| /* Native implementation of soft float functions. Only a single status |
| context is supported */ |
| #include "softfloat.h" |
| #include <math.h> |
| #if defined(HOST_SOLARIS) |
| #include <fenv.h> |
| #endif |
| |
| void set_float_rounding_mode(int val STATUS_PARAM) |
| { |
| STATUS(float_rounding_mode) = val; |
| #if defined(HOST_BSD) && !defined(__APPLE__) || \ |
| (defined(HOST_SOLARIS) && HOST_SOLARIS < 10) |
| fpsetround(val); |
| #elif defined(__arm__) |
| /* nothing to do */ |
| #else |
| fesetround(val); |
| #endif |
| } |
| |
| #ifdef FLOATX80 |
| void set_floatx80_rounding_precision(int val STATUS_PARAM) |
| { |
| STATUS(floatx80_rounding_precision) = val; |
| } |
| #endif |
| |
| #if defined(HOST_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10) |
| #define lrint(d) ((int32_t)rint(d)) |
| #define llrint(d) ((int64_t)rint(d)) |
| #define lrintf(f) ((int32_t)rint(f)) |
| #define llrintf(f) ((int64_t)rint(f)) |
| #define sqrtf(f) ((float)sqrt(f)) |
| #define remainderf(fa, fb) ((float)remainder(fa, fb)) |
| #define rintf(f) ((float)rint(f)) |
| #if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10 |
| extern long double rintl(long double); |
| extern long double scalbnl(long double, int); |
| |
| long long |
| llrintl(long double x) { |
| return ((long long) rintl(x)); |
| } |
| |
| long |
| lrintl(long double x) { |
| return ((long) rintl(x)); |
| } |
| |
| long double |
| ldexpl(long double x, int n) { |
| return (scalbnl(x, n)); |
| } |
| #endif |
| #endif |
| |
| #if defined(_ARCH_PPC) |
| |
| /* correct (but slow) PowerPC rint() (glibc version is incorrect) */ |
| static double qemu_rint(double x) |
| { |
| double y = 4503599627370496.0; |
| if (fabs(x) >= y) |
| return x; |
| if (x < 0) |
| y = -y; |
| y = (x + y) - y; |
| if (y == 0.0) |
| y = copysign(y, x); |
| return y; |
| } |
| |
| #define rint qemu_rint |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE integer-to-floating-point conversion routines. |
| *----------------------------------------------------------------------------*/ |
| float32 int32_to_float32(int v STATUS_PARAM) |
| { |
| return (float32)v; |
| } |
| |
| float32 uint32_to_float32(unsigned int v STATUS_PARAM) |
| { |
| return (float32)v; |
| } |
| |
| float64 int32_to_float64(int v STATUS_PARAM) |
| { |
| return (float64)v; |
| } |
| |
| float64 uint32_to_float64(unsigned int v STATUS_PARAM) |
| { |
| return (float64)v; |
| } |
| |
| #ifdef FLOATX80 |
| floatx80 int32_to_floatx80(int v STATUS_PARAM) |
| { |
| return (floatx80)v; |
| } |
| #endif |
| float32 int64_to_float32( int64_t v STATUS_PARAM) |
| { |
| return (float32)v; |
| } |
| float32 uint64_to_float32( uint64_t v STATUS_PARAM) |
| { |
| return (float32)v; |
| } |
| float64 int64_to_float64( int64_t v STATUS_PARAM) |
| { |
| return (float64)v; |
| } |
| float64 uint64_to_float64( uint64_t v STATUS_PARAM) |
| { |
| return (float64)v; |
| } |
| #ifdef FLOATX80 |
| floatx80 int64_to_floatx80( int64_t v STATUS_PARAM) |
| { |
| return (floatx80)v; |
| } |
| #endif |
| |
| /* XXX: this code implements the x86 behaviour, not the IEEE one. */ |
| #if HOST_LONG_BITS == 32 |
| static inline int long_to_int32(long a) |
| { |
| return a; |
| } |
| #else |
| static inline int long_to_int32(long a) |
| { |
| if (a != (int32_t)a) |
| a = 0x80000000; |
| return a; |
| } |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE single-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int float32_to_int32( float32 a STATUS_PARAM) |
| { |
| return long_to_int32(lrintf(a)); |
| } |
| int float32_to_int32_round_to_zero( float32 a STATUS_PARAM) |
| { |
| return (int)a; |
| } |
| int64_t float32_to_int64( float32 a STATUS_PARAM) |
| { |
| return llrintf(a); |
| } |
| |
| int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM) |
| { |
| return (int64_t)a; |
| } |
| |
| float64 float32_to_float64( float32 a STATUS_PARAM) |
| { |
| return a; |
| } |
| #ifdef FLOATX80 |
| floatx80 float32_to_floatx80( float32 a STATUS_PARAM) |
