blob: 5997e8865e3888659bdfd15ebb65f354c13438e9 [file] [log] [blame]
/*
* QEMU NE2000 emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* debug NE2000 card */
//#define DEBUG_NE2000
#define MAX_ETH_FRAME_SIZE 1514
#define E8390_CMD 0x00 /* The command register (for all pages) */
/* Page 0 register offsets. */
#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
#define EN0_TSR 0x04 /* Transmit status reg RD */
#define EN0_TPSR 0x04 /* Transmit starting page WR */
#define EN0_NCR 0x05 /* Number of collision reg RD */
#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
#define EN0_FIFO 0x06 /* FIFO RD */
#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
#define EN0_RSR 0x0c /* rx status reg RD */
#define EN0_RXCR 0x0c /* RX configuration reg WR */
#define EN0_TXCR 0x0d /* TX configuration reg WR */
#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
#define EN0_DCFG 0x0e /* Data configuration reg WR */
#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
#define EN0_IMR 0x0f /* Interrupt mask reg WR */
#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
#define EN1_PHYS 0x11
#define EN1_CURPAG 0x17
#define EN1_MULT 0x18
/* Register accessed at EN_CMD, the 8390 base addr. */
#define E8390_STOP 0x01 /* Stop and reset the chip */
#define E8390_START 0x02 /* Start the chip, clear reset */
#define E8390_TRANS 0x04 /* Transmit a frame */
#define E8390_RREAD 0x08 /* Remote read */
#define E8390_RWRITE 0x10 /* Remote write */
#define E8390_NODMA 0x20 /* Remote DMA */
#define E8390_PAGE0 0x00 /* Select page chip registers */
#define E8390_PAGE1 0x40 /* using the two high-order bits */
#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
/* Bits in EN0_ISR - Interrupt status register */
#define ENISR_RX 0x01 /* Receiver, no error */
#define ENISR_TX 0x02 /* Transmitter, no error */
#define ENISR_RX_ERR 0x04 /* Receiver, with error */
#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
#define ENISR_COUNTERS 0x20 /* Counters need emptying */
#define ENISR_RDC 0x40 /* remote dma complete */
#define ENISR_RESET 0x80 /* Reset completed */
#define ENISR_ALL 0x3f /* Interrupts we will enable */
/* Bits in received packet status byte and EN0_RSR*/
#define ENRSR_RXOK 0x01 /* Received a good packet */
#define ENRSR_CRC 0x02 /* CRC error */
#define ENRSR_FAE 0x04 /* frame alignment error */
#define ENRSR_FO 0x08 /* FIFO overrun */
#define ENRSR_MPA 0x10 /* missed pkt */
#define ENRSR_PHY 0x20 /* physical/multicast address */
#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
#define ENRSR_DEF 0x80 /* deferring */
/* Transmitted packet status, EN0_TSR. */
#define ENTSR_PTX 0x01 /* Packet transmitted without error */
#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
#define ENTSR_COL 0x04 /* The transmit collided at least once. */
#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
#define NE2000_PMEM_SIZE (32*1024)
#define NE2000_PMEM_START (16*1024)
#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
#define NE2000_MEM_SIZE NE2000_PMEM_END
typedef struct NE2000State {
uint8_t cmd;
uint32_t start;
uint32_t stop;
uint8_t boundary;
uint8_t tsr;
uint8_t tpsr;
uint16_t tcnt;
uint16_t rcnt;
uint32_t rsar;
uint8_t isr;
uint8_t dcfg;
uint8_t imr;
uint8_t phys[6]; /* mac address */
uint8_t curpag;
uint8_t mult[8]; /* multicast mask array */
int irq;
NetDriverState *nd;
uint8_t mem[NE2000_MEM_SIZE];
} NE2000State;
static void ne2000_reset(NE2000State *s)
{
int i;
s->isr = ENISR_RESET;
memcpy(s->mem, s->nd->macaddr, 6);
s->mem[14] = 0x57;
s->mem[15] = 0x57;
/* duplicate prom data */
for(i = 15;i >= 0; i--) {
s->mem[2 * i] = s->mem[i];
s->mem[2 * i + 1] = s->mem[i];
}
}
static void ne2000_update_irq(NE2000State *s)
{
int isr;
isr = s->isr & s->imr;
#if defined(DEBUG_NE2000)
printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
s->irq, isr ? 1 : 0, s->isr, s->imr);
#endif
if (isr)
pic_set_irq(s->irq, 1);
else
pic_set_irq(s->irq, 0);
}
/* return the max buffer size if the NE2000 can receive more data */
static int ne2000_can_receive(void *opaque)
{
NE2000State *s = opaque;
int avail, index, boundary;
if (s->cmd & E8390_STOP)
return 0;
index = s->curpag << 8;
boundary = s->boundary << 8;
if (index < boundary)
avail = boundary - index;
else
avail = (s->stop - s->start) - (index - boundary);
if (avail < (MAX_ETH_FRAME_SIZE + 4))
return 0;
return MAX_ETH_FRAME_SIZE;
}
#define MIN_BUF_SIZE 60
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
{
NE2000State *s = opaque;
uint8_t *p;
int total_len, next, avail, len, index;
uint8_t buf1[60];
#if defined(DEBUG_NE2000)
printf("NE2000: received len=%d\n", size);
#endif
/* if too small buffer, then expand it */
if (size < MIN_BUF_SIZE) {
memcpy(buf1, buf, size);
memset(buf1 + size, 0, MIN_BUF_SIZE - size);
buf = buf1;
size = MIN_BUF_SIZE;
}
index = s->curpag << 8;
/* 4 bytes for header */
total_len = size + 4;
/* address for next packet (4 bytes for CRC) */
next = index + ((total_len + 4 + 255) & ~0xff);
