| /* |
| * AArch64 translation |
| * |
| * Copyright (c) 2013 Alexander Graf <agraf@suse.de> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "tcg-op.h" |
| #include "tcg-op-gvec.h" |
| #include "qemu/log.h" |
| #include "arm_ldst.h" |
| #include "translate.h" |
| #include "internals.h" |
| #include "qemu/host-utils.h" |
| |
| #include "exec/semihost.h" |
| #include "exec/gen-icount.h" |
| |
| #include "exec/helper-proto.h" |
| #include "exec/helper-gen.h" |
| #include "exec/log.h" |
| |
| #include "trace-tcg.h" |
| |
| static TCGv_i64 cpu_X[32]; |
| static TCGv_i64 cpu_pc; |
| |
| /* Load/store exclusive handling */ |
| static TCGv_i64 cpu_exclusive_high; |
| static TCGv_i64 cpu_reg(DisasContext *s, int reg); |
| |
| static const char *regnames[] = { |
| "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", |
| "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", |
| "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", |
| "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" |
| }; |
| |
| enum a64_shift_type { |
| A64_SHIFT_TYPE_LSL = 0, |
| A64_SHIFT_TYPE_LSR = 1, |
| A64_SHIFT_TYPE_ASR = 2, |
| A64_SHIFT_TYPE_ROR = 3 |
| }; |
| |
| /* Table based decoder typedefs - used when the relevant bits for decode |
| * are too awkwardly scattered across the instruction (eg SIMD). |
| */ |
| typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); |
| |
| typedef struct AArch64DecodeTable { |
| uint32_t pattern; |
| uint32_t mask; |
| AArch64DecodeFn *disas_fn; |
| } AArch64DecodeTable; |
| |
| /* Function prototype for gen_ functions for calling Neon helpers */ |
| typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); |
| typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); |
| typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); |
| typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); |
| typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); |
| typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); |
| typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); |
| typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); |
| typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); |
| typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); |
| typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64); |
| typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); |
| typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); |
| |
| /* Note that the gvec expanders operate on offsets + sizes. */ |
| typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); |
| typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, |
| uint32_t, uint32_t); |
| typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, |
| uint32_t, uint32_t, uint32_t); |
| |
| /* initialize TCG globals. */ |
| void a64_translate_init(void) |
| { |
| int i; |
| |
| cpu_pc = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUARMState, pc), |
| "pc"); |
| for (i = 0; i < 32; i++) { |
| cpu_X[i] = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUARMState, xregs[i]), |
| regnames[i]); |
| } |
| |
| cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUARMState, exclusive_high), "exclusive_high"); |
| } |
| |
| static inline int get_a64_user_mem_index(DisasContext *s) |
| { |
| /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns: |
| * if EL1, access as if EL0; otherwise access at current EL |
| */ |
| ARMMMUIdx useridx; |
| |
| switch (s->mmu_idx) { |
| case ARMMMUIdx_S12NSE1: |
| useridx = ARMMMUIdx_S12NSE0; |
| break; |
| case ARMMMUIdx_S1SE1: |
| useridx = ARMMMUIdx_S1SE0; |
| break; |
| case ARMMMUIdx_S2NS: |
| g_assert_not_reached(); |
| default: |
| useridx = s->mmu_idx; |
| break; |
| } |
| return arm_to_core_mmu_idx(useridx); |
| } |
| |
| void aarch64_cpu_dump_state(CPUState *cs, FILE *f, |
| fprintf_function cpu_fprintf, int flags) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t psr = pstate_read(env); |
| int i; |
| int el = arm_current_el(env); |
| const char *ns_status; |
| |
| cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n", |
| env->pc, env->xregs[31]); |
| for (i = 0; i < 31; i++) { |
| cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]); |
| if ((i % 4) == 3) { |
| cpu_fprintf(f, "\n"); |
| } else { |
| cpu_fprintf(f, " "); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { |
| ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; |
| } else { |
| ns_status = ""; |
| } |
| |
| cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n", |
| psr, |
| psr & PSTATE_N ? 'N' : '-', |
| psr & PSTATE_Z ? 'Z' : '-', |
| psr & PSTATE_C ? 'C' : '-', |
| psr & PSTATE_V ? 'V' : '-', |
| ns_status, |
| el, |
| psr & PSTATE_SP ? 'h' : 't'); |
| |
| if (flags & CPU_DUMP_FPU) { |
| int numvfpregs = 32; |
| for (i = 0; i < numvfpregs; i++) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| uint64_t vlo = q[0]; |
| uint64_t vhi = q[1]; |
| cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "%c", |
| i, vhi, vlo, (i & 1 ? '\n' : ' ')); |
| } |
| cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n", |
| vfp_get_fpcr(env), vfp_get_fpsr(env)); |
| } |
| } |
| |
| void gen_a64_set_pc_im(uint64_t val) |
| { |
| tcg_gen_movi_i64(cpu_pc, val); |
| } |
| |
| /* Load the PC from a generic TCG variable. |
| * |
| * If address tagging is enabled via the TCR TBI bits, then loading |
| * an address into the PC will clear out any tag in the it: |
| * + for EL2 and EL3 there is only one TBI bit, and if it is set |
| * then the address is zero-extended, clearing bits [63:56] |
| * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 |
| * and TBI1 controls addressses with bit 55 == 1. |
| * If the appropriate TBI bit is set for the address then |
| * the address is sign-extended from bit 55 into bits [63:56] |
| * |
| * We can avoid doing this for relative-branches, because the |
| * PC + offset can never overflow into the tag bits (assuming |
| * that virtual addresses are less than 56 bits wide, as they |
| * are currently), but we must handle it for branch-to-register. |
| */ |
| static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) |
| { |
| |
| if (s->current_el <= 1) { |
| /* Test if NEITHER or BOTH TBI values are set. If so, no need to |
| * examine bit 55 of address, can just generate code. |
| * If mixed, then test via generated code |
| */ |
| if (s->tbi0 && s->tbi1) { |
| TCGv_i64 tmp_reg = tcg_temp_new_i64(); |
| /* Both bits set, sign extension from bit 55 into [63:56] will |
| * cover both cases |
| */ |
| tcg_gen_shli_i64(tmp_reg, src, 8); |
| tcg_gen_sari_i64(cpu_pc, tmp_reg, 8); |
| tcg_temp_free_i64(tmp_reg); |
| } else if (!s->tbi0 && !s->tbi1) { |
| /* Neither bit set, just load it as-is */ |
| tcg_gen_mov_i64(cpu_pc, src); |
| } else { |
| TCGv_i64 tcg_tmpval = tcg_temp_new_i64(); |
| TCGv_i64 tcg_bit55 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_zero = tcg_const_i64(0); |
| |
| tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55)); |
| |
| if (s->tbi0) { |
| /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */ |
| tcg_gen_andi_i64(tcg_tmpval, src, |
| 0x00FFFFFFFFFFFFFFull); |
| tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero, |
| tcg_tmpval, src); |
| } else { |
| /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */ |
| tcg_gen_ori_i64(tcg_tmpval, src, |
| 0xFF00000000000000ull); |
| tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero, |
| tcg_tmpval, src); |
| } |
| tcg_temp_free_i64(tcg_zero); |
| tcg_temp_free_i64(tcg_bit55); |
| tcg_temp_free_i64(tcg_tmpval); |
| } |
| } else { /* EL > 1 */ |
| if (s->tbi0) { |
| /* Force tag byte to all zero */ |
| tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull); |
| } else { |
| /* Load unmodified address */ |
| tcg_gen_mov_i64(cpu_pc, src); |
| } |
| } |
| } |
| |
| typedef struct DisasCompare64 { |
| TCGCond cond; |
| TCGv_i64 value; |
| } DisasCompare64; |
| |
| static void a64_test_cc(DisasCompare64 *c64, int cc) |
| { |
| DisasCompare c32; |
| |
| arm_test_cc(&c32, cc); |
| |
| /* Sign-extend the 32-bit value so that the GE/LT comparisons work |
| * properly. The NE/EQ comparisons are also fine with this choice. */ |
| c64->cond = c32.cond; |
| c64->value = tcg_temp_new_i64(); |
| tcg_gen_ext_i32_i64(c64->value, c32.value); |
| |
| arm_free_cc(&c32); |
| } |
| |
| static void a64_free_cc(DisasCompare64 *c64) |
| { |
| tcg_temp_free_i64(c64->value); |
| } |
| |
| static void gen_exception_internal(int excp) |
| { |
| TCGv_i32 tcg_excp = tcg_const_i32(excp); |
| |
| assert(excp_is_internal(excp)); |
| gen_helper_exception_internal(cpu_env, tcg_excp); |
| tcg_temp_free_i32(tcg_excp); |
| } |
| |
| static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el) |
| { |
| TCGv_i32 tcg_excp = tcg_const_i32(excp); |
| TCGv_i32 tcg_syn = tcg_const_i32(syndrome); |
| TCGv_i32 tcg_el = tcg_const_i32(target_el); |
| |
| gen_helper_exception_with_syndrome(cpu_env, tcg_excp, |
| tcg_syn, tcg_el); |
| tcg_temp_free_i32(tcg_el); |
| tcg_temp_free_i32(tcg_syn); |
| tcg_temp_free_i32(tcg_excp); |
| } |
| |
| static void gen_exception_internal_insn(DisasContext *s, int offset, int excp) |
| { |
| gen_a64_set_pc_im(s->pc - offset); |
| gen_exception_internal(excp); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_exception_insn(DisasContext *s, int offset, int excp, |
| uint32_t syndrome, uint32_t target_el) |
| { |
| gen_a64_set_pc_im(s->pc - offset); |
| gen_exception(excp, syndrome, target_el); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_ss_advance(DisasContext *s) |
| { |
| /* If the singlestep state is Active-not-pending, advance to |
| * Active-pending. |
| */ |
| if (s->ss_active) { |
| s->pstate_ss = 0; |
| gen_helper_clear_pstate_ss(cpu_env); |
| } |
| } |
| |
| static void gen_step_complete_exception(DisasContext *s) |
| { |
| /* We just completed step of an insn. Move from Active-not-pending |
| * to Active-pending, and then also take the swstep exception. |
| * This corresponds to making the (IMPDEF) choice to prioritize |
| * swstep exceptions over asynchronous exceptions taken to an exception |
| * level where debug is disabled. This choice has the advantage that |
| * we do not need to maintain internal state corresponding to the |
| * ISV/EX syndrome bits between completion of the step and generation |
| * of the exception, and our syndrome information is always correct. |
| */ |
| gen_ss_advance(s); |
| gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex), |
| default_exception_el(s)); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest) |
| { |
| /* No direct tb linking with singlestep (either QEMU's or the ARM |
| * debug architecture kind) or deterministic io |
| */ |
| if (s->base.singlestep_enabled || s->ss_active || |
| (tb_cflags(s->base.tb) & CF_LAST_IO)) { |
| return false; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* Only link tbs from inside the same guest page */ |
| if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) { |
| return false; |
| } |
| #endif |
| |
| return true; |
| } |
| |
| static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest) |
| { |
| TranslationBlock *tb; |
| |
| tb = s->base.tb; |
| if (use_goto_tb(s, n, dest)) { |
| tcg_gen_goto_tb(n); |
| gen_a64_set_pc_im(dest); |
| tcg_gen_exit_tb((intptr_t)tb + n); |
| s->base.is_jmp = DISAS_NORETURN; |
| } else { |
| gen_a64_set_pc_im(dest); |
| if (s->ss_active) { |
| gen_step_complete_exception(s); |
| } else if (s->base.singlestep_enabled) { |
| gen_exception_internal(EXCP_DEBUG); |
| } else { |
| tcg_gen_lookup_and_goto_ptr(); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| } |
| } |
| |
| static void unallocated_encoding(DisasContext *s) |
| { |
| /* Unallocated and reserved encodings are uncategorized */ |
| gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(), |
| default_exception_el(s)); |
| } |
| |
| #define unsupported_encoding(s, insn) \ |
| do { \ |
| qemu_log_mask(LOG_UNIMP, \ |
| "%s:%d: unsupported instruction encoding 0x%08x " \ |
| "at pc=%016" PRIx64 "\n", \ |
| __FILE__, __LINE__, insn, s->pc - 4); \ |
| unallocated_encoding(s); \ |
| } while (0) |
| |
| static void init_tmp_a64_array(DisasContext *s) |
| { |
| #ifdef CONFIG_DEBUG_TCG |
| memset(s->tmp_a64, 0, sizeof(s->tmp_a64)); |
| #endif |
| s->tmp_a64_count = 0; |
| } |
| |
| static void free_tmp_a64(DisasContext *s) |
| { |
| int i; |
| for (i = 0; i < s->tmp_a64_count; i++) { |
| tcg_temp_free_i64(s->tmp_a64[i]); |
| } |
| init_tmp_a64_array(s); |
| } |
| |
| static TCGv_i64 new_tmp_a64(DisasContext *s) |
| { |
| assert(s->tmp_a64_count < TMP_A64_MAX); |
| return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64(); |
| } |
| |
| static TCGv_i64 new_tmp_a64_zero(DisasContext *s) |
| { |
| TCGv_i64 t = new_tmp_a64(s); |
| tcg_gen_movi_i64(t, 0); |
| return t; |
| } |
| |
| /* |
| * Register access functions |
| * |
| * These functions are used for directly accessing a register in where |
| * changes to the final register value are likely to be made. If you |
| * need to use a register for temporary calculation (e.g. index type |
| * operations) use the read_* form. |
| * |
| * B1.2.1 Register mappings |
| * |
| * In instruction register encoding 31 can refer to ZR (zero register) or |
| * the SP (stack pointer) depending on context. In QEMU's case we map SP |
| * to cpu_X[31] and ZR accesses to a temporary which can be discarded. |
| * This is the point of the _sp forms. |
| */ |
| static TCGv_i64 cpu_reg(DisasContext *s, int reg) |
| { |
| if (reg == 31) { |
| return new_tmp_a64_zero(s); |
| } else { |
| return cpu_X[reg]; |
| } |
| } |
| |
| /* register access for when 31 == SP */ |
| static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) |
| { |
| return cpu_X[reg]; |
| } |
| |
| /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 |
| * representing the register contents. This TCGv is an auto-freed |
| * temporary so it need not be explicitly freed, and may be modified. |
| */ |
| static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) |
| { |
| TCGv_i64 v = new_tmp_a64(s); |
| if (reg != 31) { |
| if (sf) { |
| tcg_gen_mov_i64(v, cpu_X[reg]); |
| } else { |
| tcg_gen_ext32u_i64(v, cpu_X[reg]); |
| } |
| } else { |
| tcg_gen_movi_i64(v, 0); |
| } |
| return v; |
| } |
| |
| static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) |
| { |
| TCGv_i64 v = new_tmp_a64(s); |
| if (sf) { |
| tcg_gen_mov_i64(v, cpu_X[reg]); |
| } else { |
| tcg_gen_ext32u_i64(v, cpu_X[reg]); |
| } |
| return v; |
| } |
| |
| /* We should have at some point before trying to access an FP register |
| * done the necessary access check, so assert that |
| * (a) we did the check and |
| * (b) we didn't then just plough ahead anyway if it failed. |
| * Print the instruction pattern in the abort message so we can figure |
| * out what we need to fix if a user encounters this problem in the wild. |
| */ |
| static inline void assert_fp_access_checked(DisasContext *s) |
| { |
| #ifdef CONFIG_DEBUG_TCG |
| if (unlikely(!s->fp_access_checked || s->fp_excp_el)) { |
| fprintf(stderr, "target-arm: FP access check missing for " |
| "instruction 0x%08x\n", s->insn); |
| abort(); |
| } |
| #endif |
| } |
| |
| /* Return the offset into CPUARMState of an element of specified |
| * size, 'element' places in from the least significant end of |
| * the FP/vector register Qn. |
| */ |
| static inline int vec_reg_offset(DisasContext *s, int regno, |
| int element, TCGMemOp size) |
| { |
| int offs = 0; |
| #ifdef HOST_WORDS_BIGENDIAN |
| /* This is complicated slightly because vfp.zregs[n].d[0] is |
| * still the low half and vfp.zregs[n].d[1] the high half |
| * of the 128 bit vector, even on big endian systems. |
| * Calculate the offset assuming a fully bigendian 128 bits, |
| * then XOR to account for the order of the two 64 bit halves. |
| */ |
| offs += (16 - ((element + 1) * (1 << size))); |
| offs ^= 8; |
| #else |
| offs += element * (1 << size); |
| #endif |
| offs += offsetof(CPUARMState, vfp.zregs[regno]); |
| assert_fp_access_checked(s); |
| return offs; |
| } |
| |
| /* Return the offset info CPUARMState of the "whole" vector register Qn. */ |
| static inline int vec_full_reg_offset(DisasContext *s, int regno) |
| { |
| assert_fp_access_checked(s); |
| return offsetof(CPUARMState, vfp.zregs[regno]); |
| } |
| |
| /* Return a newly allocated pointer to the vector register. */ |
| static TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno) |
| { |
| TCGv_ptr ret = tcg_temp_new_ptr(); |
| tcg_gen_addi_ptr(ret, cpu_env, vec_full_reg_offset(s, regno)); |
| return ret; |
| } |
| |
| /* Return the byte size of the "whole" vector register, VL / 8. */ |
| static inline int vec_full_reg_size(DisasContext *s) |
| { |
| /* FIXME SVE: We should put the composite ZCR_EL* value into tb->flags. |
| In the meantime this is just the AdvSIMD length of 128. */ |
| return 128 / 8; |
| } |
| |
| /* Return the offset into CPUARMState of a slice (from |
| * the least significant end) of FP register Qn (ie |
| * Dn, Sn, Hn or Bn). |
| * (Note that this is not the same mapping as for A32; see cpu.h) |
| */ |
| static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size) |
| { |
| return vec_reg_offset(s, regno, 0, size); |
| } |
| |
| /* Offset of the high half of the 128 bit vector Qn */ |
| static inline int fp_reg_hi_offset(DisasContext *s, int regno) |
| { |
| return vec_reg_offset(s, regno, 1, MO_64); |
| } |
| |
| /* Convenience accessors for reading and writing single and double |
| * FP registers. Writing clears the upper parts of the associated |
| * 128 bit vector register, as required by the architecture. |
| * Note that unlike the GP register accessors, the values returned |
| * by the read functions must be manually freed. |
| */ |
| static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) |
| { |
| TCGv_i64 v = tcg_temp_new_i64(); |
| |
| tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); |
| return v; |
| } |
| |
| static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) |
| { |
| TCGv_i32 v = tcg_temp_new_i32(); |
| |
| tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); |
| return v; |
| } |
| |
| /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). |
| * If SVE is not enabled, then there are only 128 bits in the vector. |
| */ |
| static void clear_vec_high(DisasContext *s, bool is_q, int rd) |
| { |
| unsigned ofs = fp_reg_offset(s, rd, MO_64); |
| unsigned vsz = vec_full_reg_size(s); |
| |
| if (!is_q) { |
| TCGv_i64 tcg_zero = tcg_const_i64(0); |
| tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8); |
| tcg_temp_free_i64(tcg_zero); |
| } |
| if (vsz > 16) { |
| tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0); |
| } |
| } |
| |
| static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) |
| { |
| unsigned ofs = fp_reg_offset(s, reg, MO_64); |
| |
| tcg_gen_st_i64(v, cpu_env, ofs); |
| clear_vec_high(s, false, reg); |
| } |
| |
| static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) |
| { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_extu_i32_i64(tmp, v); |
| write_fp_dreg(s, reg, tmp); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| static TCGv_ptr get_fpstatus_ptr(void) |
| { |
| TCGv_ptr statusptr = tcg_temp_new_ptr(); |
| int offset; |
| |
| /* In A64 all instructions (both FP and Neon) use the FPCR; |
| * there is no equivalent of the A32 Neon "standard FPSCR value" |
| * and all operations use vfp.fp_status. |
| */ |
| offset = offsetof(CPUARMState, vfp.fp_status); |
| tcg_gen_addi_ptr(statusptr, cpu_env, offset); |
| return statusptr; |
| } |
| |
| /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ |
| static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, |
| GVecGen2Fn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 2-operand + immediate AdvSIMD vector operation using |
| * an expander function. |
| */ |
| static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, |
| int64_t imm, GVecGen2iFn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| imm, is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ |
| static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, |
| GVecGen3Fn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 2-operand + immediate AdvSIMD vector operation using |
| * an op descriptor. |
| */ |
| static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd, |
| int rn, int64_t imm, const GVecGen2i *gvec_op) |
| { |
| tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op); |
| } |
| |
| /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */ |
| static void gen_gvec_op3(DisasContext *s, bool is_q, int rd, |
| int rn, int rm, const GVecGen3 *gvec_op) |
| { |
| tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), is_q ? 16 : 8, |
| vec_full_reg_size(s), gvec_op); |
| } |
| |
| /* Set ZF and NF based on a 64 bit result. This is alas fiddlier |
| * than the 32 bit equivalent. |
| */ |
| static inline void gen_set_NZ64(TCGv_i64 result) |
| { |
| tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); |
| tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); |
| } |
| |
| /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ |
| static inline void gen_logic_CC(int sf, TCGv_i64 result) |
| { |
| if (sf) { |
| gen_set_NZ64(result); |
| } else { |
| tcg_gen_extrl_i64_i32(cpu_ZF, result); |
| tcg_gen_mov_i32(cpu_NF, cpu_ZF); |
| } |
| tcg_gen_movi_i32(cpu_CF, 0); |
| tcg_gen_movi_i32(cpu_VF, 0); |
| } |
| |
| /* dest = T0 + T1; compute C, N, V and Z flags */ |
| static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| TCGv_i64 result, flag, tmp; |
| result = tcg_temp_new_i64(); |
| flag = tcg_temp_new_i64(); |
| tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_movi_i64(tmp, 0); |
| tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); |
| |
| tcg_gen_extrl_i64_i32(cpu_CF, flag); |
| |
| gen_set_NZ64(result); |
| |
| tcg_gen_xor_i64(flag, result, t0); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_andc_i64(flag, flag, tmp); |
| tcg_temp_free_i64(tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, flag); |
| |
| tcg_gen_mov_i64(dest, result); |
| tcg_temp_free_i64(result); |
| tcg_temp_free_i64(flag); |
| } else { |
| /* 32 bit arithmetic */ |
| TCGv_i32 t0_32 = tcg_temp_new_i32(); |
| TCGv_i32 t1_32 = tcg_temp_new_i32(); |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| tcg_gen_movi_i32(tmp, 0); |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(t0_32); |
| tcg_temp_free_i32(t1_32); |
| } |
| } |
| |
| /* dest = T0 - T1; compute C, N, V and Z flags */ |
| static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| /* 64 bit arithmetic */ |
| TCGv_i64 result, flag, tmp; |
| |
| result = tcg_temp_new_i64(); |
| flag = tcg_temp_new_i64(); |
| tcg_gen_sub_i64(result, t0, t1); |
| |
| gen_set_NZ64(result); |
| |
| tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); |
| tcg_gen_extrl_i64_i32(cpu_CF, flag); |
| |
| tcg_gen_xor_i64(flag, result, t0); |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_and_i64(flag, flag, tmp); |
| tcg_temp_free_i64(tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, flag); |
| tcg_gen_mov_i64(dest, result); |
| tcg_temp_free_i64(flag); |
| tcg_temp_free_i64(result); |
| } else { |
| /* 32 bit arithmetic */ |
| TCGv_i32 t0_32 = tcg_temp_new_i32(); |
| TCGv_i32 t1_32 = tcg_temp_new_i32(); |
| TCGv_i32 tmp; |
| |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_temp_free_i32(t0_32); |
| tcg_temp_free_i32(t1_32); |
| tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); |
| tcg_temp_free_i32(tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| } |
| } |
| |
| /* dest = T0 + T1 + CF; do not compute flags. */ |
| static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| TCGv_i64 flag = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(flag, cpu_CF); |
| tcg_gen_add_i64(dest, t0, t1); |
| tcg_gen_add_i64(dest, dest, flag); |
| tcg_temp_free_i64(flag); |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(dest, dest); |
| } |
| } |
| |
| /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ |
| static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| TCGv_i64 result, cf_64, vf_64, tmp; |
| result = tcg_temp_new_i64(); |
| cf_64 = tcg_temp_new_i64(); |
| vf_64 = tcg_temp_new_i64(); |
| tmp = tcg_const_i64(0); |
| |
| tcg_gen_extu_i32_i64(cf_64, cpu_CF); |
| tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp); |
| tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp); |
| tcg_gen_extrl_i64_i32(cpu_CF, cf_64); |
| gen_set_NZ64(result); |
| |
| tcg_gen_xor_i64(vf_64, result, t0); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_andc_i64(vf_64, vf_64, tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, vf_64); |
| |
| tcg_gen_mov_i64(dest, result); |
| |
| tcg_temp_free_i64(tmp); |
| tcg_temp_free_i64(vf_64); |
| tcg_temp_free_i64(cf_64); |
| tcg_temp_free_i64(result); |
| } else { |
| TCGv_i32 t0_32, t1_32, tmp; |
| t0_32 = tcg_temp_new_i32(); |
| t1_32 = tcg_temp_new_i32(); |
| tmp = tcg_const_i32(0); |
| |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp); |
| |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(t1_32); |
| tcg_temp_free_i32(t0_32); |
| } |
| } |
| |
| /* |
| * Load/Store generators |
| */ |
| |
| /* |
| * Store from GPR register to memory. |
| */ |
| static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, |
| TCGv_i64 tcg_addr, int size, int memidx, |
| bool iss_valid, |
| unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| g_assert(size <= 3); |
| tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size); |
| |
| if (iss_valid) { |
| uint32_t syn; |
| |
| syn = syn_data_abort_with_iss(0, |
| size, |
| false, |
| iss_srt, |
| iss_sf, |
| iss_ar, |
| 0, 0, 0, 0, 0, false); |
| disas_set_insn_syndrome(s, syn); |
| } |
| } |
| |
| static void do_gpr_st(DisasContext *s, TCGv_i64 source, |
| TCGv_i64 tcg_addr, int size, |
| bool iss_valid, |
| unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s), |
| iss_valid, iss_srt, iss_sf, iss_ar); |
| } |
| |
| /* |
| * Load from memory to GPR register |
| */ |
| static void do_gpr_ld_memidx(DisasContext *s, |
| TCGv_i64 dest, TCGv_i64 tcg_addr, |
| int size, bool is_signed, |
| bool extend, int memidx, |
| bool iss_valid, unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| TCGMemOp memop = s->be_data + size; |
| |
| g_assert(size <= 3); |
| |
| if (is_signed) { |
| memop += MO_SIGN; |
| } |
| |
| tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); |
| |
| if (extend && is_signed) { |
| g_assert(size < 3); |
| tcg_gen_ext32u_i64(dest, dest); |
| } |
| |
| if (iss_valid) { |
| uint32_t syn; |
| |
| syn = syn_data_abort_with_iss(0, |
| size, |
| is_signed, |
| iss_srt, |
| iss_sf, |
| iss_ar, |
| 0, 0, 0, 0, 0, false); |
| disas_set_insn_syndrome(s, syn); |
| } |
| } |
| |
| static void do_gpr_ld(DisasContext *s, |
| TCGv_i64 dest, TCGv_i64 tcg_addr, |
| int size, bool is_signed, bool extend, |
| bool iss_valid, unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend, |
| get_mem_index(s), |
| iss_valid, iss_srt, iss_sf, iss_ar); |
| } |
| |
| /* |
| * Store from FP register to memory |
| */ |
| static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) |
| { |
| /* This writes the bottom N bits of a 128 bit wide vector to memory */ |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64)); |
| if (size < 4) { |
| tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), |
| s->be_data + size); |
| } else { |
| bool be = s->be_data == MO_BE; |
| TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); |
| |
| tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); |
| tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s), |
| s->be_data | MO_Q); |
| tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx)); |
| tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s), |
| s->be_data | MO_Q); |
| tcg_temp_free_i64(tcg_hiaddr); |
| } |
| |
| tcg_temp_free_i64(tmp); |
| } |
| |
| /* |
| * Load from memory to FP register |
| */ |
| static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) |
| { |
| /* This always zero-extends and writes to a full 128 bit wide vector */ |
| TCGv_i64 tmplo = tcg_temp_new_i64(); |
| TCGv_i64 tmphi; |
| |
| if (size < 4) { |
| TCGMemOp memop = s->be_data + size; |
| tmphi = tcg_const_i64(0); |
| tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop); |
| } else { |
| bool be = s->be_data == MO_BE; |
| TCGv_i64 tcg_hiaddr; |
| |
| tmphi = tcg_temp_new_i64(); |
| tcg_hiaddr = tcg_temp_new_i64(); |
| |
| tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); |
| tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s), |
| s->be_data | MO_Q); |
| tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s), |
| s->be_data | MO_Q); |
| tcg_temp_free_i64(tcg_hiaddr); |
| } |
| |
| tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); |
| tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); |
| |
| tcg_temp_free_i64(tmplo); |
| tcg_temp_free_i64(tmphi); |
| |
| clear_vec_high(s, true, destidx); |
| } |
| |
| /* |
| * Vector load/store helpers. |
| * |
| * The principal difference between this and a FP load is that we don't |
| * zero extend as we are filling a partial chunk of the vector register. |
| * These functions don't support 128 bit loads/stores, which would be |
| * normal load/store operations. |
| * |
| * The _i32 versions are useful when operating on 32 bit quantities |
| * (eg for floating point single or using Neon helper functions). |
| */ |
| |
| /* Get value of an element within a vector register */ |
| static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, |
| int element, TCGMemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_8|MO_SIGN: |
| tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_16|MO_SIGN: |
| tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_32|MO_SIGN: |
| tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_64: |
| case MO_64|MO_SIGN: |
| tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, |
| int element, TCGMemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_8|MO_SIGN: |
| tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_16|MO_SIGN: |
| tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| case MO_32: |
| case MO_32|MO_SIGN: |
| tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Set value of an element within a vector register */ |
| static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, |
| int element, TCGMemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_64: |
| tcg_gen_st_i64(tcg_src, cpu_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, |
| int destidx, int element, TCGMemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_st_i32(tcg_src, cpu_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Store from vector register to memory */ |
| static void do_vec_st(DisasContext *s, int srcidx, int element, |
| TCGv_i64 tcg_addr, int size) |
| { |
| TCGMemOp memop = s->be_data + size; |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_tmp, srcidx, element, size); |
| tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop); |
| |
| tcg_temp_free_i64(tcg_tmp); |
| } |
| |
| /* Load from memory to vector register */ |
| static void do_vec_ld(DisasContext *s, int destidx, int element, |
| TCGv_i64 tcg_addr, int size) |
| { |
| TCGMemOp memop = s->be_data + size; |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop); |
| write_vec_element(s, tcg_tmp, destidx, element, size); |
| |
| tcg_temp_free_i64(tcg_tmp); |
| } |
| |
| /* Check that FP/Neon access is enabled. If it is, return |
| * true. If not, emit code to generate an appropriate exception, |
| * and return false; the caller should not emit any code for |
| * the instruction. Note that this check must happen after all |
| * unallocated-encoding checks (otherwise the syndrome information |
| * for the resulting exception will be incorrect). |
| */ |
| static inline bool fp_access_check(DisasContext *s) |
| { |
| assert(!s->fp_access_checked); |
| s->fp_access_checked = true; |
| |
| if (!s->fp_excp_el) { |
| return true; |
| } |
| |
| gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false), |
| s->fp_excp_el); |
| return false; |
| } |
| |
| /* Check that SVE access is enabled. If it is, return true. |
| * If not, emit code to generate an appropriate exception and return false. |
| */ |
| static inline bool sve_access_check(DisasContext *s) |
| { |
| if (s->sve_excp_el) { |
| gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(), |
| s->sve_excp_el); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * This utility function is for doing register extension with an |
| * optional shift. You will likely want to pass a temporary for the |
| * destination register. See DecodeRegExtend() in the ARM ARM. |
| */ |
| static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, |
| int option, unsigned int shift) |
| { |
| int extsize = extract32(option, 0, 2); |
| bool is_signed = extract32(option, 2, 1); |
| |
| if (is_signed) { |
| switch (extsize) { |
| case 0: |
| tcg_gen_ext8s_i64(tcg_out, tcg_in); |
| break; |
| case 1: |
| tcg_gen_ext16s_i64(tcg_out, tcg_in); |
| break; |
| case 2: |
| tcg_gen_ext32s_i64(tcg_out, tcg_in); |
| break; |
| case 3: |
| tcg_gen_mov_i64(tcg_out, tcg_in); |
| break; |
| } |
| } else { |
| switch (extsize) { |
| case 0: |
| tcg_gen_ext8u_i64(tcg_out, tcg_in); |
| break; |
| case 1: |
| tcg_gen_ext16u_i64(tcg_out, tcg_in); |
| break; |
| case 2: |
| tcg_gen_ext32u_i64(tcg_out, tcg_in); |
| break; |
| case 3: |
| tcg_gen_mov_i64(tcg_out, tcg_in); |
| break; |
| } |
| } |
| |
| if (shift) { |
| tcg_gen_shli_i64(tcg_out, tcg_out, shift); |
| } |
| } |
| |
| static inline void gen_check_sp_alignment(DisasContext *s) |
| { |
| /* The AArch64 architecture mandates that (if enabled via PSTATE |
| * or SCTLR bits) there is a check that SP is 16-aligned on every |
| * SP-relative load or store (with an exception generated if it is not). |
| * In line with general QEMU practice regarding misaligned accesses, |
| * we omit these checks for the sake of guest program performance. |
| * This function is provided as a hook so we can more easily add these |
| * checks in future (possibly as a "favour catching guest program bugs |
| * over speed" user selectable option). |
| */ |
| } |
| |
| /* |
| * This provides a simple table based table lookup decoder. It is |
| * intended to be used when the relevant bits for decode are too |
| * awkwardly placed and switch/if based logic would be confusing and |
| * deeply nested. Since it's a linear search through the table, tables |
| * should be kept small. |
| * |
| * It returns the first handler where insn & mask == pattern, or |
| * NULL if there is no match. |
| * The table is terminated by an empty mask (i.e. 0) |
| */ |
| static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, |
| uint32_t insn) |
| { |
| const AArch64DecodeTable *tptr = table; |
| |
| while (tptr->mask) { |
| if ((insn & tptr->mask) == tptr->pattern) { |
| return tptr->disas_fn; |
| } |
| tptr++; |
| } |
| return NULL; |
| } |
| |
| /* |
| * The instruction disassembly implemented here matches |
| * the instruction encoding classifications in chapter C4 |
| * of the ARM Architecture Reference Manual (DDI0487B_a); |
| * classification names and decode diagrams here should generally |
| * match up with those in the manual. |
| */ |
| |
| /* Unconditional branch (immediate) |
| * 31 30 26 25 0 |
| * +----+-----------+-------------------------------------+ |
| * | op | 0 0 1 0 1 | imm26 | |
| * +----+-----------+-------------------------------------+ |
| */ |
| static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) |
| { |
| uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4; |
| |
| if (insn & (1U << 31)) { |
| /* BL Branch with link */ |
| tcg_gen_movi_i64(cpu_reg(s, 30), s->pc); |
| } |
| |
| /* B Branch / BL Branch with link */ |
| gen_goto_tb(s, 0, addr); |
| } |
| |
| /* Compare and branch (immediate) |
| * 31 30 25 24 23 5 4 0 |
| * +----+-------------+----+---------------------+--------+ |
| * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | |
| * +----+-------------+----+---------------------+--------+ |
| */ |
| static void disas_comp_b_imm(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, op, rt; |
| uint64_t addr; |
| TCGLabel *label_match; |
| TCGv_i64 tcg_cmp; |
| |
| sf = extract32(insn, 31, 1); |
| op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ |
| rt = extract32(insn, 0, 5); |
| addr = s->pc + sextract32(insn, 5, 19) * 4 - 4; |
| |
| tcg_cmp = read_cpu_reg(s, rt, sf); |
| label_match = gen_new_label(); |
| |
| tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, |
| tcg_cmp, 0, label_match); |
| |
| gen_goto_tb(s, 0, s->pc); |
| gen_set_label(label_match); |
| gen_goto_tb(s, 1, addr); |
| } |
| |
| /* Test and branch (immediate) |
| * 31 30 25 24 23 19 18 5 4 0 |
| * +----+-------------+----+-------+-------------+------+ |
| * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | |
| * +----+-------------+----+-------+-------------+------+ |
| */ |
| static void disas_test_b_imm(DisasContext *s, uint32_t insn) |
| { |
| unsigned int bit_pos, op, rt; |
| uint64_t addr; |
| TCGLabel *label_match; |
| TCGv_i64 tcg_cmp; |
| |
| bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); |
| op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ |
| addr = s->pc + sextract32(insn, 5, 14) * 4 - 4; |
| rt = extract32(insn, 0, 5); |
| |
| tcg_cmp = tcg_temp_new_i64(); |
| tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); |
| label_match = gen_new_label(); |
| tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, |
| tcg_cmp, 0, label_match); |
| tcg_temp_free_i64(tcg_cmp); |
| gen_goto_tb(s, 0, s->pc); |
| gen_set_label(label_match); |
| gen_goto_tb(s, 1, addr); |
| } |
| |
| /* Conditional branch (immediate) |
| * 31 25 24 23 5 4 3 0 |
| * +---------------+----+---------------------+----+------+ |
| * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | |
| * +---------------+----+---------------------+----+------+ |
| */ |
| static void disas_cond_b_imm(DisasContext *s, uint32_t insn) |
| { |
| unsigned int cond; |
| uint64_t addr; |
| |
| if ((insn & (1 << 4)) || (insn & (1 << 24))) { |
| unallocated_encoding(s); |
| return; |
| } |
| addr = s->pc + sextract32(insn, 5, 19) * 4 - 4; |
| cond = extract32(insn, 0, 4); |
| |
| if (cond < 0x0e) { |
| /* genuinely conditional branches */ |
| TCGLabel *label_match = gen_new_label(); |
| arm_gen_test_cc(cond, label_match); |
| gen_goto_tb(s, 0, s->pc); |
| gen_set_label(label_match); |
| gen_goto_tb(s, 1, addr); |
| } else { |
| /* 0xe and 0xf are both "always" conditions */ |
| gen_goto_tb(s, 0, addr); |
| } |
| } |
| |
| /* HINT instruction group, including various allocated HINTs */ |
| static void handle_hint(DisasContext *s, uint32_t insn, |
| unsigned int op1, unsigned int op2, unsigned int crm) |
| { |
| unsigned int selector = crm << 3 | op2; |
| |
| if (op1 != 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (selector) { |
| case 0: /* NOP */ |
| return; |
| case 3: /* WFI */ |
| s->base.is_jmp = DISAS_WFI; |
| return; |
