASK); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | uint8_t *pci_conf = pci_dev->config; | 
|  | uint64_t bar_size; | 
|  | unsigned msix_table_offset, msix_pba_offset; | 
|  | int ret; | 
|  |  | 
|  | pci_conf[PCI_INTERRUPT_PIN] = 1; | 
|  | pci_config_set_prog_interface(pci_conf, 0x2); | 
|  |  | 
|  | if (n->params.use_intel_id) { | 
|  | pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); | 
|  | pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME); | 
|  | } else { | 
|  | pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); | 
|  | pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); | 
|  | } | 
|  |  | 
|  | pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); | 
|  | nvme_add_pm_capability(pci_dev, 0x60); | 
|  | pcie_endpoint_cap_init(pci_dev, 0x80); | 
|  | pcie_cap_flr_init(pci_dev); | 
|  | if (n->params.sriov_max_vfs) { | 
|  | pcie_ari_init(pci_dev, 0x100); | 
|  | } | 
|  |  | 
|  | /* add one to max_ioqpairs to account for the admin queue pair */ | 
|  | bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize, | 
|  | &msix_table_offset, &msix_pba_offset); | 
|  |  | 
|  | memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); | 
|  | memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", | 
|  | msix_table_offset); | 
|  | memory_region_add_subregion(&n->bar0, 0, &n->iomem); | 
|  |  | 
|  | if (pci_is_vf(pci_dev)) { | 
|  | pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0); | 
|  | } else { | 
|  | pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | | 
|  | PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); | 
|  | } | 
|  | ret = msix_init(pci_dev, n->params.msix_qsize, | 
|  | &n->bar0, 0, msix_table_offset, | 
|  | &n->bar0, 0, msix_pba_offset, 0, errp); | 
|  | if (ret == -ENOTSUP) { | 
|  | /* report that msix is not supported, but do not error out */ | 
|  | warn_report_err(*errp); | 
|  | *errp = NULL; | 
|  | } else if (ret < 0) { | 
|  | /* propagate error to caller */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); | 
|  |  | 
|  | if (n->params.cmb_size_mb) { | 
|  | nvme_init_cmb(n, pci_dev); | 
|  | } | 
|  |  | 
|  | if (n->pmr.dev) { | 
|  | nvme_init_pmr(n, pci_dev); | 
|  | } | 
|  |  | 
|  | if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { | 
|  | nvme_init_sriov(n, pci_dev, 0x120); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void nvme_init_subnqn(NvmeCtrl *n) | 
|  | { | 
|  | NvmeSubsystem *subsys = n->subsys; | 
|  | NvmeIdCtrl *id = &n->id_ctrl; | 
|  |  | 
|  | if (!subsys) { | 
|  | snprintf((char *)id->subnqn, sizeof(id->subnqn), | 
|  | "nqn.2019-08.org.qemu:%s", n->params.serial); | 
|  | } else { | 
|  | pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) | 
|  | { | 
|  | NvmeIdCtrl *id = &n->id_ctrl; | 
|  | uint8_t *pci_conf = pci_dev->config; | 
|  | uint64_t cap = ldq_le_p(&n->bar.cap); | 
|  | NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); | 
|  | uint32_t ctratt; | 
|  |  | 
|  | id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); | 
|  | id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); | 
|  | strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); | 
|  | strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); | 
|  | strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); | 
|  |  | 
|  | id->cntlid = cpu_to_le16(n->cntlid); | 
|  |  | 
|  | id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); | 
|  | ctratt = NVME_CTRATT_ELBAS; | 
|  |  | 
|  | id->rab = 6; | 
|  |  | 
|  | if (n->params.use_intel_id) { | 
|  | id->ieee[0] = 0xb3; | 
|  | id->ieee[1] = 0x02; | 
|  | id->ieee[2] = 0x00; | 
|  | } else { | 
|  | id->ieee[0] = 0x00; | 
|  | id->ieee[1] = 0x54; | 
|  | id->ieee[2] = 0x52; | 
|  | } | 
|  |  | 
|  | id->mdts = n->params.mdts; | 
|  | id->ver = cpu_to_le32(NVME_SPEC_VER); | 
|  | id->oacs = | 
|  | cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF | | 
|  | NVME_OACS_DIRECTIVES); | 
|  | id->cntrltype = 0x1; | 
|  |  | 
|  | /* | 
