|  | /* | 
|  | * RAM allocation and memory access | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "exec/page-vary.h" | 
|  | #include "qapi/error.h" | 
|  |  | 
|  | #include "qemu/cutils.h" | 
|  | #include "qemu/cacheflush.h" | 
|  | #include "qemu/hbitmap.h" | 
|  | #include "qemu/madvise.h" | 
|  | #include "qemu/lockable.h" | 
|  |  | 
|  | #ifdef CONFIG_TCG | 
|  | #include "hw/core/tcg-cpu-ops.h" | 
|  | #endif /* CONFIG_TCG */ | 
|  |  | 
|  | #include "exec/exec-all.h" | 
|  | #include "exec/page-protection.h" | 
|  | #include "exec/target_page.h" | 
|  | #include "exec/translation-block.h" | 
|  | #include "hw/qdev-core.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "hw/boards.h" | 
|  | #include "system/xen.h" | 
|  | #include "system/kvm.h" | 
|  | #include "system/tcg.h" | 
|  | #include "system/qtest.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "qemu/config-file.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "qemu/qemu-print.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/memalign.h" | 
|  | #include "exec/memory.h" | 
|  | #include "exec/ioport.h" | 
|  | #include "system/dma.h" | 
|  | #include "system/hostmem.h" | 
|  | #include "system/hw_accel.h" | 
|  | #include "system/xen-mapcache.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | 
|  | #include <linux/falloc.h> | 
|  | #endif | 
|  |  | 
|  | #include "qemu/rcu_queue.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "system/replay.h" | 
|  |  | 
|  | #include "exec/memory-internal.h" | 
|  | #include "exec/ram_addr.h" | 
|  |  | 
|  | #include "qemu/pmem.h" | 
|  |  | 
|  | #include "migration/vmstate.h" | 
|  |  | 
|  | #include "qemu/range.h" | 
|  | #ifndef _WIN32 | 
|  | #include "qemu/mmap-alloc.h" | 
|  | #endif | 
|  |  | 
|  | #include "monitor/monitor.h" | 
|  |  | 
|  | #ifdef CONFIG_LIBDAXCTL | 
|  | #include <daxctl/libdaxctl.h> | 
|  | #endif | 
|  |  | 
|  | //#define DEBUG_SUBPAGE | 
|  |  | 
|  | /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes | 
|  | * are protected by the ramlist lock. | 
|  | */ | 
|  | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; | 
|  |  | 
|  | static MemoryRegion *system_memory; | 
|  | static MemoryRegion *system_io; | 
|  |  | 
|  | AddressSpace address_space_io; | 
|  | AddressSpace address_space_memory; | 
|  |  | 
|  | static MemoryRegion io_mem_unassigned; | 
|  |  | 
|  | typedef struct PhysPageEntry PhysPageEntry; | 
|  |  | 
|  | struct PhysPageEntry { | 
|  | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ | 
|  | uint32_t skip : 6; | 
|  | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ | 
|  | uint32_t ptr : 26; | 
|  | }; | 
|  |  | 
|  | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) | 
|  |  | 
|  | /* Size of the L2 (and L3, etc) page tables.  */ | 
|  | #define ADDR_SPACE_BITS 64 | 
|  |  | 
|  | #define P_L2_BITS 9 | 
|  | #define P_L2_SIZE (1 << P_L2_BITS) | 
|  |  | 
|  | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | 
|  |  | 
|  | typedef PhysPageEntry Node[P_L2_SIZE]; | 
|  |  | 
|  | typedef struct PhysPageMap { | 
|  | struct rcu_head rcu; | 
|  |  | 
|  | unsigned sections_nb; | 
|  | unsigned sections_nb_alloc; | 
|  | unsigned nodes_nb; | 
|  | unsigned nodes_nb_alloc; | 
|  | Node *nodes; | 
|  | MemoryRegionSection *sections; | 
|  | } PhysPageMap; | 
|  |  | 
|  | struct AddressSpaceDispatch { | 
|  | MemoryRegionSection *mru_section; | 
|  | /* This is a multi-level map on the physical address space. | 
|  | * The bottom level has pointers to MemoryRegionSections. | 
|  | */ | 
|  | PhysPageEntry phys_map; | 
|  | PhysPageMap map; | 
|  | }; | 
|  |  | 
|  | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | 
|  | typedef struct subpage_t { | 
|  | MemoryRegion iomem; | 
|  | FlatView *fv; | 
|  | hwaddr base; | 
|  | uint16_t sub_section[]; | 
|  | } subpage_t; | 
|  |  | 
|  | #define PHYS_SECTION_UNASSIGNED 0 | 
|  |  | 
|  | static void io_mem_init(void); | 
|  | static void memory_map_init(void); | 
|  | static void tcg_log_global_after_sync(MemoryListener *listener); | 
|  | static void tcg_commit(MemoryListener *listener); | 
|  |  | 
|  | /** | 