| /* When running in MTTCG we don't generate jumps to the yield and |
| * WFE helpers as it won't affect the scheduling of other vCPUs. |
| * If we wanted to more completely model WFE/SEV so we don't busy |
| * spin unnecessarily we would need to do something more involved. |
| */ |
| case 1: /* YIELD */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| s->base.is_jmp = DISAS_YIELD; |
| } |
| return; |
| case 2: /* WFE */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| s->base.is_jmp = DISAS_WFE; |
| } |
| return; |
| case 4: /* SEV */ |
| case 5: /* SEVL */ |
| /* we treat all as NOP at least for now */ |
| return; |
| default: |
| /* default specified as NOP equivalent */ |
| return; |
| } |
| } |
| |
| static void gen_clrex(DisasContext *s, uint32_t insn) |
| { |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| /* CLREX, DSB, DMB, ISB */ |
| static void handle_sync(DisasContext *s, uint32_t insn, |
| unsigned int op1, unsigned int op2, unsigned int crm) |
| { |
| TCGBar bar; |
| |
| if (op1 != 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (op2) { |
| case 2: /* CLREX */ |
| gen_clrex(s, insn); |
| return; |
| case 4: /* DSB */ |
| case 5: /* DMB */ |
| switch (crm & 3) { |
| case 1: /* MBReqTypes_Reads */ |
| bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; |
| break; |
| case 2: /* MBReqTypes_Writes */ |
| bar = TCG_BAR_SC | TCG_MO_ST_ST; |
| break; |
| default: /* MBReqTypes_All */ |
| bar = TCG_BAR_SC | TCG_MO_ALL; |
| break; |
| } |
| tcg_gen_mb(bar); |
| return; |
| case 6: /* ISB */ |
| /* We need to break the TB after this insn to execute |
| * a self-modified code correctly and also to take |
| * any pending interrupts immediately. |
| */ |
| gen_goto_tb(s, 0, s->pc); |
| return; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| /* MSR (immediate) - move immediate to processor state field */ |
| static void handle_msr_i(DisasContext *s, uint32_t insn, |
| unsigned int op1, unsigned int op2, unsigned int crm) |
| { |
| int op = op1 << 3 | op2; |
| switch (op) { |
| case 0x05: /* SPSel */ |
| if (s->current_el == 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x1e: /* DAIFSet */ |
| case 0x1f: /* DAIFClear */ |
| { |
| TCGv_i32 tcg_imm = tcg_const_i32(crm); |
| TCGv_i32 tcg_op = tcg_const_i32(op); |
| gen_a64_set_pc_im(s->pc - 4); |
| gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm); |
| tcg_temp_free_i32(tcg_imm); |
| tcg_temp_free_i32(tcg_op); |
| /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ |
| gen_a64_set_pc_im(s->pc); |
| s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP); |
| break; |
| } |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| static void gen_get_nzcv(TCGv_i64 tcg_rt) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| TCGv_i32 nzcv = tcg_temp_new_i32(); |
| |
| /* build bit 31, N */ |
| tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); |
| /* build bit 30, Z */ |
| tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); |
| tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); |
| /* build bit 29, C */ |
| tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); |
| /* build bit 28, V */ |
| tcg_gen_shri_i32(tmp, cpu_VF, 31); |
| tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); |
| /* generate result */ |
| tcg_gen_extu_i32_i64(tcg_rt, nzcv); |
| |
| tcg_temp_free_i32(nzcv); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static void gen_set_nzcv(TCGv_i64 tcg_rt) |
| |
| { |
| TCGv_i32 nzcv = tcg_temp_new_i32(); |
| |
| /* take NZCV from R[t] */ |
| tcg_gen_extrl_i64_i32(nzcv, tcg_rt); |
| |
| /* bit 31, N */ |
| tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); |
| /* bit 30, Z */ |
| tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); |
| tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); |
| /* bit 29, C */ |
| tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); |
| tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); |
| /* bit 28, V */ |
| tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); |
| tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); |
| tcg_temp_free_i32(nzcv); |
| } |
| |
| /* MRS - move from system register |
| * MSR (register) - move to system register |
| * SYS |
| * SYSL |
| * These are all essentially the same insn in 'read' and 'write' |
| * versions, with varying op0 fields. |
| */ |
| static void handle_sys(DisasContext *s, uint32_t insn, bool isread, |
| unsigned int op0, unsigned int op1, unsigned int op2, |
| unsigned int crn, unsigned int crm, unsigned int rt) |
| { |
| const ARMCPRegInfo *ri; |
| TCGv_i64 tcg_rt; |
| |
| ri = get_arm_cp_reginfo(s->cp_regs, |
| ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, |
| crn, crm, op0, op1, op2)); |
| |
| if (!ri) { |
| /* Unknown register; this might be a guest error or a QEMU |
| * unimplemented feature. |
| */ |
| qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " |
| "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", |
| isread ? "read" : "write", op0, op1, crn, crm, op2); |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* Check access permissions */ |
| if (!cp_access_ok(s->current_el, ri, isread)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (ri->accessfn) { |
| /* Emit code to perform further access permissions checks at |
| * runtime; this may result in an exception. |
| */ |
| TCGv_ptr tmpptr; |
| TCGv_i32 tcg_syn, tcg_isread; |
| uint32_t syndrome; |
| |
| gen_a64_set_pc_im(s->pc - 4); |
| tmpptr = tcg_const_ptr(ri); |
| syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); |
| tcg_syn = tcg_const_i32(syndrome); |
| tcg_isread = tcg_const_i32(isread); |
| gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread); |
| tcg_temp_free_ptr(tmpptr); |
| tcg_temp_free_i32(tcg_syn); |
| tcg_temp_free_i32(tcg_isread); |
| } |
| |
| /* Handle special cases first */ |
| switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) { |
| case ARM_CP_NOP: |
| return; |
| case ARM_CP_NZCV: |
| tcg_rt = cpu_reg(s, rt); |
| if (isread) { |
| gen_get_nzcv(tcg_rt); |
| } else { |
| gen_set_nzcv(tcg_rt); |
| } |
| return; |
| case ARM_CP_CURRENTEL: |
| /* Reads as current EL value from pstate, which is |
| * guaranteed to be constant by the tb flags. |
| */ |
| tcg_rt = cpu_reg(s, rt); |
| tcg_gen_movi_i64(tcg_rt, s->current_el << 2); |
| return; |
| case ARM_CP_DC_ZVA: |
| /* Writes clear the aligned block of memory which rt points into. */ |
| tcg_rt = cpu_reg(s, rt); |
| gen_helper_dc_zva(cpu_env, tcg_rt); |
| return; |
| default: |
| break; |
| } |
| if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { |
| return; |
| } |
| if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) { |
| return; |
| } |
| |
| if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { |
| gen_io_start(); |
| } |
| |
| tcg_rt = cpu_reg(s, rt); |
| |
| if (isread) { |
| if (ri->type & ARM_CP_CONST) { |
| tcg_gen_movi_i64(tcg_rt, ri->resetvalue); |
| } else if (ri->readfn) { |
| TCGv_ptr tmpptr; |
| tmpptr = tcg_const_ptr(ri); |
| gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr); |
| tcg_temp_free_ptr(tmpptr); |
| } else { |
| tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); |
| } |
| } else { |
| if (ri->type & ARM_CP_CONST) { |
| /* If not forbidden by access permissions, treat as WI */ |
| return; |
| } else if (ri->writefn) { |
| TCGv_ptr tmpptr; |
| tmpptr = tcg_const_ptr(ri); |
| gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt); |
| tcg_temp_free_ptr(tmpptr); |
| } else { |
| tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); |
| } |
| } |
| |
| if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { |
| /* I/O operations must end the TB here (whether read or write) */ |
| gen_io_end(); |
| s->base.is_jmp = DISAS_UPDATE; |
| } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { |
| /* We default to ending the TB on a coprocessor register write, |
| * but allow this to be suppressed by the register definition |
| * (usually only necessary to work around guest bugs). |
| */ |
| s->base.is_jmp = DISAS_UPDATE; |
| } |
| } |
| |
| /* System |
| * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 |
| * +---------------------+---+-----+-----+-------+-------+-----+------+ |
| * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | |
| * +---------------------+---+-----+-----+-------+-------+-----+------+ |
| */ |
| static void disas_system(DisasContext *s, uint32_t insn) |
| { |
| unsigned int l, op0, op1, crn, crm, op2, rt; |
| l = extract32(insn, 21, 1); |
| op0 = extract32(insn, 19, 2); |
| op1 = extract32(insn, 16, 3); |
| crn = extract32(insn, 12, 4); |
| crm = extract32(insn, 8, 4); |
| op2 = extract32(insn, 5, 3); |
| rt = extract32(insn, 0, 5); |
| |
| if (op0 == 0) { |
| if (l || rt != 31) { |
| unallocated_encoding(s); |
| return; |
| } |
| switch (crn) { |
| case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ |
| handle_hint(s, insn, op1, op2, crm); |
| break; |
| case 3: /* CLREX, DSB, DMB, ISB */ |
| handle_sync(s, insn, op1, op2, crm); |
| break; |
| case 4: /* MSR (immediate) */ |
| handle_msr_i(s, insn, op1, op2, crm); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| return; |
| } |
| handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); |
| } |
| |
| /* Exception generation |
| * |
| * 31 24 23 21 20 5 4 2 1 0 |
| * +-----------------+-----+------------------------+-----+----+ |
| * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | |
| * +-----------------------+------------------------+----------+ |
| */ |
| static void disas_exc(DisasContext *s, uint32_t insn) |
| { |
| int opc = extract32(insn, 21, 3); |
| int op2_ll = extract32(insn, 0, 5); |
| int imm16 = extract32(insn, 5, 16); |
| TCGv_i32 tmp; |
| |
| switch (opc) { |
| case 0: |
| /* For SVC, HVC and SMC we advance the single-step state |
| * machine before taking the exception. This is architecturally |
| * mandated, to ensure that single-stepping a system call |
| * instruction works properly. |
| */ |
| switch (op2_ll) { |
| case 1: /* SVC */ |
| gen_ss_advance(s); |
| gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16), |
| default_exception_el(s)); |
| break; |
| case 2: /* HVC */ |
| if (s->current_el == 0) { |
| unallocated_encoding(s); |
| break; |
| } |
| /* The pre HVC helper handles cases when HVC gets trapped |
| * as an undefined insn by runtime configuration. |
| */ |
| gen_a64_set_pc_im(s->pc - 4); |
| gen_helper_pre_hvc(cpu_env); |
| gen_ss_advance(s); |
| gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2); |
| break; |
| case 3: /* SMC */ |
| if (s->current_el == 0) { |
| unallocated_encoding(s); |
| break; |
| } |
| gen_a64_set_pc_im(s->pc - 4); |
| tmp = tcg_const_i32(syn_aa64_smc(imm16)); |
| gen_helper_pre_smc(cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| gen_ss_advance(s); |
| gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| break; |
| case 1: |
| if (op2_ll != 0) { |
| unallocated_encoding(s); |
| break; |
| } |
| /* BRK */ |
| gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16), |
| default_exception_el(s)); |
| break; |
| case 2: |
| if (op2_ll != 0) { |
| unallocated_encoding(s); |
| break; |
| } |
| /* HLT. This has two purposes. |
| * Architecturally, it is an external halting debug instruction. |
| * Since QEMU doesn't implement external debug, we treat this as |
| * it is required for halting debug disabled: it will UNDEF. |
| * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. |
| */ |
| if (semihosting_enabled() && imm16 == 0xf000) { |
| #ifndef CONFIG_USER_ONLY |
| /* In system mode, don't allow userspace access to semihosting, |
| * to provide some semblance of security (and for consistency |
| * with our 32-bit semihosting). |
| */ |
| if (s->current_el == 0) { |
| unsupported_encoding(s, insn); |
| break; |
| } |
| #endif |
| gen_exception_internal_insn(s, 0, EXCP_SEMIHOST); |
| } else { |
| unsupported_encoding(s, insn); |
| } |
| break; |
| case 5: |
| if (op2_ll < 1 || op2_ll > 3) { |
| unallocated_encoding(s); |
| break; |
| } |
| /* DCPS1, DCPS2, DCPS3 */ |
| unsupported_encoding(s, insn); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* Unconditional branch (register) |
| * 31 25 24 21 20 16 15 10 9 5 4 0 |
| * +---------------+-------+-------+-------+------+-------+ |
| * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | |
| * +---------------+-------+-------+-------+------+-------+ |
| */ |
| static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) |
| { |
| unsigned int opc, op2, op3, rn, op4; |
| |
| opc = extract32(insn, 21, 4); |
| op2 = extract32(insn, 16, 5); |
| op3 = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| op4 = extract32(insn, 0, 5); |
| |
| if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opc) { |
| case 0: /* BR */ |
| case 1: /* BLR */ |
| case 2: /* RET */ |
| gen_a64_set_pc(s, cpu_reg(s, rn)); |
| /* BLR also needs to load return address */ |
| if (opc == 1) { |
| tcg_gen_movi_i64(cpu_reg(s, 30), s->pc); |
| } |
| break; |
| case 4: /* ERET */ |
| if (s->current_el == 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| gen_helper_exception_return(cpu_env); |
| /* Must exit loop to check un-masked IRQs */ |
| s->base.is_jmp = DISAS_EXIT; |
| return; |
| case 5: /* DRPS */ |
| if (rn != 0x1f) { |
| unallocated_encoding(s); |
| } else { |
| unsupported_encoding(s, insn); |
| } |
| return; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| s->base.is_jmp = DISAS_JUMP; |
| } |
| |
| /* Branches, exception generating and system instructions */ |
| static void disas_b_exc_sys(DisasContext *s, uint32_t insn) |
| { |
| switch (extract32(insn, 25, 7)) { |
| case 0x0a: case 0x0b: |
| case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ |
| disas_uncond_b_imm(s, insn); |
| break; |
| case 0x1a: case 0x5a: /* Compare & branch (immediate) */ |
| disas_comp_b_imm(s, insn); |
| break; |
| case 0x1b: case 0x5b: /* Test & branch (immediate) */ |
| disas_test_b_imm(s, insn); |
| break; |
| case 0x2a: /* Conditional branch (immediate) */ |
| disas_cond_b_imm(s, insn); |
| break; |
| case 0x6a: /* Exception generation / System */ |
| if (insn & (1 << 24)) { |
| disas_system(s, insn); |
| } else { |
| disas_exc(s, insn); |
| } |
| break; |
| case 0x6b: /* Unconditional branch (register) */ |
| disas_uncond_b_reg(s, insn); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* |
| * Load/Store exclusive instructions are implemented by remembering |
| * the value/address loaded, and seeing if these are the same |
| * when the store is performed. This is not actually the architecturally |
| * mandated semantics, but it works for typical guest code sequences |
| * and avoids having to monitor regular stores. |
| * |
| * The store exclusive uses the atomic cmpxchg primitives to avoid |
| * races in multi-threaded linux-user and when MTTCG softmmu is |
| * enabled. |
| */ |
| static void gen_load_exclusive(DisasContext *s, int rt, int rt2, |
| TCGv_i64 addr, int size, bool is_pair) |
| { |
| int idx = get_mem_index(s); |
| TCGMemOp memop = s->be_data; |
| |
| g_assert(size <= 3); |
| if (is_pair) { |
| g_assert(size >= 2); |
| if (size == 2) { |
| /* The pair must be single-copy atomic for the doubleword. */ |
| memop |= MO_64 | MO_ALIGN; |
| tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); |
| if (s->be_data == MO_LE) { |
| tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); |
| tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); |
| } else { |
| tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); |
| tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); |
| } |
| } else { |
| /* The pair must be single-copy atomic for *each* doubleword, not |
| the entire quadword, however it must be quadword aligned. */ |
| memop |= MO_64; |
| tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, |
| memop | MO_ALIGN_16); |
| |
| TCGv_i64 addr2 = tcg_temp_new_i64(); |
| tcg_gen_addi_i64(addr2, addr, 8); |
| tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); |
| tcg_temp_free_i64(addr2); |
| |
| tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); |
| tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); |
| } |
| } else { |
| memop |= size | MO_ALIGN; |
| tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); |
| tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); |
| } |
| tcg_gen_mov_i64(cpu_exclusive_addr, addr); |
| } |
| |
| static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, |
| TCGv_i64 addr, int size, int is_pair) |
| { |
| /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] |
| * && (!is_pair || env->exclusive_high == [addr + datasize])) { |
| * [addr] = {Rt}; |
| * if (is_pair) { |
| * [addr + datasize] = {Rt2}; |
| * } |
| * {Rd} = 0; |
| * } else { |
| * {Rd} = 1; |
| * } |
| * env->exclusive_addr = -1; |
| */ |
| TCGLabel *fail_label = gen_new_label(); |
| TCGLabel *done_label = gen_new_label(); |
| TCGv_i64 tmp; |
| |
| tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); |
| |
| tmp = tcg_temp_new_i64(); |
| if (is_pair) { |
| if (size == 2) { |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); |
| } else { |
| tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); |
| } |
| tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, |
| cpu_exclusive_val, tmp, |
| get_mem_index(s), |
| MO_64 | MO_ALIGN | s->be_data); |
| tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); |
| } else if (s->be_data == MO_LE) { |
| if (tb_cflags(s->base.tb) & CF_PARALLEL) { |
| gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env, |
| cpu_exclusive_addr, |
| cpu_reg(s, rt), |
| cpu_reg(s, rt2)); |
| } else { |
| gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr, |
| cpu_reg(s, rt), cpu_reg(s, rt2)); |
| } |
| } else { |
| if (tb_cflags(s->base.tb) & CF_PARALLEL) { |
| gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env, |
| cpu_exclusive_addr, |
| cpu_reg(s, rt), |
| cpu_reg(s, rt2)); |
| } else { |
| gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr, |
| cpu_reg(s, rt), cpu_reg(s, rt2)); |
| } |
| } |
| } else { |
| tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, |
| cpu_reg(s, rt), get_mem_index(s), |
| size | MO_ALIGN | s->be_data); |
| tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); |
| } |
| tcg_gen_mov_i64(cpu_reg(s, rd), tmp); |
| tcg_temp_free_i64(tmp); |
| tcg_gen_br(done_label); |
| |
| gen_set_label(fail_label); |
| tcg_gen_movi_i64(cpu_reg(s, rd), 1); |
| gen_set_label(done_label); |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| /* Update the Sixty-Four bit (SF) registersize. This logic is derived |
| * from the ARMv8 specs for LDR (Shared decode for all encodings). |
| */ |
| static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) |
| { |
| int opc0 = extract32(opc, 0, 1); |
| int regsize; |
| |
| if (is_signed) { |
| regsize = opc0 ? 32 : 64; |
| } else { |
| regsize = size == 3 ? 64 : 32; |
| } |
| return regsize == 64; |
| } |
| |
| /* Load/store exclusive |
| * |
| * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 |
| * +-----+-------------+----+---+----+------+----+-------+------+------+ |
| * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | |
| * +-----+-------------+----+---+----+------+----+-------+------+------+ |
| * |
| * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit |
| * L: 0 -> store, 1 -> load |
| * o2: 0 -> exclusive, 1 -> not |
| * o1: 0 -> single register, 1 -> register pair |
| * o0: 1 -> load-acquire/store-release, 0 -> not |
| */ |
| static void disas_ldst_excl(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int rt2 = extract32(insn, 10, 5); |
| int is_lasr = extract32(insn, 15, 1); |
| int rs = extract32(insn, 16, 5); |
| int is_pair = extract32(insn, 21, 1); |
| int is_store = !extract32(insn, 22, 1); |
| int is_excl = !extract32(insn, 23, 1); |
| int size = extract32(insn, 30, 2); |
| TCGv_i64 tcg_addr; |
| |
| if ((!is_excl && !is_pair && !is_lasr) || |
| (!is_excl && is_pair) || |
| (is_pair && size < 2)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| tcg_addr = read_cpu_reg_sp(s, rn, 1); |
| |
| /* Note that since TCG is single threaded load-acquire/store-release |
| * semantics require no extra if (is_lasr) { ... } handling. |
| */ |
| |
| if (is_excl) { |
| if (!is_store) { |
| s->is_ldex = true; |
| gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair); |
| if (is_lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| } |
| } else { |
| if (is_lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| } |
| gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair); |
| } |
| } else { |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0); |
| |
| /* Generate ISS for non-exclusive accesses including LASR. */ |
| if (is_store) { |
| if (is_lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| } |
| do_gpr_st(s, tcg_rt, tcg_addr, size, |
| true, rt, iss_sf, is_lasr); |
| } else { |
| do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false, |
| true, rt, iss_sf, is_lasr); |
| if (is_lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| } |
| } |
| } |
| } |
| |
| /* |
| * Load register (literal) |
| * |
| * 31 30 29 27 26 25 24 23 5 4 0 |
| * +-----+-------+---+-----+-------------------+-------+ |
| * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | |
| * +-----+-------+---+-----+-------------------+-------+ |
| * |
| * V: 1 -> vector (simd/fp) |
| * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, |
| * 10-> 32 bit signed, 11 -> prefetch |
| * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) |
| */ |
| static void disas_ld_lit(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int64_t imm = sextract32(insn, 5, 19) << 2; |
| bool is_vector = extract32(insn, 26, 1); |
| int opc = extract32(insn, 30, 2); |
| bool is_signed = false; |
| int size = 2; |
| TCGv_i64 tcg_rt, tcg_addr; |
| |
| if (is_vector) { |
| if (opc == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| size = 2 + opc; |
| if (!fp_access_check(s)) { |
| return; |
| } |
| } else { |
| if (opc == 3) { |
| /* PRFM (literal) : prefetch */ |
| return; |
| } |
| size = 2 + extract32(opc, 0, 1); |
| is_signed = extract32(opc, 1, 1); |
| } |
| |
| tcg_rt = cpu_reg(s, rt); |
| |
| tcg_addr = tcg_const_i64((s->pc - 4) + imm); |
| if (is_vector) { |
| do_fp_ld(s, rt, tcg_addr, size); |
| } else { |
| /* Only unsigned 32bit loads target 32bit registers. */ |
| bool iss_sf = opc != 0; |
| |
| do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false, |
| true, rt, iss_sf, false); |
| } |
| tcg_temp_free_i64(tcg_addr); |
| } |
| |
| /* |
| * LDNP (Load Pair - non-temporal hint) |
| * LDP (Load Pair - non vector) |
| * LDPSW (Load Pair Signed Word - non vector) |
| * STNP (Store Pair - non-temporal hint) |
| * STP (Store Pair - non vector) |
| * LDNP (Load Pair of SIMD&FP - non-temporal hint) |
| * LDP (Load Pair of SIMD&FP) |
| * STNP (Store Pair of SIMD&FP - non-temporal hint) |
| * STP (Store Pair of SIMD&FP) |
| * |
| * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 |
| * +-----+-------+---+---+-------+---+-----------------------------+ |
| * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | |
| * +-----+-------+---+---+-------+---+-------+-------+------+------+ |
| * |
| * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit |
| * LDPSW 01 |
| * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit |
| * V: 0 -> GPR, 1 -> Vector |
| * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, |
| * 10 -> signed offset, 11 -> pre-index |
| * L: 0 -> Store 1 -> Load |
| * |
| * Rt, Rt2 = GPR or SIMD registers to be stored |
| * Rn = general purpose register containing address |
| * imm7 = signed offset (multiple of 4 or 8 depending on size) |
| */ |
| static void disas_ldst_pair(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int rt2 = extract32(insn, 10, 5); |
| uint64_t offset = sextract64(insn, 15, 7); |
| int index = extract32(insn, 23, 2); |
| bool is_vector = extract32(insn, 26, 1); |
| bool is_load = extract32(insn, 22, 1); |
| int opc = extract32(insn, 30, 2); |
| |
| bool is_signed = false; |
| bool postindex = false; |
| bool wback = false; |
| |
| TCGv_i64 tcg_addr; /* calculated address */ |
| int size; |
| |
| if (opc == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (is_vector) { |
| size = 2 + opc; |
| } else { |
| size = 2 + extract32(opc, 1, 1); |
| is_signed = extract32(opc, 0, 1); |
| if (!is_load && is_signed) { |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| switch (index) { |
| case 1: /* post-index */ |
| postindex = true; |
| wback = true; |
| break; |
| case 0: |
| /* signed offset with "non-temporal" hint. Since we don't emulate |
| * caches we don't care about hints to the cache system about |
| * data access patterns, and handle this identically to plain |
| * signed offset. |
| */ |
| if (is_signed) { |
| /* There is no non-temporal-hint version of LDPSW */ |
| unallocated_encoding(s); |
| return; |
| } |
| postindex = false; |
| break; |
| case 2: /* signed offset, rn not updated */ |
| postindex = false; |
| break; |
| case 3: /* pre-index */ |
| postindex = false; |
| wback = true; |
| break; |
| } |
| |
| if (is_vector && !fp_access_check(s)) { |
| return; |
| } |
| |
| offset <<= size; |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| tcg_addr = read_cpu_reg_sp(s, rn, 1); |
| |
| if (!postindex) { |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, offset); |
| } |
| |
| if (is_vector) { |
| if (is_load) { |
| do_fp_ld(s, rt, tcg_addr, size); |
| } else { |
| do_fp_st(s, rt, tcg_addr, size); |
| } |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size); |
| if (is_load) { |
| do_fp_ld(s, rt2, tcg_addr, size); |
| } else { |
| do_fp_st(s, rt2, tcg_addr, size); |
| } |
| } else { |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); |
| |
| if (is_load) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| /* Do not modify tcg_rt before recognizing any exception |
| * from the second load. |
| */ |
| do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false, |
| false, 0, false, false); |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size); |
| do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false, |
| false, 0, false, false); |
| |
| tcg_gen_mov_i64(tcg_rt, tmp); |
| tcg_temp_free_i64(tmp); |
| } else { |
| do_gpr_st(s, tcg_rt, tcg_addr, size, |
| false, 0, false, false); |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size); |
| do_gpr_st(s, tcg_rt2, tcg_addr, size, |
| false, 0, false, false); |
| } |
| } |
| |
| if (wback) { |
| if (postindex) { |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size)); |
| } else { |
| tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size); |
| } |
| tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr); |
| } |
| } |
| |
| /* |
| * Load/store (immediate post-indexed) |
| * Load/store (immediate pre-indexed) |
| * Load/store (unscaled immediate) |
| * |
| * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 |
| * +----+-------+---+-----+-----+---+--------+-----+------+------+ |
| * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | |
| * +----+-------+---+-----+-----+---+--------+-----+------+------+ |
| * |
| * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) |
| 10 -> unprivileged |
| * V = 0 -> non-vector |
| * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit |
| * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 |
| */ |
| static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, |
| int opc, |
| int size, |
| int rt, |
| bool is_vector) |
| { |
| int rn = extract32(insn, 5, 5); |
| int imm9 = sextract32(insn, 12, 9); |
| int idx = extract32(insn, 10, 2); |
| bool is_signed = false; |
| bool is_store = false; |
| bool is_extended = false; |
| bool is_unpriv = (idx == 2); |
| bool iss_valid = !is_vector; |
| bool post_index; |
| bool writeback; |
| |
| TCGv_i64 tcg_addr; |
| |
| if (is_vector) { |
| size |= (opc & 2) << 1; |
| if (size > 4 || is_unpriv) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_store = ((opc & 1) == 0); |
| if (!fp_access_check(s)) { |
| return; |
| } |
| } else { |
| if (size == 3 && opc == 2) { |
| /* PRFM - prefetch */ |
| if (is_unpriv) { |
| unallocated_encoding(s); |
| return; |
| } |
| return; |
| } |
| if (opc == 3 && size > 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_store = (opc == 0); |
| is_signed = extract32(opc, 1, 1); |
| is_extended = (size < 3) && extract32(opc, 0, 1); |
| } |
| |
| switch (idx) { |
| case 0: |
| case 2: |
| post_index = false; |
| writeback = false; |
| break; |
| case 1: |
| post_index = true; |
| writeback = true; |
| break; |
| case 3: |
| post_index = false; |
| writeback = true; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| tcg_addr = read_cpu_reg_sp(s, rn, 1); |
| |
| if (!post_index) { |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9); |
| } |
| |
| if (is_vector) { |
| if (is_store) { |
| do_fp_st(s, rt, tcg_addr, size); |
| } else { |
| do_fp_ld(s, rt, tcg_addr, size); |
| } |
| } else { |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); |
| bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); |
| |
| if (is_store) { |
| do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx, |
| iss_valid, rt, iss_sf, false); |
| } else { |
| do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size, |
| is_signed, is_extended, memidx, |
| iss_valid, rt, iss_sf, false); |
| } |
| } |
| |
| if (writeback) { |
| TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); |
| if (post_index) { |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9); |
| } |
| tcg_gen_mov_i64(tcg_rn, tcg_addr); |
| } |
| } |
| |
| /* |
| * Load/store (register offset) |
| * |
| * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 |
| * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ |
| * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | |
| * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ |
| * |
| * For non-vector: |
| * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit |
| * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 |
| * For vector: |
| * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated |
| * opc<0>: 0 -> store, 1 -> load |
| * V: 1 -> vector/simd |
| * opt: extend encoding (see DecodeRegExtend) |
| * S: if S=1 then scale (essentially index by sizeof(size)) |
| * Rt: register to transfer into/out of |
| * Rn: address register or SP for base |
| * Rm: offset register or ZR for offset |
| */ |
| static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, |
| int opc, |
| int size, |
| int rt, |
| bool is_vector) |
| { |
| int rn = extract32(insn, 5, 5); |
| int shift = extract32(insn, 12, 1); |
| int rm = extract32(insn, 16, 5); |
| int opt = extract32(insn, 13, 3); |
| bool is_signed = false; |
| bool is_store = false; |
| bool is_extended = false; |
| |
| TCGv_i64 tcg_rm; |
| TCGv_i64 tcg_addr; |
| |
| if (extract32(opt, 1, 1) == 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (is_vector) { |
| size |= (opc & 2) << 1; |
| if (size > 4) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_store = !extract32(opc, 0, 1); |
| if (!fp_access_check(s)) { |
| return; |
| } |
| } else { |
| if (size == 3 && opc == 2) { |
| /* PRFM - prefetch */ |
| return; |
| } |
| if (opc == 3 && size > 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_store = (opc == 0); |
| is_signed = extract32(opc, 1, 1); |
| is_extended = (size < 3) && extract32(opc, 0, 1); |
| } |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| tcg_addr = read_cpu_reg_sp(s, rn, 1); |
| |
| tcg_rm = read_cpu_reg(s, rm, 1); |
| ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); |
| |
| tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm); |
| |
| if (is_vector) { |
| if (is_store) { |
| do_fp_st(s, rt, tcg_addr, size); |
| } else { |
| do_fp_ld(s, rt, tcg_addr, size); |
| } |
| } else { |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); |
| if (is_store) { |
| do_gpr_st(s, tcg_rt, tcg_addr, size, |
| true, rt, iss_sf, false); |
| } else { |
| do_gpr_ld(s, tcg_rt, tcg_addr, size, |
| is_signed, is_extended, |
| true, rt, iss_sf, false); |
| } |
| } |
| } |
| |
| /* |
| * Load/store (unsigned immediate) |
| * |
| * 31 30 29 27 26 25 24 23 22 21 10 9 5 |
| * +----+-------+---+-----+-----+------------+-------+------+ |
| * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | |
| * +----+-------+---+-----+-----+------------+-------+------+ |
| * |
| * For non-vector: |
| * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit |
| * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 |
| * For vector: |
| * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated |
| * opc<0>: 0 -> store, 1 -> load |
| * Rn: base address register (inc SP) |
| * Rt: target register |
| */ |
| static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, |
| int opc, |
| int size, |
| int rt, |
| bool is_vector) |
| { |
| int rn = extract32(insn, 5, 5); |
| unsigned int imm12 = extract32(insn, 10, 12); |
| unsigned int offset; |
| |
| TCGv_i64 tcg_addr; |
| |
| bool is_store; |
| bool is_signed = false; |
| bool is_extended = false; |
| |
| if (is_vector) { |
| size |= (opc & 2) << 1; |
| if (size > 4) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_store = !extract32(opc, 0, 1); |
| if (!fp_access_check(s)) { |
| return; |
| } |
| } else { |
| if (size == 3 && opc == 2) { |
| /* PRFM - prefetch */ |
| return; |
| } |
| if (opc == 3 && size > 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_store = (opc == 0); |
| is_signed = extract32(opc, 1, 1); |
| is_extended = (size < 3) && extract32(opc, 0, 1); |
| } |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| tcg_addr = read_cpu_reg_sp(s, rn, 1); |
| offset = imm12 << size; |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, offset); |
| |
| if (is_vector) { |
| if (is_store) { |
| do_fp_st(s, rt, tcg_addr, size); |
| } else { |
| do_fp_ld(s, rt, tcg_addr, size); |
| } |
| } else { |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); |
| if (is_store) { |
| do_gpr_st(s, tcg_rt, tcg_addr, size, |
| true, rt, iss_sf, false); |
| } else { |
| do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended, |
| true, rt, iss_sf, false); |
| } |
| } |
| } |
| |
| /* Load/store register (all forms) */ |
| static void disas_ldst_reg(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int opc = extract32(insn, 22, 2); |
| bool is_vector = extract32(insn, 26, 1); |
| int size = extract32(insn, 30, 2); |
| |
| switch (extract32(insn, 24, 2)) { |
| case 0: |
| if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) { |
| disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); |
| } else { |
| /* Load/store register (unscaled immediate) |
| * Load/store immediate pre/post-indexed |
| * Load/store register unprivileged |
| */ |
| disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); |
| } |
| break; |
| case 1: |
| disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* AdvSIMD load/store multiple structures |
| * |
| * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 |
| * +---+---+---------------+---+-------------+--------+------+------+------+ |
| * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | |
| * +---+---+---------------+---+-------------+--------+------+------+------+ |
| * |
| * AdvSIMD load/store multiple structures (post-indexed) |
| * |
| * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 |
| * +---+---+---------------+---+---+---------+--------+------+------+------+ |
| * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | |
| * +---+---+---------------+---+---+---------+--------+------+------+------+ |
| * |
| * Rt: first (or only) SIMD&FP register to be transferred |
| * Rn: base address or SP |
| * Rm (post-index only): post-index register (when !31) or size dependent #imm |
| */ |
| static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int size = extract32(insn, 10, 2); |
| int opcode = extract32(insn, 12, 4); |
| bool is_store = !extract32(insn, 22, 1); |
| bool is_postidx = extract32(insn, 23, 1); |
| bool is_q = extract32(insn, 30, 1); |
| TCGv_i64 tcg_addr, tcg_rn; |
| |
| int ebytes = 1 << size; |
| int elements = (is_q ? 128 : 64) / (8 << size); |
| int rpt; /* num iterations */ |
| int selem; /* structure elements */ |
| int r; |
| |
| if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* From the shared decode logic */ |
| switch (opcode) { |
| case 0x0: |
| rpt = 1; |
| selem = 4; |
| break; |
| case 0x2: |
| rpt = 4; |
| selem = 1; |
| break; |
| case 0x4: |
| rpt = 1; |
| selem = 3; |
| break; |
| case 0x6: |
| rpt = 3; |
| selem = 1; |
| break; |
| case 0x7: |
| rpt = 1; |
| selem = 1; |
| break; |
| case 0x8: |
| rpt = 1; |
| selem = 2; |
| break; |
| case 0xa: |
| rpt = 2; |
| selem = 1; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (size == 3 && !is_q && selem != 1) { |
| /* reserved */ |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| tcg_rn = cpu_reg_sp(s, rn); |
| tcg_addr = tcg_temp_new_i64(); |
| tcg_gen_mov_i64(tcg_addr, tcg_rn); |
| |
| for (r = 0; r < rpt; r++) { |
| int e; |
| for (e = 0; e < elements; e++) { |
| int tt = (rt + r) % 32; |
| int xs; |
| for (xs = 0; xs < selem; xs++) { |
| if (is_store) { |
| do_vec_st(s, tt, e, tcg_addr, size); |
| } else { |
| do_vec_ld(s, tt, e, tcg_addr, size); |
| |
| /* For non-quad operations, setting a slice of the low |
| * 64 bits of the register clears the high 64 bits (in |
| * the ARM ARM pseudocode this is implicit in the fact |
| * that 'rval' is a 64 bit wide variable). |
| * For quad operations, we might still need to zero the |
| * high bits of SVE. We optimize by noticing that we only |
| * need to do this the first time we touch a register. |
| */ |
| if (e == 0 && (r == 0 || xs == selem - 1)) { |
| clear_vec_high(s, is_q, tt); |
| } |
| } |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes); |
| tt = (tt + 1) % 32; |
| } |
| } |
| } |
| |
| if (is_postidx) { |
| int rm = extract32(insn, 16, 5); |
| if (rm == 31) { |
| tcg_gen_mov_i64(tcg_rn, tcg_addr); |
| } else { |
| tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); |
| } |
| } |
| tcg_temp_free_i64(tcg_addr); |
| } |
| |
| /* AdvSIMD load/store single structure |
| * |
| * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 |
| * +---+---+---------------+-----+-----------+-----+---+------+------+------+ |
| * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | |
| * +---+---+---------------+-----+-----------+-----+---+------+------+------+ |
| * |
| * AdvSIMD load/store single structure (post-indexed) |
| * |
| * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 |
| * +---+---+---------------+-----+-----------+-----+---+------+------+------+ |
| * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | |
| * +---+---+---------------+-----+-----------+-----+---+------+------+------+ |
| * |
| * Rt: first (or only) SIMD&FP register to be transferred |
| * Rn: base address or SP |
| * Rm (post-index only): post-index register (when !31) or size dependent #imm |
| * index = encoded in Q:S:size dependent on size |
| * |
| * lane_size = encoded in R, opc |
| * transfer width = encoded in opc, S, size |