| { |
| return a; |
| } |
| #endif |
| |
| unsigned int float32_to_uint32( float32 a STATUS_PARAM) |
| { |
| int64_t v; |
| unsigned int res; |
| |
| v = llrintf(a); |
| if (v < 0) { |
| res = 0; |
| } else if (v > 0xffffffff) { |
| res = 0xffffffff; |
| } else { |
| res = v; |
| } |
| return res; |
| } |
| unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM) |
| { |
| int64_t v; |
| unsigned int res; |
| |
| v = (int64_t)a; |
| if (v < 0) { |
| res = 0; |
| } else if (v > 0xffffffff) { |
| res = 0xffffffff; |
| } else { |
| res = v; |
| } |
| return res; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE single-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float32 float32_round_to_int( float32 a STATUS_PARAM) |
| { |
| return rintf(a); |
| } |
| |
| float32 float32_rem( float32 a, float32 b STATUS_PARAM) |
| { |
| return remainderf(a, b); |
| } |
| |
| float32 float32_sqrt( float32 a STATUS_PARAM) |
| { |
| return sqrtf(a); |
| } |
| int float32_compare( float32 a, float32 b STATUS_PARAM ) |
| { |
| if (a < b) { |
| return float_relation_less; |
| } else if (a == b) { |
| return float_relation_equal; |
| } else if (a > b) { |
| return float_relation_greater; |
| } else { |
| return float_relation_unordered; |
| } |
| } |
| int float32_compare_quiet( float32 a, float32 b STATUS_PARAM ) |
| { |
| if (isless(a, b)) { |
| return float_relation_less; |
| } else if (a == b) { |
| return float_relation_equal; |
| } else if (isgreater(a, b)) { |
| return float_relation_greater; |
| } else { |
| return float_relation_unordered; |
| } |
| } |
| int float32_is_signaling_nan( float32 a1) |
| { |
| float32u u; |
| uint32_t a; |
| u.f = a1; |
| a = u.i; |
| return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); |
| } |
| |
| int float32_is_nan( float32 a1 ) |
| { |
| float32u u; |
| uint64_t a; |
| u.f = a1; |
| a = u.i; |
| return ( 0xFF800000 < ( a<<1 ) ); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE double-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int float64_to_int32( float64 a STATUS_PARAM) |
| { |
| return long_to_int32(lrint(a)); |
| } |
| int float64_to_int32_round_to_zero( float64 a STATUS_PARAM) |
| { |
| return (int)a; |
| } |
| int64_t float64_to_int64( float64 a STATUS_PARAM) |
| { |
| return llrint(a); |
| } |
| int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM) |
| { |
| return (int64_t)a; |
| } |
| float32 float64_to_float32( float64 a STATUS_PARAM) |
| { |
| return a; |
| } |
| #ifdef FLOATX80 |
| floatx80 float64_to_floatx80( float64 a STATUS_PARAM) |
| { |
| return a; |
| } |
| #endif |
| #ifdef FLOAT128 |
| float128 float64_to_float128( float64 a STATUS_PARAM) |
| { |
| return a; |
| } |
| #endif |
| |
| unsigned int float64_to_uint32( float64 a STATUS_PARAM) |
| { |
| int64_t v; |
| unsigned int res; |
| |
| v = llrint(a); |
| if (v < 0) { |
| res = 0; |
| } else if (v > 0xffffffff) { |
| res = 0xffffffff; |
| } else { |
| res = v; |
| } |
| return res; |
| } |
| unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM) |
| { |
| int64_t v; |
| unsigned int res; |
| |
| v = (int64_t)a; |
| if (v < 0) { |
| res = 0; |
| } else if (v > 0xffffffff) { |
| res = 0xffffffff; |
| } else { |
| res = v; |
| } |
| return res; |
| } |
| uint64_t float64_to_uint64 (float64 a STATUS_PARAM) |
| { |
| int64_t v; |
| |
| v = llrint(a + (float64)INT64_MIN); |
| |
| return v - INT64_MIN; |
| } |
| uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) |
| { |
| int64_t v; |
| |
| v = (int64_t)(a + (float64)INT64_MIN); |
| |
| return v - INT64_MIN; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE double-precision operations. |
| *----------------------------------------------------------------------------*/ |
| #if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10 |
| static inline float64 trunc(float64 x) |
| { |
| return x < 0 ? -floor(-x) : floor(x); |
| } |
| #endif |
| float64 float64_trunc_to_int( float64 a STATUS_PARAM ) |
| { |
| return trunc(a); |