if (next >= s->stop)
next -= (s->stop - s->start);
/* prepare packet header */
p = s->mem + index;
p[0] = ENRSR_RXOK; /* receive status */
p[1] = next >> 8;
p[2] = total_len;
p[3] = total_len >> 8;
index += 4;
/* write packet data */
while (size > 0) {
avail = s->stop - index;
len = size;
if (len > avail)
len = avail;
memcpy(s->mem + index, buf, len);
buf += len;
index += len;
if (index == s->stop)
index = s->start;
size -= len;
}
s->curpag = next >> 8;
/* now we can signal we have receive something */
s->isr |= ENISR_RX;
ne2000_update_irq(s);
}
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
int offset, page;
addr &= 0xf;
#ifdef DEBUG_NE2000
printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
#endif
if (addr == E8390_CMD) {
/* control register */
s->cmd = val;
if (val & E8390_START) {
s->isr &= ~ENISR_RESET;
/* test specific case: zero length transfert */
if ((val & (E8390_RREAD | E8390_RWRITE)) &&
s->rcnt == 0) {
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
if (val & E8390_TRANS) {
qemu_send_packet(s->nd, s->mem + (s->tpsr << 8), s->tcnt);
/* signal end of transfert */
s->tsr = ENTSR_PTX;
s->isr |= ENISR_TX;
ne2000_update_irq(s);
}
}
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_STARTPG:
s->start = val << 8;
break;
case EN0_STOPPG:
s->stop = val << 8;
break;
case EN0_BOUNDARY:
s->boundary = val;
break;
case EN0_IMR:
s->imr = val;
ne2000_update_irq(s);
break;
case EN0_TPSR:
s->tpsr = val;
break;
case EN0_TCNTLO:
s->tcnt = (s->tcnt & 0xff00) | val;
break;
case EN0_TCNTHI:
s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
break;
case EN0_RSARLO:
s->rsar = (s->rsar & 0xff00) | val;
break;
case EN0_RSARHI:
s->rsar = (s->rsar & 0x00ff) | (val << 8);
break;
case EN0_RCNTLO:
s->rcnt = (s->rcnt & 0xff00) | val;
break;
case EN0_RCNTHI:
s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
break;
case EN0_DCFG:
s->dcfg = val;
break;
case EN0_ISR:
s->isr &= ~(val & 0x7f);
ne2000_update_irq(s);
break;
case EN1_PHYS ... EN1_PHYS + 5:
s->phys[offset - EN1_PHYS] = val;
break;
case EN1_CURPAG:
s->curpag = val;
break;
case EN1_MULT ... EN1_MULT + 7:
s->mult[offset - EN1_MULT] = val;
break;
}
}
}
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int offset, page, ret;
addr &= 0xf;
if (addr == E8390_CMD) {
ret = s->cmd;
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_TSR:
ret = s->tsr;
break;
case EN0_BOUNDARY:
ret = s->boundary;
break;
case EN0_ISR:
ret = s->isr;
break;
case EN0_RSARLO:
ret = s->rsar & 0x00ff;
break;
case EN0_RSARHI:
ret = s->rsar >> 8;
break;
case EN1_PHYS ... EN1_PHYS + 5:
ret = s->phys[offset - EN1_PHYS];
break;
case EN1_CURPAG:
ret = s->curpag;
break;
case EN1_MULT ... EN1_MULT + 7:
ret = s->mult[offset - EN1_MULT];
break;
default:
ret = 0x00;
break;
}
}
#ifdef DEBUG_NE2000
printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
#endif
return ret;
}
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
uint32_t val)
{
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
s->mem[addr] = val;
}
}
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
uint32_t val)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
s->mem[addr] = val;
s->mem[addr + 1] = val >> 8;
}
}
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
{
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return s->mem[addr];
} else {
return 0xff;
}
}
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return s->mem[addr] | (s->mem[addr + 1] << 8);
} else {
return 0xffff;
}
}
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
#ifdef DEBUG_NE2000
printf("NE2000: asic write val=0x%04x\n", val);
#endif
if (s->rcnt == 0)
return;
if (s->dcfg & 0x01) {
/* 16 bit access */
ne2000_mem_writew(s, s->rsar, val);
s->rsar += 2;
s->rcnt -= 2;
} else {
/* 8 bit access */
ne2000_mem_writeb(s, s->rsar, val);
s->rsar++;
s->rcnt--;
}
/* wrap */
if (s->rsar == s->stop)
s->rsar = s->start;
if (s->rcnt == 0) {
/* signal end of transfert */
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
}
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int ret;
if (s->dcfg & 0x01) {
/* 16 bit access */
ret = ne2000_mem_readw(s, s->rsar);
s->rsar += 2;
s->rcnt -= 2;
} else {
/* 8 bit access */
ret = ne2000_mem_readb(s, s->rsar);
s->rsar++;
s->rcnt--;
}
/* wrap */
if (s->rsar == s->stop)
s->rsar = s->start;
if (s->rcnt == 0) {
/* signal end of transfert */
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
#ifdef DEBUG_NE2000
printf("NE2000: asic read val=0x%04x\n", ret);
#endif
return ret;
}
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
/* nothing to do (end of reset pulse) */
}
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
ne2000_reset(s);
return 0;
}
void ne2000_init(int base, int irq, NetDriverState *nd)
{
NE2000State *s;
s = qemu_mallocz(sizeof(NE2000State));
if (!s)
return;
register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
s->irq = irq;
s->nd = nd;
ne2000_reset(s);
qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
}