| */ |
| static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) |
| { |
| int rt = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int size = extract32(insn, 10, 2); |
| int S = extract32(insn, 12, 1); |
| int opc = extract32(insn, 13, 3); |
| int R = extract32(insn, 21, 1); |
| int is_load = extract32(insn, 22, 1); |
| int is_postidx = extract32(insn, 23, 1); |
| int is_q = extract32(insn, 30, 1); |
| |
| int scale = extract32(opc, 1, 2); |
| int selem = (extract32(opc, 0, 1) << 1 | R) + 1; |
| bool replicate = false; |
| int index = is_q << 3 | S << 2 | size; |
| int ebytes, xs; |
| TCGv_i64 tcg_addr, tcg_rn; |
| |
| switch (scale) { |
| case 3: |
| if (!is_load || S) { |
| unallocated_encoding(s); |
| return; |
| } |
| scale = size; |
| replicate = true; |
| break; |
| case 0: |
| break; |
| case 1: |
| if (extract32(size, 0, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| index >>= 1; |
| break; |
| case 2: |
| if (extract32(size, 1, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!extract32(size, 0, 1)) { |
| index >>= 2; |
| } else { |
| if (S) { |
| unallocated_encoding(s); |
| return; |
| } |
| index >>= 3; |
| scale = 3; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| ebytes = 1 << scale; |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| tcg_rn = cpu_reg_sp(s, rn); |
| tcg_addr = tcg_temp_new_i64(); |
| tcg_gen_mov_i64(tcg_addr, tcg_rn); |
| |
| for (xs = 0; xs < selem; xs++) { |
| if (replicate) { |
| /* Load and replicate to all elements */ |
| uint64_t mulconst; |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, |
| get_mem_index(s), s->be_data + scale); |
| switch (scale) { |
| case 0: |
| mulconst = 0x0101010101010101ULL; |
| break; |
| case 1: |
| mulconst = 0x0001000100010001ULL; |
| break; |
| case 2: |
| mulconst = 0x0000000100000001ULL; |
| break; |
| case 3: |
| mulconst = 0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (mulconst) { |
| tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst); |
| } |
| write_vec_element(s, tcg_tmp, rt, 0, MO_64); |
| if (is_q) { |
| write_vec_element(s, tcg_tmp, rt, 1, MO_64); |
| } |
| tcg_temp_free_i64(tcg_tmp); |
| clear_vec_high(s, is_q, rt); |
| } else { |
| /* Load/store one element per register */ |
| if (is_load) { |
| do_vec_ld(s, rt, index, tcg_addr, scale); |
| } else { |
| do_vec_st(s, rt, index, tcg_addr, scale); |
| } |
| } |
| tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes); |
| rt = (rt + 1) % 32; |
| } |
| |
| if (is_postidx) { |
| int rm = extract32(insn, 16, 5); |
| if (rm == 31) { |
| tcg_gen_mov_i64(tcg_rn, tcg_addr); |
| } else { |
| tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); |
| } |
| } |
| tcg_temp_free_i64(tcg_addr); |
| } |
| |
| /* Loads and stores */ |
| static void disas_ldst(DisasContext *s, uint32_t insn) |
| { |
| switch (extract32(insn, 24, 6)) { |
| case 0x08: /* Load/store exclusive */ |
| disas_ldst_excl(s, insn); |
| break; |
| case 0x18: case 0x1c: /* Load register (literal) */ |
| disas_ld_lit(s, insn); |
| break; |
| case 0x28: case 0x29: |
| case 0x2c: case 0x2d: /* Load/store pair (all forms) */ |
| disas_ldst_pair(s, insn); |
| break; |
| case 0x38: case 0x39: |
| case 0x3c: case 0x3d: /* Load/store register (all forms) */ |
| disas_ldst_reg(s, insn); |
| break; |
| case 0x0c: /* AdvSIMD load/store multiple structures */ |
| disas_ldst_multiple_struct(s, insn); |
| break; |
| case 0x0d: /* AdvSIMD load/store single structure */ |
| disas_ldst_single_struct(s, insn); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* PC-rel. addressing |
| * 31 30 29 28 24 23 5 4 0 |
| * +----+-------+-----------+-------------------+------+ |
| * | op | immlo | 1 0 0 0 0 | immhi | Rd | |
| * +----+-------+-----------+-------------------+------+ |
| */ |
| static void disas_pc_rel_adr(DisasContext *s, uint32_t insn) |
| { |
| unsigned int page, rd; |
| uint64_t base; |
| uint64_t offset; |
| |
| page = extract32(insn, 31, 1); |
| /* SignExtend(immhi:immlo) -> offset */ |
| offset = sextract64(insn, 5, 19); |
| offset = offset << 2 | extract32(insn, 29, 2); |
| rd = extract32(insn, 0, 5); |
| base = s->pc - 4; |
| |
| if (page) { |
| /* ADRP (page based) */ |
| base &= ~0xfff; |
| offset <<= 12; |
| } |
| |
| tcg_gen_movi_i64(cpu_reg(s, rd), base + offset); |
| } |
| |
| /* |
| * Add/subtract (immediate) |
| * |
| * 31 30 29 28 24 23 22 21 10 9 5 4 0 |
| * +--+--+--+-----------+-----+-------------+-----+-----+ |
| * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd | |
| * +--+--+--+-----------+-----+-------------+-----+-----+ |
| * |
| * sf: 0 -> 32bit, 1 -> 64bit |
| * op: 0 -> add , 1 -> sub |
| * S: 1 -> set flags |
| * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12 |
| */ |
| static void disas_add_sub_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| uint64_t imm = extract32(insn, 10, 12); |
| int shift = extract32(insn, 22, 2); |
| bool setflags = extract32(insn, 29, 1); |
| bool sub_op = extract32(insn, 30, 1); |
| bool is_64bit = extract32(insn, 31, 1); |
| |
| TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); |
| TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); |
| TCGv_i64 tcg_result; |
| |
| switch (shift) { |
| case 0x0: |
| break; |
| case 0x1: |
| imm <<= 12; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| tcg_result = tcg_temp_new_i64(); |
| if (!setflags) { |
| if (sub_op) { |
| tcg_gen_subi_i64(tcg_result, tcg_rn, imm); |
| } else { |
| tcg_gen_addi_i64(tcg_result, tcg_rn, imm); |
| } |
| } else { |
| TCGv_i64 tcg_imm = tcg_const_i64(imm); |
| if (sub_op) { |
| gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); |
| } else { |
| gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); |
| } |
| tcg_temp_free_i64(tcg_imm); |
| } |
| |
| if (is_64bit) { |
| tcg_gen_mov_i64(tcg_rd, tcg_result); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_result); |
| } |
| |
| tcg_temp_free_i64(tcg_result); |
| } |
| |
| /* The input should be a value in the bottom e bits (with higher |
| * bits zero); returns that value replicated into every element |
| * of size e in a 64 bit integer. |
| */ |
| static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) |
| { |
| assert(e != 0); |
| while (e < 64) { |
| mask |= mask << e; |
| e *= 2; |
| } |
| return mask; |
| } |
| |
| /* Return a value with the bottom len bits set (where 0 < len <= 64) */ |
| static inline uint64_t bitmask64(unsigned int length) |
| { |
| assert(length > 0 && length <= 64); |
| return ~0ULL >> (64 - length); |
| } |
| |
| /* Simplified variant of pseudocode DecodeBitMasks() for the case where we |
| * only require the wmask. Returns false if the imms/immr/immn are a reserved |
| * value (ie should cause a guest UNDEF exception), and true if they are |
| * valid, in which case the decoded bit pattern is written to result. |
| */ |
| static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, |
| unsigned int imms, unsigned int immr) |
| { |
| uint64_t mask; |
| unsigned e, levels, s, r; |
| int len; |
| |
| assert(immn < 2 && imms < 64 && immr < 64); |
| |
| /* The bit patterns we create here are 64 bit patterns which |
| * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or |
| * 64 bits each. Each element contains the same value: a run |
| * of between 1 and e-1 non-zero bits, rotated within the |
| * element by between 0 and e-1 bits. |
| * |
| * The element size and run length are encoded into immn (1 bit) |
| * and imms (6 bits) as follows: |
| * 64 bit elements: immn = 1, imms = <length of run - 1> |
| * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> |
| * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> |
| * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> |
| * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> |
| * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> |
| * Notice that immn = 0, imms = 11111x is the only combination |
| * not covered by one of the above options; this is reserved. |
| * Further, <length of run - 1> all-ones is a reserved pattern. |
| * |
| * In all cases the rotation is by immr % e (and immr is 6 bits). |
| */ |
| |
| /* First determine the element size */ |
| len = 31 - clz32((immn << 6) | (~imms & 0x3f)); |
| if (len < 1) { |
| /* This is the immn == 0, imms == 0x11111x case */ |
| return false; |
| } |
| e = 1 << len; |
| |
| levels = e - 1; |
| s = imms & levels; |
| r = immr & levels; |
| |
| if (s == levels) { |
| /* <length of run - 1> mustn't be all-ones. */ |
| return false; |
| } |
| |
| /* Create the value of one element: s+1 set bits rotated |
| * by r within the element (which is e bits wide)... |
| */ |
| mask = bitmask64(s + 1); |
| if (r) { |
| mask = (mask >> r) | (mask << (e - r)); |
| mask &= bitmask64(e); |
| } |
| /* ...then replicate the element over the whole 64 bit value */ |
| mask = bitfield_replicate(mask, e); |
| *result = mask; |
| return true; |
| } |
| |
| /* Logical (immediate) |
| * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 |
| * +----+-----+-------------+---+------+------+------+------+ |
| * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | |
| * +----+-----+-------------+---+------+------+------+------+ |
| */ |
| static void disas_logic_imm(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, opc, is_n, immr, imms, rn, rd; |
| TCGv_i64 tcg_rd, tcg_rn; |
| uint64_t wmask; |
| bool is_and = false; |
| |
| sf = extract32(insn, 31, 1); |
| opc = extract32(insn, 29, 2); |
| is_n = extract32(insn, 22, 1); |
| immr = extract32(insn, 16, 6); |
| imms = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| if (!sf && is_n) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (opc == 0x3) { /* ANDS */ |
| tcg_rd = cpu_reg(s, rd); |
| } else { |
| tcg_rd = cpu_reg_sp(s, rd); |
| } |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { |
| /* some immediate field values are reserved */ |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!sf) { |
| wmask &= 0xffffffff; |
| } |
| |
| switch (opc) { |
| case 0x3: /* ANDS */ |
| case 0x0: /* AND */ |
| tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); |
| is_and = true; |
| break; |
| case 0x1: /* ORR */ |
| tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); |
| break; |
| case 0x2: /* EOR */ |
| tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); |
| break; |
| default: |
| assert(FALSE); /* must handle all above */ |
| break; |
| } |
| |
| if (!sf && !is_and) { |
| /* zero extend final result; we know we can skip this for AND |
| * since the immediate had the high 32 bits clear. |
| */ |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| |
| if (opc == 3) { /* ANDS */ |
| gen_logic_CC(sf, tcg_rd); |
| } |
| } |
| |
| /* |
| * Move wide (immediate) |
| * |
| * 31 30 29 28 23 22 21 20 5 4 0 |
| * +--+-----+-------------+-----+----------------+------+ |
| * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | |
| * +--+-----+-------------+-----+----------------+------+ |
| * |
| * sf: 0 -> 32 bit, 1 -> 64 bit |
| * opc: 00 -> N, 10 -> Z, 11 -> K |
| * hw: shift/16 (0,16, and sf only 32, 48) |
| */ |
| static void disas_movw_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| uint64_t imm = extract32(insn, 5, 16); |
| int sf = extract32(insn, 31, 1); |
| int opc = extract32(insn, 29, 2); |
| int pos = extract32(insn, 21, 2) << 4; |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_imm; |
| |
| if (!sf && (pos >= 32)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opc) { |
| case 0: /* MOVN */ |
| case 2: /* MOVZ */ |
| imm <<= pos; |
| if (opc == 0) { |
| imm = ~imm; |
| } |
| if (!sf) { |
| imm &= 0xffffffffu; |
| } |
| tcg_gen_movi_i64(tcg_rd, imm); |
| break; |
| case 3: /* MOVK */ |
| tcg_imm = tcg_const_i64(imm); |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16); |
| tcg_temp_free_i64(tcg_imm); |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* Bitfield |
| * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 |
| * +----+-----+-------------+---+------+------+------+------+ |
| * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | |
| * +----+-----+-------------+---+------+------+------+------+ |
| */ |
| static void disas_bitfield(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; |
| TCGv_i64 tcg_rd, tcg_tmp; |
| |
| sf = extract32(insn, 31, 1); |
| opc = extract32(insn, 29, 2); |
| n = extract32(insn, 22, 1); |
| ri = extract32(insn, 16, 6); |
| si = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| bitsize = sf ? 64 : 32; |
| |
| if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| tcg_rd = cpu_reg(s, rd); |
| |
| /* Suppress the zero-extend for !sf. Since RI and SI are constrained |
| to be smaller than bitsize, we'll never reference data outside the |
| low 32-bits anyway. */ |
| tcg_tmp = read_cpu_reg(s, rn, 1); |
| |
| /* Recognize simple(r) extractions. */ |
| if (si >= ri) { |
| /* Wd<s-r:0> = Wn<s:r> */ |
| len = (si - ri) + 1; |
| if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */ |
| tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); |
| goto done; |
| } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */ |
| tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); |
| return; |
| } |
| /* opc == 1, BXFIL fall through to deposit */ |
| tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len); |
| pos = 0; |
| } else { |
| /* Handle the ri > si case with a deposit |
| * Wd<32+s-r,32-r> = Wn<s:0> |
| */ |
| len = si + 1; |
| pos = (bitsize - ri) & (bitsize - 1); |
| } |
| |
| if (opc == 0 && len < ri) { |
| /* SBFM: sign extend the destination field from len to fill |
| the balance of the word. Let the deposit below insert all |
| of those sign bits. */ |
| tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); |
| len = ri; |
| } |
| |
| if (opc == 1) { /* BFM, BXFIL */ |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); |
| } else { |
| /* SBFM or UBFM: We start with zero, and we haven't modified |
| any bits outside bitsize, therefore the zero-extension |
| below is unneeded. */ |
| tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); |
| return; |
| } |
| |
| done: |
| if (!sf) { /* zero extend final result */ |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } |
| |
| /* Extract |
| * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 |
| * +----+------+-------------+---+----+------+--------+------+------+ |
| * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | |
| * +----+------+-------------+---+----+------+--------+------+------+ |
| */ |
| static void disas_extract(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; |
| |
| sf = extract32(insn, 31, 1); |
| n = extract32(insn, 22, 1); |
| rm = extract32(insn, 16, 5); |
| imm = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| op21 = extract32(insn, 29, 2); |
| op0 = extract32(insn, 21, 1); |
| bitsize = sf ? 64 : 32; |
| |
| if (sf != n || op21 || op0 || imm >= bitsize) { |
| unallocated_encoding(s); |
| } else { |
| TCGv_i64 tcg_rd, tcg_rm, tcg_rn; |
| |
| tcg_rd = cpu_reg(s, rd); |
| |
| if (unlikely(imm == 0)) { |
| /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, |
| * so an extract from bit 0 is a special case. |
| */ |
| if (sf) { |
| tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); |
| } |
| } else if (rm == rn) { /* ROR */ |
| tcg_rm = cpu_reg(s, rm); |
| if (sf) { |
| tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm); |
| } else { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tmp, tcg_rm); |
| tcg_gen_rotri_i32(tmp, tmp, imm); |
| tcg_gen_extu_i32_i64(tcg_rd, tmp); |
| tcg_temp_free_i32(tmp); |
| } |
| } else { |
| tcg_rm = read_cpu_reg(s, rm, sf); |
| tcg_rn = read_cpu_reg(s, rn, sf); |
| tcg_gen_shri_i64(tcg_rm, tcg_rm, imm); |
| tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm); |
| tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn); |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } |
| } |
| } |
| |
| /* Data processing - immediate */ |
| static void disas_data_proc_imm(DisasContext *s, uint32_t insn) |
| { |
| switch (extract32(insn, 23, 6)) { |
| case 0x20: case 0x21: /* PC-rel. addressing */ |
| disas_pc_rel_adr(s, insn); |
| break; |
| case 0x22: case 0x23: /* Add/subtract (immediate) */ |
| disas_add_sub_imm(s, insn); |
| break; |
| case 0x24: /* Logical (immediate) */ |
| disas_logic_imm(s, insn); |
| break; |
| case 0x25: /* Move wide (immediate) */ |
| disas_movw_imm(s, insn); |
| break; |
| case 0x26: /* Bitfield */ |
| disas_bitfield(s, insn); |
| break; |
| case 0x27: /* Extract */ |
| disas_extract(s, insn); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* Shift a TCGv src by TCGv shift_amount, put result in dst. |
| * Note that it is the caller's responsibility to ensure that the |
| * shift amount is in range (ie 0..31 or 0..63) and provide the ARM |
| * mandated semantics for out of range shifts. |
| */ |
| static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, |
| enum a64_shift_type shift_type, TCGv_i64 shift_amount) |
| { |
| switch (shift_type) { |
| case A64_SHIFT_TYPE_LSL: |
| tcg_gen_shl_i64(dst, src, shift_amount); |
| break; |
| case A64_SHIFT_TYPE_LSR: |
| tcg_gen_shr_i64(dst, src, shift_amount); |
| break; |
| case A64_SHIFT_TYPE_ASR: |
| if (!sf) { |
| tcg_gen_ext32s_i64(dst, src); |
| } |
| tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); |
| break; |
| case A64_SHIFT_TYPE_ROR: |
| if (sf) { |
| tcg_gen_rotr_i64(dst, src, shift_amount); |
| } else { |
| TCGv_i32 t0, t1; |
| t0 = tcg_temp_new_i32(); |
| t1 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t0, src); |
| tcg_gen_extrl_i64_i32(t1, shift_amount); |
| tcg_gen_rotr_i32(t0, t0, t1); |
| tcg_gen_extu_i32_i64(dst, t0); |
| tcg_temp_free_i32(t0); |
| tcg_temp_free_i32(t1); |
| } |
| break; |
| default: |
| assert(FALSE); /* all shift types should be handled */ |
| break; |
| } |
| |
| if (!sf) { /* zero extend final result */ |
| tcg_gen_ext32u_i64(dst, dst); |
| } |
| } |
| |
| /* Shift a TCGv src by immediate, put result in dst. |
| * The shift amount must be in range (this should always be true as the |
| * relevant instructions will UNDEF on bad shift immediates). |
| */ |
| static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, |
| enum a64_shift_type shift_type, unsigned int shift_i) |
| { |
| assert(shift_i < (sf ? 64 : 32)); |
| |
| if (shift_i == 0) { |
| tcg_gen_mov_i64(dst, src); |
| } else { |
| TCGv_i64 shift_const; |
| |
| shift_const = tcg_const_i64(shift_i); |
| shift_reg(dst, src, sf, shift_type, shift_const); |
| tcg_temp_free_i64(shift_const); |
| } |
| } |
| |
| /* Logical (shifted register) |
| * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 |
| * +----+-----+-----------+-------+---+------+--------+------+------+ |
| * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | |
| * +----+-----+-----------+-------+---+------+--------+------+------+ |
| */ |
| static void disas_logic_reg(DisasContext *s, uint32_t insn) |
| { |
| TCGv_i64 tcg_rd, tcg_rn, tcg_rm; |
| unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; |
| |
| sf = extract32(insn, 31, 1); |
| opc = extract32(insn, 29, 2); |
| shift_type = extract32(insn, 22, 2); |
| invert = extract32(insn, 21, 1); |
| rm = extract32(insn, 16, 5); |
| shift_amount = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| if (!sf && (shift_amount & (1 << 5))) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| tcg_rd = cpu_reg(s, rd); |
| |
| if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { |
| /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for |
| * register-register MOV and MVN, so it is worth special casing. |
| */ |
| tcg_rm = cpu_reg(s, rm); |
| if (invert) { |
| tcg_gen_not_i64(tcg_rd, tcg_rm); |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } else { |
| if (sf) { |
| tcg_gen_mov_i64(tcg_rd, tcg_rm); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rm); |
| } |
| } |
| return; |
| } |
| |
| tcg_rm = read_cpu_reg(s, rm, sf); |
| |
| if (shift_amount) { |
| shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); |
| } |
| |
| tcg_rn = cpu_reg(s, rn); |
| |
| switch (opc | (invert << 2)) { |
| case 0: /* AND */ |
| case 3: /* ANDS */ |
| tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 1: /* ORR */ |
| tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 2: /* EOR */ |
| tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 4: /* BIC */ |
| case 7: /* BICS */ |
| tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 5: /* ORN */ |
| tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 6: /* EON */ |
| tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| default: |
| assert(FALSE); |
| break; |
| } |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| |
| if (opc == 3) { |
| gen_logic_CC(sf, tcg_rd); |
| } |
| } |
| |
| /* |
| * Add/subtract (extended register) |
| * |
| * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| |
| * +--+--+--+-----------+-----+--+-------+------+------+----+----+ |
| * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | |
| * +--+--+--+-----------+-----+--+-------+------+------+----+----+ |
| * |
| * sf: 0 -> 32bit, 1 -> 64bit |
| * op: 0 -> add , 1 -> sub |
| * S: 1 -> set flags |
| * opt: 00 |
| * option: extension type (see DecodeRegExtend) |
| * imm3: optional shift to Rm |
| * |
| * Rd = Rn + LSL(extend(Rm), amount) |
| */ |
| static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int imm3 = extract32(insn, 10, 3); |
| int option = extract32(insn, 13, 3); |
| int rm = extract32(insn, 16, 5); |
| bool setflags = extract32(insn, 29, 1); |
| bool sub_op = extract32(insn, 30, 1); |
| bool sf = extract32(insn, 31, 1); |
| |
| TCGv_i64 tcg_rm, tcg_rn; /* temps */ |
| TCGv_i64 tcg_rd; |
| TCGv_i64 tcg_result; |
| |
| if (imm3 > 4) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* non-flag setting ops may use SP */ |
| if (!setflags) { |
| tcg_rd = cpu_reg_sp(s, rd); |
| } else { |
| tcg_rd = cpu_reg(s, rd); |
| } |
| tcg_rn = read_cpu_reg_sp(s, rn, sf); |
| |
| tcg_rm = read_cpu_reg(s, rm, sf); |
| ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); |
| |
| tcg_result = tcg_temp_new_i64(); |
| |
| if (!setflags) { |
| if (sub_op) { |
| tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); |
| } else { |
| tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); |
| } |
| } else { |
| if (sub_op) { |
| gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); |
| } else { |
| gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); |
| } |
| } |
| |
| if (sf) { |
| tcg_gen_mov_i64(tcg_rd, tcg_result); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_result); |
| } |
| |
| tcg_temp_free_i64(tcg_result); |
| } |
| |
| /* |
| * Add/subtract (shifted register) |
| * |
| * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 |
| * +--+--+--+-----------+-----+--+-------+---------+------+------+ |
| * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | |
| * +--+--+--+-----------+-----+--+-------+---------+------+------+ |
| * |
| * sf: 0 -> 32bit, 1 -> 64bit |
| * op: 0 -> add , 1 -> sub |
| * S: 1 -> set flags |
| * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED |
| * imm6: Shift amount to apply to Rm before the add/sub |
| */ |
| static void disas_add_sub_reg(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int imm6 = extract32(insn, 10, 6); |
| int rm = extract32(insn, 16, 5); |
| int shift_type = extract32(insn, 22, 2); |
| bool setflags = extract32(insn, 29, 1); |
| bool sub_op = extract32(insn, 30, 1); |
| bool sf = extract32(insn, 31, 1); |
| |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_rn, tcg_rm; |
| TCGv_i64 tcg_result; |
| |
| if ((shift_type == 3) || (!sf && (imm6 > 31))) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| tcg_rn = read_cpu_reg(s, rn, sf); |
| tcg_rm = read_cpu_reg(s, rm, sf); |
| |
| shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); |
| |
| tcg_result = tcg_temp_new_i64(); |
| |
| if (!setflags) { |
| if (sub_op) { |
| tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); |
| } else { |
| tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); |
| } |
| } else { |
| if (sub_op) { |
| gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); |
| } else { |
| gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); |
| } |
| } |
| |
| if (sf) { |
| tcg_gen_mov_i64(tcg_rd, tcg_result); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_result); |
| } |
| |
| tcg_temp_free_i64(tcg_result); |
| } |
| |
| /* Data-processing (3 source) |
| * |
| * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 |
| * +--+------+-----------+------+------+----+------+------+------+ |
| * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | |
| * +--+------+-----------+------+------+----+------+------+------+ |
| */ |
| static void disas_data_proc_3src(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int ra = extract32(insn, 10, 5); |
| int rm = extract32(insn, 16, 5); |
| int op_id = (extract32(insn, 29, 3) << 4) | |
| (extract32(insn, 21, 3) << 1) | |
| extract32(insn, 15, 1); |
| bool sf = extract32(insn, 31, 1); |
| bool is_sub = extract32(op_id, 0, 1); |
| bool is_high = extract32(op_id, 2, 1); |
| bool is_signed = false; |
| TCGv_i64 tcg_op1; |
| TCGv_i64 tcg_op2; |
| TCGv_i64 tcg_tmp; |
| |
| /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ |
| switch (op_id) { |
| case 0x42: /* SMADDL */ |
| case 0x43: /* SMSUBL */ |
| case 0x44: /* SMULH */ |
| is_signed = true; |
| break; |
| case 0x0: /* MADD (32bit) */ |
| case 0x1: /* MSUB (32bit) */ |
| case 0x40: /* MADD (64bit) */ |
| case 0x41: /* MSUB (64bit) */ |
| case 0x4a: /* UMADDL */ |
| case 0x4b: /* UMSUBL */ |
| case 0x4c: /* UMULH */ |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (is_high) { |
| TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_rn = cpu_reg(s, rn); |
| TCGv_i64 tcg_rm = cpu_reg(s, rm); |
| |
| if (is_signed) { |
| tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); |
| } else { |
| tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); |
| } |
| |
| tcg_temp_free_i64(low_bits); |
| return; |
| } |
| |
| tcg_op1 = tcg_temp_new_i64(); |
| tcg_op2 = tcg_temp_new_i64(); |
| tcg_tmp = tcg_temp_new_i64(); |
| |
| if (op_id < 0x42) { |
| tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); |
| tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); |
| } else { |
| if (is_signed) { |
| tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); |
| tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); |
| } else { |
| tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); |
| tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); |
| } |
| } |
| |
| if (ra == 31 && !is_sub) { |
| /* Special-case MADD with rA == XZR; it is the standard MUL alias */ |
| tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); |
| } else { |
| tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); |
| if (is_sub) { |
| tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); |
| } else { |
| tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); |
| } |
| } |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); |
| } |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_tmp); |
| } |
| |
| /* Add/subtract (with carry) |
| * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 |
| * +--+--+--+------------------------+------+---------+------+-----+ |
| * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd | |
| * +--+--+--+------------------------+------+---------+------+-----+ |
| * [000000] |
| */ |
| |
| static void disas_adc_sbc(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, op, setflags, rm, rn, rd; |
| TCGv_i64 tcg_y, tcg_rn, tcg_rd; |
| |
| if (extract32(insn, 10, 6) != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| sf = extract32(insn, 31, 1); |
| op = extract32(insn, 30, 1); |
| setflags = extract32(insn, 29, 1); |
| rm = extract32(insn, 16, 5); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| tcg_rd = cpu_reg(s, rd); |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (op) { |
| tcg_y = new_tmp_a64(s); |
| tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); |
| } else { |
| tcg_y = cpu_reg(s, rm); |
| } |
| |
| if (setflags) { |
| gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); |
| } else { |
| gen_adc(sf, tcg_rd, tcg_rn, tcg_y); |
| } |
| } |
| |
| /* Conditional compare (immediate / register) |
| * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 |
| * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ |
| * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | |
| * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ |
| * [1] y [0] [0] |
| */ |
| static void disas_cc(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, op, y, cond, rn, nzcv, is_imm; |
| TCGv_i32 tcg_t0, tcg_t1, tcg_t2; |
| TCGv_i64 tcg_tmp, tcg_y, tcg_rn; |
| DisasCompare c; |
| |
| if (!extract32(insn, 29, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (insn & (1 << 10 | 1 << 4)) { |
| unallocated_encoding(s); |
| return; |
| } |
| sf = extract32(insn, 31, 1); |
| op = extract32(insn, 30, 1); |
| is_imm = extract32(insn, 11, 1); |
| y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ |
| cond = extract32(insn, 12, 4); |
| rn = extract32(insn, 5, 5); |
| nzcv = extract32(insn, 0, 4); |
| |
| /* Set T0 = !COND. */ |
| tcg_t0 = tcg_temp_new_i32(); |
| arm_test_cc(&c, cond); |
| tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); |
| arm_free_cc(&c); |
| |
| /* Load the arguments for the new comparison. */ |
| if (is_imm) { |
| tcg_y = new_tmp_a64(s); |
| tcg_gen_movi_i64(tcg_y, y); |
| } else { |
| tcg_y = cpu_reg(s, y); |
| } |
| tcg_rn = cpu_reg(s, rn); |
| |
| /* Set the flags for the new comparison. */ |
| tcg_tmp = tcg_temp_new_i64(); |
| if (op) { |
| gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); |
| } else { |
| gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); |
| } |
| tcg_temp_free_i64(tcg_tmp); |
| |
| /* If COND was false, force the flags to #nzcv. Compute two masks |
| * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). |
| * For tcg hosts that support ANDC, we can make do with just T1. |
| * In either case, allow the tcg optimizer to delete any unused mask. |
| */ |
| tcg_t1 = tcg_temp_new_i32(); |
| tcg_t2 = tcg_temp_new_i32(); |
| tcg_gen_neg_i32(tcg_t1, tcg_t0); |
| tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); |
| |
| if (nzcv & 8) { /* N */ |
| tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); |
| } else { |
| if (TCG_TARGET_HAS_andc_i32) { |
| tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); |
| } else { |
| tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); |
| } |
| } |
| if (nzcv & 4) { /* Z */ |
| if (TCG_TARGET_HAS_andc_i32) { |
| tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); |
| } else { |
| tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); |
| } |
| } else { |
| tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); |
| } |
| if (nzcv & 2) { /* C */ |
| tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); |
| } else { |
| if (TCG_TARGET_HAS_andc_i32) { |
| tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); |
| } else { |
| tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); |
| } |
| } |
| if (nzcv & 1) { /* V */ |
| tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); |
| } else { |
| if (TCG_TARGET_HAS_andc_i32) { |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); |
| } else { |
| tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); |
| } |
| } |
| tcg_temp_free_i32(tcg_t0); |
| tcg_temp_free_i32(tcg_t1); |
| tcg_temp_free_i32(tcg_t2); |
| } |
| |
| /* Conditional select |
| * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 |
| * +----+----+---+-----------------+------+------+-----+------+------+ |
| * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | |
| * +----+----+---+-----------------+------+------+-----+------+------+ |
| */ |
| static void disas_cond_select(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; |
| TCGv_i64 tcg_rd, zero; |
| DisasCompare64 c; |
| |
| if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { |
| /* S == 1 or op2<1> == 1 */ |
| unallocated_encoding(s); |
| return; |
| } |
| sf = extract32(insn, 31, 1); |
| else_inv = extract32(insn, 30, 1); |
| rm = extract32(insn, 16, 5); |
| cond = extract32(insn, 12, 4); |
| else_inc = extract32(insn, 10, 1); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| tcg_rd = cpu_reg(s, rd); |
| |
| a64_test_cc(&c, cond); |
| zero = tcg_const_i64(0); |
| |
| if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { |
| /* CSET & CSETM. */ |
| tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); |
| if (else_inv) { |
| tcg_gen_neg_i64(tcg_rd, tcg_rd); |
| } |
| } else { |
| TCGv_i64 t_true = cpu_reg(s, rn); |
| TCGv_i64 t_false = read_cpu_reg(s, rm, 1); |
| if (else_inv && else_inc) { |
| tcg_gen_neg_i64(t_false, t_false); |
| } else if (else_inv) { |
| tcg_gen_not_i64(t_false, t_false); |
| } else if (else_inc) { |
| tcg_gen_addi_i64(t_false, t_false, 1); |
| } |
| tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); |
| } |
| |
| tcg_temp_free_i64(zero); |
| a64_free_cc(&c); |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } |
| |
| static void handle_clz(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd, tcg_rn; |
| tcg_rd = cpu_reg(s, rd); |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (sf) { |
| tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); |
| } else { |
| TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); |
| tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); |
| tcg_temp_free_i32(tcg_tmp32); |
| } |
| } |
| |
| static void handle_cls(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd, tcg_rn; |
| tcg_rd = cpu_reg(s, rd); |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (sf) { |
| tcg_gen_clrsb_i64(tcg_rd, tcg_rn); |
| } else { |
| TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); |
| tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); |
| tcg_temp_free_i32(tcg_tmp32); |
| } |
| } |
| |
| static void handle_rbit(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd, tcg_rn; |
| tcg_rd = cpu_reg(s, rd); |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (sf) { |
| gen_helper_rbit64(tcg_rd, tcg_rn); |
| } else { |
| TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); |
| gen_helper_rbit(tcg_tmp32, tcg_tmp32); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); |
| tcg_temp_free_i32(tcg_tmp32); |
| } |
| } |
| |
| /* REV with sf==1, opcode==3 ("REV64") */ |
| static void handle_rev64(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| if (!sf) { |
| unallocated_encoding(s); |
| return; |
| } |
| tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); |
| } |
| |
| /* REV with sf==0, opcode==2 |
| * REV32 (sf==1, opcode==2) |
| */ |
| static void handle_rev32(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| |
| if (sf) { |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); |
| |
| /* bswap32_i64 requires zero high word */ |
| tcg_gen_ext32u_i64(tcg_tmp, tcg_rn); |
| tcg_gen_bswap32_i64(tcg_rd, tcg_tmp); |
| tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32); |
| tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp); |
| tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp); |
| |
| tcg_temp_free_i64(tcg_tmp); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn)); |
| tcg_gen_bswap32_i64(tcg_rd, tcg_rd); |
| } |
| } |
| |
| /* REV16 (opcode==1) */ |
| static void handle_rev16(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); |
| TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); |
| |
| tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); |
| tcg_gen_and_i64(tcg_rd, tcg_rn, mask); |
| tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); |
| tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); |
| tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); |
| |
| tcg_temp_free_i64(mask); |
| tcg_temp_free_i64(tcg_tmp); |
| } |
| |
| /* Data-processing (1 source) |
| * 31 30 29 28 21 20 16 15 10 9 5 4 0 |
| * +----+---+---+-----------------+---------+--------+------+------+ |
| * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | |
| * +----+---+---+-----------------+---------+--------+------+------+ |
| */ |
| static void disas_data_proc_1src(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, opcode, rn, rd; |
| |
| if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| sf = extract32(insn, 31, 1); |
| opcode = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| switch (opcode) { |
| case 0: /* RBIT */ |
| handle_rbit(s, sf, rn, rd); |
| break; |
| case 1: /* REV16 */ |
| handle_rev16(s, sf, rn, rd); |
| break; |
| case 2: /* REV32 */ |
| handle_rev32(s, sf, rn, rd); |
| break; |
| case 3: /* REV64 */ |
| handle_rev64(s, sf, rn, rd); |
| break; |
| case 4: /* CLZ */ |
| handle_clz(s, sf, rn, rd); |
| break; |
| case 5: /* CLS */ |
| handle_cls(s, sf, rn, rd); |
| break; |
| } |
| } |
| |
| static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, |
| unsigned int rm, unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_n, tcg_m, tcg_rd; |
| tcg_rd = cpu_reg(s, rd); |
| |
| if (!sf && is_signed) { |
| tcg_n = new_tmp_a64(s); |
| tcg_m = new_tmp_a64(s); |
| tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); |
| tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); |
| } else { |
| tcg_n = read_cpu_reg(s, rn, sf); |
| tcg_m = read_cpu_reg(s, rm, sf); |
| } |
| |
| if (is_signed) { |
| gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); |
| } else { |
| gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); |
| } |
| |
| if (!sf) { /* zero extend final result */ |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } |
| |
| /* LSLV, LSRV, ASRV, RORV */ |
| static void handle_shift_reg(DisasContext *s, |
| enum a64_shift_type shift_type, unsigned int sf, |
| unsigned int rm, unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_shift = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); |
| |
| tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); |
| shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); |
| tcg_temp_free_i64(tcg_shift); |
| } |
| |
| /* CRC32[BHWX], CRC32C[BHWX] */ |
| static void handle_crc32(DisasContext *s, |
| unsigned int sf, unsigned int sz, bool crc32c, |
| unsigned int rm, unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_acc, tcg_val; |
| TCGv_i32 tcg_bytes; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_CRC) |
| || (sf == 1 && sz != 3) |
| || (sf == 0 && sz == 3)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (sz == 3) { |
| tcg_val = cpu_reg(s, rm); |
| } else { |
| uint64_t mask; |
| switch (sz) { |
| case 0: |
| mask = 0xFF; |
| break; |
| case 1: |
| mask = 0xFFFF; |
| break; |
| case 2: |
| mask = 0xFFFFFFFF; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_val = new_tmp_a64(s); |
| tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); |
| } |
| |
| tcg_acc = cpu_reg(s, rn); |
| tcg_bytes = tcg_const_i32(1 << sz); |
| |
| if (crc32c) { |
| gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); |
| } else { |
| gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); |