|  | * Because the controller always completes the Abort command immediately, | 
|  | * there can never be more than one concurrently executing Abort command, | 
|  | * so this value is never used for anything. Note that there can easily be | 
|  | * many Abort commands in the queues, but they are not considered | 
|  | * "executing" until processed by nvme_abort. | 
|  | * | 
|  | * The specification recommends a value of 3 for Abort Command Limit (four | 
|  | * concurrently outstanding Abort commands), so lets use that though it is | 
|  | * inconsequential. | 
|  | */ | 
|  | id->acl = 3; | 
|  | id->aerl = n->params.aerl; | 
|  | id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; | 
|  | id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; | 
|  |  | 
|  | /* recommended default value (~70 C) */ | 
|  | id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); | 
|  | id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); | 
|  |  | 
|  | id->sqes = (NVME_SQES << 4) | NVME_SQES; | 
|  | id->cqes = (NVME_CQES << 4) | NVME_CQES; | 
|  | id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); | 
|  | id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | | 
|  | NVME_ONCS_FEATURES | NVME_ONCS_DSM | | 
|  | NVME_ONCS_COMPARE | NVME_ONCS_COPY); | 
|  |  | 
|  | /* | 
|  | * NOTE: If this device ever supports a command set that does NOT use 0x0 | 
|  | * as a Flush-equivalent operation, support for the broadcast NSID in Flush | 
|  | * should probably be removed. | 
|  | * | 
|  | * See comment in nvme_io_cmd. | 
|  | */ | 
|  | id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; | 
|  |  | 
|  | id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1); | 
|  | id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN); | 
|  |  | 
|  | nvme_init_subnqn(n); | 
|  |  | 
|  | id->psd[0].mp = cpu_to_le16(0x9c4); | 
|  | id->psd[0].enlat = cpu_to_le32(0x10); | 
|  | id->psd[0].exlat = cpu_to_le32(0x4); | 
|  |  | 
|  | if (n->subsys) { | 
|  | id->cmic |= NVME_CMIC_MULTI_CTRL; | 
|  | ctratt |= NVME_CTRATT_ENDGRPS; | 
|  |  | 
|  | id->endgidmax = cpu_to_le16(0x1); | 
|  |  | 
|  | if (n->subsys->endgrp.fdp.enabled) { | 
|  | ctratt |= NVME_CTRATT_FDPS; | 
|  | } | 
|  | } | 
|  |  | 
|  | id->ctratt = cpu_to_le32(ctratt); | 
|  |  | 
|  | NVME_CAP_SET_MQES(cap, 0x7ff); | 
|  | NVME_CAP_SET_CQR(cap, 1); | 
|  | NVME_CAP_SET_TO(cap, 0xf); | 
|  | NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); | 
|  | NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); | 
|  | NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); | 
|  | NVME_CAP_SET_MPSMAX(cap, 4); | 
|  | NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); | 
|  | NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); | 
|  | stq_le_p(&n->bar.cap, cap); | 
|  |  | 
|  | stl_le_p(&n->bar.vs, NVME_SPEC_VER); | 
|  | n->bar.intmc = n->bar.intms = 0; | 
|  |  | 
|  | if (pci_is_vf(pci_dev) && !sctrl->scs) { | 
|  | stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int nvme_init_subsys(NvmeCtrl *n, Error **errp) | 
|  | { | 
|  | int cntlid; | 
|  |  | 
|  | if (!n->subsys) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cntlid = nvme_subsys_register_ctrl(n, errp); | 
|  | if (cntlid < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | n->cntlid = cntlid; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) | 
|  | { | 
|  | uint32_t nsid = ns->params.nsid; | 
|  | assert(nsid && nsid <= NVME_MAX_NAMESPACES); | 
|  |  | 
|  | n->namespaces[nsid] = ns; | 
|  | ns->attached++; | 
|  |  | 
|  | n->dmrsl = MIN_NON_ZERO(n->dmrsl, | 
|  | BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); | 
|  | } | 
|  |  | 
|  | static void nvme_realize(PCIDevice *pci_dev, Error **errp) | 
|  | { | 
|  | NvmeCtrl *n = NVME(pci_dev); | 
|  | DeviceState *dev = DEVICE(pci_dev); | 
|  | NvmeNamespace *ns; | 
|  | NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); | 
|  |  | 
|  | if (pci_is_vf(pci_dev)) { | 
|  | /* | 
|  | * VFs derive settings from the parent. PF's lifespan exceeds | 
