| /* |
| * i386 memory mapping |
| * |
| * Copyright Fujitsu, Corp. 2011, 2012 |
| * |
| * Authors: |
| * Wen Congyang <wency@cn.fujitsu.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/cpu-all.h" |
| #include "sysemu/dump.h" |
| #include "elf.h" |
| #include "sysemu/memory_mapping.h" |
| |
| #ifdef TARGET_X86_64 |
| typedef struct { |
| target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10; |
| target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax; |
| target_ulong rip, cs, eflags; |
| target_ulong rsp, ss; |
| target_ulong fs_base, gs_base; |
| target_ulong ds, es, fs, gs; |
| } x86_64_user_regs_struct; |
| |
| typedef struct { |
| char pad1[32]; |
| uint32_t pid; |
| char pad2[76]; |
| x86_64_user_regs_struct regs; |
| char pad3[8]; |
| } x86_64_elf_prstatus; |
| |
| static int x86_64_write_elf64_note(WriteCoreDumpFunction f, |
| CPUX86State *env, int id, |
| void *opaque) |
| { |
| x86_64_user_regs_struct regs; |
| Elf64_Nhdr *note; |
| char *buf; |
| int descsz, note_size, name_size = 5; |
| const char *name = "CORE"; |
| int ret; |
| |
| regs.r15 = env->regs[15]; |
| regs.r14 = env->regs[14]; |
| regs.r13 = env->regs[13]; |
| regs.r12 = env->regs[12]; |
| regs.r11 = env->regs[11]; |
| regs.r10 = env->regs[10]; |
| regs.r9 = env->regs[9]; |
| regs.r8 = env->regs[8]; |
| regs.rbp = env->regs[R_EBP]; |
| regs.rsp = env->regs[R_ESP]; |
| regs.rdi = env->regs[R_EDI]; |
| regs.rsi = env->regs[R_ESI]; |
| regs.rdx = env->regs[R_EDX]; |
| regs.rcx = env->regs[R_ECX]; |
| regs.rbx = env->regs[R_EBX]; |
| regs.rax = env->regs[R_EAX]; |
| regs.rip = env->eip; |
| regs.eflags = env->eflags; |
| |
| regs.orig_rax = 0; /* FIXME */ |
| regs.cs = env->segs[R_CS].selector; |
| regs.ss = env->segs[R_SS].selector; |
| regs.fs_base = env->segs[R_FS].base; |
| regs.gs_base = env->segs[R_GS].base; |
| regs.ds = env->segs[R_DS].selector; |
| regs.es = env->segs[R_ES].selector; |
| regs.fs = env->segs[R_FS].selector; |
| regs.gs = env->segs[R_GS].selector; |
| |
| descsz = sizeof(x86_64_elf_prstatus); |
| note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 + |
| (descsz + 3) / 4) * 4; |
| note = g_malloc0(note_size); |
| note->n_namesz = cpu_to_le32(name_size); |
| note->n_descsz = cpu_to_le32(descsz); |
| note->n_type = cpu_to_le32(NT_PRSTATUS); |
| buf = (char *)note; |
| buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4; |
| memcpy(buf, name, name_size); |
| buf += ((name_size + 3) / 4) * 4; |
| memcpy(buf + 32, &id, 4); /* pr_pid */ |
| buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong); |
| memcpy(buf, ®s, sizeof(x86_64_user_regs_struct)); |
| |
| ret = f(note, note_size, opaque); |
| g_free(note); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| typedef struct { |
| uint32_t ebx, ecx, edx, esi, edi, ebp, eax; |
| unsigned short ds, __ds, es, __es; |
| unsigned short fs, __fs, gs, __gs; |
| uint32_t orig_eax, eip; |
| unsigned short cs, __cs; |
| uint32_t eflags, esp; |
| unsigned short ss, __ss; |
| } x86_user_regs_struct; |
| |
| typedef struct { |
| char pad1[24]; |
| uint32_t pid; |
| char pad2[44]; |
| x86_user_regs_struct regs; |
| char pad3[4]; |
| } x86_elf_prstatus; |
| |
| static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env, |
| int id) |
| { |
| memset(prstatus, 0, sizeof(x86_elf_prstatus)); |
| prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff; |
| prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff; |
| prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff; |
| prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff; |
| prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff; |
| prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff; |
| prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff; |
| prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff; |
| prstatus->regs.eip = env->eip & 0xffffffff; |
| prstatus->regs.eflags = env->eflags & 0xffffffff; |
| |
| prstatus->regs.cs = env->segs[R_CS].selector; |
| prstatus->regs.ss = env->segs[R_SS].selector; |