| } |
| |
| tcg_temp_free_i32(tcg_bytes); |
| } |
| |
| /* Data-processing (2 source) |
| * 31 30 29 28 21 20 16 15 10 9 5 4 0 |
| * +----+---+---+-----------------+------+--------+------+------+ |
| * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | |
| * +----+---+---+-----------------+------+--------+------+------+ |
| */ |
| static void disas_data_proc_2src(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, rm, opcode, rn, rd; |
| sf = extract32(insn, 31, 1); |
| rm = extract32(insn, 16, 5); |
| opcode = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| if (extract32(insn, 29, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 2: /* UDIV */ |
| handle_div(s, false, sf, rm, rn, rd); |
| break; |
| case 3: /* SDIV */ |
| handle_div(s, true, sf, rm, rn, rd); |
| break; |
| case 8: /* LSLV */ |
| handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); |
| break; |
| case 9: /* LSRV */ |
| handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); |
| break; |
| case 10: /* ASRV */ |
| handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); |
| break; |
| case 11: /* RORV */ |
| handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); |
| break; |
| case 16: |
| case 17: |
| case 18: |
| case 19: |
| case 20: |
| case 21: |
| case 22: |
| case 23: /* CRC32 */ |
| { |
| int sz = extract32(opcode, 0, 2); |
| bool crc32c = extract32(opcode, 2, 1); |
| handle_crc32(s, sf, sz, crc32c, rm, rn, rd); |
| break; |
| } |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* Data processing - register */ |
| static void disas_data_proc_reg(DisasContext *s, uint32_t insn) |
| { |
| switch (extract32(insn, 24, 5)) { |
| case 0x0a: /* Logical (shifted register) */ |
| disas_logic_reg(s, insn); |
| break; |
| case 0x0b: /* Add/subtract */ |
| if (insn & (1 << 21)) { /* (extended register) */ |
| disas_add_sub_ext_reg(s, insn); |
| } else { |
| disas_add_sub_reg(s, insn); |
| } |
| break; |
| case 0x1b: /* Data-processing (3 source) */ |
| disas_data_proc_3src(s, insn); |
| break; |
| case 0x1a: |
| switch (extract32(insn, 21, 3)) { |
| case 0x0: /* Add/subtract (with carry) */ |
| disas_adc_sbc(s, insn); |
| break; |
| case 0x2: /* Conditional compare */ |
| disas_cc(s, insn); /* both imm and reg forms */ |
| break; |
| case 0x4: /* Conditional select */ |
| disas_cond_select(s, insn); |
| break; |
| case 0x6: /* Data-processing */ |
| if (insn & (1 << 30)) { /* (1 source) */ |
| disas_data_proc_1src(s, insn); |
| } else { /* (2 source) */ |
| disas_data_proc_2src(s, insn); |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| static void handle_fp_compare(DisasContext *s, bool is_double, |
| unsigned int rn, unsigned int rm, |
| bool cmp_with_zero, bool signal_all_nans) |
| { |
| TCGv_i64 tcg_flags = tcg_temp_new_i64(); |
| TCGv_ptr fpst = get_fpstatus_ptr(); |
| |
| if (is_double) { |
| TCGv_i64 tcg_vn, tcg_vm; |
| |
| tcg_vn = read_fp_dreg(s, rn); |
| if (cmp_with_zero) { |
| tcg_vm = tcg_const_i64(0); |
| } else { |
| tcg_vm = read_fp_dreg(s, rm); |
| } |
| if (signal_all_nans) { |
| gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } else { |
| gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } |
| tcg_temp_free_i64(tcg_vn); |
| tcg_temp_free_i64(tcg_vm); |
| } else { |
| TCGv_i32 tcg_vn, tcg_vm; |
| |
| tcg_vn = read_fp_sreg(s, rn); |
| if (cmp_with_zero) { |
| tcg_vm = tcg_const_i32(0); |
| } else { |
| tcg_vm = read_fp_sreg(s, rm); |
| } |
| if (signal_all_nans) { |
| gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } else { |
| gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } |
| tcg_temp_free_i32(tcg_vn); |
| tcg_temp_free_i32(tcg_vm); |
| } |
| |
| tcg_temp_free_ptr(fpst); |
| |
| gen_set_nzcv(tcg_flags); |
| |
| tcg_temp_free_i64(tcg_flags); |
| } |
| |
| /* Floating point compare |
| * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | |
| * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ |
| */ |
| static void disas_fp_compare(DisasContext *s, uint32_t insn) |
| { |
| unsigned int mos, type, rm, op, rn, opc, op2r; |
| |
| mos = extract32(insn, 29, 3); |
| type = extract32(insn, 22, 2); /* 0 = single, 1 = double */ |
| rm = extract32(insn, 16, 5); |
| op = extract32(insn, 14, 2); |
| rn = extract32(insn, 5, 5); |
| opc = extract32(insn, 3, 2); |
| op2r = extract32(insn, 0, 3); |
| |
| if (mos || op || op2r || type > 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2); |
| } |
| |
| /* Floating point conditional compare |
| * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 |
| * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | |
| * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ |
| */ |
| static void disas_fp_ccomp(DisasContext *s, uint32_t insn) |
| { |
| unsigned int mos, type, rm, cond, rn, op, nzcv; |
| TCGv_i64 tcg_flags; |
| TCGLabel *label_continue = NULL; |
| |
| mos = extract32(insn, 29, 3); |
| type = extract32(insn, 22, 2); /* 0 = single, 1 = double */ |
| rm = extract32(insn, 16, 5); |
| cond = extract32(insn, 12, 4); |
| rn = extract32(insn, 5, 5); |
| op = extract32(insn, 4, 1); |
| nzcv = extract32(insn, 0, 4); |
| |
| if (mos || type > 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (cond < 0x0e) { /* not always */ |
| TCGLabel *label_match = gen_new_label(); |
| label_continue = gen_new_label(); |
| arm_gen_test_cc(cond, label_match); |
| /* nomatch: */ |
| tcg_flags = tcg_const_i64(nzcv << 28); |
| gen_set_nzcv(tcg_flags); |
| tcg_temp_free_i64(tcg_flags); |
| tcg_gen_br(label_continue); |
| gen_set_label(label_match); |
| } |
| |
| handle_fp_compare(s, type, rn, rm, false, op); |
| |
| if (cond < 0x0e) { |
| gen_set_label(label_continue); |
| } |
| } |
| |
| /* Floating point conditional select |
| * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------+------+-----+------+------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | |
| * +---+---+---+-----------+------+---+------+------+-----+------+------+ |
| */ |
| static void disas_fp_csel(DisasContext *s, uint32_t insn) |
| { |
| unsigned int mos, type, rm, cond, rn, rd; |
| TCGv_i64 t_true, t_false, t_zero; |
| DisasCompare64 c; |
| |
| mos = extract32(insn, 29, 3); |
| type = extract32(insn, 22, 2); /* 0 = single, 1 = double */ |
| rm = extract32(insn, 16, 5); |
| cond = extract32(insn, 12, 4); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| if (mos || type > 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| /* Zero extend sreg inputs to 64 bits now. */ |
| t_true = tcg_temp_new_i64(); |
| t_false = tcg_temp_new_i64(); |
| read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32); |
| read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32); |
| |
| a64_test_cc(&c, cond); |
| t_zero = tcg_const_i64(0); |
| tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false); |
| tcg_temp_free_i64(t_zero); |
| tcg_temp_free_i64(t_false); |
| a64_free_cc(&c); |
| |
| /* Note that sregs write back zeros to the high bits, |
| and we've already done the zero-extension. */ |
| write_fp_dreg(s, rd, t_true); |
| tcg_temp_free_i64(t_true); |
| } |
| |
| /* Floating-point data-processing (1 source) - single precision */ |
| static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 tcg_op; |
| TCGv_i32 tcg_res; |
| |
| fpst = get_fpstatus_ptr(); |
| tcg_op = read_fp_sreg(s, rn); |
| tcg_res = tcg_temp_new_i32(); |
| |
| switch (opcode) { |
| case 0x0: /* FMOV */ |
| tcg_gen_mov_i32(tcg_res, tcg_op); |
| break; |
| case 0x1: /* FABS */ |
| gen_helper_vfp_abss(tcg_res, tcg_op); |
| break; |
| case 0x2: /* FNEG */ |
| gen_helper_vfp_negs(tcg_res, tcg_op); |
| break; |
| case 0x3: /* FSQRT */ |
| gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); |
| break; |
| case 0x8: /* FRINTN */ |
| case 0x9: /* FRINTP */ |
| case 0xa: /* FRINTM */ |
| case 0xb: /* FRINTZ */ |
| case 0xc: /* FRINTA */ |
| { |
| TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7)); |
| |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| gen_helper_rints(tcg_res, tcg_op, fpst); |
| |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| tcg_temp_free_i32(tcg_rmode); |
| break; |
| } |
| case 0xe: /* FRINTX */ |
| gen_helper_rints_exact(tcg_res, tcg_op, fpst); |
| break; |
| case 0xf: /* FRINTI */ |
| gen_helper_rints(tcg_res, tcg_op, fpst); |
| break; |
| default: |
| abort(); |
| } |
| |
| write_fp_sreg(s, rd, tcg_res); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tcg_op); |
| tcg_temp_free_i32(tcg_res); |
| } |
| |
| /* Floating-point data-processing (1 source) - double precision */ |
| static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) |
| { |
| TCGv_ptr fpst; |
| TCGv_i64 tcg_op; |
| TCGv_i64 tcg_res; |
| |
| switch (opcode) { |
| case 0x0: /* FMOV */ |
| gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); |
| return; |
| } |
| |
| fpst = get_fpstatus_ptr(); |
| tcg_op = read_fp_dreg(s, rn); |
| tcg_res = tcg_temp_new_i64(); |
| |
| switch (opcode) { |
| case 0x1: /* FABS */ |
| gen_helper_vfp_absd(tcg_res, tcg_op); |
| break; |
| case 0x2: /* FNEG */ |
| gen_helper_vfp_negd(tcg_res, tcg_op); |
| break; |
| case 0x3: /* FSQRT */ |
| gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); |
| break; |
| case 0x8: /* FRINTN */ |
| case 0x9: /* FRINTP */ |
| case 0xa: /* FRINTM */ |
| case 0xb: /* FRINTZ */ |
| case 0xc: /* FRINTA */ |
| { |
| TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7)); |
| |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| gen_helper_rintd(tcg_res, tcg_op, fpst); |
| |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| tcg_temp_free_i32(tcg_rmode); |
| break; |
| } |
| case 0xe: /* FRINTX */ |
| gen_helper_rintd_exact(tcg_res, tcg_op, fpst); |
| break; |
| case 0xf: /* FRINTI */ |
| gen_helper_rintd(tcg_res, tcg_op, fpst); |
| break; |
| default: |
| abort(); |
| } |
| |
| write_fp_dreg(s, rd, tcg_res); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i64(tcg_op); |
| tcg_temp_free_i64(tcg_res); |
| } |
| |
| static void handle_fp_fcvt(DisasContext *s, int opcode, |
| int rd, int rn, int dtype, int ntype) |
| { |
| switch (ntype) { |
| case 0x0: |
| { |
| TCGv_i32 tcg_rn = read_fp_sreg(s, rn); |
| if (dtype == 1) { |
| /* Single to double */ |
| TCGv_i64 tcg_rd = tcg_temp_new_i64(); |
| gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); |
| write_fp_dreg(s, rd, tcg_rd); |
| tcg_temp_free_i64(tcg_rd); |
| } else { |
| /* Single to half */ |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env); |
| /* write_fp_sreg is OK here because top half of tcg_rd is zero */ |
| write_fp_sreg(s, rd, tcg_rd); |
| tcg_temp_free_i32(tcg_rd); |
| } |
| tcg_temp_free_i32(tcg_rn); |
| break; |
| } |
| case 0x1: |
| { |
| TCGv_i64 tcg_rn = read_fp_dreg(s, rn); |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| if (dtype == 0) { |
| /* Double to single */ |
| gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); |
| } else { |
| /* Double to half */ |
| gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env); |
| /* write_fp_sreg is OK here because top half of tcg_rd is zero */ |
| } |
| write_fp_sreg(s, rd, tcg_rd); |
| tcg_temp_free_i32(tcg_rd); |
| tcg_temp_free_i64(tcg_rn); |
| break; |
| } |
| case 0x3: |
| { |
| TCGv_i32 tcg_rn = read_fp_sreg(s, rn); |
| tcg_gen_ext16u_i32(tcg_rn, tcg_rn); |
| if (dtype == 0) { |
| /* Half to single */ |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env); |
| write_fp_sreg(s, rd, tcg_rd); |
| tcg_temp_free_i32(tcg_rd); |
| } else { |
| /* Half to double */ |
| TCGv_i64 tcg_rd = tcg_temp_new_i64(); |
| gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env); |
| write_fp_dreg(s, rd, tcg_rd); |
| tcg_temp_free_i64(tcg_rd); |
| } |
| tcg_temp_free_i32(tcg_rn); |
| break; |
| } |
| default: |
| abort(); |
| } |
| } |
| |
| /* Floating point data-processing (1 source) |
| * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+--------+-----------+------+------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | |
| * +---+---+---+-----------+------+---+--------+-----------+------+------+ |
| */ |
| static void disas_fp_1src(DisasContext *s, uint32_t insn) |
| { |
| int type = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 15, 6); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| |
| switch (opcode) { |
| case 0x4: case 0x5: case 0x7: |
| { |
| /* FCVT between half, single and double precision */ |
| int dtype = extract32(opcode, 0, 2); |
| if (type == 2 || dtype == type) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_fp_fcvt(s, opcode, rd, rn, dtype, type); |
| break; |
| } |
| case 0x0 ... 0x3: |
| case 0x8 ... 0xc: |
| case 0xe ... 0xf: |
| /* 32-to-32 and 64-to-64 ops */ |
| switch (type) { |
| case 0: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_fp_1src_single(s, opcode, rd, rn); |
| break; |
| case 1: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_fp_1src_double(s, opcode, rd, rn); |
| break; |
| default: |
| unallocated_encoding(s); |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* Floating-point data-processing (2 source) - single precision */ |
| static void handle_fp_2src_single(DisasContext *s, int opcode, |
| int rd, int rn, int rm) |
| { |
| TCGv_i32 tcg_op1; |
| TCGv_i32 tcg_op2; |
| TCGv_i32 tcg_res; |
| TCGv_ptr fpst; |
| |
| tcg_res = tcg_temp_new_i32(); |
| fpst = get_fpstatus_ptr(); |
| tcg_op1 = read_fp_sreg(s, rn); |
| tcg_op2 = read_fp_sreg(s, rm); |
| |
| switch (opcode) { |
| case 0x0: /* FMUL */ |
| gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1: /* FDIV */ |
| gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x2: /* FADD */ |
| gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x3: /* FSUB */ |
| gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x4: /* FMAX */ |
| gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5: /* FMIN */ |
| gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x6: /* FMAXNM */ |
| gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x7: /* FMINNM */ |
| gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x8: /* FNMUL */ |
| gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); |
| gen_helper_vfp_negs(tcg_res, tcg_res); |
| break; |
| } |
| |
| write_fp_sreg(s, rd, tcg_res); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| tcg_temp_free_i32(tcg_res); |
| } |
| |
| /* Floating-point data-processing (2 source) - double precision */ |
| static void handle_fp_2src_double(DisasContext *s, int opcode, |
| int rd, int rn, int rm) |
| { |
| TCGv_i64 tcg_op1; |
| TCGv_i64 tcg_op2; |
| TCGv_i64 tcg_res; |
| TCGv_ptr fpst; |
| |
| tcg_res = tcg_temp_new_i64(); |
| fpst = get_fpstatus_ptr(); |
| tcg_op1 = read_fp_dreg(s, rn); |
| tcg_op2 = read_fp_dreg(s, rm); |
| |
| switch (opcode) { |
| case 0x0: /* FMUL */ |
| gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1: /* FDIV */ |
| gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x2: /* FADD */ |
| gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x3: /* FSUB */ |
| gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x4: /* FMAX */ |
| gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5: /* FMIN */ |
| gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x6: /* FMAXNM */ |
| gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x7: /* FMINNM */ |
| gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x8: /* FNMUL */ |
| gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); |
| gen_helper_vfp_negd(tcg_res, tcg_res); |
| break; |
| } |
| |
| write_fp_dreg(s, rd, tcg_res); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_res); |
| } |
| |
| /* Floating point data-processing (2 source) |
| * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------+--------+-----+------+------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | |
| * +---+---+---+-----------+------+---+------+--------+-----+------+------+ |
| */ |
| static void disas_fp_2src(DisasContext *s, uint32_t insn) |
| { |
| int type = extract32(insn, 22, 2); |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int rm = extract32(insn, 16, 5); |
| int opcode = extract32(insn, 12, 4); |
| |
| if (opcode > 8) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (type) { |
| case 0: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fp_2src_single(s, opcode, rd, rn, rm); |
| break; |
| case 1: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fp_2src_double(s, opcode, rd, rn, rm); |
| break; |
| default: |
| unallocated_encoding(s); |
| } |
| } |
| |
| /* Floating-point data-processing (3 source) - single precision */ |
| static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, |
| int rd, int rn, int rm, int ra) |
| { |
| TCGv_i32 tcg_op1, tcg_op2, tcg_op3; |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| TCGv_ptr fpst = get_fpstatus_ptr(); |
| |
| tcg_op1 = read_fp_sreg(s, rn); |
| tcg_op2 = read_fp_sreg(s, rm); |
| tcg_op3 = read_fp_sreg(s, ra); |
| |
| /* These are fused multiply-add, and must be done as one |
| * floating point operation with no rounding between the |
| * multiplication and addition steps. |
| * NB that doing the negations here as separate steps is |
| * correct : an input NaN should come out with its sign bit |
| * flipped if it is a negated-input. |
| */ |
| if (o1 == true) { |
| gen_helper_vfp_negs(tcg_op3, tcg_op3); |
| } |
| |
| if (o0 != o1) { |
| gen_helper_vfp_negs(tcg_op1, tcg_op1); |
| } |
| |
| gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); |
| |
| write_fp_sreg(s, rd, tcg_res); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| tcg_temp_free_i32(tcg_op3); |
| tcg_temp_free_i32(tcg_res); |
| } |
| |
| /* Floating-point data-processing (3 source) - double precision */ |
| static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, |
| int rd, int rn, int rm, int ra) |
| { |
| TCGv_i64 tcg_op1, tcg_op2, tcg_op3; |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| TCGv_ptr fpst = get_fpstatus_ptr(); |
| |
| tcg_op1 = read_fp_dreg(s, rn); |
| tcg_op2 = read_fp_dreg(s, rm); |
| tcg_op3 = read_fp_dreg(s, ra); |
| |
| /* These are fused multiply-add, and must be done as one |
| * floating point operation with no rounding between the |
| * multiplication and addition steps. |
| * NB that doing the negations here as separate steps is |
| * correct : an input NaN should come out with its sign bit |
| * flipped if it is a negated-input. |
| */ |
| if (o1 == true) { |
| gen_helper_vfp_negd(tcg_op3, tcg_op3); |
| } |
| |
| if (o0 != o1) { |
| gen_helper_vfp_negd(tcg_op1, tcg_op1); |
| } |
| |
| gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); |
| |
| write_fp_dreg(s, rd, tcg_res); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_op3); |
| tcg_temp_free_i64(tcg_res); |
| } |
| |
| /* Floating point data-processing (3 source) |
| * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 |
| * +---+---+---+-----------+------+----+------+----+------+------+------+ |
| * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | |
| * +---+---+---+-----------+------+----+------+----+------+------+------+ |
| */ |
| static void disas_fp_3src(DisasContext *s, uint32_t insn) |
| { |
| int type = extract32(insn, 22, 2); |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int ra = extract32(insn, 10, 5); |
| int rm = extract32(insn, 16, 5); |
| bool o0 = extract32(insn, 15, 1); |
| bool o1 = extract32(insn, 21, 1); |
| |
| switch (type) { |
| case 0: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); |
| break; |
| case 1: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); |
| break; |
| default: |
| unallocated_encoding(s); |
| } |
| } |
| |
| /* The imm8 encodes the sign bit, enough bits to represent an exponent in |
| * the range 01....1xx to 10....0xx, and the most significant 4 bits of |
| * the mantissa; see VFPExpandImm() in the v8 ARM ARM. |
| */ |
| static uint64_t vfp_expand_imm(int size, uint8_t imm8) |
| { |
| uint64_t imm; |
| |
| switch (size) { |
| case MO_64: |
| imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | |
| (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) | |
| extract32(imm8, 0, 6); |
| imm <<= 48; |
| break; |
| case MO_32: |
| imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | |
| (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) | |
| (extract32(imm8, 0, 6) << 3); |
| imm <<= 16; |
| break; |
| case MO_16: |
| imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | |
| (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) | |
| (extract32(imm8, 0, 6) << 6); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return imm; |
| } |
| |
| /* Floating point immediate |
| * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------------+-------+------+------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | |
| * +---+---+---+-----------+------+---+------------+-------+------+------+ |
| */ |
| static void disas_fp_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int imm8 = extract32(insn, 13, 8); |
| int is_double = extract32(insn, 22, 2); |
| uint64_t imm; |
| TCGv_i64 tcg_res; |
| |
| if (is_double > 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| imm = vfp_expand_imm(MO_32 + is_double, imm8); |
| |
| tcg_res = tcg_const_i64(imm); |
| write_fp_dreg(s, rd, tcg_res); |
| tcg_temp_free_i64(tcg_res); |
| } |
| |
| /* Handle floating point <=> fixed point conversions. Note that we can |
| * also deal with fp <=> integer conversions as a special case (scale == 64) |
| * OPTME: consider handling that special case specially or at least skipping |
| * the call to scalbn in the helpers for zero shifts. |
| */ |
| static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, |
| bool itof, int rmode, int scale, int sf, int type) |
| { |
| bool is_signed = !(opcode & 1); |
| bool is_double = type; |
| TCGv_ptr tcg_fpstatus; |
| TCGv_i32 tcg_shift; |
| |
| tcg_fpstatus = get_fpstatus_ptr(); |
| |
| tcg_shift = tcg_const_i32(64 - scale); |
| |
| if (itof) { |
| TCGv_i64 tcg_int = cpu_reg(s, rn); |
| if (!sf) { |
| TCGv_i64 tcg_extend = new_tmp_a64(s); |
| |
| if (is_signed) { |
| tcg_gen_ext32s_i64(tcg_extend, tcg_int); |
| } else { |
| tcg_gen_ext32u_i64(tcg_extend, tcg_int); |
| } |
| |
| tcg_int = tcg_extend; |
| } |
| |
| if (is_double) { |
| TCGv_i64 tcg_double = tcg_temp_new_i64(); |
| if (is_signed) { |
| gen_helper_vfp_sqtod(tcg_double, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_uqtod(tcg_double, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } |
| write_fp_dreg(s, rd, tcg_double); |
| tcg_temp_free_i64(tcg_double); |
| } else { |
| TCGv_i32 tcg_single = tcg_temp_new_i32(); |
| if (is_signed) { |
| gen_helper_vfp_sqtos(tcg_single, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_uqtos(tcg_single, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } |
| write_fp_sreg(s, rd, tcg_single); |
| tcg_temp_free_i32(tcg_single); |
| } |
| } else { |
| TCGv_i64 tcg_int = cpu_reg(s, rd); |
| TCGv_i32 tcg_rmode; |
| |
| if (extract32(opcode, 2, 1)) { |
| /* There are too many rounding modes to all fit into rmode, |
| * so FCVTA[US] is a special case. |
| */ |
| rmode = FPROUNDING_TIEAWAY; |
| } |
| |
| tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); |
| |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| |
| if (is_double) { |
| TCGv_i64 tcg_double = read_fp_dreg(s, rn); |
| if (is_signed) { |
| if (!sf) { |
| gen_helper_vfp_tosld(tcg_int, tcg_double, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_tosqd(tcg_int, tcg_double, |
| tcg_shift, tcg_fpstatus); |
| } |
| } else { |
| if (!sf) { |
| gen_helper_vfp_tould(tcg_int, tcg_double, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_touqd(tcg_int, tcg_double, |
| tcg_shift, tcg_fpstatus); |
| } |
| } |
| tcg_temp_free_i64(tcg_double); |
| } else { |
| TCGv_i32 tcg_single = read_fp_sreg(s, rn); |
| if (sf) { |
| if (is_signed) { |
| gen_helper_vfp_tosqs(tcg_int, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_touqs(tcg_int, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } |
| } else { |
| TCGv_i32 tcg_dest = tcg_temp_new_i32(); |
| if (is_signed) { |
| gen_helper_vfp_tosls(tcg_dest, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_touls(tcg_dest, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } |
| tcg_gen_extu_i32_i64(tcg_int, tcg_dest); |
| tcg_temp_free_i32(tcg_dest); |
| } |
| tcg_temp_free_i32(tcg_single); |
| } |
| |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| tcg_temp_free_i32(tcg_rmode); |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_int, tcg_int); |
| } |
| } |
| |
| tcg_temp_free_ptr(tcg_fpstatus); |
| tcg_temp_free_i32(tcg_shift); |
| } |
| |
| /* Floating point <-> fixed point conversions |
| * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 |
| * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ |
| * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | |
| * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ |
| */ |
| static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int scale = extract32(insn, 10, 6); |
| int opcode = extract32(insn, 16, 3); |
| int rmode = extract32(insn, 19, 2); |
| int type = extract32(insn, 22, 2); |
| bool sbit = extract32(insn, 29, 1); |
| bool sf = extract32(insn, 31, 1); |
| bool itof; |
| |
| if (sbit || (type > 1) |
| || (!sf && scale < 32)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch ((rmode << 3) | opcode) { |
| case 0x2: /* SCVTF */ |
| case 0x3: /* UCVTF */ |
| itof = true; |
| break; |
| case 0x18: /* FCVTZS */ |
| case 0x19: /* FCVTZU */ |
| itof = false; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); |
| } |
| |
| static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) |
| { |
| /* FMOV: gpr to or from float, double, or top half of quad fp reg, |
| * without conversion. |
| */ |
| |
| if (itof) { |
| TCGv_i64 tcg_rn = cpu_reg(s, rn); |
| |
| switch (type) { |
| case 0: |
| { |
| /* 32 bit */ |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_ext32u_i64(tmp, tcg_rn); |
| tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64)); |
| tcg_gen_movi_i64(tmp, 0); |
| tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd)); |
| tcg_temp_free_i64(tmp); |
| break; |
| } |
| case 1: |
| { |
| /* 64 bit */ |
| TCGv_i64 tmp = tcg_const_i64(0); |
| tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64)); |
| tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd)); |
| tcg_temp_free_i64(tmp); |
| break; |
| } |
| case 2: |
| /* 64 bit to top half. */ |
| tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); |
| break; |
| } |
| } else { |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| |
| switch (type) { |
| case 0: |
| /* 32 bit */ |
| tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); |
| break; |
| case 1: |
| /* 64 bit */ |
| tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); |
| break; |
| case 2: |
| /* 64 bits from top half */ |
| tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); |
| break; |
| } |
| } |
| } |
| |
| /* Floating point <-> integer conversions |
| * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 |
| * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ |
| * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | |
| * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ |
| */ |
| static void disas_fp_int_conv(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 16, 3); |
| int rmode = extract32(insn, 19, 2); |
| int type = extract32(insn, 22, 2); |
| bool sbit = extract32(insn, 29, 1); |
| bool sf = extract32(insn, 31, 1); |
| |
| if (sbit) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (opcode > 5) { |
| /* FMOV */ |
| bool itof = opcode & 1; |
| |
| if (rmode >= 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (sf << 3 | type << 1 | rmode) { |
| case 0x0: /* 32 bit */ |
| case 0xa: /* 64 bit */ |
| case 0xd: /* 64 bit to top half of quad */ |
| break; |
| default: |
| /* all other sf/type/rmode combinations are invalid */ |
| unallocated_encoding(s); |
| break; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fmov(s, rd, rn, type, itof); |
| } else { |
| /* actual FP conversions */ |
| bool itof = extract32(opcode, 1, 1); |
| |
| if (type > 1 || (rmode != 0 && opcode > 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); |
| } |
| } |
| |
| /* FP-specific subcases of table C3-6 (SIMD and FP data processing) |
| * 31 30 29 28 25 24 0 |
| * +---+---+---+---------+-----------------------------+ |
| * | | 0 | | 1 1 1 1 | | |
| * +---+---+---+---------+-----------------------------+ |
| */ |
| static void disas_data_proc_fp(DisasContext *s, uint32_t insn) |
| { |
| if (extract32(insn, 24, 1)) { |
| /* Floating point data-processing (3 source) */ |
| disas_fp_3src(s, insn); |
| } else if (extract32(insn, 21, 1) == 0) { |
| /* Floating point to fixed point conversions */ |
| disas_fp_fixed_conv(s, insn); |
| } else { |
| switch (extract32(insn, 10, 2)) { |
| case 1: |
| /* Floating point conditional compare */ |
| disas_fp_ccomp(s, insn); |
| break; |
| case 2: |
| /* Floating point data-processing (2 source) */ |
| disas_fp_2src(s, insn); |
| break; |
| case 3: |
| /* Floating point conditional select */ |
| disas_fp_csel(s, insn); |
| break; |
| case 0: |
| switch (ctz32(extract32(insn, 12, 4))) { |
| case 0: /* [15:12] == xxx1 */ |
| /* Floating point immediate */ |
| disas_fp_imm(s, insn); |
| break; |
| case 1: /* [15:12] == xx10 */ |
| /* Floating point compare */ |
| disas_fp_compare(s, insn); |
| break; |
| case 2: /* [15:12] == x100 */ |
| /* Floating point data-processing (1 source) */ |
| disas_fp_1src(s, insn); |
| break; |
| case 3: /* [15:12] == 1000 */ |
| unallocated_encoding(s); |
| break; |
| default: /* [15:12] == 0000 */ |
| /* Floating point <-> integer conversions */ |
| disas_fp_int_conv(s, insn); |
| break; |
| } |
| break; |
| } |
| } |
| } |
| |
| static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, |
| int pos) |
| { |
| /* Extract 64 bits from the middle of two concatenated 64 bit |
| * vector register slices left:right. The extracted bits start |
| * at 'pos' bits into the right (least significant) side. |
| * We return the result in tcg_right, and guarantee not to |
| * trash tcg_left. |
| */ |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| assert(pos > 0 && pos < 64); |
| |
| tcg_gen_shri_i64(tcg_right, tcg_right, pos); |
| tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); |
| tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); |
| |
| tcg_temp_free_i64(tcg_tmp); |
| } |
| |
| /* EXT |
| * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 |
| * +---+---+-------------+-----+---+------+---+------+---+------+------+ |
| * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | |
| * +---+---+-------------+-----+---+------+---+------+---+------+------+ |
| */ |
| static void disas_simd_ext(DisasContext *s, uint32_t insn) |
| { |
| int is_q = extract32(insn, 30, 1); |
| int op2 = extract32(insn, 22, 2); |
| int imm4 = extract32(insn, 11, 4); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| int pos = imm4 << 3; |
| TCGv_i64 tcg_resl, tcg_resh; |
| |
| if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_resh = tcg_temp_new_i64(); |
| tcg_resl = tcg_temp_new_i64(); |
| |
| /* Vd gets bits starting at pos bits into Vm:Vn. This is |
| * either extracting 128 bits from a 128:128 concatenation, or |
| * extracting 64 bits from a 64:64 concatenation. |
| */ |
| if (!is_q) { |
| read_vec_element(s, tcg_resl, rn, 0, MO_64); |
| if (pos != 0) { |
| read_vec_element(s, tcg_resh, rm, 0, MO_64); |
| do_ext64(s, tcg_resh, tcg_resl, pos); |
| } |
| tcg_gen_movi_i64(tcg_resh, 0); |
| } else { |
| TCGv_i64 tcg_hh; |
| typedef struct { |
| int reg; |
| int elt; |
| } EltPosns; |
| EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; |
| EltPosns *elt = eltposns; |
| |
| if (pos >= 64) { |
| elt++; |
| pos -= 64; |
| } |
| |
| read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); |
| elt++; |
| read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); |
| elt++; |
| if (pos != 0) { |
| do_ext64(s, tcg_resh, tcg_resl, pos); |
| tcg_hh = tcg_temp_new_i64(); |
| read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); |
| do_ext64(s, tcg_hh, tcg_resh, pos); |
| tcg_temp_free_i64(tcg_hh); |
| } |
| } |
| |
| write_vec_element(s, tcg_resl, rd, 0, MO_64); |
| tcg_temp_free_i64(tcg_resl); |
| write_vec_element(s, tcg_resh, rd, 1, MO_64); |
| tcg_temp_free_i64(tcg_resh); |
| } |
| |
| /* TBL/TBX |
| * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 |
| * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ |
| * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | |
| * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ |
| */ |
| static void disas_simd_tb(DisasContext *s, uint32_t insn) |
| { |
| int op2 = extract32(insn, 22, 2); |
| int is_q = extract32(insn, 30, 1); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| int is_tblx = extract32(insn, 12, 1); |
| int len = extract32(insn, 13, 2); |
| TCGv_i64 tcg_resl, tcg_resh, tcg_idx; |
| TCGv_i32 tcg_regno, tcg_numregs; |
| |
| if (op2 != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| /* This does a table lookup: for every byte element in the input |
| * we index into a table formed from up to four vector registers, |
| * and then the output is the result of the lookups. Our helper |
| * function does the lookup operation for a single 64 bit part of |
| * the input. |
| */ |
| tcg_resl = tcg_temp_new_i64(); |
| tcg_resh = tcg_temp_new_i64(); |
| |
| if (is_tblx) { |
| read_vec_element(s, tcg_resl, rd, 0, MO_64); |
| } else { |
| tcg_gen_movi_i64(tcg_resl, 0); |
| } |
| if (is_tblx && is_q) { |
| read_vec_element(s, tcg_resh, rd, 1, MO_64); |
| } else { |
| tcg_gen_movi_i64(tcg_resh, 0); |
| } |
| |
| tcg_idx = tcg_temp_new_i64(); |
| tcg_regno = tcg_const_i32(rn); |
| tcg_numregs = tcg_const_i32(len + 1); |
| read_vec_element(s, tcg_idx, rm, 0, MO_64); |
| gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx, |
| tcg_regno, tcg_numregs); |
| if (is_q) { |
| read_vec_element(s, tcg_idx, rm, 1, MO_64); |
| gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx, |
| tcg_regno, tcg_numregs); |
| } |
| tcg_temp_free_i64(tcg_idx); |
| tcg_temp_free_i32(tcg_regno); |
| tcg_temp_free_i32(tcg_numregs); |
| |
| write_vec_element(s, tcg_resl, rd, 0, MO_64); |
| tcg_temp_free_i64(tcg_resl); |
| write_vec_element(s, tcg_resh, rd, 1, MO_64); |
| tcg_temp_free_i64(tcg_resh); |
| } |
| |
| /* ZIP/UZP/TRN |
| * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 |
| * +---+---+-------------+------+---+------+---+------------------+------+ |
| * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | |
| * +---+---+-------------+------+---+------+---+------------------+------+ |
| */ |
| static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int rm = extract32(insn, 16, 5); |
| int size = extract32(insn, 22, 2); |
| /* opc field bits [1:0] indicate ZIP/UZP/TRN; |
| * bit 2 indicates 1 vs 2 variant of the insn. |
| */ |
| int opcode = extract32(insn, 12, 2); |
| bool part = extract32(insn, 14, 1); |
| bool is_q = extract32(insn, 30, 1); |
| int esize = 8 << size; |
| int i, ofs; |
| int datasize = is_q ? 128 : 64; |
| int elements = datasize / esize; |
| TCGv_i64 tcg_res, tcg_resl, tcg_resh; |
| |
| if (opcode == 0 || (size == 3 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_resl = tcg_const_i64(0); |
| tcg_resh = tcg_const_i64(0); |
| tcg_res = tcg_temp_new_i64(); |
| |
| for (i = 0; i < elements; i++) { |
| switch (opcode) { |
| case 1: /* UZP1/2 */ |
| { |
| int midpoint = elements / 2; |
| if (i < midpoint) { |
| read_vec_element(s, tcg_res, rn, 2 * i + part, size); |
| } else { |
| read_vec_element(s, tcg_res, rm, |
| 2 * (i - midpoint) + part, size); |
| } |
| break; |
| } |
| case 2: /* TRN1/2 */ |
| if (i & 1) { |
| read_vec_element(s, tcg_res, rm, (i & ~1) + part, size); |
| } else { |
| read_vec_element(s, tcg_res, rn, (i & ~1) + part, size); |
| } |
| break; |
| case 3: /* ZIP1/2 */ |
| { |
| int base = part * elements / 2; |
| if (i & 1) { |
| read_vec_element(s, tcg_res, rm, base + (i >> 1), size); |
| } else { |
| read_vec_element(s, tcg_res, rn, base + (i >> 1), size); |
| } |
| break; |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| |
| ofs = i * esize; |
| if (ofs < 64) { |
| tcg_gen_shli_i64(tcg_res, tcg_res, ofs); |
| tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res); |
| } else { |
| tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64); |
| tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res); |
| } |
| } |
| |
| tcg_temp_free_i64(tcg_res); |
| |
| write_vec_element(s, tcg_resl, rd, 0, MO_64); |
| tcg_temp_free_i64(tcg_resl); |
| write_vec_element(s, tcg_resh, rd, 1, MO_64); |
| tcg_temp_free_i64(tcg_resh); |
| } |
| |
| static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2, |
| int opc, bool is_min, TCGv_ptr fpst) |
| { |
| /* Helper function for disas_simd_across_lanes: do a single precision |
| * min/max operation on the specified two inputs, |
| * and return the result in tcg_elt1. |
| */ |
| if (opc == 0xc) { |
| if (is_min) { |
| gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst); |
| } else { |
| gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst); |
| } |
| } else { |
| assert(opc == 0xf); |
| if (is_min) { |
| gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst); |
| } else { |
| gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst); |
| } |
| } |
| } |
| |
| /* AdvSIMD across lanes |
| * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+-----------+--------+-----+------+------+ |
| * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | |
| * +---+---+---+-----------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 5); |
| bool is_q = extract32(insn, 30, 1); |
| bool is_u = extract32(insn, 29, 1); |
| bool is_fp = false; |
| bool is_min = false; |
| int esize; |
| int elements; |
| int i; |
| TCGv_i64 tcg_res, tcg_elt; |
| |
| switch (opcode) { |
| case 0x1b: /* ADDV */ |
| if (is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x3: /* SADDLV, UADDLV */ |
| case 0xa: /* SMAXV, UMAXV */ |
| case 0x1a: /* SMINV, UMINV */ |
| if (size == 3 || (size == 2 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0xc: /* FMAXNMV, FMINNMV */ |
| case 0xf: /* FMAXV, FMINV */ |
| if (!is_u || !is_q || extract32(size, 0, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* Bit 1 of size field encodes min vs max, and actual size is always |
| * 32 bits: adjust the size variable so following code can rely on it |
| */ |
| is_min = extract32(size, 1, 1); |
| is_fp = true; |
| size = 2; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| esize = 8 << size; |
| elements = (is_q ? 128 : 64) / esize; |
| |
| tcg_res = tcg_temp_new_i64(); |
| tcg_elt = tcg_temp_new_i64(); |
| |
| /* These instructions operate across all lanes of a vector |
| * to produce a single result. We can guarantee that a 64 |
| * bit intermediate is sufficient: |
| * + for [US]ADDLV the maximum element size is 32 bits, and |
| * the result type is 64 bits |
| * + for FMAX*V, FMIN*V, ADDV the intermediate type is the |
| * same as the element size, which is 32 bits at most |
| * For the integer operations we can choose to work at 64 |
| * or 32 bits and truncate at the end; for simplicity |