|  | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | 
|  | * @cpu: the CPU whose AddressSpace this is | 
|  | * @as: the AddressSpace itself | 
|  | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | 
|  | * @tcg_as_listener: listener for tracking changes to the AddressSpace | 
|  | */ | 
|  | typedef struct CPUAddressSpace { | 
|  | CPUState *cpu; | 
|  | AddressSpace *as; | 
|  | struct AddressSpaceDispatch *memory_dispatch; | 
|  | MemoryListener tcg_as_listener; | 
|  | } CPUAddressSpace; | 
|  |  | 
|  | struct DirtyBitmapSnapshot { | 
|  | ram_addr_t start; | 
|  | ram_addr_t end; | 
|  | unsigned long dirty[]; | 
|  | }; | 
|  |  | 
|  | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) | 
|  | { | 
|  | static unsigned alloc_hint = 16; | 
|  | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { | 
|  | map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); | 
|  | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | 
|  | alloc_hint = map->nodes_nb_alloc; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) | 
|  | { | 
|  | unsigned i; | 
|  | uint32_t ret; | 
|  | PhysPageEntry e; | 
|  | PhysPageEntry *p; | 
|  |  | 
|  | ret = map->nodes_nb++; | 
|  | p = map->nodes[ret]; | 
|  | assert(ret != PHYS_MAP_NODE_NIL); | 
|  | assert(ret != map->nodes_nb_alloc); | 
|  |  | 
|  | e.skip = leaf ? 0 : 1; | 
|  | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | 
|  | for (i = 0; i < P_L2_SIZE; ++i) { | 
|  | memcpy(&p[i], &e, sizeof(e)); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, | 
|  | hwaddr *index, uint64_t *nb, uint16_t leaf, | 
|  | int level) | 
|  | { | 
|  | PhysPageEntry *p; | 
|  | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); | 
|  |  | 
|  | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { | 
|  | lp->ptr = phys_map_node_alloc(map, level == 0); | 
|  | } | 
|  | p = map->nodes[lp->ptr]; | 
|  | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; | 
|  |  | 
|  | while (*nb && lp < &p[P_L2_SIZE]) { | 
|  | if ((*index & (step - 1)) == 0 && *nb >= step) { | 
|  | lp->skip = 0; | 
|  | lp->ptr = leaf; | 
|  | *index += step; | 
|  | *nb -= step; | 
|  | } else { | 
|  | phys_page_set_level(map, lp, index, nb, leaf, level - 1); | 
|  | } | 
|  | ++lp; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void phys_page_set(AddressSpaceDispatch *d, | 
|  | hwaddr index, uint64_t nb, | 
|  | uint16_t leaf) | 
|  | { | 
|  | /* Wildly overreserve - it doesn't matter much. */ | 
|  | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); | 
|  |  | 
|  | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | 
|  | } | 
|  |  | 
|  | /* Compact a non leaf page entry. Simply detect that the entry has a single child, | 
|  | * and update our entry so we can skip it and go directly to the destination. | 
|  | */ | 
|  | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) | 
|  | { | 
|  | unsigned valid_ptr = P_L2_SIZE; | 
|  | int valid = 0; | 
|  | PhysPageEntry *p; | 
|  | int i; | 
|  |  | 
|  | if (lp->ptr == PHYS_MAP_NODE_NIL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | p = nodes[lp->ptr]; | 
|  | for (i = 0; i < P_L2_SIZE; i++) { | 
|  | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | valid_ptr = i; | 
|  | valid++; | 
|  | if (p[i].skip) { | 
|  | phys_page_compact(&p[i], nodes); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We can only compress if there's only one child. */ | 
|  | if (valid != 1) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(valid_ptr < P_L2_SIZE); | 
|  |  | 
|  | /* Don't compress if it won't fit in the # of bits we have. */ | 
|  | if (P_L2_LEVELS >= (1 << 6) && | 
|  | lp->skip + p[valid_ptr].skip >= (1 << 6)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | lp->ptr = p[valid_ptr].ptr; | 
|  | if (!p[valid_ptr].skip) { | 
|  | /* If our only child is a leaf, make this a leaf. */ | 
|  | /* By design, we should have made this node a leaf to begin with so we | 
|  | * should never reach here. | 
|  | * But since it's so simple to handle this, let's do it just in case we | 
|  | * change this rule. | 
|  | */ | 
|  | lp->skip = 0; | 
|  | } else { | 
|  | lp->skip += p[valid_ptr].skip; | 