| prstatus->regs.ds = env->segs[R_DS].selector; |
| prstatus->regs.es = env->segs[R_ES].selector; |
| prstatus->regs.fs = env->segs[R_FS].selector; |
| prstatus->regs.gs = env->segs[R_GS].selector; |
| |
| prstatus->pid = id; |
| } |
| |
| static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env, |
| int id, void *opaque) |
| { |
| x86_elf_prstatus prstatus; |
| Elf64_Nhdr *note; |
| char *buf; |
| int descsz, note_size, name_size = 5; |
| const char *name = "CORE"; |
| int ret; |
| |
| x86_fill_elf_prstatus(&prstatus, env, id); |
| descsz = sizeof(x86_elf_prstatus); |
| note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 + |
| (descsz + 3) / 4) * 4; |
| note = g_malloc0(note_size); |
| note->n_namesz = cpu_to_le32(name_size); |
| note->n_descsz = cpu_to_le32(descsz); |
| note->n_type = cpu_to_le32(NT_PRSTATUS); |
| buf = (char *)note; |
| buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4; |
| memcpy(buf, name, name_size); |
| buf += ((name_size + 3) / 4) * 4; |
| memcpy(buf, &prstatus, sizeof(prstatus)); |
| |
| ret = f(note, note_size, opaque); |
| g_free(note); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, |
| int cpuid, void *opaque) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| int ret; |
| #ifdef TARGET_X86_64 |
| X86CPU *first_x86_cpu = X86_CPU(first_cpu); |
| bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK); |
| |
| if (lma) { |
| ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque); |
| } else { |
| #endif |
| ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque); |
| #ifdef TARGET_X86_64 |
| } |
| #endif |
| |
| return ret; |
| } |
| |
| int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, |
| int cpuid, void *opaque) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| x86_elf_prstatus prstatus; |
| Elf32_Nhdr *note; |
| char *buf; |
| int descsz, note_size, name_size = 5; |
| const char *name = "CORE"; |
| int ret; |
| |
| x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid); |
| descsz = sizeof(x86_elf_prstatus); |
| note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 + |
| (descsz + 3) / 4) * 4; |
| note = g_malloc0(note_size); |
| note->n_namesz = cpu_to_le32(name_size); |
| note->n_descsz = cpu_to_le32(descsz); |
| note->n_type = cpu_to_le32(NT_PRSTATUS); |
| buf = (char *)note; |
| buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4; |
| memcpy(buf, name, name_size); |
| buf += ((name_size + 3) / 4) * 4; |
| memcpy(buf, &prstatus, sizeof(prstatus)); |
| |
| ret = f(note, note_size, opaque); |
| g_free(note); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * please count up QEMUCPUSTATE_VERSION if you have changed definition of |
| * QEMUCPUState, and modify the tools using this information accordingly. |
| */ |
| #define QEMUCPUSTATE_VERSION (1) |
| |
| struct QEMUCPUSegment { |
| uint32_t selector; |
| uint32_t limit; |
| uint32_t flags; |
| uint32_t pad; |
| uint64_t base; |
| }; |
| |
| typedef struct QEMUCPUSegment QEMUCPUSegment; |
| |
| struct QEMUCPUState { |
| uint32_t version; |
| uint32_t size; |
| uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp; |
| uint64_t r8, r9, r10, r11, r12, r13, r14, r15; |
| uint64_t rip, rflags; |
| QEMUCPUSegment cs, ds, es, fs, gs, ss; |
| QEMUCPUSegment ldt, tr, gdt, idt; |
| uint64_t cr[5]; |
| }; |
| |
| typedef struct QEMUCPUState QEMUCPUState; |
| |
| static void copy_segment(QEMUCPUSegment *d, SegmentCache *s) |
| { |
| d->pad = 0; |
| d->selector = s->selector; |
| d->limit = s->limit; |
| d->flags = s->flags; |
| d->base = s->base; |
| } |
| |
| static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env) |
| { |
| memset(s, 0, sizeof(QEMUCPUState)); |
| |
| s->version = QEMUCPUSTATE_VERSION; |
| s->size = sizeof(QEMUCPUState); |
| |
| s->rax = env->regs[R_EAX]; |
| s->rbx = env->regs[R_EBX]; |
| s->rcx = env->regs[R_ECX]; |
| s->rdx = env->regs[R_EDX]; |
| s->rsi = env->regs[R_ESI]; |
| s->rdi = env->regs[R_EDI]; |
| s->rsp = env->regs[R_ESP]; |
| s->rbp = env->regs[R_EBP]; |
| #ifdef TARGET_X86_64 |
| s->r8 = env->regs[8]; |
| s->r9 = env->regs[9]; |