| * we use 64 bits always. The floating point |
| * ops do require 32 bit intermediates, though. |
| */ |
| if (!is_fp) { |
| read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); |
| |
| for (i = 1; i < elements; i++) { |
| read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); |
| |
| switch (opcode) { |
| case 0x03: /* SADDLV / UADDLV */ |
| case 0x1b: /* ADDV */ |
| tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); |
| break; |
| case 0x0a: /* SMAXV / UMAXV */ |
| tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, |
| tcg_res, |
| tcg_res, tcg_elt, tcg_res, tcg_elt); |
| break; |
| case 0x1a: /* SMINV / UMINV */ |
| tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE, |
| tcg_res, |
| tcg_res, tcg_elt, tcg_res, tcg_elt); |
| break; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| } |
| } else { |
| /* Floating point ops which work on 32 bit (single) intermediates. |
| * Note that correct NaN propagation requires that we do these |
| * operations in exactly the order specified by the pseudocode. |
| */ |
| TCGv_i32 tcg_elt1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_elt2 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_elt3 = tcg_temp_new_i32(); |
| TCGv_ptr fpst = get_fpstatus_ptr(); |
| |
| assert(esize == 32); |
| assert(elements == 4); |
| |
| read_vec_element(s, tcg_elt, rn, 0, MO_32); |
| tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt); |
| read_vec_element(s, tcg_elt, rn, 1, MO_32); |
| tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt); |
| |
| do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst); |
| |
| read_vec_element(s, tcg_elt, rn, 2, MO_32); |
| tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt); |
| read_vec_element(s, tcg_elt, rn, 3, MO_32); |
| tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt); |
| |
| do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst); |
| |
| do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst); |
| |
| tcg_gen_extu_i32_i64(tcg_res, tcg_elt1); |
| tcg_temp_free_i32(tcg_elt1); |
| tcg_temp_free_i32(tcg_elt2); |
| tcg_temp_free_i32(tcg_elt3); |
| tcg_temp_free_ptr(fpst); |
| } |
| |
| tcg_temp_free_i64(tcg_elt); |
| |
| /* Now truncate the result to the width required for the final output */ |
| if (opcode == 0x03) { |
| /* SADDLV, UADDLV: result is 2*esize */ |
| size++; |
| } |
| |
| switch (size) { |
| case 0: |
| tcg_gen_ext8u_i64(tcg_res, tcg_res); |
| break; |
| case 1: |
| tcg_gen_ext16u_i64(tcg_res, tcg_res); |
| break; |
| case 2: |
| tcg_gen_ext32u_i64(tcg_res, tcg_res); |
| break; |
| case 3: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_dreg(s, rd, tcg_res); |
| tcg_temp_free_i64(tcg_res); |
| } |
| |
| /* DUP (Element, Vector) |
| * |
| * 31 30 29 21 20 16 15 10 9 5 4 0 |
| * +---+---+-------------------+--------+-------------+------+------+ |
| * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | |
| * +---+---+-------------------+--------+-------------+------+------+ |
| * |
| * size: encoded in imm5 (see ARM ARM LowestSetBit()) |
| */ |
| static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, |
| int imm5) |
| { |
| int size = ctz32(imm5); |
| int index = imm5 >> (size + 1); |
| |
| if (size > 3 || (size == 3 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), |
| vec_reg_offset(s, rn, index, size), |
| is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* DUP (element, scalar) |
| * 31 21 20 16 15 10 9 5 4 0 |
| * +-----------------------+--------+-------------+------+------+ |
| * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | |
| * +-----------------------+--------+-------------+------+------+ |
| */ |
| static void handle_simd_dupes(DisasContext *s, int rd, int rn, |
| int imm5) |
| { |
| int size = ctz32(imm5); |
| int index; |
| TCGv_i64 tmp; |
| |
| if (size > 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| index = imm5 >> (size + 1); |
| |
| /* This instruction just extracts the specified element and |
| * zero-extends it into the bottom of the destination register. |
| */ |
| tmp = tcg_temp_new_i64(); |
| read_vec_element(s, tmp, rn, index, size); |
| write_fp_dreg(s, rd, tmp); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| /* DUP (General) |
| * |
| * 31 30 29 21 20 16 15 10 9 5 4 0 |
| * +---+---+-------------------+--------+-------------+------+------+ |
| * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | |
| * +---+---+-------------------+--------+-------------+------+------+ |
| * |
| * size: encoded in imm5 (see ARM ARM LowestSetBit()) |
| */ |
| static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, |
| int imm5) |
| { |
| int size = ctz32(imm5); |
| uint32_t dofs, oprsz, maxsz; |
| |
| if (size > 3 || ((size == 3) && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| dofs = vec_full_reg_offset(s, rd); |
| oprsz = is_q ? 16 : 8; |
| maxsz = vec_full_reg_size(s); |
| |
| tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); |
| } |
| |
| /* INS (Element) |
| * |
| * 31 21 20 16 15 14 11 10 9 5 4 0 |
| * +-----------------------+--------+------------+---+------+------+ |
| * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | |
| * +-----------------------+--------+------------+---+------+------+ |
| * |
| * size: encoded in imm5 (see ARM ARM LowestSetBit()) |
| * index: encoded in imm5<4:size+1> |
| */ |
| static void handle_simd_inse(DisasContext *s, int rd, int rn, |
| int imm4, int imm5) |
| { |
| int size = ctz32(imm5); |
| int src_index, dst_index; |
| TCGv_i64 tmp; |
| |
| if (size > 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| dst_index = extract32(imm5, 1+size, 5); |
| src_index = extract32(imm4, size, 4); |
| |
| tmp = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tmp, rn, src_index, size); |
| write_vec_element(s, tmp, rd, dst_index, size); |
| |
| tcg_temp_free_i64(tmp); |
| } |
| |
| |
| /* INS (General) |
| * |
| * 31 21 20 16 15 10 9 5 4 0 |
| * +-----------------------+--------+-------------+------+------+ |
| * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | |
| * +-----------------------+--------+-------------+------+------+ |
| * |
| * size: encoded in imm5 (see ARM ARM LowestSetBit()) |
| * index: encoded in imm5<4:size+1> |
| */ |
| static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) |
| { |
| int size = ctz32(imm5); |
| int idx; |
| |
| if (size > 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| idx = extract32(imm5, 1 + size, 4 - size); |
| write_vec_element(s, cpu_reg(s, rn), rd, idx, size); |
| } |
| |
| /* |
| * UMOV (General) |
| * SMOV (General) |
| * |
| * 31 30 29 21 20 16 15 12 10 9 5 4 0 |
| * +---+---+-------------------+--------+-------------+------+------+ |
| * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | |
| * +---+---+-------------------+--------+-------------+------+------+ |
| * |
| * U: unsigned when set |
| * size: encoded in imm5 (see ARM ARM LowestSetBit()) |
| */ |
| static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, |
| int rn, int rd, int imm5) |
| { |
| int size = ctz32(imm5); |
| int element; |
| TCGv_i64 tcg_rd; |
| |
| /* Check for UnallocatedEncodings */ |
| if (is_signed) { |
| if (size > 2 || (size == 2 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| } else { |
| if (size > 3 |
| || (size < 3 && is_q) |
| || (size == 3 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| element = extract32(imm5, 1+size, 4); |
| |
| tcg_rd = cpu_reg(s, rd); |
| read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); |
| if (is_signed && !is_q) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } |
| |
| /* AdvSIMD copy |
| * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 |
| * +---+---+----+-----------------+------+---+------+---+------+------+ |
| * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | |
| * +---+---+----+-----------------+------+---+------+---+------+------+ |
| */ |
| static void disas_simd_copy(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int imm4 = extract32(insn, 11, 4); |
| int op = extract32(insn, 29, 1); |
| int is_q = extract32(insn, 30, 1); |
| int imm5 = extract32(insn, 16, 5); |
| |
| if (op) { |
| if (is_q) { |
| /* INS (element) */ |
| handle_simd_inse(s, rd, rn, imm4, imm5); |
| } else { |
| unallocated_encoding(s); |
| } |
| } else { |
| switch (imm4) { |
| case 0: |
| /* DUP (element - vector) */ |
| handle_simd_dupe(s, is_q, rd, rn, imm5); |
| break; |
| case 1: |
| /* DUP (general) */ |
| handle_simd_dupg(s, is_q, rd, rn, imm5); |
| break; |
| case 3: |
| if (is_q) { |
| /* INS (general) */ |
| handle_simd_insg(s, rd, rn, imm5); |
| } else { |
| unallocated_encoding(s); |
| } |
| break; |
| case 5: |
| case 7: |
| /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ |
| handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| } |
| |
| /* AdvSIMD modified immediate |
| * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 |
| * +---+---+----+---------------------+-----+-------+----+---+-------+------+ |
| * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | |
| * +---+---+----+---------------------+-----+-------+----+---+-------+------+ |
| * |
| * There are a number of operations that can be carried out here: |
| * MOVI - move (shifted) imm into register |
| * MVNI - move inverted (shifted) imm into register |
| * ORR - bitwise OR of (shifted) imm with register |
| * BIC - bitwise clear of (shifted) imm with register |
| */ |
| static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int cmode = extract32(insn, 12, 4); |
| int cmode_3_1 = extract32(cmode, 1, 3); |
| int cmode_0 = extract32(cmode, 0, 1); |
| int o2 = extract32(insn, 11, 1); |
| uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); |
| bool is_neg = extract32(insn, 29, 1); |
| bool is_q = extract32(insn, 30, 1); |
| uint64_t imm = 0; |
| |
| if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| /* See AdvSIMDExpandImm() in ARM ARM */ |
| switch (cmode_3_1) { |
| case 0: /* Replicate(Zeros(24):imm8, 2) */ |
| case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */ |
| case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */ |
| case 3: /* Replicate(imm8:Zeros(24), 2) */ |
| { |
| int shift = cmode_3_1 * 8; |
| imm = bitfield_replicate(abcdefgh << shift, 32); |
| break; |
| } |
| case 4: /* Replicate(Zeros(8):imm8, 4) */ |
| case 5: /* Replicate(imm8:Zeros(8), 4) */ |
| { |
| int shift = (cmode_3_1 & 0x1) * 8; |
| imm = bitfield_replicate(abcdefgh << shift, 16); |
| break; |
| } |
| case 6: |
| if (cmode_0) { |
| /* Replicate(Zeros(8):imm8:Ones(16), 2) */ |
| imm = (abcdefgh << 16) | 0xffff; |
| } else { |
| /* Replicate(Zeros(16):imm8:Ones(8), 2) */ |
| imm = (abcdefgh << 8) | 0xff; |
| } |
| imm = bitfield_replicate(imm, 32); |
| break; |
| case 7: |
| if (!cmode_0 && !is_neg) { |
| imm = bitfield_replicate(abcdefgh, 8); |
| } else if (!cmode_0 && is_neg) { |
| int i; |
| imm = 0; |
| for (i = 0; i < 8; i++) { |
| if ((abcdefgh) & (1 << i)) { |
| imm |= 0xffULL << (i * 8); |
| } |
| } |
| } else if (cmode_0) { |
| if (is_neg) { |
| imm = (abcdefgh & 0x3f) << 48; |
| if (abcdefgh & 0x80) { |
| imm |= 0x8000000000000000ULL; |
| } |
| if (abcdefgh & 0x40) { |
| imm |= 0x3fc0000000000000ULL; |
| } else { |
| imm |= 0x4000000000000000ULL; |
| } |
| } else { |
| imm = (abcdefgh & 0x3f) << 19; |
| if (abcdefgh & 0x80) { |
| imm |= 0x80000000; |
| } |
| if (abcdefgh & 0x40) { |
| imm |= 0x3e000000; |
| } else { |
| imm |= 0x40000000; |
| } |
| imm |= (imm << 32); |
| } |
| } |
| break; |
| } |
| |
| if (cmode_3_1 != 7 && is_neg) { |
| imm = ~imm; |
| } |
| |
| if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { |
| /* MOVI or MVNI, with MVNI negation handled above. */ |
| tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8, |
| vec_full_reg_size(s), imm); |
| } else { |
| /* ORR or BIC, with BIC negation to AND handled above. */ |
| if (is_neg) { |
| gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); |
| } else { |
| gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); |
| } |
| } |
| } |
| |
| /* AdvSIMD scalar copy |
| * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 |
| * +-----+----+-----------------+------+---+------+---+------+------+ |
| * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | |
| * +-----+----+-----------------+------+---+------+---+------+------+ |
| */ |
| static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int imm4 = extract32(insn, 11, 4); |
| int imm5 = extract32(insn, 16, 5); |
| int op = extract32(insn, 29, 1); |
| |
| if (op != 0 || imm4 != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* DUP (element, scalar) */ |
| handle_simd_dupes(s, rd, rn, imm5); |
| } |
| |
| /* AdvSIMD scalar pairwise |
| * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +-----+---+-----------+------+-----------+--------+-----+------+------+ |
| * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | |
| * +-----+---+-----------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) |
| { |
| int u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| TCGv_ptr fpst; |
| |
| /* For some ops (the FP ones), size[1] is part of the encoding. |
| * For ADDP strictly it is not but size[1] is always 1 for valid |
| * encodings. |
| */ |
| opcode |= (extract32(size, 1, 1) << 5); |
| |
| switch (opcode) { |
| case 0x3b: /* ADDP */ |
| if (u || size != 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| fpst = NULL; |
| break; |
| case 0xc: /* FMAXNMP */ |
| case 0xd: /* FADDP */ |
| case 0xf: /* FMAXP */ |
| case 0x2c: /* FMINNMP */ |
| case 0x2f: /* FMINP */ |
| /* FP op, size[0] is 32 or 64 bit */ |
| if (!u) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| size = extract32(size, 0, 1) ? 3 : 2; |
| fpst = get_fpstatus_ptr(); |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (size == 3) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op1, rn, 0, MO_64); |
| read_vec_element(s, tcg_op2, rn, 1, MO_64); |
| |
| switch (opcode) { |
| case 0x3b: /* ADDP */ |
| tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); |
| break; |
| case 0xc: /* FMAXNMP */ |
| gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0xd: /* FADDP */ |
| gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0xf: /* FMAXP */ |
| gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x2c: /* FMINNMP */ |
| gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x2f: /* FMINP */ |
| gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_dreg(s, rd, tcg_res); |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_res); |
| } else { |
| TCGv_i32 tcg_op1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op1, rn, 0, MO_32); |
| read_vec_element_i32(s, tcg_op2, rn, 1, MO_32); |
| |
| switch (opcode) { |
| case 0xc: /* FMAXNMP */ |
| gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0xd: /* FADDP */ |
| gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0xf: /* FMAXP */ |
| gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x2c: /* FMINNMP */ |
| gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x2f: /* FMINP */ |
| gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_sreg(s, rd, tcg_res); |
| |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| tcg_temp_free_i32(tcg_res); |
| } |
| |
| if (fpst) { |
| tcg_temp_free_ptr(fpst); |
| } |
| } |
| |
| /* |
| * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) |
| * |
| * This code is handles the common shifting code and is used by both |
| * the vector and scalar code. |
| */ |
| static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, |
| TCGv_i64 tcg_rnd, bool accumulate, |
| bool is_u, int size, int shift) |
| { |
| bool extended_result = false; |
| bool round = tcg_rnd != NULL; |
| int ext_lshift = 0; |
| TCGv_i64 tcg_src_hi; |
| |
| if (round && size == 3) { |
| extended_result = true; |
| ext_lshift = 64 - shift; |
| tcg_src_hi = tcg_temp_new_i64(); |
| } else if (shift == 64) { |
| if (!accumulate && is_u) { |
| /* result is zero */ |
| tcg_gen_movi_i64(tcg_res, 0); |
| return; |
| } |
| } |
| |
| /* Deal with the rounding step */ |
| if (round) { |
| if (extended_result) { |
| TCGv_i64 tcg_zero = tcg_const_i64(0); |
| if (!is_u) { |
| /* take care of sign extending tcg_res */ |
| tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); |
| tcg_gen_add2_i64(tcg_src, tcg_src_hi, |
| tcg_src, tcg_src_hi, |
| tcg_rnd, tcg_zero); |
| } else { |
| tcg_gen_add2_i64(tcg_src, tcg_src_hi, |
| tcg_src, tcg_zero, |
| tcg_rnd, tcg_zero); |
| } |
| tcg_temp_free_i64(tcg_zero); |
| } else { |
| tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); |
| } |
| } |
| |
| /* Now do the shift right */ |
| if (round && extended_result) { |
| /* extended case, >64 bit precision required */ |
| if (ext_lshift == 0) { |
| /* special case, only high bits matter */ |
| tcg_gen_mov_i64(tcg_src, tcg_src_hi); |
| } else { |
| tcg_gen_shri_i64(tcg_src, tcg_src, shift); |
| tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); |
| tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); |
| } |
| } else { |
| if (is_u) { |
| if (shift == 64) { |
| /* essentially shifting in 64 zeros */ |
| tcg_gen_movi_i64(tcg_src, 0); |
| } else { |
| tcg_gen_shri_i64(tcg_src, tcg_src, shift); |
| } |
| } else { |
| if (shift == 64) { |
| /* effectively extending the sign-bit */ |
| tcg_gen_sari_i64(tcg_src, tcg_src, 63); |
| } else { |
| tcg_gen_sari_i64(tcg_src, tcg_src, shift); |
| } |
| } |
| } |
| |
| if (accumulate) { |
| tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); |
| } else { |
| tcg_gen_mov_i64(tcg_res, tcg_src); |
| } |
| |
| if (extended_result) { |
| tcg_temp_free_i64(tcg_src_hi); |
| } |
| } |
| |
| /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ |
| static void handle_scalar_simd_shri(DisasContext *s, |
| bool is_u, int immh, int immb, |
| int opcode, int rn, int rd) |
| { |
| const int size = 3; |
| int immhb = immh << 3 | immb; |
| int shift = 2 * (8 << size) - immhb; |
| bool accumulate = false; |
| bool round = false; |
| bool insert = false; |
| TCGv_i64 tcg_rn; |
| TCGv_i64 tcg_rd; |
| TCGv_i64 tcg_round; |
| |
| if (!extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x02: /* SSRA / USRA (accumulate) */ |
| accumulate = true; |
| break; |
| case 0x04: /* SRSHR / URSHR (rounding) */ |
| round = true; |
| break; |
| case 0x06: /* SRSRA / URSRA (accum + rounding) */ |
| accumulate = round = true; |
| break; |
| case 0x08: /* SRI */ |
| insert = true; |
| break; |
| } |
| |
| if (round) { |
| uint64_t round_const = 1ULL << (shift - 1); |
| tcg_round = tcg_const_i64(round_const); |
| } else { |
| tcg_round = NULL; |
| } |
| |
| tcg_rn = read_fp_dreg(s, rn); |
| tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); |
| |
| if (insert) { |
| /* shift count same as element size is valid but does nothing; |
| * special case to avoid potential shift by 64. |
| */ |
| int esize = 8 << size; |
| if (shift != esize) { |
| tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); |
| } |
| } else { |
| handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, |
| accumulate, is_u, size, shift); |
| } |
| |
| write_fp_dreg(s, rd, tcg_rd); |
| |
| tcg_temp_free_i64(tcg_rn); |
| tcg_temp_free_i64(tcg_rd); |
| if (round) { |
| tcg_temp_free_i64(tcg_round); |
| } |
| } |
| |
| /* SHL/SLI - Scalar shift left */ |
| static void handle_scalar_simd_shli(DisasContext *s, bool insert, |
| int immh, int immb, int opcode, |
| int rn, int rd) |
| { |
| int size = 32 - clz32(immh) - 1; |
| int immhb = immh << 3 | immb; |
| int shift = immhb - (8 << size); |
| TCGv_i64 tcg_rn = new_tmp_a64(s); |
| TCGv_i64 tcg_rd = new_tmp_a64(s); |
| |
| if (!extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rn = read_fp_dreg(s, rn); |
| tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); |
| |
| if (insert) { |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); |
| } else { |
| tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); |
| } |
| |
| write_fp_dreg(s, rd, tcg_rd); |
| |
| tcg_temp_free_i64(tcg_rn); |
| tcg_temp_free_i64(tcg_rd); |
| } |
| |
| /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with |
| * (signed/unsigned) narrowing */ |
| static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, |
| bool is_u_shift, bool is_u_narrow, |
| int immh, int immb, int opcode, |
| int rn, int rd) |
| { |
| int immhb = immh << 3 | immb; |
| int size = 32 - clz32(immh) - 1; |
| int esize = 8 << size; |
| int shift = (2 * esize) - immhb; |
| int elements = is_scalar ? 1 : (64 / esize); |
| bool round = extract32(opcode, 0, 1); |
| TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); |
| TCGv_i64 tcg_rn, tcg_rd, tcg_round; |
| TCGv_i32 tcg_rd_narrowed; |
| TCGv_i64 tcg_final; |
| |
| static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { |
| { gen_helper_neon_narrow_sat_s8, |
| gen_helper_neon_unarrow_sat8 }, |
| { gen_helper_neon_narrow_sat_s16, |
| gen_helper_neon_unarrow_sat16 }, |
| { gen_helper_neon_narrow_sat_s32, |
| gen_helper_neon_unarrow_sat32 }, |
| { NULL, NULL }, |
| }; |
| static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { |
| gen_helper_neon_narrow_sat_u8, |
| gen_helper_neon_narrow_sat_u16, |
| gen_helper_neon_narrow_sat_u32, |
| NULL |
| }; |
| NeonGenNarrowEnvFn *narrowfn; |
| |
| int i; |
| |
| assert(size < 4); |
| |
| if (extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (is_u_shift) { |
| narrowfn = unsigned_narrow_fns[size]; |
| } else { |
| narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; |
| } |
| |
| tcg_rn = tcg_temp_new_i64(); |
| tcg_rd = tcg_temp_new_i64(); |
| tcg_rd_narrowed = tcg_temp_new_i32(); |
| tcg_final = tcg_const_i64(0); |
| |
| if (round) { |
| uint64_t round_const = 1ULL << (shift - 1); |
| tcg_round = tcg_const_i64(round_const); |
| } else { |
| tcg_round = NULL; |
| } |
| |
| for (i = 0; i < elements; i++) { |
| read_vec_element(s, tcg_rn, rn, i, ldop); |
| handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, |
| false, is_u_shift, size+1, shift); |
| narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); |
| tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); |
| } |
| |
| if (!is_q) { |
| write_vec_element(s, tcg_final, rd, 0, MO_64); |
| } else { |
| write_vec_element(s, tcg_final, rd, 1, MO_64); |
| } |
| |
| if (round) { |
| tcg_temp_free_i64(tcg_round); |
| } |
| tcg_temp_free_i64(tcg_rn); |
| tcg_temp_free_i64(tcg_rd); |
| tcg_temp_free_i32(tcg_rd_narrowed); |
| tcg_temp_free_i64(tcg_final); |
| |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ |
| static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, |
| bool src_unsigned, bool dst_unsigned, |
| int immh, int immb, int rn, int rd) |
| { |
| int immhb = immh << 3 | immb; |
| int size = 32 - clz32(immh) - 1; |
| int shift = immhb - (8 << size); |
| int pass; |
| |
| assert(immh != 0); |
| assert(!(scalar && is_q)); |
| |
| if (!scalar) { |
| if (!is_q && extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* Since we use the variable-shift helpers we must |
| * replicate the shift count into each element of |
| * the tcg_shift value. |
| */ |
| switch (size) { |
| case 0: |
| shift |= shift << 8; |
| /* fall through */ |
| case 1: |
| shift |= shift << 16; |
| break; |
| case 2: |
| case 3: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (size == 3) { |
| TCGv_i64 tcg_shift = tcg_const_i64(shift); |
| static NeonGenTwo64OpEnvFn * const fns[2][2] = { |
| { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, |
| { NULL, gen_helper_neon_qshl_u64 }, |
| }; |
| NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; |
| int maxpass = is_q ? 2 : 1; |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| genfn(tcg_op, cpu_env, tcg_op, tcg_shift); |
| write_vec_element(s, tcg_op, rd, pass, MO_64); |
| |
| tcg_temp_free_i64(tcg_op); |
| } |
| tcg_temp_free_i64(tcg_shift); |
| clear_vec_high(s, is_q, rd); |
| } else { |
| TCGv_i32 tcg_shift = tcg_const_i32(shift); |
| static NeonGenTwoOpEnvFn * const fns[2][2][3] = { |
| { |
| { gen_helper_neon_qshl_s8, |
| gen_helper_neon_qshl_s16, |
| gen_helper_neon_qshl_s32 }, |
| { gen_helper_neon_qshlu_s8, |
| gen_helper_neon_qshlu_s16, |
| gen_helper_neon_qshlu_s32 } |
| }, { |
| { NULL, NULL, NULL }, |
| { gen_helper_neon_qshl_u8, |
| gen_helper_neon_qshl_u16, |
| gen_helper_neon_qshl_u32 } |
| } |
| }; |
| NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; |
| TCGMemOp memop = scalar ? size : MO_32; |
| int maxpass = scalar ? 1 : is_q ? 4 : 2; |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, memop); |
| genfn(tcg_op, cpu_env, tcg_op, tcg_shift); |
| if (scalar) { |
| switch (size) { |
| case 0: |
| tcg_gen_ext8u_i32(tcg_op, tcg_op); |
| break; |
| case 1: |
| tcg_gen_ext16u_i32(tcg_op, tcg_op); |
| break; |
| case 2: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| write_fp_sreg(s, rd, tcg_op); |
| } else { |
| write_vec_element_i32(s, tcg_op, rd, pass, MO_32); |
| } |
| |
| tcg_temp_free_i32(tcg_op); |
| } |
| tcg_temp_free_i32(tcg_shift); |
| |
| if (!scalar) { |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| } |
| |
| /* Common vector code for handling integer to FP conversion */ |
| static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, |
| int elements, int is_signed, |
| int fracbits, int size) |
| { |
| bool is_double = size == 3 ? true : false; |
| TCGv_ptr tcg_fpst = get_fpstatus_ptr(); |
| TCGv_i32 tcg_shift = tcg_const_i32(fracbits); |
| TCGv_i64 tcg_int = tcg_temp_new_i64(); |
| TCGMemOp mop = size | (is_signed ? MO_SIGN : 0); |
| int pass; |
| |
| for (pass = 0; pass < elements; pass++) { |
| read_vec_element(s, tcg_int, rn, pass, mop); |
| |
| if (is_double) { |
| TCGv_i64 tcg_double = tcg_temp_new_i64(); |
| if (is_signed) { |
| gen_helper_vfp_sqtod(tcg_double, tcg_int, |
| tcg_shift, tcg_fpst); |
| } else { |
| gen_helper_vfp_uqtod(tcg_double, tcg_int, |
| tcg_shift, tcg_fpst); |
| } |
| if (elements == 1) { |
| write_fp_dreg(s, rd, tcg_double); |
| } else { |
| write_vec_element(s, tcg_double, rd, pass, MO_64); |
| } |
| tcg_temp_free_i64(tcg_double); |
| } else { |
| TCGv_i32 tcg_single = tcg_temp_new_i32(); |
| if (is_signed) { |
| gen_helper_vfp_sqtos(tcg_single, tcg_int, |
| tcg_shift, tcg_fpst); |
| } else { |
| gen_helper_vfp_uqtos(tcg_single, tcg_int, |
| tcg_shift, tcg_fpst); |
| } |
| if (elements == 1) { |
| write_fp_sreg(s, rd, tcg_single); |
| } else { |
| write_vec_element_i32(s, tcg_single, rd, pass, MO_32); |
| } |
| tcg_temp_free_i32(tcg_single); |
| } |
| } |
| |
| tcg_temp_free_i64(tcg_int); |
| tcg_temp_free_ptr(tcg_fpst); |
| tcg_temp_free_i32(tcg_shift); |
| |
| clear_vec_high(s, elements << size == 16, rd); |
| } |
| |
| /* UCVTF/SCVTF - Integer to FP conversion */ |
| static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, |
| bool is_q, bool is_u, |
| int immh, int immb, int opcode, |
| int rn, int rd) |
| { |
| bool is_double = extract32(immh, 3, 1); |
| int size = is_double ? MO_64 : MO_32; |
| int elements; |
| int immhb = immh << 3 | immb; |
| int fracbits = (is_double ? 128 : 64) - immhb; |
| |
| if (!extract32(immh, 2, 2)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (is_scalar) { |
| elements = 1; |
| } else { |
| elements = is_double ? 2 : is_q ? 4 : 2; |
| if (is_double && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| /* immh == 0 would be a failure of the decode logic */ |
| g_assert(immh); |
| |
| handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); |
| } |
| |
| /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ |
| static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, |
| bool is_q, bool is_u, |
| int immh, int immb, int rn, int rd) |
| { |
| bool is_double = extract32(immh, 3, 1); |
| int immhb = immh << 3 | immb; |
| int fracbits = (is_double ? 128 : 64) - immhb; |
| int pass; |
| TCGv_ptr tcg_fpstatus; |
| TCGv_i32 tcg_rmode, tcg_shift; |
| |
| if (!extract32(immh, 2, 2)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!is_scalar && !is_q && is_double) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| assert(!(is_scalar && is_q)); |
| |
| tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO)); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| tcg_fpstatus = get_fpstatus_ptr(); |
| tcg_shift = tcg_const_i32(fracbits); |
| |
| if (is_double) { |
| int maxpass = is_scalar ? 1 : 2; |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| if (is_u) { |
| gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); |
| } |
| write_vec_element(s, tcg_op, rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_op); |
| } |
| clear_vec_high(s, is_q, rd); |
| } else { |
| int maxpass = is_scalar ? 1 : is_q ? 4 : 2; |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, MO_32); |
| if (is_u) { |
| gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); |
| } |
| if (is_scalar) { |
| write_fp_sreg(s, rd, tcg_op); |
| } else { |
| write_vec_element_i32(s, tcg_op, rd, pass, MO_32); |
| } |
| tcg_temp_free_i32(tcg_op); |
| } |
| if (!is_scalar) { |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| |
| tcg_temp_free_ptr(tcg_fpstatus); |
| tcg_temp_free_i32(tcg_shift); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| tcg_temp_free_i32(tcg_rmode); |
| } |
| |
| /* AdvSIMD scalar shift by immediate |
| * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 |
| * +-----+---+-------------+------+------+--------+---+------+------+ |
| * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | |
| * +-----+---+-------------+------+------+--------+---+------+------+ |
| * |
| * This is the scalar version so it works on a fixed sized registers |
| */ |
| static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 11, 5); |
| int immb = extract32(insn, 16, 3); |
| int immh = extract32(insn, 19, 4); |
| bool is_u = extract32(insn, 29, 1); |
| |
| if (immh == 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x08: /* SRI */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x00: /* SSHR / USHR */ |
| case 0x02: /* SSRA / USRA */ |
| case 0x04: /* SRSHR / URSHR */ |
| case 0x06: /* SRSRA / URSRA */ |
| handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x0a: /* SHL / SLI */ |
| handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x1c: /* SCVTF, UCVTF */ |
| handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, |
| opcode, rn, rd); |
| break; |
| case 0x10: /* SQSHRUN, SQSHRUN2 */ |
| case 0x11: /* SQRSHRUN, SQRSHRUN2 */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_vec_simd_sqshrn(s, true, false, false, true, |
| immh, immb, opcode, rn, rd); |
| break; |
| case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ |
| case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ |
| handle_vec_simd_sqshrn(s, true, false, is_u, is_u, |
| immh, immb, opcode, rn, rd); |
| break; |
| case 0xc: /* SQSHLU */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); |
| break; |
| case 0xe: /* SQSHL, UQSHL */ |
| handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); |
| break; |
| case 0x1f: /* FCVTZS, FCVTZU */ |
| handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* AdvSIMD scalar three different |
| * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 |
| * +-----+---+-----------+------+---+------+--------+-----+------+------+ |
| * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | |
| * +-----+---+-----------+------+---+------+--------+-----+------+------+ |
| */ |
| static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) |
| { |
| bool is_u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 4); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| |
| if (is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x9: /* SQDMLAL, SQDMLAL2 */ |
| case 0xb: /* SQDMLSL, SQDMLSL2 */ |
| case 0xd: /* SQDMULL, SQDMULL2 */ |
| if (size == 0 || size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (size == 2) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); |
| read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); |
| |
| tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); |
| gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); |
| |
| switch (opcode) { |
| case 0xd: /* SQDMULL, SQDMULL2 */ |
| break; |
| case 0xb: /* SQDMLSL, SQDMLSL2 */ |
| tcg_gen_neg_i64(tcg_res, tcg_res); |
| /* fall through */ |
| case 0x9: /* SQDMLAL, SQDMLAL2 */ |
| read_vec_element(s, tcg_op1, rd, 0, MO_64); |
| gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, |
| tcg_res, tcg_op1); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_dreg(s, rd, tcg_res); |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_res); |
| } else { |
| TCGv_i32 tcg_op1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element_i32(s, tcg_op1, rn, 0, MO_16); |
| read_vec_element_i32(s, tcg_op2, rm, 0, MO_16); |
| |
| gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); |
| gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); |
| |
| switch (opcode) { |
| case 0xd: /* SQDMULL, SQDMULL2 */ |
| break; |
| case 0xb: /* SQDMLSL, SQDMLSL2 */ |
| gen_helper_neon_negl_u32(tcg_res, tcg_res); |
| /* fall through */ |
| case 0x9: /* SQDMLAL, SQDMLAL2 */ |
| { |
| TCGv_i64 tcg_op3 = tcg_temp_new_i64(); |
| read_vec_element(s, tcg_op3, rd, 0, MO_32); |
| gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, |
| tcg_res, tcg_op3); |
| tcg_temp_free_i64(tcg_op3); |
| break; |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| |
| tcg_gen_ext32u_i64(tcg_res, tcg_res); |
| write_fp_dreg(s, rd, tcg_res); |
| |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| tcg_temp_free_i64(tcg_res); |
| } |
| } |
| |
| /* CMTST : test is "if (X & Y != 0)". */ |
| static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_and_i32(d, a, b); |
| tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0); |
| tcg_gen_neg_i32(d, d); |
| } |
| |
| static void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_and_i64(d, a, b); |
| tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0); |
| tcg_gen_neg_i64(d, d); |
| } |
| |
| static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_and_vec(vece, d, a, b); |
| tcg_gen_dupi_vec(vece, a, 0); |
| tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a); |
| } |
| |
| static void handle_3same_64(DisasContext *s, int opcode, bool u, |
| TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) |
| { |
| /* Handle 64x64->64 opcodes which are shared between the scalar |
| * and vector 3-same groups. We cover every opcode where size == 3 |
| * is valid in either the three-reg-same (integer, not pairwise) |
| * or scalar-three-reg-same groups. (Some opcodes are not yet |
| * implemented.) |
| */ |
| TCGCond cond; |
| |
| switch (opcode) { |
| case 0x1: /* SQADD */ |
| if (u) { |
| gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); |
| } else { |
| gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); |
| } |
| break; |
| case 0x5: /* SQSUB */ |
| if (u) { |
| gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); |
| } else { |
| gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); |
| } |
| break; |
| case 0x6: /* CMGT, CMHI */ |
| /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. |
| * We implement this using setcond (test) and then negating. |
| */ |
| cond = u ? TCG_COND_GTU : TCG_COND_GT; |
| do_cmop: |
| tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); |
| tcg_gen_neg_i64(tcg_rd, tcg_rd); |
| break; |
| case 0x7: /* CMGE, CMHS */ |
| cond = u ? TCG_COND_GEU : TCG_COND_GE; |
| goto do_cmop; |
| case 0x11: /* CMTST, CMEQ */ |
| if (u) { |
| cond = TCG_COND_EQ; |
| goto do_cmop; |
| } |
| gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 0x8: /* SSHL, USHL */ |
| if (u) { |
| gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm); |
| } else { |
| gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm); |
| } |
| break; |
| case 0x9: /* SQSHL, UQSHL */ |
| if (u) { |
| gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); |
| } else { |
| gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); |
| } |
| break; |
| case 0xa: /* SRSHL, URSHL */ |
| if (u) { |
| gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); |
| } else { |
| gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); |
| } |
| break; |
| case 0xb: /* SQRSHL, UQRSHL */ |
| if (u) { |
| gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); |
| } else { |
| gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); |
| } |
| break; |
| case 0x10: /* ADD, SUB */ |
| if (u) { |
| tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); |
| } else { |
| tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Handle the 3-same-operands float operations; shared by the scalar |
| * and vector encodings. The caller must filter out any encodings |
| * not allocated for the encoding it is dealing with. |
| */ |
| static void handle_3same_float(DisasContext *s, int size, int elements, |
| int fpopcode, int rd, int rn, int rm) |
| { |
| int pass; |
| TCGv_ptr fpst = get_fpstatus_ptr(); |
| |
| for (pass = 0; pass < elements; pass++) { |
| if (size) { |
| /* Double */ |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element(s, tcg_op2, rm, pass, MO_64); |
| |
| switch (fpopcode) { |
| case 0x39: /* FMLS */ |
| /* As usual for ARM, separate negation for fused multiply-add */ |
| gen_helper_vfp_negd(tcg_op1, tcg_op1); |
| /* fall through */ |
| case 0x19: /* FMLA */ |
| read_vec_element(s, tcg_res, rd, pass, MO_64); |
| gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, |
| tcg_res, fpst); |
| break; |
| case 0x18: /* FMAXNM */ |
| gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1a: /* FADD */ |
| gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1b: /* FMULX */ |
| gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1c: /* FCMEQ */ |
| gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1e: /* FMAX */ |
| gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1f: /* FRECPS */ |
| gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x38: /* FMINNM */ |
| gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x3a: /* FSUB */ |
| gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x3e: /* FMIN */ |
| gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x3f: /* FRSQRTS */ |
| gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5b: /* FMUL */ |
| gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5c: /* FCMGE */ |
| gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5d: /* FACGE */ |
| gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5f: /* FDIV */ |
| gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x7a: /* FABD */ |
| gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); |
| gen_helper_vfp_absd(tcg_res, tcg_res); |
| break; |
| case 0x7c: /* FCMGT */ |
| gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x7d: /* FACGT */ |
| gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| |
| tcg_temp_free_i64(tcg_res); |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| } else { |
| /* Single */ |
| TCGv_i32 tcg_op1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); |
| read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); |
| |
| switch (fpopcode) { |
| case 0x39: /* FMLS */ |
| /* As usual for ARM, separate negation for fused multiply-add */ |