| } |
| |
| float64 float64_round_to_int( float64 a STATUS_PARAM ) |
| { |
| #if defined(__arm__) |
| switch(STATUS(float_rounding_mode)) { |
| default: |
| case float_round_nearest_even: |
| asm("rndd %0, %1" : "=f" (a) : "f"(a)); |
| break; |
| case float_round_down: |
| asm("rnddm %0, %1" : "=f" (a) : "f"(a)); |
| break; |
| case float_round_up: |
| asm("rnddp %0, %1" : "=f" (a) : "f"(a)); |
| break; |
| case float_round_to_zero: |
| asm("rnddz %0, %1" : "=f" (a) : "f"(a)); |
| break; |
| } |
| #else |
| return rint(a); |
| #endif |
| } |
| |
| float64 float64_rem( float64 a, float64 b STATUS_PARAM) |
| { |
| return remainder(a, b); |
| } |
| |
| float64 float64_sqrt( float64 a STATUS_PARAM) |
| { |
| return sqrt(a); |
| } |
| int float64_compare( float64 a, float64 b STATUS_PARAM ) |
| { |
| if (a < b) { |
| return float_relation_less; |
| } else if (a == b) { |
| return float_relation_equal; |
| } else if (a > b) { |
| return float_relation_greater; |
| } else { |
| return float_relation_unordered; |
| } |
| } |
| int float64_compare_quiet( float64 a, float64 b STATUS_PARAM ) |
| { |
| if (isless(a, b)) { |
| return float_relation_less; |
| } else if (a == b) { |
| return float_relation_equal; |
| } else if (isgreater(a, b)) { |
| return float_relation_greater; |
| } else { |
| return float_relation_unordered; |
| } |
| } |
| int float64_is_signaling_nan( float64 a1) |
| { |
| float64u u; |
| uint64_t a; |
| u.f = a1; |
| a = u.i; |
| return |
| ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) |
| && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); |
| |
| } |
| |
| int float64_is_nan( float64 a1 ) |
| { |
| float64u u; |
| uint64_t a; |
| u.f = a1; |
| a = u.i; |
| |
| return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) ); |
| |
| } |
| |
| #ifdef FLOATX80 |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE extended double-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int floatx80_to_int32( floatx80 a STATUS_PARAM) |
| { |
| return long_to_int32(lrintl(a)); |
| } |
| int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM) |
| { |
| return (int)a; |
| } |
| int64_t floatx80_to_int64( floatx80 a STATUS_PARAM) |
| { |
| return llrintl(a); |
| } |
| int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM) |
| { |
| return (int64_t)a; |
| } |
| float32 floatx80_to_float32( floatx80 a STATUS_PARAM) |
| { |
| return a; |
| } |
| float64 floatx80_to_float64( floatx80 a STATUS_PARAM) |
| { |
| return a; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE extended double-precision operations. |
| *----------------------------------------------------------------------------*/ |
| floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM) |
| { |
| return rintl(a); |
| } |
| floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return remainderl(a, b); |
| } |
| floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM) |
| { |
| return sqrtl(a); |
| } |
| int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM ) |
| { |
| if (a < b) { |
| return float_relation_less; |
| } else if (a == b) { |
| return float_relation_equal; |
| } else if (a > b) { |
| return float_relation_greater; |
| } else { |
| return float_relation_unordered; |
| } |
| } |
| int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
| { |
| if (isless(a, b)) { |
| return float_relation_less; |
| } else if (a == b) { |
| return float_relation_equal; |
| } else if (isgreater(a, b)) { |
| return float_relation_greater; |
| } else { |
| return float_relation_unordered; |
| } |
| } |
| int floatx80_is_signaling_nan( floatx80 a1) |
| { |
| floatx80u u; |
| uint64_t aLow; |
| u.f = a1; |
| |
| aLow = u.i.low & ~ LIT64( 0x4000000000000000 ); |
| return |
| ( ( u.i.high & 0x7FFF ) == 0x7FFF ) |
| && (bits64) ( aLow<<1 ) |
| && ( u.i.low == aLow ); |
| } |
| |
| int floatx80_is_nan( floatx80 a1 ) |
| { |
| floatx80u u; |
| u.f = a1; |
| return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 ); |
| } |
| |
| #endif |