|  | * that of VF's, so it's safe to share params.serial. | 
|  | */ | 
|  | memcpy(&n->params, &pn->params, sizeof(NvmeParams)); | 
|  | n->subsys = pn->subsys; | 
|  | } | 
|  |  | 
|  | if (!nvme_check_params(n, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id); | 
|  |  | 
|  | if (nvme_init_subsys(n, errp)) { | 
|  | return; | 
|  | } | 
|  | nvme_init_state(n); | 
|  | if (!nvme_init_pci(n, pci_dev, errp)) { | 
|  | return; | 
|  | } | 
|  | nvme_init_ctrl(n, pci_dev); | 
|  |  | 
|  | /* setup a namespace if the controller drive property was given */ | 
|  | if (n->namespace.blkconf.blk) { | 
|  | ns = &n->namespace; | 
|  | ns->params.nsid = 1; | 
|  |  | 
|  | if (nvme_ns_setup(ns, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvme_attach_ns(n, ns); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_exit(PCIDevice *pci_dev) | 
|  | { | 
|  | NvmeCtrl *n = NVME(pci_dev); | 
|  | NvmeNamespace *ns; | 
|  | int i; | 
|  |  | 
|  | nvme_ctrl_reset(n, NVME_RESET_FUNCTION); | 
|  |  | 
|  | if (n->subsys) { | 
|  | for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { | 
|  | ns = nvme_ns(n, i); | 
|  | if (ns) { | 
|  | ns->attached--; | 
|  | } | 
|  | } | 
|  |  | 
|  | nvme_subsys_unregister_ctrl(n->subsys, n); | 
|  | } | 
|  |  | 
|  | g_free(n->cq); | 
|  | g_free(n->sq); | 
|  | g_free(n->aer_reqs); | 
|  |  | 
|  | if (n->params.cmb_size_mb) { | 
|  | g_free(n->cmb.buf); | 
|  | } | 
|  |  | 
|  | if (n->pmr.dev) { | 
|  | host_memory_backend_set_mapped(n->pmr.dev, false); | 
|  | } | 
|  |  | 
|  | if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { | 
|  | pcie_sriov_pf_exit(pci_dev); | 
|  | } | 
|  |  | 
|  | msix_uninit(pci_dev, &n->bar0, &n->bar0); | 
|  | memory_region_del_subregion(&n->bar0, &n->iomem); | 
|  | } | 
|  |  | 
|  | static Property nvme_props[] = { | 
|  | DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), | 
|  | DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, | 
|  | HostMemoryBackend *), | 
|  | DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, | 
|  | NvmeSubsystem *), | 
|  | DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), | 
|  | DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), | 
|  | DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), | 
|  | DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), | 
|  | DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), | 
|  | DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), | 
|  | DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), | 
|  | DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), | 
|  | DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), | 
|  | DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), | 
|  | DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), | 
|  | DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false), | 
|  | DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), | 
|  | DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, | 
|  | params.auto_transition_zones, true), | 
|  | DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0), | 
|  | DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl, | 
|  | params.sriov_vq_flexible, 0), | 
|  | DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl, | 
|  | params.sriov_vi_flexible, 0), | 
|  | DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl, | 
|  | params.sriov_max_vi_per_vf, 0), | 
|  | DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl, | 
|  | params.sriov_max_vq_per_vf, 0), | 
|  | DEFINE_PROP_END_OF_LIST(), | 
|  | }; | 
|  |  | 
|  | static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, | 
|  | void *opaque, Error **errp) | 
|  | { | 
|  | NvmeCtrl *n = NVME(obj); | 
|  | uint8_t value = n->smart_critical_warning; | 
|  |  | 
|  | visit_type_uint8(v, name, &value, errp); | 
|  | } | 
|  |  | 
|  | static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, | 
|  | void *opaque, Error **errp) | 
|  | { | 
|  | NvmeCtrl *n = NVME(obj); | 