| gen_helper_vfp_negs(tcg_op1, tcg_op1); |
| /* fall through */ |
| case 0x19: /* FMLA */ |
| read_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, |
| tcg_res, fpst); |
| break; |
| case 0x1a: /* FADD */ |
| gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1b: /* FMULX */ |
| gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1c: /* FCMEQ */ |
| gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1e: /* FMAX */ |
| gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x1f: /* FRECPS */ |
| gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x18: /* FMAXNM */ |
| gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x38: /* FMINNM */ |
| gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x3a: /* FSUB */ |
| gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x3e: /* FMIN */ |
| gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x3f: /* FRSQRTS */ |
| gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5b: /* FMUL */ |
| gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5c: /* FCMGE */ |
| gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5d: /* FACGE */ |
| gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5f: /* FDIV */ |
| gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x7a: /* FABD */ |
| gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); |
| gen_helper_vfp_abss(tcg_res, tcg_res); |
| break; |
| case 0x7c: /* FCMGT */ |
| gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x7d: /* FACGT */ |
| gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (elements == 1) { |
| /* scalar single so clear high part */ |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); |
| write_vec_element(s, tcg_tmp, rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_tmp); |
| } else { |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| } |
| |
| tcg_temp_free_i32(tcg_res); |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| } |
| } |
| |
| tcg_temp_free_ptr(fpst); |
| |
| clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); |
| } |
| |
| /* AdvSIMD scalar three same |
| * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 |
| * +-----+---+-----------+------+---+------+--------+---+------+------+ |
| * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | |
| * +-----+---+-----------+------+---+------+--------+---+------+------+ |
| */ |
| static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 11, 5); |
| int rm = extract32(insn, 16, 5); |
| int size = extract32(insn, 22, 2); |
| bool u = extract32(insn, 29, 1); |
| TCGv_i64 tcg_rd; |
| |
| if (opcode >= 0x18) { |
| /* Floating point: U, size[1] and opcode indicate operation */ |
| int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); |
| switch (fpopcode) { |
| case 0x1b: /* FMULX */ |
| case 0x1f: /* FRECPS */ |
| case 0x3f: /* FRSQRTS */ |
| case 0x5d: /* FACGE */ |
| case 0x7d: /* FACGT */ |
| case 0x1c: /* FCMEQ */ |
| case 0x5c: /* FCMGE */ |
| case 0x7c: /* FCMGT */ |
| case 0x7a: /* FABD */ |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x1: /* SQADD, UQADD */ |
| case 0x5: /* SQSUB, UQSUB */ |
| case 0x9: /* SQSHL, UQSHL */ |
| case 0xb: /* SQRSHL, UQRSHL */ |
| break; |
| case 0x8: /* SSHL, USHL */ |
| case 0xa: /* SRSHL, URSHL */ |
| case 0x6: /* CMGT, CMHI */ |
| case 0x7: /* CMGE, CMHS */ |
| case 0x11: /* CMTST, CMEQ */ |
| case 0x10: /* ADD, SUB (vector) */ |
| if (size != 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x16: /* SQDMULH, SQRDMULH (vector) */ |
| if (size != 1 && size != 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rd = tcg_temp_new_i64(); |
| |
| if (size == 3) { |
| TCGv_i64 tcg_rn = read_fp_dreg(s, rn); |
| TCGv_i64 tcg_rm = read_fp_dreg(s, rm); |
| |
| handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); |
| tcg_temp_free_i64(tcg_rn); |
| tcg_temp_free_i64(tcg_rm); |
| } else { |
| /* Do a single operation on the lowest element in the vector. |
| * We use the standard Neon helpers and rely on 0 OP 0 == 0 with |
| * no side effects for all these operations. |
| * OPTME: special-purpose helpers would avoid doing some |
| * unnecessary work in the helper for the 8 and 16 bit cases. |
| */ |
| NeonGenTwoOpEnvFn *genenvfn; |
| TCGv_i32 tcg_rn = tcg_temp_new_i32(); |
| TCGv_i32 tcg_rm = tcg_temp_new_i32(); |
| TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_rn, rn, 0, size); |
| read_vec_element_i32(s, tcg_rm, rm, 0, size); |
| |
| switch (opcode) { |
| case 0x1: /* SQADD, UQADD */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, |
| { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, |
| { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0x5: /* SQSUB, UQSUB */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, |
| { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, |
| { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0x9: /* SQSHL, UQSHL */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, |
| { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, |
| { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0xb: /* SQRSHL, UQRSHL */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, |
| { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, |
| { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0x16: /* SQDMULH, SQRDMULH */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[2][2] = { |
| { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, |
| { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, |
| }; |
| assert(size == 1 || size == 2); |
| genenvfn = fns[size - 1][u]; |
| break; |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| |
| genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); |
| tcg_temp_free_i32(tcg_rd32); |
| tcg_temp_free_i32(tcg_rn); |
| tcg_temp_free_i32(tcg_rm); |
| } |
| |
| write_fp_dreg(s, rd, tcg_rd); |
| |
| tcg_temp_free_i64(tcg_rd); |
| } |
| |
| static void handle_2misc_64(DisasContext *s, int opcode, bool u, |
| TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, |
| TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) |
| { |
| /* Handle 64->64 opcodes which are shared between the scalar and |
| * vector 2-reg-misc groups. We cover every integer opcode where size == 3 |
| * is valid in either group and also the double-precision fp ops. |
| * The caller only need provide tcg_rmode and tcg_fpstatus if the op |
| * requires them. |
| */ |
| TCGCond cond; |
| |
| switch (opcode) { |
| case 0x4: /* CLS, CLZ */ |
| if (u) { |
| tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); |
| } else { |
| tcg_gen_clrsb_i64(tcg_rd, tcg_rn); |
| } |
| break; |
| case 0x5: /* NOT */ |
| /* This opcode is shared with CNT and RBIT but we have earlier |
| * enforced that size == 3 if and only if this is the NOT insn. |
| */ |
| tcg_gen_not_i64(tcg_rd, tcg_rn); |
| break; |
| case 0x7: /* SQABS, SQNEG */ |
| if (u) { |
| gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); |
| } else { |
| gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); |
| } |
| break; |
| case 0xa: /* CMLT */ |
| /* 64 bit integer comparison against zero, result is |
| * test ? (2^64 - 1) : 0. We implement via setcond(!test) and |
| * subtracting 1. |
| */ |
| cond = TCG_COND_LT; |
| do_cmop: |
| tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); |
| tcg_gen_neg_i64(tcg_rd, tcg_rd); |
| break; |
| case 0x8: /* CMGT, CMGE */ |
| cond = u ? TCG_COND_GE : TCG_COND_GT; |
| goto do_cmop; |
| case 0x9: /* CMEQ, CMLE */ |
| cond = u ? TCG_COND_LE : TCG_COND_EQ; |
| goto do_cmop; |
| case 0xb: /* ABS, NEG */ |
| if (u) { |
| tcg_gen_neg_i64(tcg_rd, tcg_rn); |
| } else { |
| TCGv_i64 tcg_zero = tcg_const_i64(0); |
| tcg_gen_neg_i64(tcg_rd, tcg_rn); |
| tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero, |
| tcg_rn, tcg_rd); |
| tcg_temp_free_i64(tcg_zero); |
| } |
| break; |
| case 0x2f: /* FABS */ |
| gen_helper_vfp_absd(tcg_rd, tcg_rn); |
| break; |
| case 0x6f: /* FNEG */ |
| gen_helper_vfp_negd(tcg_rd, tcg_rn); |
| break; |
| case 0x7f: /* FSQRT */ |
| gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); |
| break; |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x1c: /* FCVTAS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| { |
| TCGv_i32 tcg_shift = tcg_const_i32(0); |
| gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); |
| tcg_temp_free_i32(tcg_shift); |
| break; |
| } |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x5c: /* FCVTAU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| { |
| TCGv_i32 tcg_shift = tcg_const_i32(0); |
| gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); |
| tcg_temp_free_i32(tcg_shift); |
| break; |
| } |
| case 0x18: /* FRINTN */ |
| case 0x19: /* FRINTM */ |
| case 0x38: /* FRINTP */ |
| case 0x39: /* FRINTZ */ |
| case 0x58: /* FRINTA */ |
| case 0x79: /* FRINTI */ |
| gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); |
| break; |
| case 0x59: /* FRINTX */ |
| gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, |
| bool is_scalar, bool is_u, bool is_q, |
| int size, int rn, int rd) |
| { |
| bool is_double = (size == 3); |
| TCGv_ptr fpst; |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| fpst = get_fpstatus_ptr(); |
| |
| if (is_double) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_zero = tcg_const_i64(0); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| NeonGenTwoDoubleOPFn *genfn; |
| bool swap = false; |
| int pass; |
| |
| switch (opcode) { |
| case 0x2e: /* FCMLT (zero) */ |
| swap = true; |
| /* fallthrough */ |
| case 0x2c: /* FCMGT (zero) */ |
| genfn = gen_helper_neon_cgt_f64; |
| break; |
| case 0x2d: /* FCMEQ (zero) */ |
| genfn = gen_helper_neon_ceq_f64; |
| break; |
| case 0x6d: /* FCMLE (zero) */ |
| swap = true; |
| /* fall through */ |
| case 0x6c: /* FCMGE (zero) */ |
| genfn = gen_helper_neon_cge_f64; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| if (swap) { |
| genfn(tcg_res, tcg_zero, tcg_op, fpst); |
| } else { |
| genfn(tcg_res, tcg_op, tcg_zero, fpst); |
| } |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| } |
| tcg_temp_free_i64(tcg_res); |
| tcg_temp_free_i64(tcg_zero); |
| tcg_temp_free_i64(tcg_op); |
| |
| clear_vec_high(s, !is_scalar, rd); |
| } else { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_zero = tcg_const_i32(0); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| NeonGenTwoSingleOPFn *genfn; |
| bool swap = false; |
| int pass, maxpasses; |
| |
| switch (opcode) { |
| case 0x2e: /* FCMLT (zero) */ |
| swap = true; |
| /* fall through */ |
| case 0x2c: /* FCMGT (zero) */ |
| genfn = gen_helper_neon_cgt_f32; |
| break; |
| case 0x2d: /* FCMEQ (zero) */ |
| genfn = gen_helper_neon_ceq_f32; |
| break; |
| case 0x6d: /* FCMLE (zero) */ |
| swap = true; |
| /* fall through */ |
| case 0x6c: /* FCMGE (zero) */ |
| genfn = gen_helper_neon_cge_f32; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (is_scalar) { |
| maxpasses = 1; |
| } else { |
| maxpasses = is_q ? 4 : 2; |
| } |
| |
| for (pass = 0; pass < maxpasses; pass++) { |
| read_vec_element_i32(s, tcg_op, rn, pass, MO_32); |
| if (swap) { |
| genfn(tcg_res, tcg_zero, tcg_op, fpst); |
| } else { |
| genfn(tcg_res, tcg_op, tcg_zero, fpst); |
| } |
| if (is_scalar) { |
| write_fp_sreg(s, rd, tcg_res); |
| } else { |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| } |
| } |
| tcg_temp_free_i32(tcg_res); |
| tcg_temp_free_i32(tcg_zero); |
| tcg_temp_free_i32(tcg_op); |
| if (!is_scalar) { |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| |
| tcg_temp_free_ptr(fpst); |
| } |
| |
| static void handle_2misc_reciprocal(DisasContext *s, int opcode, |
| bool is_scalar, bool is_u, bool is_q, |
| int size, int rn, int rd) |
| { |
| bool is_double = (size == 3); |
| TCGv_ptr fpst = get_fpstatus_ptr(); |
| |
| if (is_double) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| int pass; |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| switch (opcode) { |
| case 0x3d: /* FRECPE */ |
| gen_helper_recpe_f64(tcg_res, tcg_op, fpst); |
| break; |
| case 0x3f: /* FRECPX */ |
| gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); |
| break; |
| case 0x7d: /* FRSQRTE */ |
| gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| } |
| tcg_temp_free_i64(tcg_res); |
| tcg_temp_free_i64(tcg_op); |
| clear_vec_high(s, !is_scalar, rd); |
| } else { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| int pass, maxpasses; |
| |
| if (is_scalar) { |
| maxpasses = 1; |
| } else { |
| maxpasses = is_q ? 4 : 2; |
| } |
| |
| for (pass = 0; pass < maxpasses; pass++) { |
| read_vec_element_i32(s, tcg_op, rn, pass, MO_32); |
| |
| switch (opcode) { |
| case 0x3c: /* URECPE */ |
| gen_helper_recpe_u32(tcg_res, tcg_op, fpst); |
| break; |
| case 0x3d: /* FRECPE */ |
| gen_helper_recpe_f32(tcg_res, tcg_op, fpst); |
| break; |
| case 0x3f: /* FRECPX */ |
| gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); |
| break; |
| case 0x7d: /* FRSQRTE */ |
| gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (is_scalar) { |
| write_fp_sreg(s, rd, tcg_res); |
| } else { |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| } |
| } |
| tcg_temp_free_i32(tcg_res); |
| tcg_temp_free_i32(tcg_op); |
| if (!is_scalar) { |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| tcg_temp_free_ptr(fpst); |
| } |
| |
| static void handle_2misc_narrow(DisasContext *s, bool scalar, |
| int opcode, bool u, bool is_q, |
| int size, int rn, int rd) |
| { |
| /* Handle 2-reg-misc ops which are narrowing (so each 2*size element |
| * in the source becomes a size element in the destination). |
| */ |
| int pass; |
| TCGv_i32 tcg_res[2]; |
| int destelt = is_q ? 2 : 0; |
| int passes = scalar ? 1 : 2; |
| |
| if (scalar) { |
| tcg_res[1] = tcg_const_i32(0); |
| } |
| |
| for (pass = 0; pass < passes; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| NeonGenNarrowFn *genfn = NULL; |
| NeonGenNarrowEnvFn *genenvfn = NULL; |
| |
| if (scalar) { |
| read_vec_element(s, tcg_op, rn, pass, size + 1); |
| } else { |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| } |
| tcg_res[pass] = tcg_temp_new_i32(); |
| |
| switch (opcode) { |
| case 0x12: /* XTN, SQXTUN */ |
| { |
| static NeonGenNarrowFn * const xtnfns[3] = { |
| gen_helper_neon_narrow_u8, |
| gen_helper_neon_narrow_u16, |
| tcg_gen_extrl_i64_i32, |
| }; |
| static NeonGenNarrowEnvFn * const sqxtunfns[3] = { |
| gen_helper_neon_unarrow_sat8, |
| gen_helper_neon_unarrow_sat16, |
| gen_helper_neon_unarrow_sat32, |
| }; |
| if (u) { |
| genenvfn = sqxtunfns[size]; |
| } else { |
| genfn = xtnfns[size]; |
| } |
| break; |
| } |
| case 0x14: /* SQXTN, UQXTN */ |
| { |
| static NeonGenNarrowEnvFn * const fns[3][2] = { |
| { gen_helper_neon_narrow_sat_s8, |
| gen_helper_neon_narrow_sat_u8 }, |
| { gen_helper_neon_narrow_sat_s16, |
| gen_helper_neon_narrow_sat_u16 }, |
| { gen_helper_neon_narrow_sat_s32, |
| gen_helper_neon_narrow_sat_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0x16: /* FCVTN, FCVTN2 */ |
| /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ |
| if (size == 2) { |
| gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); |
| } else { |
| TCGv_i32 tcg_lo = tcg_temp_new_i32(); |
| TCGv_i32 tcg_hi = tcg_temp_new_i32(); |
| tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); |
| gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env); |
| gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env); |
| tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); |
| tcg_temp_free_i32(tcg_lo); |
| tcg_temp_free_i32(tcg_hi); |
| } |
| break; |
| case 0x56: /* FCVTXN, FCVTXN2 */ |
| /* 64 bit to 32 bit float conversion |
| * with von Neumann rounding (round to odd) |
| */ |
| assert(size == 2); |
| gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (genfn) { |
| genfn(tcg_res[pass], tcg_op); |
| } else if (genenvfn) { |
| genenvfn(tcg_res[pass], cpu_env, tcg_op); |
| } |
| |
| tcg_temp_free_i64(tcg_op); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); |
| tcg_temp_free_i32(tcg_res[pass]); |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| /* Remaining saturating accumulating ops */ |
| static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, |
| bool is_q, int size, int rn, int rd) |
| { |
| bool is_double = (size == 3); |
| |
| if (is_double) { |
| TCGv_i64 tcg_rn = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rd = tcg_temp_new_i64(); |
| int pass; |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| read_vec_element(s, tcg_rn, rn, pass, MO_64); |
| read_vec_element(s, tcg_rd, rd, pass, MO_64); |
| |
| if (is_u) { /* USQADD */ |
| gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); |
| } else { /* SUQADD */ |
| gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); |
| } |
| write_vec_element(s, tcg_rd, rd, pass, MO_64); |
| } |
| tcg_temp_free_i64(tcg_rd); |
| tcg_temp_free_i64(tcg_rn); |
| clear_vec_high(s, !is_scalar, rd); |
| } else { |
| TCGv_i32 tcg_rn = tcg_temp_new_i32(); |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| int pass, maxpasses; |
| |
| if (is_scalar) { |
| maxpasses = 1; |
| } else { |
| maxpasses = is_q ? 4 : 2; |
| } |
| |
| for (pass = 0; pass < maxpasses; pass++) { |
| if (is_scalar) { |
| read_vec_element_i32(s, tcg_rn, rn, pass, size); |
| read_vec_element_i32(s, tcg_rd, rd, pass, size); |
| } else { |
| read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); |
| read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); |
| } |
| |
| if (is_u) { /* USQADD */ |
| switch (size) { |
| case 0: |
| gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); |
| break; |
| case 1: |
| gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); |
| break; |
| case 2: |
| gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { /* SUQADD */ |
| switch (size) { |
| case 0: |
| gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); |
| break; |
| case 1: |
| gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); |
| break; |
| case 2: |
| gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| if (is_scalar) { |
| TCGv_i64 tcg_zero = tcg_const_i64(0); |
| write_vec_element(s, tcg_zero, rd, 0, MO_64); |
| tcg_temp_free_i64(tcg_zero); |
| } |
| write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); |
| } |
| tcg_temp_free_i32(tcg_rd); |
| tcg_temp_free_i32(tcg_rn); |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| |
| /* AdvSIMD scalar two reg misc |
| * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +-----+---+-----------+------+-----------+--------+-----+------+------+ |
| * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | |
| * +-----+---+-----------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 12, 5); |
| int size = extract32(insn, 22, 2); |
| bool u = extract32(insn, 29, 1); |
| bool is_fcvt = false; |
| int rmode; |
| TCGv_i32 tcg_rmode; |
| TCGv_ptr tcg_fpstatus; |
| |
| switch (opcode) { |
| case 0x3: /* USQADD / SUQADD*/ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_satacc(s, true, u, false, size, rn, rd); |
| return; |
| case 0x7: /* SQABS / SQNEG */ |
| break; |
| case 0xa: /* CMLT */ |
| if (u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x8: /* CMGT, CMGE */ |
| case 0x9: /* CMEQ, CMLE */ |
| case 0xb: /* ABS, NEG */ |
| if (size != 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x12: /* SQXTUN */ |
| if (!u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x14: /* SQXTN, UQXTN */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); |
| return; |
| case 0xc ... 0xf: |
| case 0x16 ... 0x1d: |
| case 0x1f: |
| /* Floating point: U, size[1] and opcode indicate operation; |
| * size[0] indicates single or double precision. |
| */ |
| opcode |= (extract32(size, 1, 1) << 5) | (u << 6); |
| size = extract32(size, 0, 1) ? 3 : 2; |
| switch (opcode) { |
| case 0x2c: /* FCMGT (zero) */ |
| case 0x2d: /* FCMEQ (zero) */ |
| case 0x2e: /* FCMLT (zero) */ |
| case 0x6c: /* FCMGE (zero) */ |
| case 0x6d: /* FCMLE (zero) */ |
| handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); |
| return; |
| case 0x1d: /* SCVTF */ |
| case 0x5d: /* UCVTF */ |
| { |
| bool is_signed = (opcode == 0x1d); |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); |
| return; |
| } |
| case 0x3d: /* FRECPE */ |
| case 0x3f: /* FRECPX */ |
| case 0x7d: /* FRSQRTE */ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); |
| return; |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| is_fcvt = true; |
| rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); |
| break; |
| case 0x1c: /* FCVTAS */ |
| case 0x5c: /* FCVTAU */ |
| /* TIEAWAY doesn't fit in the usual rounding mode encoding */ |
| is_fcvt = true; |
| rmode = FPROUNDING_TIEAWAY; |
| break; |
| case 0x56: /* FCVTXN, FCVTXN2 */ |
| if (size == 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); |
| return; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (is_fcvt) { |
| tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| tcg_fpstatus = get_fpstatus_ptr(); |
| } else { |
| tcg_rmode = NULL; |
| tcg_fpstatus = NULL; |
| } |
| |
| if (size == 3) { |
| TCGv_i64 tcg_rn = read_fp_dreg(s, rn); |
| TCGv_i64 tcg_rd = tcg_temp_new_i64(); |
| |
| handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); |
| write_fp_dreg(s, rd, tcg_rd); |
| tcg_temp_free_i64(tcg_rd); |
| tcg_temp_free_i64(tcg_rn); |
| } else { |
| TCGv_i32 tcg_rn = tcg_temp_new_i32(); |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_rn, rn, 0, size); |
| |
| switch (opcode) { |
| case 0x7: /* SQABS, SQNEG */ |
| { |
| NeonGenOneOpEnvFn *genfn; |
| static NeonGenOneOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, |
| { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, |
| { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, |
| }; |
| genfn = fns[size][u]; |
| genfn(tcg_rd, cpu_env, tcg_rn); |
| break; |
| } |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x1c: /* FCVTAS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| { |
| TCGv_i32 tcg_shift = tcg_const_i32(0); |
| gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); |
| tcg_temp_free_i32(tcg_shift); |
| break; |
| } |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x5c: /* FCVTAU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| { |
| TCGv_i32 tcg_shift = tcg_const_i32(0); |
| gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); |
| tcg_temp_free_i32(tcg_shift); |
| break; |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_sreg(s, rd, tcg_rd); |
| tcg_temp_free_i32(tcg_rd); |
| tcg_temp_free_i32(tcg_rn); |
| } |
| |
| if (is_fcvt) { |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| tcg_temp_free_i32(tcg_rmode); |
| tcg_temp_free_ptr(tcg_fpstatus); |
| } |
| } |
| |
| static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_sar8i_i64(a, a, shift); |
| tcg_gen_vec_add8_i64(d, d, a); |
| } |
| |
| static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_sar16i_i64(a, a, shift); |
| tcg_gen_vec_add16_i64(d, d, a); |
| } |
| |
| static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_sari_i32(a, a, shift); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_sari_i64(a, a, shift); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| tcg_gen_sari_vec(vece, a, a, sh); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_shr8i_i64(a, a, shift); |
| tcg_gen_vec_add8_i64(d, d, a); |
| } |
| |
| static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_vec_shr16i_i64(a, a, shift); |
| tcg_gen_vec_add16_i64(d, d, a); |
| } |
| |
| static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_shri_i32(a, a, shift); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_shri_i64(a, a, shift); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| tcg_gen_shri_vec(vece, a, a, sh); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff >> shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff >> shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_shri_i32(a, a, shift); |
| tcg_gen_deposit_i32(d, d, a, 0, 32 - shift); |
| } |
| |
| static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_shri_i64(a, a, shift); |
| tcg_gen_deposit_i64(d, d, a, 0, 64 - shift); |
| } |
| |
| static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| uint64_t mask = (2ull << ((8 << vece) - 1)) - 1; |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_dupi_vec(vece, m, mask ^ (mask >> sh)); |
| tcg_gen_shri_vec(vece, t, a, sh); |
| tcg_gen_and_vec(vece, d, d, m); |
| tcg_gen_or_vec(vece, d, d, t); |
| |
| tcg_temp_free_vec(t); |
| tcg_temp_free_vec(m); |
| } |
| |
| /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ |
| static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, |
| int immh, int immb, int opcode, int rn, int rd) |
| { |
| static const GVecGen2i ssra_op[4] = { |
| { .fni8 = gen_ssra8_i64, |
| .fniv = gen_ssra_vec, |
| .load_dest = true, |
| .opc = INDEX_op_sari_vec, |
| .vece = MO_8 }, |
| { .fni8 = gen_ssra16_i64, |
| .fniv = gen_ssra_vec, |
| .load_dest = true, |
| .opc = INDEX_op_sari_vec, |
| .vece = MO_16 }, |
| { .fni4 = gen_ssra32_i32, |
| .fniv = gen_ssra_vec, |
| .load_dest = true, |
| .opc = INDEX_op_sari_vec, |
| .vece = MO_32 }, |
| { .fni8 = gen_ssra64_i64, |
| .fniv = gen_ssra_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opc = INDEX_op_sari_vec, |
| .vece = MO_64 }, |
| }; |
| static const GVecGen2i usra_op[4] = { |
| { .fni8 = gen_usra8_i64, |
| .fniv = gen_usra_vec, |
| .load_dest = true, |
| .opc = INDEX_op_shri_vec, |
| .vece = MO_8, }, |
| { .fni8 = gen_usra16_i64, |
| .fniv = gen_usra_vec, |
| .load_dest = true, |
| .opc = INDEX_op_shri_vec, |
| .vece = MO_16, }, |
| { .fni4 = gen_usra32_i32, |
| .fniv = gen_usra_vec, |
| .load_dest = true, |
| .opc = INDEX_op_shri_vec, |
| .vece = MO_32, }, |
| { .fni8 = gen_usra64_i64, |
| .fniv = gen_usra_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opc = INDEX_op_shri_vec, |
| .vece = MO_64, }, |
| }; |
| static const GVecGen2i sri_op[4] = { |
| { .fni8 = gen_shr8_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .load_dest = true, |
| .opc = INDEX_op_shri_vec, |
| .vece = MO_8 }, |
| { .fni8 = gen_shr16_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .load_dest = true, |
| .opc = INDEX_op_shri_vec, |
| .vece = MO_16 }, |
| { .fni4 = gen_shr32_ins_i32, |
| .fniv = gen_shr_ins_vec, |
| .load_dest = true, |
| .opc = INDEX_op_shri_vec, |
| .vece = MO_32 }, |
| { .fni8 = gen_shr64_ins_i64, |
| .fniv = gen_shr_ins_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .opc = INDEX_op_shri_vec, |
| .vece = MO_64 }, |
| }; |
| |
| int size = 32 - clz32(immh) - 1; |
| int immhb = immh << 3 | immb; |
| int shift = 2 * (8 << size) - immhb; |
| bool accumulate = false; |
| int dsize = is_q ? 128 : 64; |
| int esize = 8 << size; |
| int elements = dsize/esize; |
| TCGMemOp memop = size | (is_u ? 0 : MO_SIGN); |
| TCGv_i64 tcg_rn = new_tmp_a64(s); |
| TCGv_i64 tcg_rd = new_tmp_a64(s); |
| TCGv_i64 tcg_round; |
| uint64_t round_const; |
| int i; |
| |
| if (extract32(immh, 3, 1) && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (size > 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x02: /* SSRA / USRA (accumulate) */ |
| if (is_u) { |
| /* Shift count same as element size produces zero to add. */ |
| if (shift == 8 << size) { |
| goto done; |
| } |
| gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]); |
| } else { |
| /* Shift count same as element size produces all sign to add. */ |
| if (shift == 8 << size) { |
| shift -= 1; |
| } |
| gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]); |
| } |
| return; |
| case 0x08: /* SRI */ |
| /* Shift count same as element size is valid but does nothing. */ |
| if (shift == 8 << size) { |
| goto done; |
| } |
| gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]); |
| return; |
| |
| case 0x00: /* SSHR / USHR */ |
| if (is_u) { |
| if (shift == 8 << size) { |
| /* Shift count the same size as element size produces zero. */ |
| tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd), |
| is_q ? 16 : 8, vec_full_reg_size(s), 0); |
| } else { |
| gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size); |
| } |
| } else { |
| /* Shift count the same size as element size produces all sign. */ |
| if (shift == 8 << size) { |
| shift -= 1; |
| } |
| gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size); |
| } |
| return; |
| |
| case 0x04: /* SRSHR / URSHR (rounding) */ |
| break; |
| case 0x06: /* SRSRA / URSRA (accum + rounding) */ |
| accumulate = true; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| round_const = 1ULL << (shift - 1); |
| tcg_round = tcg_const_i64(round_const); |
| |
| for (i = 0; i < elements; i++) { |
| read_vec_element(s, tcg_rn, rn, i, memop); |
| if (accumulate) { |
| read_vec_element(s, tcg_rd, rd, i, memop); |
| } |
| |
| handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, |
| accumulate, is_u, size, shift); |
| |
| write_vec_element(s, tcg_rd, rd, i, size); |
| } |
| tcg_temp_free_i64(tcg_round); |
| |
| done: |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff << shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shli_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff << shift); |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_shli_i64(t, a, shift); |
| tcg_gen_andi_i64(t, t, mask); |
| tcg_gen_andi_i64(d, d, ~mask); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) |
| { |
| tcg_gen_deposit_i32(d, d, a, shift, 32 - shift); |
| } |
| |
| static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) |
| { |
| tcg_gen_deposit_i64(d, d, a, shift, 64 - shift); |
| } |
| |
| static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) |
| { |
| uint64_t mask = (1ull << sh) - 1; |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_temp_new_vec_matching(d); |
| |
| tcg_gen_dupi_vec(vece, m, mask); |
| tcg_gen_shli_vec(vece, t, a, sh); |
| tcg_gen_and_vec(vece, d, d, m); |
| tcg_gen_or_vec(vece, d, d, t); |
| |
| tcg_temp_free_vec(t); |
| tcg_temp_free_vec(m); |
| } |
| |
| /* SHL/SLI - Vector shift left */ |
| static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, |
| int immh, int immb, int opcode, int rn, int rd) |
| { |
| static const GVecGen2i shi_op[4] = { |
| { .fni8 = gen_shl8_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .opc = INDEX_op_shli_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .vece = MO_8 }, |
| { .fni8 = gen_shl16_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .opc = INDEX_op_shli_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .vece = MO_16 }, |
| { .fni4 = gen_shl32_ins_i32, |
| .fniv = gen_shl_ins_vec, |
| .opc = INDEX_op_shli_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .vece = MO_32 }, |
| { .fni8 = gen_shl64_ins_i64, |
| .fniv = gen_shl_ins_vec, |
| .opc = INDEX_op_shli_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| int size = 32 - clz32(immh) - 1; |
| int immhb = immh << 3 | immb; |
| int shift = immhb - (8 << size); |
| |
| if (extract32(immh, 3, 1) && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (size > 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (insert) { |
| gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]); |
| } else { |
| gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); |
| } |
| } |
| |
| /* USHLL/SHLL - Vector shift left with widening */ |
| static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, |
| int immh, int immb, int opcode, int rn, int rd) |
| { |
| int size = 32 - clz32(immh) - 1; |
| int immhb = immh << 3 | immb; |
| int shift = immhb - (8 << size); |
| int dsize = 64; |
| int esize = 8 << size; |
| int elements = dsize/esize; |
| TCGv_i64 tcg_rn = new_tmp_a64(s); |
| TCGv_i64 tcg_rd = new_tmp_a64(s); |
| int i; |
| |
| if (size >= 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| /* For the LL variants the store is larger than the load, |
| * so if rd == rn we would overwrite parts of our input. |
| * So load everything right now and use shifts in the main loop. |
| */ |
| read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); |
| |
| for (i = 0; i < elements; i++) { |
| tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); |
| ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); |
| tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); |
| write_vec_element(s, tcg_rd, rd, i, size + 1); |
| } |
| } |
| |
| /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ |
| static void handle_vec_simd_shrn(DisasContext *s, bool is_q, |
| int immh, int immb, int opcode, int rn, int rd) |
| { |
| int immhb = immh << 3 | immb; |
| int size = 32 - clz32(immh) - 1; |
| int dsize = 64; |
| int esize = 8 << size; |
| int elements = dsize/esize; |
| int shift = (2 * esize) - immhb; |
| bool round = extract32(opcode, 0, 1); |
| TCGv_i64 tcg_rn, tcg_rd, tcg_final; |
| TCGv_i64 tcg_round; |
| int i; |
| |
| if (extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rn = tcg_temp_new_i64(); |
| tcg_rd = tcg_temp_new_i64(); |
| tcg_final = tcg_temp_new_i64(); |
| read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); |
| |
| if (round) { |
| uint64_t round_const = 1ULL << (shift - 1); |
| tcg_round = tcg_const_i64(round_const); |
| } else { |
| tcg_round = NULL; |
| } |
| |
| for (i = 0; i < elements; i++) { |
| read_vec_element(s, tcg_rn, rn, i, size+1); |
| handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, |
| false, true, size+1, shift); |
| |
| tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); |
| } |
| |
| if (!is_q) { |
| write_vec_element(s, tcg_final, rd, 0, MO_64); |
| } else { |
| write_vec_element(s, tcg_final, rd, 1, MO_64); |
| } |
| if (round) { |
| tcg_temp_free_i64(tcg_round); |
| } |
| tcg_temp_free_i64(tcg_rn); |
| tcg_temp_free_i64(tcg_rd); |
| tcg_temp_free_i64(tcg_final); |
| |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| |
| /* AdvSIMD shift by immediate |
| * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 |
| * +---+---+---+-------------+------+------+--------+---+------+------+ |
| * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | |
| * +---+---+---+-------------+------+------+--------+---+------+------+ |
| */ |
| static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 11, 5); |
| int immb = extract32(insn, 16, 3); |
| int immh = extract32(insn, 19, 4); |
| bool is_u = extract32(insn, 29, 1); |
| bool is_q = extract32(insn, 30, 1); |
| |
| switch (opcode) { |
| case 0x08: /* SRI */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x00: /* SSHR / USHR */ |
| case 0x02: /* SSRA / USRA (accumulate) */ |
| case 0x04: /* SRSHR / URSHR (rounding) */ |
| case 0x06: /* SRSRA / URSRA (accum + rounding) */ |
| handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x0a: /* SHL / SLI */ |
| handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x10: /* SHRN */ |
| case 0x11: /* RSHRN / SQRSHRUN */ |
| if (is_u) { |
| handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, |
| opcode, rn, rd); |
| } else { |
| handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); |
| } |
| break; |
| case 0x12: /* SQSHRN / UQSHRN */ |
| case 0x13: /* SQRSHRN / UQRSHRN */ |
| handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, |
| opcode, rn, rd); |
| break; |
| case 0x14: /* SSHLL / USHLL */ |
| handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x1c: /* SCVTF / UCVTF */ |
| handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, |
| opcode, rn, rd); |
| break; |
| case 0xc: /* SQSHLU */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); |
| break; |
| case 0xe: /* SQSHL, UQSHL */ |
| handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); |
| break; |
| case 0x1f: /* FCVTZS/ FCVTZU */ |
| handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); |
| return; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| /* Generate code to do a "long" addition or subtraction, ie one done in |
| * TCGv_i64 on vector lanes twice the width specified by size. |
| */ |
| static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, |
| TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) |
| { |
| static NeonGenTwo64OpFn * const fns[3][2] = { |
| { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, |
| { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, |
| { tcg_gen_add_i64, tcg_gen_sub_i64 }, |
| }; |
| NeonGenTwo64OpFn *genfn; |
| assert(size < 3); |
| |
| genfn = fns[size][is_sub]; |
| genfn(tcg_res, tcg_op1, tcg_op2); |
| } |
| |
| static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, |
| int opcode, int rd, int rn, int rm) |
| { |
| /* 3-reg-different widening insns: 64 x 64 -> 128 */ |
| TCGv_i64 tcg_res[2]; |
| int pass, accop; |
| |
| tcg_res[0] = tcg_temp_new_i64(); |
| tcg_res[1] = tcg_temp_new_i64(); |
| |
| /* Does this op do an adding accumulate, a subtracting accumulate, |
| * or no accumulate at all? |
| */ |
| switch (opcode) { |
| case 5: |
| case 8: |
| case 9: |
| accop = 1; |
| break; |
| case 10: |
| case 11: |
| accop = -1; |
| break; |
| default: |
| accop = 0; |
| break; |
| } |
| |
| if (accop != 0) { |
| read_vec_element(s, tcg_res[0], rd, 0, MO_64); |
| read_vec_element(s, tcg_res[1], rd, 1, MO_64); |
| } |
| |
| /* size == 2 means two 32x32->64 operations; this is worth special |
| * casing because we can generally handle it inline. |
| */ |
| if (size == 2) { |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_passres; |
| TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); |
| |
| int elt = pass + is_q * 2; |
| |
| read_vec_element(s, tcg_op1, rn, elt, memop); |
| read_vec_element(s, tcg_op2, rm, elt, memop); |
| |
| if (accop == 0) { |
| tcg_passres = tcg_res[pass]; |
| } else { |
| tcg_passres = tcg_temp_new_i64(); |
| } |
| |
| switch (opcode) { |
| case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ |
| tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); |
| break; |
| case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ |
| tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); |
| break; |
| case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ |
| case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ |
| { |
| TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); |
| |
| tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); |
| tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); |
| tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, |
| tcg_passres, |
| tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); |
| tcg_temp_free_i64(tcg_tmp1); |
| tcg_temp_free_i64(tcg_tmp2); |
| break; |
| } |
| case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ |
| tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); |
| break; |
| case 9: /* SQDMLAL, SQDMLAL2 */ |
| case 11: /* SQDMLSL, SQDMLSL2 */ |
| case 13: /* SQDMULL, SQDMULL2 */ |
| tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); |
| gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, |
| tcg_passres, tcg_passres); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (opcode == 9 || opcode == 11) { |
| /* saturating accumulate ops */ |
| if (accop < 0) { |
| tcg_gen_neg_i64(tcg_passres, tcg_passres); |
| } |
| gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, |
| tcg_res[pass], tcg_passres); |
| } else if (accop > 0) { |
| tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); |
| } else if (accop < 0) { |
| tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); |