| s->r10 = env->regs[10]; |
| s->r11 = env->regs[11]; |
| s->r12 = env->regs[12]; |
| s->r13 = env->regs[13]; |
| s->r14 = env->regs[14]; |
| s->r15 = env->regs[15]; |
| #endif |
| s->rip = env->eip; |
| s->rflags = env->eflags; |
| |
| copy_segment(&s->cs, &env->segs[R_CS]); |
| copy_segment(&s->ds, &env->segs[R_DS]); |
| copy_segment(&s->es, &env->segs[R_ES]); |
| copy_segment(&s->fs, &env->segs[R_FS]); |
| copy_segment(&s->gs, &env->segs[R_GS]); |
| copy_segment(&s->ss, &env->segs[R_SS]); |
| copy_segment(&s->ldt, &env->ldt); |
| copy_segment(&s->tr, &env->tr); |
| copy_segment(&s->gdt, &env->gdt); |
| copy_segment(&s->idt, &env->idt); |
| |
| s->cr[0] = env->cr[0]; |
| s->cr[1] = env->cr[1]; |
| s->cr[2] = env->cr[2]; |
| s->cr[3] = env->cr[3]; |
| s->cr[4] = env->cr[4]; |
| } |
| |
| static inline int cpu_write_qemu_note(WriteCoreDumpFunction f, |
| CPUX86State *env, |
| void *opaque, |
| int type) |
| { |
| QEMUCPUState state; |
| Elf64_Nhdr *note64; |
| Elf32_Nhdr *note32; |
| void *note; |
| char *buf; |
| int descsz, note_size, name_size = 5, note_head_size; |
| const char *name = "QEMU"; |
| int ret; |
| |
| qemu_get_cpustate(&state, env); |
| |
| descsz = sizeof(state); |
| if (type == 0) { |
| note_head_size = sizeof(Elf32_Nhdr); |
| } else { |
| note_head_size = sizeof(Elf64_Nhdr); |
| } |
| note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + |
| (descsz + 3) / 4) * 4; |
| note = g_malloc0(note_size); |
| if (type == 0) { |
| note32 = note; |
| note32->n_namesz = cpu_to_le32(name_size); |
| note32->n_descsz = cpu_to_le32(descsz); |
| note32->n_type = 0; |
| } else { |
| note64 = note; |
| note64->n_namesz = cpu_to_le32(name_size); |
| note64->n_descsz = cpu_to_le32(descsz); |
| note64->n_type = 0; |
| } |
| buf = note; |
| buf += ((note_head_size + 3) / 4) * 4; |
| memcpy(buf, name, name_size); |
| buf += ((name_size + 3) / 4) * 4; |
| memcpy(buf, &state, sizeof(state)); |
| |
| ret = f(note, note_size, opaque); |
| g_free(note); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs, |
| void *opaque) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| |
| return cpu_write_qemu_note(f, &cpu->env, opaque, 1); |
| } |
| |
| int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs, |
| void *opaque) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| |
| return cpu_write_qemu_note(f, &cpu->env, opaque, 0); |
| } |
| |
| int cpu_get_dump_info(ArchDumpInfo *info, |
| const GuestPhysBlockList *guest_phys_blocks) |
| { |
| bool lma = false; |
| GuestPhysBlock *block; |
| |
| #ifdef TARGET_X86_64 |
| X86CPU *first_x86_cpu = X86_CPU(first_cpu); |
| |
| lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK); |
| #endif |
| |
| if (lma) { |
| info->d_machine = EM_X86_64; |
| } else { |
| info->d_machine = EM_386; |
| } |
| info->d_endian = ELFDATA2LSB; |
| |
| if (lma) { |
| info->d_class = ELFCLASS64; |
| } else { |
| info->d_class = ELFCLASS32; |
| |
| QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) { |
| if (block->target_end > UINT_MAX) { |
| /* The memory size is greater than 4G */ |
| info->d_class = ELFCLASS64; |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| ssize_t cpu_get_note_size(int class, int machine, int nr_cpus) |
| { |
| int name_size = 5; /* "CORE" or "QEMU" */ |
| size_t elf_note_size = 0; |
| size_t qemu_note_size = 0; |
| int elf_desc_size = 0; |
| int qemu_desc_size = 0; |
| int note_head_size; |
| |
| if (class == ELFCLASS32) { |
| note_head_size = sizeof(Elf32_Nhdr); |
| } else { |
| note_head_size = sizeof(Elf64_Nhdr); |
| } |
| |
| if (machine == EM_386) { |
| elf_desc_size = sizeof(x86_elf_prstatus); |
| } |
| #ifdef TARGET_X86_64 |
| else { |
| elf_desc_size = sizeof(x86_64_elf_prstatus); |
| } |
| #endif |
| qemu_desc_size = sizeof(QEMUCPUState); |
| |
| elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + |
| (elf_desc_size + 3) / 4) * 4; |
| qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + |
| (qemu_desc_size + 3) / 4) * 4; |
| |
| return (elf_note_size + qemu_note_size) * nr_cpus; |
| } |