|  | uint8_t value, old_value, cap = 0, index, event; | 
|  |  | 
|  | if (!visit_type_uint8(v, name, &value, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY | 
|  | | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; | 
|  | if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { | 
|  | cap |= NVME_SMART_PMR_UNRELIABLE; | 
|  | } | 
|  |  | 
|  | if ((value & cap) != value) { | 
|  | error_setg(errp, "unsupported smart critical warning bits: 0x%x", | 
|  | value & ~cap); | 
|  | return; | 
|  | } | 
|  |  | 
|  | old_value = n->smart_critical_warning; | 
|  | n->smart_critical_warning = value; | 
|  |  | 
|  | /* only inject new bits of smart critical warning */ | 
|  | for (index = 0; index < NVME_SMART_WARN_MAX; index++) { | 
|  | event = 1 << index; | 
|  | if (value & ~old_value & event) | 
|  | nvme_smart_event(n, event); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_pci_reset(DeviceState *qdev) | 
|  | { | 
|  | PCIDevice *pci_dev = PCI_DEVICE(qdev); | 
|  | NvmeCtrl *n = NVME(pci_dev); | 
|  |  | 
|  | trace_pci_nvme_pci_reset(); | 
|  | nvme_ctrl_reset(n, NVME_RESET_FUNCTION); | 
|  | } | 
|  |  | 
|  | static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address, | 
|  | uint32_t val, int len) | 
|  | { | 
|  | NvmeCtrl *n = NVME(dev); | 
|  | NvmeSecCtrlEntry *sctrl; | 
|  | uint16_t sriov_cap = dev->exp.sriov_cap; | 
|  | uint32_t off = address - sriov_cap; | 
|  | int i, num_vfs; | 
|  |  | 
|  | if (!sriov_cap) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) { | 
|  | if (!(val & PCI_SRIOV_CTRL_VFE)) { | 
|  | num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF); | 
|  | for (i = 0; i < num_vfs; i++) { | 
|  | sctrl = &n->sec_ctrl_list.sec[i]; | 
|  | nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvme_pci_write_config(PCIDevice *dev, uint32_t address, | 
|  | uint32_t val, int len) | 
|  | { | 
|  | nvme_sriov_pre_write_ctrl(dev, address, val, len); | 
|  | pci_default_write_config(dev, address, val, len); | 
|  | pcie_cap_flr_write_config(dev, address, val, len); | 
|  | } | 
|  |  | 
|  | static const VMStateDescription nvme_vmstate = { | 
|  | .name = "nvme", | 
|  | .unmigratable = 1, | 
|  | }; | 
|  |  | 
|  | static void nvme_class_init(ObjectClass *oc, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(oc); | 
|  | PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); | 
|  |  | 
|  | pc->realize = nvme_realize; | 
|  | pc->config_write = nvme_pci_write_config; | 
|  | pc->exit = nvme_exit; | 
|  | pc->class_id = PCI_CLASS_STORAGE_EXPRESS; | 
|  | pc->revision = 2; | 
|  |  | 
|  | set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); | 
|  | dc->desc = "Non-Volatile Memory Express"; | 
|  | device_class_set_props(dc, nvme_props); | 
|  | dc->vmsd = &nvme_vmstate; | 
|  | dc->reset = nvme_pci_reset; | 
|  | } | 
|  |  | 
|  | static void nvme_instance_init(Object *obj) | 
|  | { | 
|  | NvmeCtrl *n = NVME(obj); | 
|  |  | 
|  | device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, | 
|  | "bootindex", "/namespace@1,0", | 
|  | DEVICE(obj)); | 
|  |  | 
|  | object_property_add(obj, "smart_critical_warning", "uint8", | 
|  | nvme_get_smart_warning, | 
|  | nvme_set_smart_warning, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static const TypeInfo nvme_info = { | 
|  | .name          = TYPE_NVME, | 
|  | .parent        = TYPE_PCI_DEVICE, | 
|  | .instance_size = sizeof(NvmeCtrl), | 
|  | .instance_init = nvme_instance_init, | 
|  | .class_init    = nvme_class_init, | 
|  | .interfaces = (InterfaceInfo[]) { | 
|  | { INTERFACE_PCIE_DEVICE }, | 
|  | { } | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const TypeInfo nvme_bus_info = { | 
|  | .name = TYPE_NVME_BUS, | 
|  | .parent = TYPE_BUS, | 
|  | .instance_size = sizeof(NvmeBus), | 
|  | }; | 
|  |  | 
|  | static void nvme_register_types(void) | 
|  | { | 
|  | type_register_static(&nvme_info); | 
|  | type_register_static(&nvme_bus_info); | 
|  | } | 
|  |  | 
|  | type_init(nvme_register_types) |