| } |
| |
| if (accop != 0) { |
| tcg_temp_free_i64(tcg_passres); |
| } |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| } |
| } else { |
| /* size 0 or 1, generally helper functions */ |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i32 tcg_op1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i64 tcg_passres; |
| int elt = pass + is_q * 2; |
| |
| read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); |
| read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); |
| |
| if (accop == 0) { |
| tcg_passres = tcg_res[pass]; |
| } else { |
| tcg_passres = tcg_temp_new_i64(); |
| } |
| |
| switch (opcode) { |
| case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ |
| case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ |
| { |
| TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); |
| static NeonGenWidenFn * const widenfns[2][2] = { |
| { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, |
| { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, |
| }; |
| NeonGenWidenFn *widenfn = widenfns[size][is_u]; |
| |
| widenfn(tcg_op2_64, tcg_op2); |
| widenfn(tcg_passres, tcg_op1); |
| gen_neon_addl(size, (opcode == 2), tcg_passres, |
| tcg_passres, tcg_op2_64); |
| tcg_temp_free_i64(tcg_op2_64); |
| break; |
| } |
| case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ |
| case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ |
| if (size == 0) { |
| if (is_u) { |
| gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); |
| } else { |
| gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); |
| } |
| } else { |
| if (is_u) { |
| gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); |
| } else { |
| gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); |
| } |
| } |
| break; |
| case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ |
| if (size == 0) { |
| if (is_u) { |
| gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); |
| } else { |
| gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); |
| } |
| } else { |
| if (is_u) { |
| gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); |
| } else { |
| gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); |
| } |
| } |
| break; |
| case 9: /* SQDMLAL, SQDMLAL2 */ |
| case 11: /* SQDMLSL, SQDMLSL2 */ |
| case 13: /* SQDMULL, SQDMULL2 */ |
| assert(size == 1); |
| gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); |
| gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, |
| tcg_passres, tcg_passres); |
| break; |
| case 14: /* PMULL */ |
| assert(size == 0); |
| gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| |
| if (accop != 0) { |
| if (opcode == 9 || opcode == 11) { |
| /* saturating accumulate ops */ |
| if (accop < 0) { |
| gen_helper_neon_negl_u32(tcg_passres, tcg_passres); |
| } |
| gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, |
| tcg_res[pass], |
| tcg_passres); |
| } else { |
| gen_neon_addl(size, (accop < 0), tcg_res[pass], |
| tcg_res[pass], tcg_passres); |
| } |
| tcg_temp_free_i64(tcg_passres); |
| } |
| } |
| } |
| |
| write_vec_element(s, tcg_res[0], rd, 0, MO_64); |
| write_vec_element(s, tcg_res[1], rd, 1, MO_64); |
| tcg_temp_free_i64(tcg_res[0]); |
| tcg_temp_free_i64(tcg_res[1]); |
| } |
| |
| static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, |
| int opcode, int rd, int rn, int rm) |
| { |
| TCGv_i64 tcg_res[2]; |
| int part = is_q ? 2 : 0; |
| int pass; |
| |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); |
| static NeonGenWidenFn * const widenfns[3][2] = { |
| { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, |
| { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, |
| { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, |
| }; |
| NeonGenWidenFn *widenfn = widenfns[size][is_u]; |
| |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); |
| widenfn(tcg_op2_wide, tcg_op2); |
| tcg_temp_free_i32(tcg_op2); |
| tcg_res[pass] = tcg_temp_new_i64(); |
| gen_neon_addl(size, (opcode == 3), |
| tcg_res[pass], tcg_op1, tcg_op2_wide); |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2_wide); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_res[pass]); |
| } |
| } |
| |
| static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) |
| { |
| tcg_gen_addi_i64(in, in, 1U << 31); |
| tcg_gen_extrh_i64_i32(res, in); |
| } |
| |
| static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, |
| int opcode, int rd, int rn, int rm) |
| { |
| TCGv_i32 tcg_res[2]; |
| int part = is_q ? 2 : 0; |
| int pass; |
| |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_wideres = tcg_temp_new_i64(); |
| static NeonGenNarrowFn * const narrowfns[3][2] = { |
| { gen_helper_neon_narrow_high_u8, |
| gen_helper_neon_narrow_round_high_u8 }, |
| { gen_helper_neon_narrow_high_u16, |
| gen_helper_neon_narrow_round_high_u16 }, |
| { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, |
| }; |
| NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; |
| |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element(s, tcg_op2, rm, pass, MO_64); |
| |
| gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| |
| tcg_res[pass] = tcg_temp_new_i32(); |
| gennarrow(tcg_res[pass], tcg_wideres); |
| tcg_temp_free_i64(tcg_wideres); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); |
| tcg_temp_free_i32(tcg_res[pass]); |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm) |
| { |
| /* PMULL of 64 x 64 -> 128 is an odd special case because it |
| * is the only three-reg-diff instruction which produces a |
| * 128-bit wide result from a single operation. However since |
| * it's possible to calculate the two halves more or less |
| * separately we just use two helper calls. |
| */ |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op1, rn, is_q, MO_64); |
| read_vec_element(s, tcg_op2, rm, is_q, MO_64); |
| gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2); |
| write_vec_element(s, tcg_res, rd, 0, MO_64); |
| gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2); |
| write_vec_element(s, tcg_res, rd, 1, MO_64); |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_res); |
| } |
| |
| /* AdvSIMD three different |
| * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------+--------+-----+------+------+ |
| * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | |
| * +---+---+---+-----------+------+---+------+--------+-----+------+------+ |
| */ |
| static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) |
| { |
| /* Instructions in this group fall into three basic classes |
| * (in each case with the operation working on each element in |
| * the input vectors): |
| * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra |
| * 128 bit input) |
| * (2) wide 64 x 128 -> 128 |
| * (3) narrowing 128 x 128 -> 64 |
| * Here we do initial decode, catch unallocated cases and |
| * dispatch to separate functions for each class. |
| */ |
| int is_q = extract32(insn, 30, 1); |
| int is_u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 4); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| |
| switch (opcode) { |
| case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ |
| case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ |
| /* 64 x 128 -> 128 */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); |
| break; |
| case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ |
| case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ |
| /* 128 x 128 -> 64 */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); |
| break; |
| case 14: /* PMULL, PMULL2 */ |
| if (is_u || size == 1 || size == 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (size == 3) { |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_pmull_64(s, is_q, rd, rn, rm); |
| return; |
| } |
| goto is_widening; |
| case 9: /* SQDMLAL, SQDMLAL2 */ |
| case 11: /* SQDMLSL, SQDMLSL2 */ |
| case 13: /* SQDMULL, SQDMULL2 */ |
| if (is_u || size == 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ |
| case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ |
| case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ |
| case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ |
| case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ |
| /* 64 x 64 -> 128 */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_widening: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); |
| break; |
| default: |
| /* opcode 15 not allocated */ |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| static void gen_bsl_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) |
| { |
| tcg_gen_xor_i64(rn, rn, rm); |
| tcg_gen_and_i64(rn, rn, rd); |
| tcg_gen_xor_i64(rd, rm, rn); |
| } |
| |
| static void gen_bit_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) |
| { |
| tcg_gen_xor_i64(rn, rn, rd); |
| tcg_gen_and_i64(rn, rn, rm); |
| tcg_gen_xor_i64(rd, rd, rn); |
| } |
| |
| static void gen_bif_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) |
| { |
| tcg_gen_xor_i64(rn, rn, rd); |
| tcg_gen_andc_i64(rn, rn, rm); |
| tcg_gen_xor_i64(rd, rd, rn); |
| } |
| |
| static void gen_bsl_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm) |
| { |
| tcg_gen_xor_vec(vece, rn, rn, rm); |
| tcg_gen_and_vec(vece, rn, rn, rd); |
| tcg_gen_xor_vec(vece, rd, rm, rn); |
| } |
| |
| static void gen_bit_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm) |
| { |
| tcg_gen_xor_vec(vece, rn, rn, rd); |
| tcg_gen_and_vec(vece, rn, rn, rm); |
| tcg_gen_xor_vec(vece, rd, rd, rn); |
| } |
| |
| static void gen_bif_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm) |
| { |
| tcg_gen_xor_vec(vece, rn, rn, rd); |
| tcg_gen_andc_vec(vece, rn, rn, rm); |
| tcg_gen_xor_vec(vece, rd, rd, rn); |
| } |
| |
| /* Logic op (opcode == 3) subgroup of C3.6.16. */ |
| static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) |
| { |
| static const GVecGen3 bsl_op = { |
| .fni8 = gen_bsl_i64, |
| .fniv = gen_bsl_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true |
| }; |
| static const GVecGen3 bit_op = { |
| .fni8 = gen_bit_i64, |
| .fniv = gen_bit_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true |
| }; |
| static const GVecGen3 bif_op = { |
| .fni8 = gen_bif_i64, |
| .fniv = gen_bif_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true |
| }; |
| |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int rm = extract32(insn, 16, 5); |
| int size = extract32(insn, 22, 2); |
| bool is_u = extract32(insn, 29, 1); |
| bool is_q = extract32(insn, 30, 1); |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| switch (size + 4 * is_u) { |
| case 0: /* AND */ |
| gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); |
| return; |
| case 1: /* BIC */ |
| gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); |
| return; |
| case 2: /* ORR */ |
| if (rn == rm) { /* MOV */ |
| gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0); |
| } else { |
| gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); |
| } |
| return; |
| case 3: /* ORN */ |
| gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); |
| return; |
| case 4: /* EOR */ |
| gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); |
| return; |
| |
| case 5: /* BSL bitwise select */ |
| gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op); |
| return; |
| case 6: /* BIT, bitwise insert if true */ |
| gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op); |
| return; |
| case 7: /* BIF, bitwise insert if false */ |
| gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op); |
| return; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Helper functions for 32 bit comparisons */ |
| static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) |
| { |
| tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2); |
| } |
| |
| static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) |
| { |
| tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2); |
| } |
| |
| static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) |
| { |
| tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2); |
| } |
| |
| static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) |
| { |
| tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2); |
| } |
| |
| /* Pairwise op subgroup of C3.6.16. |
| * |
| * This is called directly or via the handle_3same_float for float pairwise |
| * operations where the opcode and size are calculated differently. |
| */ |
| static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, |
| int size, int rn, int rm, int rd) |
| { |
| TCGv_ptr fpst; |
| int pass; |
| |
| /* Floating point operations need fpst */ |
| if (opcode >= 0x58) { |
| fpst = get_fpstatus_ptr(); |
| } else { |
| fpst = NULL; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| /* These operations work on the concatenated rm:rn, with each pair of |
| * adjacent elements being operated on to produce an element in the result. |
| */ |
| if (size == 3) { |
| TCGv_i64 tcg_res[2]; |
| |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| int passreg = (pass == 0) ? rn : rm; |
| |
| read_vec_element(s, tcg_op1, passreg, 0, MO_64); |
| read_vec_element(s, tcg_op2, passreg, 1, MO_64); |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| switch (opcode) { |
| case 0x17: /* ADDP */ |
| tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); |
| break; |
| case 0x58: /* FMAXNMP */ |
| gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5a: /* FADDP */ |
| gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5e: /* FMAXP */ |
| gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x78: /* FMINNMP */ |
| gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x7e: /* FMINP */ |
| gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_res[pass]); |
| } |
| } else { |
| int maxpass = is_q ? 4 : 2; |
| TCGv_i32 tcg_res[4]; |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i32 tcg_op1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| NeonGenTwoOpFn *genfn = NULL; |
| int passreg = pass < (maxpass / 2) ? rn : rm; |
| int passelt = (is_q && (pass & 1)) ? 2 : 0; |
| |
| read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); |
| read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); |
| tcg_res[pass] = tcg_temp_new_i32(); |
| |
| switch (opcode) { |
| case 0x17: /* ADDP */ |
| { |
| static NeonGenTwoOpFn * const fns[3] = { |
| gen_helper_neon_padd_u8, |
| gen_helper_neon_padd_u16, |
| tcg_gen_add_i32, |
| }; |
| genfn = fns[size]; |
| break; |
| } |
| case 0x14: /* SMAXP, UMAXP */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, |
| { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, |
| { gen_max_s32, gen_max_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| case 0x15: /* SMINP, UMINP */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, |
| { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, |
| { gen_min_s32, gen_min_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| /* The FP operations are all on single floats (32 bit) */ |
| case 0x58: /* FMAXNMP */ |
| gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5a: /* FADDP */ |
| gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x5e: /* FMAXP */ |
| gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x78: /* FMINNMP */ |
| gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| case 0x7e: /* FMINP */ |
| gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* FP ops called directly, otherwise call now */ |
| if (genfn) { |
| genfn(tcg_res[pass], tcg_op1, tcg_op2); |
| } |
| |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| } |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); |
| tcg_temp_free_i32(tcg_res[pass]); |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| if (fpst) { |
| tcg_temp_free_ptr(fpst); |
| } |
| } |
| |
| /* Floating point op subgroup of C3.6.16. */ |
| static void disas_simd_3same_float(DisasContext *s, uint32_t insn) |
| { |
| /* For floating point ops, the U, size[1] and opcode bits |
| * together indicate the operation. size[0] indicates single |
| * or double. |
| */ |
| int fpopcode = extract32(insn, 11, 5) |
| | (extract32(insn, 23, 1) << 5) |
| | (extract32(insn, 29, 1) << 6); |
| int is_q = extract32(insn, 30, 1); |
| int size = extract32(insn, 22, 1); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| |
| int datasize = is_q ? 128 : 64; |
| int esize = 32 << size; |
| int elements = datasize / esize; |
| |
| if (size == 1 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (fpopcode) { |
| case 0x58: /* FMAXNMP */ |
| case 0x5a: /* FADDP */ |
| case 0x5e: /* FMAXP */ |
| case 0x78: /* FMINNMP */ |
| case 0x7e: /* FMINP */ |
| if (size && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, |
| rn, rm, rd); |
| return; |
| case 0x1b: /* FMULX */ |
| case 0x1f: /* FRECPS */ |
| case 0x3f: /* FRSQRTS */ |
| case 0x5d: /* FACGE */ |
| case 0x7d: /* FACGT */ |
| case 0x19: /* FMLA */ |
| case 0x39: /* FMLS */ |
| case 0x18: /* FMAXNM */ |
| case 0x1a: /* FADD */ |
| case 0x1c: /* FCMEQ */ |
| case 0x1e: /* FMAX */ |
| case 0x38: /* FMINNM */ |
| case 0x3a: /* FSUB */ |
| case 0x3e: /* FMIN */ |
| case 0x5b: /* FMUL */ |
| case 0x5c: /* FCMGE */ |
| case 0x5f: /* FDIV */ |
| case 0x7a: /* FABD */ |
| case 0x7c: /* FCMGT */ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); |
| return; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u8(a, a, b); |
| gen_helper_neon_add_u8(d, d, a); |
| } |
| |
| static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u16(a, a, b); |
| gen_helper_neon_add_u16(d, d, a); |
| } |
| |
| static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_mul_i32(a, a, b); |
| tcg_gen_add_i32(d, d, a); |
| } |
| |
| static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_mul_i64(a, a, b); |
| tcg_gen_add_i64(d, d, a); |
| } |
| |
| static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_mul_vec(vece, a, a, b); |
| tcg_gen_add_vec(vece, d, d, a); |
| } |
| |
| static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u8(a, a, b); |
| gen_helper_neon_sub_u8(d, d, a); |
| } |
| |
| static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| gen_helper_neon_mul_u16(a, a, b); |
| gen_helper_neon_sub_u16(d, d, a); |
| } |
| |
| static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| tcg_gen_mul_i32(a, a, b); |
| tcg_gen_sub_i32(d, d, a); |
| } |
| |
| static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| tcg_gen_mul_i64(a, a, b); |
| tcg_gen_sub_i64(d, d, a); |
| } |
| |
| static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_mul_vec(vece, a, a, b); |
| tcg_gen_sub_vec(vece, d, d, a); |
| } |
| |
| /* Integer op subgroup of C3.6.16. */ |
| static void disas_simd_3same_int(DisasContext *s, uint32_t insn) |
| { |
| static const GVecGen3 cmtst_op[4] = { |
| { .fni4 = gen_helper_neon_tst_u8, |
| .fniv = gen_cmtst_vec, |
| .vece = MO_8 }, |
| { .fni4 = gen_helper_neon_tst_u16, |
| .fniv = gen_cmtst_vec, |
| .vece = MO_16 }, |
| { .fni4 = gen_cmtst_i32, |
| .fniv = gen_cmtst_vec, |
| .vece = MO_32 }, |
| { .fni8 = gen_cmtst_i64, |
| .fniv = gen_cmtst_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| static const GVecGen3 mla_op[4] = { |
| { .fni4 = gen_mla8_i32, |
| .fniv = gen_mla_vec, |
| .opc = INDEX_op_mul_vec, |
| .load_dest = true, |
| .vece = MO_8 }, |
| { .fni4 = gen_mla16_i32, |
| .fniv = gen_mla_vec, |
| .opc = INDEX_op_mul_vec, |
| .load_dest = true, |
| .vece = MO_16 }, |
| { .fni4 = gen_mla32_i32, |
| .fniv = gen_mla_vec, |
| .opc = INDEX_op_mul_vec, |
| .load_dest = true, |
| .vece = MO_32 }, |
| { .fni8 = gen_mla64_i64, |
| .fniv = gen_mla_vec, |
| .opc = INDEX_op_mul_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| static const GVecGen3 mls_op[4] = { |
| { .fni4 = gen_mls8_i32, |
| .fniv = gen_mls_vec, |
| .opc = INDEX_op_mul_vec, |
| .load_dest = true, |
| .vece = MO_8 }, |
| { .fni4 = gen_mls16_i32, |
| .fniv = gen_mls_vec, |
| .opc = INDEX_op_mul_vec, |
| .load_dest = true, |
| .vece = MO_16 }, |
| { .fni4 = gen_mls32_i32, |
| .fniv = gen_mls_vec, |
| .opc = INDEX_op_mul_vec, |
| .load_dest = true, |
| .vece = MO_32 }, |
| { .fni8 = gen_mls64_i64, |
| .fniv = gen_mls_vec, |
| .opc = INDEX_op_mul_vec, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .load_dest = true, |
| .vece = MO_64 }, |
| }; |
| |
| int is_q = extract32(insn, 30, 1); |
| int u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 11, 5); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| int pass; |
| TCGCond cond; |
| |
| switch (opcode) { |
| case 0x13: /* MUL, PMUL */ |
| if (u && size != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x0: /* SHADD, UHADD */ |
| case 0x2: /* SRHADD, URHADD */ |
| case 0x4: /* SHSUB, UHSUB */ |
| case 0xc: /* SMAX, UMAX */ |
| case 0xd: /* SMIN, UMIN */ |
| case 0xe: /* SABD, UABD */ |
| case 0xf: /* SABA, UABA */ |
| case 0x12: /* MLA, MLS */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x16: /* SQDMULH, SQRDMULH */ |
| if (size == 0 || size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| default: |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x10: /* ADD, SUB */ |
| if (u) { |
| gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); |
| } else { |
| gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); |
| } |
| return; |
| case 0x13: /* MUL, PMUL */ |
| if (!u) { /* MUL */ |
| gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); |
| return; |
| } |
| break; |
| case 0x12: /* MLA, MLS */ |
| if (u) { |
| gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]); |
| } else { |
| gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]); |
| } |
| return; |
| case 0x11: |
| if (!u) { /* CMTST */ |
| gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]); |
| return; |
| } |
| /* else CMEQ */ |
| cond = TCG_COND_EQ; |
| goto do_gvec_cmp; |
| case 0x06: /* CMGT, CMHI */ |
| cond = u ? TCG_COND_GTU : TCG_COND_GT; |
| goto do_gvec_cmp; |
| case 0x07: /* CMGE, CMHS */ |
| cond = u ? TCG_COND_GEU : TCG_COND_GE; |
| do_gvec_cmp: |
| tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), |
| is_q ? 16 : 8, vec_full_reg_size(s)); |
| return; |
| } |
| |
| if (size == 3) { |
| assert(is_q); |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element(s, tcg_op2, rm, pass, MO_64); |
| |
| handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); |
| |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| |
| tcg_temp_free_i64(tcg_res); |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| } |
| } else { |
| for (pass = 0; pass < (is_q ? 4 : 2); pass++) { |
| TCGv_i32 tcg_op1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| NeonGenTwoOpFn *genfn = NULL; |
| NeonGenTwoOpEnvFn *genenvfn = NULL; |
| |
| read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); |
| read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); |
| |
| switch (opcode) { |
| case 0x0: /* SHADD, UHADD */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, |
| { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, |
| { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| case 0x1: /* SQADD, UQADD */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, |
| { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, |
| { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0x2: /* SRHADD, URHADD */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, |
| { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, |
| { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| case 0x4: /* SHSUB, UHSUB */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, |
| { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, |
| { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| case 0x5: /* SQSUB, UQSUB */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, |
| { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, |
| { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0x8: /* SSHL, USHL */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 }, |
| { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 }, |
| { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| case 0x9: /* SQSHL, UQSHL */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, |
| { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, |
| { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0xa: /* SRSHL, URSHL */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, |
| { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, |
| { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| case 0xb: /* SQRSHL, UQRSHL */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, |
| { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, |
| { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0xc: /* SMAX, UMAX */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_max_s8, gen_helper_neon_max_u8 }, |
| { gen_helper_neon_max_s16, gen_helper_neon_max_u16 }, |
| { gen_max_s32, gen_max_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| |
| case 0xd: /* SMIN, UMIN */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_min_s8, gen_helper_neon_min_u8 }, |
| { gen_helper_neon_min_s16, gen_helper_neon_min_u16 }, |
| { gen_min_s32, gen_min_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| case 0xe: /* SABD, UABD */ |
| case 0xf: /* SABA, UABA */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 }, |
| { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 }, |
| { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 }, |
| }; |
| genfn = fns[size][u]; |
| break; |
| } |
| case 0x13: /* MUL, PMUL */ |
| assert(u); /* PMUL */ |
| assert(size == 0); |
| genfn = gen_helper_neon_mul_p8; |
| break; |
| case 0x16: /* SQDMULH, SQRDMULH */ |
| { |
| static NeonGenTwoOpEnvFn * const fns[2][2] = { |
| { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, |
| { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, |
| }; |
| assert(size == 1 || size == 2); |
| genenvfn = fns[size - 1][u]; |
| break; |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (genenvfn) { |
| genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); |
| } else { |
| genfn(tcg_res, tcg_op1, tcg_op2); |
| } |
| |
| if (opcode == 0xf) { |
| /* SABA, UABA: accumulating ops */ |
| static NeonGenTwoOpFn * const fns[3] = { |
| gen_helper_neon_add_u8, |
| gen_helper_neon_add_u16, |
| tcg_gen_add_i32, |
| }; |
| |
| read_vec_element_i32(s, tcg_op1, rd, pass, MO_32); |
| fns[size](tcg_res, tcg_op1, tcg_res); |
| } |
| |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| |
| tcg_temp_free_i32(tcg_res); |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| } |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| /* AdvSIMD three same |
| * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------+--------+---+------+------+ |
| * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | |
| * +---+---+---+-----------+------+---+------+--------+---+------+------+ |
| */ |
| static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) |
| { |
| int opcode = extract32(insn, 11, 5); |
| |
| switch (opcode) { |
| case 0x3: /* logic ops */ |
| disas_simd_3same_logic(s, insn); |
| break; |
| case 0x17: /* ADDP */ |
| case 0x14: /* SMAXP, UMAXP */ |
| case 0x15: /* SMINP, UMINP */ |
| { |
| /* Pairwise operations */ |
| int is_q = extract32(insn, 30, 1); |
| int u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| if (opcode == 0x17) { |
| if (u || (size == 3 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| } else { |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); |
| break; |
| } |
| case 0x18 ... 0x31: |
| /* floating point ops, sz[1] and U are part of opcode */ |
| disas_simd_3same_float(s, insn); |
| break; |
| default: |
| disas_simd_3same_int(s, insn); |
| break; |
| } |
| } |
| |
| static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, |
| int size, int rn, int rd) |
| { |
| /* Handle 2-reg-misc ops which are widening (so each size element |
| * in the source becomes a 2*size element in the destination. |
| * The only instruction like this is FCVTL. |
| */ |
| int pass; |
| |
| if (size == 3) { |
| /* 32 -> 64 bit fp conversion */ |
| TCGv_i64 tcg_res[2]; |
| int srcelt = is_q ? 2 : 0; |
| |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); |
| gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); |
| tcg_temp_free_i32(tcg_op); |
| } |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_res[pass]); |
| } |
| } else { |
| /* 16 -> 32 bit fp conversion */ |
| int srcelt = is_q ? 4 : 0; |
| TCGv_i32 tcg_res[4]; |
| |
| for (pass = 0; pass < 4; pass++) { |
| tcg_res[pass] = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); |
| gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], |
| cpu_env); |
| } |
| for (pass = 0; pass < 4; pass++) { |
| write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); |
| tcg_temp_free_i32(tcg_res[pass]); |
| } |
| } |
| } |
| |
| static void handle_rev(DisasContext *s, int opcode, bool u, |
| bool is_q, int size, int rn, int rd) |
| { |
| int op = (opcode << 1) | u; |
| int opsz = op + size; |
| int grp_size = 3 - opsz; |
| int dsize = is_q ? 128 : 64; |
| int i; |
| |
| if (opsz >= 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (size == 0) { |
| /* Special case bytes, use bswap op on each group of elements */ |
| int groups = dsize / (8 << grp_size); |
| |
| for (i = 0; i < groups; i++) { |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_tmp, rn, i, grp_size); |
| switch (grp_size) { |
| case MO_16: |
| tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp); |
| break; |
| case MO_32: |
| tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp); |
| break; |
| case MO_64: |
| tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| write_vec_element(s, tcg_tmp, rd, i, grp_size); |
| tcg_temp_free_i64(tcg_tmp); |
| } |
| clear_vec_high(s, is_q, rd); |
| } else { |
| int revmask = (1 << grp_size) - 1; |
| int esize = 8 << size; |
| int elements = dsize / esize; |
| TCGv_i64 tcg_rn = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rd = tcg_const_i64(0); |
| TCGv_i64 tcg_rd_hi = tcg_const_i64(0); |
| |
| for (i = 0; i < elements; i++) { |
| int e_rev = (i & 0xf) ^ revmask; |
| int off = e_rev * esize; |
| read_vec_element(s, tcg_rn, rn, i, size); |
| if (off >= 64) { |
| tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi, |
| tcg_rn, off - 64, esize); |
| } else { |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize); |
| } |
| } |
| write_vec_element(s, tcg_rd, rd, 0, MO_64); |
| write_vec_element(s, tcg_rd_hi, rd, 1, MO_64); |
| |
| tcg_temp_free_i64(tcg_rd_hi); |
| tcg_temp_free_i64(tcg_rd); |
| tcg_temp_free_i64(tcg_rn); |
| } |
| } |
| |
| static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, |
| bool is_q, int size, int rn, int rd) |
| { |
| /* Implement the pairwise operations from 2-misc: |
| * SADDLP, UADDLP, SADALP, UADALP. |
| * These all add pairs of elements in the input to produce a |
| * double-width result element in the output (possibly accumulating). |
| */ |
| bool accum = (opcode == 0x6); |
| int maxpass = is_q ? 2 : 1; |
| int pass; |
| TCGv_i64 tcg_res[2]; |
| |
| if (size == 2) { |
| /* 32 + 32 -> 64 op */ |
| TCGMemOp memop = size + (u ? 0 : MO_SIGN); |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op1, rn, pass * 2, memop); |
| read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); |
| tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); |
| if (accum) { |
| read_vec_element(s, tcg_op1, rd, pass, MO_64); |
| tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); |
| } |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| } |
| } else { |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| NeonGenOneOpFn *genfn; |
| static NeonGenOneOpFn * const fns[2][2] = { |
| { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, |
| { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, |
| }; |
| |
| genfn = fns[size][u]; |
| |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| genfn(tcg_res[pass], tcg_op); |
| |
| if (accum) { |
| read_vec_element(s, tcg_op, rd, pass, MO_64); |
| if (size == 0) { |
| gen_helper_neon_addl_u16(tcg_res[pass], |
| tcg_res[pass], tcg_op); |
| } else { |
| gen_helper_neon_addl_u32(tcg_res[pass], |
| tcg_res[pass], tcg_op); |
| } |
| } |
| tcg_temp_free_i64(tcg_op); |
| } |
| } |
| if (!is_q) { |
| tcg_res[1] = tcg_const_i64(0); |
| } |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_res[pass]); |
| } |
| } |
| |
| static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) |
| { |
| /* Implement SHLL and SHLL2 */ |
| int pass; |
| int part = is_q ? 2 : 0; |
| TCGv_i64 tcg_res[2]; |
| |
| for (pass = 0; pass < 2; pass++) { |
| static NeonGenWidenFn * const widenfns[3] = { |
| gen_helper_neon_widen_u8, |
| gen_helper_neon_widen_u16, |
| tcg_gen_extu_i32_i64, |
| }; |
| NeonGenWidenFn *widenfn = widenfns[size]; |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); |
| tcg_res[pass] = tcg_temp_new_i64(); |
| widenfn(tcg_res[pass], tcg_op); |
| tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); |
| |
| tcg_temp_free_i32(tcg_op); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_res[pass]); |
| } |
| } |
| |
| /* AdvSIMD two reg misc |
| * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+-----------+--------+-----+------+------+ |
| * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | |
| * +---+---+---+-----------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) |
| { |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 5); |
| bool u = extract32(insn, 29, 1); |
| bool is_q = extract32(insn, 30, 1); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| bool need_fpstatus = false; |
| bool need_rmode = false; |
| int rmode = -1; |
| TCGv_i32 tcg_rmode; |
| TCGv_ptr tcg_fpstatus; |
| |
| switch (opcode) { |
| case 0x0: /* REV64, REV32 */ |
| case 0x1: /* REV16 */ |
| handle_rev(s, opcode, u, is_q, size, rn, rd); |
| return; |
| case 0x5: /* CNT, NOT, RBIT */ |
| if (u && size == 0) { |
| /* NOT */ |
| break; |
| } else if (u && size == 1) { |
| /* RBIT */ |
| break; |
| } else if (!u && size == 0) { |
| /* CNT */ |
| break; |
| } |
| unallocated_encoding(s); |
| return; |
| case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ |
| case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); |
| return; |
| case 0x4: /* CLS, CLZ */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x2: /* SADDLP, UADDLP */ |
| case 0x6: /* SADALP, UADALP */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); |
| return; |
| case 0x13: /* SHLL, SHLL2 */ |
| if (u == 0 || size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_shll(s, is_q, size, rn, rd); |
| return; |
| case 0xa: /* CMLT */ |
| if (u == 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x8: /* CMGT, CMGE */ |
| case 0x9: /* CMEQ, CMLE */ |
| case 0xb: /* ABS, NEG */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x3: /* SUQADD, USQADD */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_satacc(s, false, u, is_q, size, rn, rd); |
| return; |
| case 0x7: /* SQABS, SQNEG */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0xc ... 0xf: |
| case 0x16 ... 0x1d: |
| case 0x1f: |
| { |
| /* Floating point: U, size[1] and opcode indicate operation; |
| * size[0] indicates single or double precision. |
| */ |
| int is_double = extract32(size, 0, 1); |
| opcode |= (extract32(size, 1, 1) << 5) | (u << 6); |
| size = is_double ? 3 : 2; |
| switch (opcode) { |
| case 0x2f: /* FABS */ |
| case 0x6f: /* FNEG */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x1d: /* SCVTF */ |
| case 0x5d: /* UCVTF */ |
| { |
| bool is_signed = (opcode == 0x1d) ? true : false; |
| int elements = is_double ? 2 : is_q ? 4 : 2; |
| if (is_double && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); |
| return; |
| } |
| case 0x2c: /* FCMGT (zero) */ |
| case 0x2d: /* FCMEQ (zero) */ |
| case 0x2e: /* FCMLT (zero) */ |
| case 0x6c: /* FCMGE (zero) */ |
| case 0x6d: /* FCMLE (zero) */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); |
| return; |
| case 0x7f: /* FSQRT */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| need_fpstatus = true; |
| need_rmode = true; |
| rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x5c: /* FCVTAU */ |
| case 0x1c: /* FCVTAS */ |
| need_fpstatus = true; |
| need_rmode = true; |
| rmode = FPROUNDING_TIEAWAY; |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x3c: /* URECPE */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x3d: /* FRECPE */ |
| case 0x7d: /* FRSQRTE */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); |
| return; |
| case 0x56: /* FCVTXN, FCVTXN2 */ |
| if (size == 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x16: /* FCVTN, FCVTN2 */ |
| /* handle_2misc_narrow does a 2*size -> size operation, but these |
| * instructions encode the source size rather than dest size. |
| */ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); |
| return; |
| case 0x17: /* FCVTL, FCVTL2 */ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_widening(s, opcode, is_q, size, rn, rd); |
| return; |
| case 0x18: /* FRINTN */ |
| case 0x19: /* FRINTM */ |
| case 0x38: /* FRINTP */ |
| case 0x39: /* FRINTZ */ |
| need_rmode = true; |
| rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); |
| /* fall through */ |
| case 0x59: /* FRINTX */ |
| case 0x79: /* FRINTI */ |
| need_fpstatus = true; |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x58: /* FRINTA */ |
| need_rmode = true; |
| rmode = FPROUNDING_TIEAWAY; |
| need_fpstatus = true; |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x7c: /* URSQRTE */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| need_fpstatus = true; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| } |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (need_fpstatus) { |
| tcg_fpstatus = get_fpstatus_ptr(); |
| } else { |
| tcg_fpstatus = NULL; |
| } |
| if (need_rmode) { |
| tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| } else { |
| tcg_rmode = NULL; |
| } |
| |
| switch (opcode) { |
| case 0x5: |
| if (u && size == 0) { /* NOT */ |
| gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); |
| return; |
| } |
| break; |
| case 0xb: |
| if (u) { /* NEG */ |
| gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); |
| return; |
| } |
| break; |
| } |
| |
| if (size == 3) { |
| /* All 64-bit element operations can be shared with scalar 2misc */ |
| int pass; |
| |
| for (pass = 0; pass < (is_q ? 2 : 1); pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| |
| handle_2misc_64(s, opcode, u, tcg_res, tcg_op, |
| tcg_rmode, tcg_fpstatus); |
| |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| |
| tcg_temp_free_i64(tcg_res); |
| tcg_temp_free_i64(tcg_op); |
| } |
| } else { |
| int pass; |
| |
| for (pass = 0; pass < (is_q ? 4 : 2); pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| TCGCond cond; |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, MO_32); |
| |
| if (size == 2) { |
| /* Special cases for 32 bit elements */ |
| switch (opcode) { |
| case 0xa: /* CMLT */ |
| /* 32 bit integer comparison against zero, result is |
| * test ? (2^32 - 1) : 0. We implement via setcond(test) |
| * and inverting. |
| */ |
| cond = TCG_COND_LT; |
| do_cmop: |
| tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0); |
| tcg_gen_neg_i32(tcg_res, tcg_res); |
| break; |
| case 0x8: /* CMGT, CMGE */ |
| cond = u ? TCG_COND_GE : TCG_COND_GT; |
| goto do_cmop; |
| case 0x9: /* CMEQ, CMLE */ |
| cond = u ? TCG_COND_LE : TCG_COND_EQ; |
| goto do_cmop; |
| case 0x4: /* CLS */ |
| if (u) { |
| tcg_gen_clzi_i32(tcg_res, tcg_op, 32); |
| } else { |
| tcg_gen_clrsb_i32(tcg_res, tcg_op); |
| } |
| break; |
| case 0x7: /* SQABS, SQNEG */ |
| if (u) { |
| gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); |
| } else { |
| gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); |
| } |
| break; |
| case 0xb: /* ABS, NEG */ |
| if (u) { |
| tcg_gen_neg_i32(tcg_res, tcg_op); |
| } else { |
| TCGv_i32 tcg_zero = tcg_const_i32(0); |
| tcg_gen_neg_i32(tcg_res, tcg_op); |
| tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op, |
| tcg_zero, tcg_op, tcg_res); |
| tcg_temp_free_i32(tcg_zero); |
| } |
| break; |
| case 0x2f: /* FABS */ |
| gen_helper_vfp_abss(tcg_res, tcg_op); |
| break; |
| case 0x6f: /* FNEG */ |
| gen_helper_vfp_negs(tcg_res, tcg_op); |
| break; |
| case 0x7f: /* FSQRT */ |
| gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); |
| break; |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x1c: /* FCVTAS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| { |
| TCGv_i32 tcg_shift = tcg_const_i32(0); |
| gen_helper_vfp_tosls(tcg_res, tcg_op, |
| tcg_shift, tcg_fpstatus); |
| tcg_temp_free_i32(tcg_shift); |
| break; |
| } |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x5c: /* FCVTAU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| { |
| TCGv_i32 tcg_shift = tcg_const_i32(0); |
| gen_helper_vfp_touls(tcg_res, tcg_op, |
| tcg_shift, tcg_fpstatus); |
| tcg_temp_free_i32(tcg_shift); |
| break; |
| } |
| case 0x18: /* FRINTN */ |
| case 0x19: /* FRINTM */ |
| case 0x38: /* FRINTP */ |
| case 0x39: /* FRINTZ */ |
| case 0x58: /* FRINTA */ |
| case 0x79: /* FRINTI */ |
| gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x59: /* FRINTX */ |
| gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x7c: /* URSQRTE */ |
| gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| /* Use helpers for 8 and 16 bit elements */ |
| switch (opcode) { |
| case 0x5: /* CNT, RBIT */ |
| /* For these two insns size is part of the opcode specifier |
| * (handled earlier); they always operate on byte elements. |
| */ |
| if (u) { |
| gen_helper_neon_rbit_u8(tcg_res, tcg_op); |
| } else { |
| gen_helper_neon_cnt_u8(tcg_res, tcg_op); |
| } |
| break; |
| case 0x7: /* SQABS, SQNEG */ |
| { |
| NeonGenOneOpEnvFn *genfn; |
| static NeonGenOneOpEnvFn * const fns[2][2] = { |
| { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, |
| { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, |
| }; |
| genfn = fns[size][u]; |
| genfn(tcg_res, cpu_env, tcg_op); |
| break; |
| } |
| case 0x8: /* CMGT, CMGE */ |
| case 0x9: /* CMEQ, CMLE */ |
| case 0xa: /* CMLT */ |
| { |
| static NeonGenTwoOpFn * const fns[3][2] = { |
| { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 }, |
| { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 }, |
| { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 }, |
| }; |
| NeonGenTwoOpFn *genfn; |
| int comp; |
| bool reverse; |
| TCGv_i32 tcg_zero = tcg_const_i32(0); |
| |
| /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */ |
| comp = (opcode - 0x8) * 2 + u; |
| /* ...but LE, LT are implemented as reverse GE, GT */ |
| reverse = (comp > 2); |
| if (reverse) { |
| comp = 4 - comp; |
| } |
| genfn = fns[comp][size]; |
| if (reverse) { |
| genfn(tcg_res, tcg_zero, tcg_op); |
| } else { |
| genfn(tcg_res, tcg_op, tcg_zero); |
| } |
| tcg_temp_free_i32(tcg_zero); |
| break; |
| } |
| case 0xb: /* ABS, NEG */ |
| if (u) { |
| TCGv_i32 tcg_zero = tcg_const_i32(0); |
| if (size) { |
| gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op); |
| } else { |
| gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op); |
| } |
| tcg_temp_free_i32(tcg_zero); |
| } else { |
| if (size) { |
| gen_helper_neon_abs_s16(tcg_res, tcg_op); |
| } else { |
| gen_helper_neon_abs_s8(tcg_res, tcg_op); |
| } |
| } |
| break; |
| case 0x4: /* CLS, CLZ */ |
| if (u) { |
| if (size == 0) { |
| gen_helper_neon_clz_u8(tcg_res, tcg_op); |
| } else { |
| gen_helper_neon_clz_u16(tcg_res, tcg_op); |
| } |
| } else { |
| if (size == 0) { |
| gen_helper_neon_cls_s8(tcg_res, tcg_op); |
| } else { |
| gen_helper_neon_cls_s16(tcg_res, tcg_op); |
| } |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| |
| tcg_temp_free_i32(tcg_res); |
| tcg_temp_free_i32(tcg_op); |
| } |
| } |
| clear_vec_high(s, is_q, rd); |
| |
| if (need_rmode) { |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env); |
| tcg_temp_free_i32(tcg_rmode); |
| } |
| if (need_fpstatus) { |
| tcg_temp_free_ptr(tcg_fpstatus); |
| } |
| } |
| |
| /* AdvSIMD scalar x indexed element |
| * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 |
| * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ |
| * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | |
| * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ |
| * AdvSIMD vector x indexed element |
| * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ |
| * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | |
| * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ |
| */ |
| static void disas_simd_indexed(DisasContext *s, uint32_t insn) |
| { |
| /* This encoding has two kinds of instruction: |
| * normal, where we perform elt x idxelt => elt for each |
| * element in the vector |
| * long, where we perform elt x idxelt and generate a result of |
| * double the width of the input element |
| * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). |
| */ |
| bool is_scalar = extract32(insn, 28, 1); |
| bool is_q = extract32(insn, 30, 1); |
| bool u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int l = extract32(insn, 21, 1); |
| int m = extract32(insn, 20, 1); |
| /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ |
| int rm = extract32(insn, 16, 4); |
| int opcode = extract32(insn, 12, 4); |
| int h = extract32(insn, 11, 1); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| bool is_long = false; |
| bool is_fp = false; |
| int index; |
| TCGv_ptr fpst; |
| |
| switch (opcode) { |
| case 0x0: /* MLA */ |
| case 0x4: /* MLS */ |
| if (!u || is_scalar) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */ |
| if (is_scalar) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_long = true; |
| break; |
| case 0x3: /* SQDMLAL, SQDMLAL2 */ |
| case 0x7: /* SQDMLSL, SQDMLSL2 */ |
| case 0xb: /* SQDMULL, SQDMULL2 */ |
| is_long = true; |
| /* fall through */ |
| case 0xc: /* SQDMULH */ |
| case 0xd: /* SQRDMULH */ |
| if (u) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x8: /* MUL */ |
| if (u || is_scalar) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x1: /* FMLA */ |
| case 0x5: /* FMLS */ |
| if (u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x9: /* FMUL, FMULX */ |
| if (!extract32(size, 1, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_fp = true; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (is_fp) { |
| /* low bit of size indicates single/double */ |
| size = extract32(size, 0, 1) ? 3 : 2; |
| if (size == 2) { |
| index = h << 1 | l; |
| } else { |
| if (l || !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| index = h; |
| } |
| rm |= (m << 4); |
| } else { |
| switch (size) { |
| case 1: |
| index = h << 2 | l << 1 | m; |
| break; |
| case 2: |
| index = h << 1 | l; |
| rm |= (m << 4); |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (is_fp) { |
| fpst = get_fpstatus_ptr(); |
| } else { |
| fpst = NULL; |
| } |
| |
| if (size == 3) { |
| TCGv_i64 tcg_idx = tcg_temp_new_i64(); |
| int pass; |
| |
| assert(is_fp && is_q && !is_long); |
| |
| read_vec_element(s, tcg_idx, rm, index, MO_64); |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| |
| switch (opcode) { |
| case 0x5: /* FMLS */ |
| /* As usual for ARM, separate negation for fused multiply-add */ |
| gen_helper_vfp_negd(tcg_op, tcg_op); |
| /* fall through */ |
| case 0x1: /* FMLA */ |
| read_vec_element(s, tcg_res, rd, pass, MO_64); |
| gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); |
| break; |
| case 0x9: /* FMUL, FMULX */ |
| if (u) { |
| gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); |
| } else { |
| gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_op); |
| tcg_temp_free_i64(tcg_res); |
| } |
| |
| tcg_temp_free_i64(tcg_idx); |
| clear_vec_high(s, !is_scalar, rd); |
| } else if (!is_long) { |
| /* 32 bit floating point, or 16 or 32 bit integer. |
| * For the 16 bit scalar case we use the usual Neon helpers and |
| * rely on the fact that 0 op 0 == 0 with no side effects. |
| */ |
| TCGv_i32 tcg_idx = tcg_temp_new_i32(); |
| int pass, maxpasses; |
| |
| if (is_scalar) { |
| maxpasses = 1; |
| } else { |
| maxpasses = is_q ? 4 : 2; |
| } |
| |
| read_vec_element_i32(s, tcg_idx, rm, index, size); |
| |
| if (size == 1 && !is_scalar) { |
| /* The simplest way to handle the 16x16 indexed ops is to duplicate |
| * the index into both halves of the 32 bit tcg_idx and then use |
| * the usual Neon helpers. |
| */ |
| tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); |
| } |
| |
| for (pass = 0; pass < maxpasses; pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); |
| |
| switch (opcode) { |
| case 0x0: /* MLA */ |
| case 0x4: /* MLS */ |
| case 0x8: /* MUL */ |
| { |
| static NeonGenTwoOpFn * const fns[2][2] = { |
| { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, |
| { tcg_gen_add_i32, tcg_gen_sub_i32 }, |
| }; |
| NeonGenTwoOpFn *genfn; |
| bool is_sub = opcode == 0x4; |
| |
| if (size == 1) { |
| gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); |
| } else { |
| tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); |
| } |
| if (opcode == 0x8) { |
| break; |
| } |
| read_vec_element_i32(s, tcg_op, rd, pass, MO_32); |
| genfn = fns[size - 1][is_sub]; |
| genfn(tcg_res, tcg_op, tcg_res); |
| break; |
| } |
| case 0x5: /* FMLS */ |
| /* As usual for ARM, separate negation for fused multiply-add */ |
| gen_helper_vfp_negs(tcg_op, tcg_op); |
| /* fall through */ |
| case 0x1: /* FMLA */ |
| read_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); |
| break; |
| case 0x9: /* FMUL, FMULX */ |
| if (u) { |
| gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); |
| } else { |
| gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); |
| } |
| break; |
| case 0xc: /* SQDMULH */ |
| if (size == 1) { |
| gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, |
| tcg_op, tcg_idx); |
| } else { |
| gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, |
| tcg_op, tcg_idx); |
| } |
| break; |
| case 0xd: /* SQRDMULH */ |
| if (size == 1) { |
| gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, |
| tcg_op, tcg_idx); |
| } else { |
| gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, |
| tcg_op, tcg_idx); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (is_scalar) { |
| write_fp_sreg(s, rd, tcg_res); |
| } else { |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| } |
| |
| tcg_temp_free_i32(tcg_op); |
| tcg_temp_free_i32(tcg_res); |
| } |
| |
| tcg_temp_free_i32(tcg_idx); |
| clear_vec_high(s, is_q, rd); |
| } else { |
| /* long ops: 16x16->32 or 32x32->64 */ |
| TCGv_i64 tcg_res[2]; |
| int pass; |
| bool satop = extract32(opcode, 0, 1); |
| TCGMemOp memop = MO_32; |
| |
| if (satop || !u) { |
| memop |= MO_SIGN; |
| } |
| |
| if (size == 2) { |
| TCGv_i64 tcg_idx = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_idx, rm, index, memop); |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_passres; |
| int passelt; |
| |
| if (is_scalar) { |
| passelt = 0; |
| } else { |
| passelt = pass + (is_q * 2); |
| } |
| |
| read_vec_element(s, tcg_op, rn, passelt, memop); |
| |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| if (opcode == 0xa || opcode == 0xb) { |
| /* Non-accumulating ops */ |
| tcg_passres = tcg_res[pass]; |
| } else { |
| tcg_passres = tcg_temp_new_i64(); |
| } |
| |
| tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); |
| tcg_temp_free_i64(tcg_op); |
| |
| if (satop) { |
| /* saturating, doubling */ |
| gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, |
| tcg_passres, tcg_passres); |
| } |
| |
| if (opcode == 0xa || opcode == 0xb) { |
| continue; |
| } |
| |
| /* Accumulating op: handle accumulate step */ |
| read_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| |
| switch (opcode) { |
| case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); |
| break; |
| case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); |
| break; |
| case 0x7: /* SQDMLSL, SQDMLSL2 */ |
| tcg_gen_neg_i64(tcg_passres, tcg_passres); |
| /* fall through */ |
| case 0x3: /* SQDMLAL, SQDMLAL2 */ |
| gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, |
| tcg_res[pass], |
| tcg_passres); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_temp_free_i64(tcg_passres); |
| } |
| tcg_temp_free_i64(tcg_idx); |
| |
| clear_vec_high(s, !is_scalar, rd); |
| } else { |
| TCGv_i32 tcg_idx = tcg_temp_new_i32(); |
| |
| assert(size == 1); |
| read_vec_element_i32(s, tcg_idx, rm, index, size); |
| |
| if (!is_scalar) { |
| /* The simplest way to handle the 16x16 indexed ops is to |
| * duplicate the index into both halves of the 32 bit tcg_idx |
| * and then use the usual Neon helpers. |
| */ |
| tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); |
| } |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i64 tcg_passres; |
| |
| if (is_scalar) { |
| read_vec_element_i32(s, tcg_op, rn, pass, size); |
| } else { |
| read_vec_element_i32(s, tcg_op, rn, |
| pass + (is_q * 2), MO_32); |
| } |
| |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| if (opcode == 0xa || opcode == 0xb) { |
| /* Non-accumulating ops */ |
| tcg_passres = tcg_res[pass]; |
| } else { |
| tcg_passres = tcg_temp_new_i64(); |
| } |
| |
| if (memop & MO_SIGN) { |
| gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); |
| } else { |
| gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); |
| } |
| if (satop) { |
| gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, |
| tcg_passres, tcg_passres); |
| } |
| tcg_temp_free_i32(tcg_op); |
| |
| if (opcode == 0xa || opcode == 0xb) { |
| continue; |
| } |
| |
| /* Accumulating op: handle accumulate step */ |
| read_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| |
| switch (opcode) { |
| case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], |
| tcg_passres); |
| break; |
| case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], |
| tcg_passres); |
| break; |
| case 0x7: /* SQDMLSL, SQDMLSL2 */ |
| gen_helper_neon_negl_u32(tcg_passres, tcg_passres); |
| /* fall through */ |
| case 0x3: /* SQDMLAL, SQDMLAL2 */ |
| gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, |
| tcg_res[pass], |
| tcg_passres); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_temp_free_i64(tcg_passres); |
| } |
| tcg_temp_free_i32(tcg_idx); |
| |
| if (is_scalar) { |
| tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); |
| } |
| } |
| |
| if (is_scalar) { |
| tcg_res[1] = tcg_const_i64(0); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| tcg_temp_free_i64(tcg_res[pass]); |
| } |
| } |
| |
| if (fpst) { |
| tcg_temp_free_ptr(fpst); |
| } |
| } |
| |
| /* Crypto AES |
| * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +-----------------+------+-----------+--------+-----+------+------+ |
| * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | |
| * +-----------------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_crypto_aes(DisasContext *s, uint32_t insn) |
| { |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| int decrypt; |
| TCGv_ptr tcg_rd_ptr, tcg_rn_ptr; |
| TCGv_i32 tcg_decrypt; |
| CryptoThreeOpIntFn *genfn; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_AES) |
| || size != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x4: /* AESE */ |
| decrypt = 0; |
| genfn = gen_helper_crypto_aese; |
| break; |
| case 0x6: /* AESMC */ |
| decrypt = 0; |
| genfn = gen_helper_crypto_aesmc; |
| break; |
| case 0x5: /* AESD */ |
| decrypt = 1; |
| genfn = gen_helper_crypto_aese; |
| break; |
| case 0x7: /* AESIMC */ |
| decrypt = 1; |
| genfn = gen_helper_crypto_aesmc; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rd_ptr = vec_full_reg_ptr(s, rd); |
| tcg_rn_ptr = vec_full_reg_ptr(s, rn); |
| tcg_decrypt = tcg_const_i32(decrypt); |
| |
| genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt); |
| |
| tcg_temp_free_ptr(tcg_rd_ptr); |
| tcg_temp_free_ptr(tcg_rn_ptr); |
| tcg_temp_free_i32(tcg_decrypt); |
| } |
| |
| /* Crypto three-reg SHA |
| * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 |
| * +-----------------+------+---+------+---+--------+-----+------+------+ |
| * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | |
| * +-----------------+------+---+------+---+--------+-----+------+------+ |
| */ |
| static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) |
| { |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 3); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| CryptoThreeOpFn *genfn; |
| TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr; |
| int feature = ARM_FEATURE_V8_SHA256; |
| |
| if (size != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0: /* SHA1C */ |
| case 1: /* SHA1P */ |
| case 2: /* SHA1M */ |
| case 3: /* SHA1SU0 */ |
| genfn = NULL; |
| feature = ARM_FEATURE_V8_SHA1; |
| break; |
| case 4: /* SHA256H */ |
| genfn = gen_helper_crypto_sha256h; |
| break; |
| case 5: /* SHA256H2 */ |
| genfn = gen_helper_crypto_sha256h2; |
| break; |
| case 6: /* SHA256SU1 */ |
| genfn = gen_helper_crypto_sha256su1; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!arm_dc_feature(s, feature)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rd_ptr = vec_full_reg_ptr(s, rd); |
| tcg_rn_ptr = vec_full_reg_ptr(s, rn); |
| tcg_rm_ptr = vec_full_reg_ptr(s, rm); |
| |
| if (genfn) { |
| genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr); |
| } else { |
| TCGv_i32 tcg_opcode = tcg_const_i32(opcode); |
| |
| gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr, |
| tcg_rm_ptr, tcg_opcode); |
| tcg_temp_free_i32(tcg_opcode); |
| } |
| |
| tcg_temp_free_ptr(tcg_rd_ptr); |
| tcg_temp_free_ptr(tcg_rn_ptr); |
| tcg_temp_free_ptr(tcg_rm_ptr); |
| } |
| |
| /* Crypto two-reg SHA |
| * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +-----------------+------+-----------+--------+-----+------+------+ |
| * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | |
| * +-----------------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) |
| { |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| CryptoTwoOpFn *genfn; |
| int feature; |
| TCGv_ptr tcg_rd_ptr, tcg_rn_ptr; |
| |
| if (size != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0: /* SHA1H */ |
| feature = ARM_FEATURE_V8_SHA1; |
| genfn = gen_helper_crypto_sha1h; |
| break; |
| case 1: /* SHA1SU1 */ |
| feature = ARM_FEATURE_V8_SHA1; |
| genfn = gen_helper_crypto_sha1su1; |
| break; |
| case 2: /* SHA256SU0 */ |
| feature = ARM_FEATURE_V8_SHA256; |
| genfn = gen_helper_crypto_sha256su0; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!arm_dc_feature(s, feature)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rd_ptr = vec_full_reg_ptr(s, rd); |
| tcg_rn_ptr = vec_full_reg_ptr(s, rn); |
| |
| genfn(tcg_rd_ptr, tcg_rn_ptr); |
| |
| tcg_temp_free_ptr(tcg_rd_ptr); |
| tcg_temp_free_ptr(tcg_rn_ptr); |
| } |
| |
| /* Crypto three-reg SHA512 |
| * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 |
| * +-----------------------+------+---+---+-----+--------+------+------+ |
| * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | |
| * +-----------------------+------+---+---+-----+--------+------+------+ |
| */ |
| static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) |
| { |
| int opcode = extract32(insn, 10, 2); |
| int o = extract32(insn, 14, 1); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| int feature; |
| CryptoThreeOpFn *genfn; |
| |
| if (o == 0) { |
| switch (opcode) { |
| case 0: /* SHA512H */ |
| feature = ARM_FEATURE_V8_SHA512; |
| genfn = gen_helper_crypto_sha512h; |
| break; |
| case 1: /* SHA512H2 */ |
| feature = ARM_FEATURE_V8_SHA512; |
| genfn = gen_helper_crypto_sha512h2; |
| break; |
| case 2: /* SHA512SU1 */ |
| feature = ARM_FEATURE_V8_SHA512; |
| genfn = gen_helper_crypto_sha512su1; |
| break; |
| case 3: /* RAX1 */ |
| feature = ARM_FEATURE_V8_SHA3; |
| genfn = NULL; |
| break; |
| } |
| } else { |
| switch (opcode) { |
| case 0: /* SM3PARTW1 */ |
| feature = ARM_FEATURE_V8_SM3; |
| genfn = gen_helper_crypto_sm3partw1; |
| break; |
| case 1: /* SM3PARTW2 */ |
| feature = ARM_FEATURE_V8_SM3; |
| genfn = gen_helper_crypto_sm3partw2; |
| break; |
| case 2: /* SM4EKEY */ |
| feature = ARM_FEATURE_V8_SM4; |
| genfn = gen_helper_crypto_sm4ekey; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| if (!arm_dc_feature(s, feature)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (genfn) { |
| TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr; |
| |
| tcg_rd_ptr = vec_full_reg_ptr(s, rd); |
| tcg_rn_ptr = vec_full_reg_ptr(s, rn); |
| tcg_rm_ptr = vec_full_reg_ptr(s, rm); |
| |
| genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr); |
| |
| tcg_temp_free_ptr(tcg_rd_ptr); |
| tcg_temp_free_ptr(tcg_rn_ptr); |
| tcg_temp_free_ptr(tcg_rm_ptr); |
| } else { |
| TCGv_i64 tcg_op1, tcg_op2, tcg_res[2]; |
| int pass; |
| |
| tcg_op1 = tcg_temp_new_i64(); |
| tcg_op2 = tcg_temp_new_i64(); |
| tcg_res[0] = tcg_temp_new_i64(); |
| tcg_res[1] = tcg_temp_new_i64(); |
| |
| for (pass = 0; pass < 2; pass++) { |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element(s, tcg_op2, rm, pass, MO_64); |
| |
| tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1); |
| tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); |
| } |
| write_vec_element(s, tcg_res[0], rd, 0, MO_64); |
| write_vec_element(s, tcg_res[1], rd, 1, MO_64); |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_res[0]); |
| tcg_temp_free_i64(tcg_res[1]); |
| } |
| } |
| |
| /* Crypto two-reg SHA512 |
| * 31 12 11 10 9 5 4 0 |
| * +-----------------------------------------+--------+------+------+ |
| * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | |
| * +-----------------------------------------+--------+------+------+ |
| */ |
| static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) |
| { |
| int opcode = extract32(insn, 10, 2); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| TCGv_ptr tcg_rd_ptr, tcg_rn_ptr; |
| int feature; |
| CryptoTwoOpFn *genfn; |
| |
| switch (opcode) { |
| case 0: /* SHA512SU0 */ |
| feature = ARM_FEATURE_V8_SHA512; |
| genfn = gen_helper_crypto_sha512su0; |
| break; |
| case 1: /* SM4E */ |
| feature = ARM_FEATURE_V8_SM4; |
| genfn = gen_helper_crypto_sm4e; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!arm_dc_feature(s, feature)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rd_ptr = vec_full_reg_ptr(s, rd); |
| tcg_rn_ptr = vec_full_reg_ptr(s, rn); |
| |
| genfn(tcg_rd_ptr, tcg_rn_ptr); |
| |
| tcg_temp_free_ptr(tcg_rd_ptr); |
| tcg_temp_free_ptr(tcg_rn_ptr); |
| } |
| |
| /* Crypto four-register |
| * 31 23 22 21 20 16 15 14 10 9 5 4 0 |
| * +-------------------+-----+------+---+------+------+------+ |
| * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | |
| * +-------------------+-----+------+---+------+------+------+ |
| */ |
| static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) |
| { |
| int op0 = extract32(insn, 21, 2); |
| int rm = extract32(insn, 16, 5); |
| int ra = extract32(insn, 10, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| int feature; |
| |
| switch (op0) { |
| case 0: /* EOR3 */ |
| case 1: /* BCAX */ |
| feature = ARM_FEATURE_V8_SHA3; |
| break; |
| case 2: /* SM3SS1 */ |
| feature = ARM_FEATURE_V8_SM3; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!arm_dc_feature(s, feature)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (op0 < 2) { |
| TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; |
| int pass; |
| |
| tcg_op1 = tcg_temp_new_i64(); |
| tcg_op2 = tcg_temp_new_i64(); |
| tcg_op3 = tcg_temp_new_i64(); |
| tcg_res[0] = tcg_temp_new_i64(); |
| tcg_res[1] = tcg_temp_new_i64(); |
| |
| for (pass = 0; pass < 2; pass++) { |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element(s, tcg_op2, rm, pass, MO_64); |
| read_vec_element(s, tcg_op3, ra, pass, MO_64); |
| |
| if (op0 == 0) { |
| /* EOR3 */ |
| tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); |
| } else { |
| /* BCAX */ |
| tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); |
| } |
| tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); |
| } |
| write_vec_element(s, tcg_res[0], rd, 0, MO_64); |
| write_vec_element(s, tcg_res[1], rd, 1, MO_64); |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_op3); |
| tcg_temp_free_i64(tcg_res[0]); |
| tcg_temp_free_i64(tcg_res[1]); |
| } else { |
| TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; |
| |
| tcg_op1 = tcg_temp_new_i32(); |
| tcg_op2 = tcg_temp_new_i32(); |
| tcg_op3 = tcg_temp_new_i32(); |
| tcg_res = tcg_temp_new_i32(); |
| tcg_zero = tcg_const_i32(0); |
| |
| read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); |
| read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); |
| read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); |
| |
| tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); |
| tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); |
| tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); |
| tcg_gen_rotri_i32(tcg_res, tcg_res, 25); |
| |
| write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); |
| write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); |
| write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); |
| write_vec_element_i32(s, tcg_res, rd, 3, MO_32); |
| |
| tcg_temp_free_i32(tcg_op1); |
| tcg_temp_free_i32(tcg_op2); |
| tcg_temp_free_i32(tcg_op3); |
| tcg_temp_free_i32(tcg_res); |
| tcg_temp_free_i32(tcg_zero); |
| } |
| } |
| |
| /* Crypto XAR |
| * 31 21 20 16 15 10 9 5 4 0 |
| * +-----------------------+------+--------+------+------+ |
| * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | |
| * +-----------------------+------+--------+------+------+ |
| */ |
| static void disas_crypto_xar(DisasContext *s, uint32_t insn) |
| { |
| int rm = extract32(insn, 16, 5); |
| int imm6 = extract32(insn, 10, 6); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| TCGv_i64 tcg_op1, tcg_op2, tcg_res[2]; |
| int pass; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_op1 = tcg_temp_new_i64(); |
| tcg_op2 = tcg_temp_new_i64(); |
| tcg_res[0] = tcg_temp_new_i64(); |
| tcg_res[1] = tcg_temp_new_i64(); |
| |
| for (pass = 0; pass < 2; pass++) { |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element(s, tcg_op2, rm, pass, MO_64); |
| |
| tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2); |
| tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6); |
| } |
| write_vec_element(s, tcg_res[0], rd, 0, MO_64); |
| write_vec_element(s, tcg_res[1], rd, 1, MO_64); |
| |
| tcg_temp_free_i64(tcg_op1); |
| tcg_temp_free_i64(tcg_op2); |
| tcg_temp_free_i64(tcg_res[0]); |
| tcg_temp_free_i64(tcg_res[1]); |
| } |
| |
| /* Crypto three-reg imm2 |
| * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 |
| * +-----------------------+------+-----+------+--------+------+------+ |
| * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | |
| * +-----------------------+------+-----+------+--------+------+------+ |
| */ |
| static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) |
| { |
| int opcode = extract32(insn, 10, 2); |
| int imm2 = extract32(insn, 12, 2); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr; |
| TCGv_i32 tcg_imm2, tcg_opcode; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_V8_SM3)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rd_ptr = vec_full_reg_ptr(s, rd); |
| tcg_rn_ptr = vec_full_reg_ptr(s, rn); |
| tcg_rm_ptr = vec_full_reg_ptr(s, rm); |
| tcg_imm2 = tcg_const_i32(imm2); |
| tcg_opcode = tcg_const_i32(opcode); |
| |
| gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2, |
| tcg_opcode); |
| |
| tcg_temp_free_ptr(tcg_rd_ptr); |
| tcg_temp_free_ptr(tcg_rn_ptr); |
| tcg_temp_free_ptr(tcg_rm_ptr); |
| tcg_temp_free_i32(tcg_imm2); |
| tcg_temp_free_i32(tcg_opcode); |
| } |
| |
| /* C3.6 Data processing - SIMD, inc Crypto |
| * |
| * As the decode gets a little complex we are using a table based |
| * approach for this part of the decode. |
| */ |
| static const AArch64DecodeTable data_proc_simd[] = { |
| /* pattern , mask , fn */ |
| { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, |
| { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, |
| { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, |
| { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, |
| { 0x0e000400, 0x9fe08400, disas_simd_copy }, |
| { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ |
| /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ |
| { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, |
| { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, |
| { 0x0e000000, 0xbf208c00, disas_simd_tb }, |
| { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, |
| { 0x2e000000, 0xbf208400, disas_simd_ext }, |
| { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, |
| { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, |
| { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, |
| { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, |
| { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, |
| { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ |
| { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, |
| { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, |
| { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, |
| { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, |
| { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, |
| { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, |
| { 0xce000000, 0xff808000, disas_crypto_four_reg }, |
| { 0xce800000, 0xffe00000, disas_crypto_xar }, |
| { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, |
| { 0x00000000, 0x00000000, NULL } |
| }; |
| |
| static void disas_data_proc_simd(DisasContext *s, uint32_t insn) |
| { |
| /* Note that this is called with all non-FP cases from |
| * table C3-6 so it must UNDEF for entries not specifically |
| * allocated to instructions in that table. |
| */ |
| AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); |
| if (fn) { |
| fn(s, insn); |
| } else { |
| unallocated_encoding(s); |
| } |
| } |
| |
| /* C3.6 Data processing - SIMD and floating point */ |
| static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) |
| { |
| if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { |
| disas_data_proc_fp(s, insn); |
| } else { |
| /* SIMD, including crypto */ |
| disas_data_proc_simd(s, insn); |
| } |
| } |
| |
| /* C3.1 A64 instruction index by encoding */ |
| static void disas_a64_insn(CPUARMState *env, DisasContext *s) |
| { |
| uint32_t insn; |
| |
| insn = arm_ldl_code(env, s->pc, s->sctlr_b); |
| s->insn = insn; |
| s->pc += 4; |
| |
| s->fp_access_checked = false; |
| |
| switch (extract32(insn, 25, 4)) { |
| case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */ |
| unallocated_encoding(s); |
| break; |
| case 0x8: case 0x9: /* Data processing - immediate */ |
| disas_data_proc_imm(s, insn); |
| break; |
| case 0xa: case 0xb: /* Branch, exception generation and system insns */ |
| disas_b_exc_sys(s, insn); |
| break; |
| case 0x4: |
| case 0x6: |
| case 0xc: |
| case 0xe: /* Loads and stores */ |
| disas_ldst(s, insn); |
| break; |
| case 0x5: |
| case 0xd: /* Data processing - register */ |
| disas_data_proc_reg(s, insn); |
| break; |
| case 0x7: |
| case 0xf: /* Data processing - SIMD and floating point */ |
| disas_data_proc_simd_fp(s, insn); |
| break; |
| default: |
| assert(FALSE); /* all 15 cases should be handled above */ |
| break; |
| } |
| |
| /* if we allocated any temporaries, free them here */ |
| free_tmp_a64(s); |
| } |
| |
| static int aarch64_tr_init_disas_context(DisasContextBase *dcbase, |
| CPUState *cpu, int max_insns) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu->env_ptr; |
| ARMCPU *arm_cpu = arm_env_get_cpu(env); |
| int bound; |
| |
| dc->pc = dc->base.pc_first; |
| dc->condjmp = 0; |
| |
| dc->aarch64 = 1; |
| /* If we are coming from secure EL0 in a system with a 32-bit EL3, then |
| * there is no secure EL1, so we route exceptions to EL3. |
| */ |
| dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_el_is_aa64(env, 3); |
| dc->thumb = 0; |
| dc->sctlr_b = 0; |
| dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE; |
| dc->condexec_mask = 0; |
| dc->condexec_cond = 0; |
| dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags)); |
| dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags); |
| dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags); |
| dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); |
| #if !defined(CONFIG_USER_ONLY) |
| dc->user = (dc->current_el == 0); |
| #endif |
| dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags); |
| dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags); |
| dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16; |
| dc->vec_len = 0; |
| dc->vec_stride = 0; |
| dc->cp_regs = arm_cpu->cp_regs; |
| dc->features = env->features; |
| |
| /* Single step state. The code-generation logic here is: |
| * SS_ACTIVE == 0: |
| * generate code with no special handling for single-stepping (except |
| * that anything that can make us go to SS_ACTIVE == 1 must end the TB; |
| * this happens anyway because those changes are all system register or |
| * PSTATE writes). |
| * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) |
| * emit code for one insn |
| * emit code to clear PSTATE.SS |
| * emit code to generate software step exception for completed step |
| * end TB (as usual for having generated an exception) |
| * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) |
| * emit code to generate a software step exception |
| * end the TB |
| */ |
| dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags); |
| dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags); |
| dc->is_ldex = false; |
| dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el); |
| |
| /* Bound the number of insns to execute to those left on the page. */ |
| bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; |
| |
| /* If architectural single step active, limit to 1. */ |
| if (dc->ss_active) { |
| bound = 1; |
| } |
| max_insns = MIN(max_insns, bound); |
| |
| init_tmp_a64_array(dc); |
| |
| return max_insns; |
| } |
| |
| static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) |
| { |
| tcg_clear_temp_count(); |
| } |
| |
| static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| tcg_gen_insn_start(dc->pc, 0, 0); |
| dc->insn_start = tcg_last_op(); |
| } |
| |
| static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu, |
| const CPUBreakpoint *bp) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| if (bp->flags & BP_CPU) { |
| gen_a64_set_pc_im(dc->pc); |
| gen_helper_check_breakpoints(cpu_env); |
| /* End the TB early; it likely won't be executed */ |
| dc->base.is_jmp = DISAS_TOO_MANY; |
| } else { |
| gen_exception_internal_insn(dc, 0, EXCP_DEBUG); |
| /* The address covered by the breakpoint must be |
| included in [tb->pc, tb->pc + tb->size) in order |
| to for it to be properly cleared -- thus we |
| increment the PC here so that the logic setting |
| tb->size below does the right thing. */ |
| dc->pc += 4; |
| dc->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| return true; |
| } |
| |
| static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu->env_ptr; |
| |
| if (dc->ss_active && !dc->pstate_ss) { |
| /* Singlestep state is Active-pending. |
| * If we're in this state at the start of a TB then either |
| * a) we just took an exception to an EL which is being debugged |
| * and this is the first insn in the exception handler |
| * b) debug exceptions were masked and we just unmasked them |
| * without changing EL (eg by clearing PSTATE.D) |
| * In either case we're going to take a swstep exception in the |
| * "did not step an insn" case, and so the syndrome ISV and EX |
| * bits should be zero. |
| */ |
| assert(dc->base.num_insns == 1); |
| gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0), |
| default_exception_el(dc)); |
| dc->base.is_jmp = DISAS_NORETURN; |
| } else { |
| disas_a64_insn(env, dc); |
| } |
| |
| dc->base.pc_next = dc->pc; |
| translator_loop_temp_check(&dc->base); |
| } |
| |
| static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) { |
| /* Note that this means single stepping WFI doesn't halt the CPU. |
| * For conditional branch insns this is harmless unreachable code as |
| * gen_goto_tb() has already handled emitting the debug exception |
| * (and thus a tb-jump is not possible when singlestepping). |
| */ |
| switch (dc->base.is_jmp) { |
| default: |
| gen_a64_set_pc_im(dc->pc); |
| /* fall through */ |
| case DISAS_EXIT: |
| case DISAS_JUMP: |
| if (dc->base.singlestep_enabled) { |
| gen_exception_internal(EXCP_DEBUG); |
| } else { |
| gen_step_complete_exception(dc); |
| } |
| break; |
| case DISAS_NORETURN: |
| break; |
| } |
| } else { |
| switch (dc->base.is_jmp) { |
| case DISAS_NEXT: |
| case DISAS_TOO_MANY: |
| gen_goto_tb(dc, 1, dc->pc); |
| break; |
| default: |
| case DISAS_UPDATE: |
| gen_a64_set_pc_im(dc->pc); |
| /* fall through */ |
| case DISAS_JUMP: |
| tcg_gen_lookup_and_goto_ptr(); |
| break; |
| case DISAS_EXIT: |
| tcg_gen_exit_tb(0); |
| break; |
| case DISAS_NORETURN: |
| case DISAS_SWI: |
| break; |
| case DISAS_WFE: |
| gen_a64_set_pc_im(dc->pc); |
| gen_helper_wfe(cpu_env); |
| break; |
| case DISAS_YIELD: |
| gen_a64_set_pc_im(dc->pc); |
| gen_helper_yield(cpu_env); |
| break; |
| case DISAS_WFI: |
| { |
| /* This is a special case because we don't want to just halt the CPU |
| * if trying to debug across a WFI. |
| */ |
| TCGv_i32 tmp = tcg_const_i32(4); |
| |
| gen_a64_set_pc_im(dc->pc); |
| gen_helper_wfi(cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| /* The helper doesn't necessarily throw an exception, but we |
| * must go back to the main loop to check for interrupts anyway. |
| */ |
| tcg_gen_exit_tb(0); |
| break; |
| } |
| } |
| } |
| |
| /* Functions above can change dc->pc, so re-align db->pc_next */ |
| dc->base.pc_next = dc->pc; |
| } |
| |
| static void aarch64_tr_disas_log(const DisasContextBase *dcbase, |
| CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first)); |
| log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size); |
| } |
| |
| const TranslatorOps aarch64_translator_ops = { |
| .init_disas_context = aarch64_tr_init_disas_context, |
| .tb_start = aarch64_tr_tb_start, |
| .insn_start = aarch64_tr_insn_start, |
| .breakpoint_check = aarch64_tr_breakpoint_check, |
| .translate_insn = aarch64_tr_translate_insn, |
| .tb_stop = aarch64_tr_tb_stop, |
| .disas_log = aarch64_tr_disas_log, |
| }; |