|  | } | 
|  | } | 
|  |  | 
|  | void address_space_dispatch_compact(AddressSpaceDispatch *d) | 
|  | { | 
|  | if (d->phys_map.skip) { | 
|  | phys_page_compact(&d->phys_map, d->map.nodes); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool section_covers_addr(const MemoryRegionSection *section, | 
|  | hwaddr addr) | 
|  | { | 
|  | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | 
|  | * the section must cover the entire address space. | 
|  | */ | 
|  | return int128_gethi(section->size) || | 
|  | range_covers_byte(section->offset_within_address_space, | 
|  | int128_getlo(section->size), addr); | 
|  | } | 
|  |  | 
|  | static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) | 
|  | { | 
|  | PhysPageEntry lp = d->phys_map, *p; | 
|  | Node *nodes = d->map.nodes; | 
|  | MemoryRegionSection *sections = d->map.sections; | 
|  | hwaddr index = addr >> TARGET_PAGE_BITS; | 
|  | int i; | 
|  |  | 
|  | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { | 
|  | if (lp.ptr == PHYS_MAP_NODE_NIL) { | 
|  | return §ions[PHYS_SECTION_UNASSIGNED]; | 
|  | } | 
|  | p = nodes[lp.ptr]; | 
|  | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; | 
|  | } | 
|  |  | 
|  | if (section_covers_addr(§ions[lp.ptr], addr)) { | 
|  | return §ions[lp.ptr]; | 
|  | } else { | 
|  | return §ions[PHYS_SECTION_UNASSIGNED]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section */ | 
|  | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, | 
|  | hwaddr addr, | 
|  | bool resolve_subpage) | 
|  | { | 
|  | MemoryRegionSection *section = qatomic_read(&d->mru_section); | 
|  | subpage_t *subpage; | 
|  |  | 
|  | if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || | 
|  | !section_covers_addr(section, addr)) { | 
|  | section = phys_page_find(d, addr); | 
|  | qatomic_set(&d->mru_section, section); | 
|  | } | 
|  | if (resolve_subpage && section->mr->subpage) { | 
|  | subpage = container_of(section->mr, subpage_t, iomem); | 
|  | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; | 
|  | } | 
|  | return section; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section */ | 
|  | static MemoryRegionSection * | 
|  | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, | 
|  | hwaddr *plen, bool resolve_subpage) | 
|  | { | 
|  | MemoryRegionSection *section; | 
|  | MemoryRegion *mr; | 
|  | Int128 diff; | 
|  |  | 
|  | section = address_space_lookup_region(d, addr, resolve_subpage); | 
|  | /* Compute offset within MemoryRegionSection */ | 
|  | addr -= section->offset_within_address_space; | 
|  |  | 
|  | /* Compute offset within MemoryRegion */ | 
|  | *xlat = addr + section->offset_within_region; | 
|  |  | 
|  | mr = section->mr; | 
|  |  | 
|  | /* MMIO registers can be expected to perform full-width accesses based only | 
|  | * on their address, without considering adjacent registers that could | 
|  | * decode to completely different MemoryRegions.  When such registers | 
|  | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | 
|  | * regions overlap wildly.  For this reason we cannot clamp the accesses | 
|  | * here. | 
|  | * | 
|  | * If the length is small (as is the case for address_space_ldl/stl), | 
|  | * everything works fine.  If the incoming length is large, however, | 
|  | * the caller really has to do the clamping through memory_access_size. | 
|  | */ | 
|  | if (memory_region_is_ram(mr)) { | 
|  | diff = int128_sub(section->size, int128_make64(addr)); | 
|  | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); | 
|  | } | 
|  | return section; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * address_space_translate_iommu - translate an address through an IOMMU | 
|  | * memory region and then through the target address space. | 
|  | * | 
|  | * @iommu_mr: the IOMMU memory region that we start the translation from | 
|  | * @addr: the address to be translated through the MMU | 
|  | * @xlat: the translated address offset within the destination memory region. | 
|  | *        It cannot be %NULL. | 
|  | * @plen_out: valid read/write length of the translated address. It | 
|  | *            cannot be %NULL. | 
|  | * @page_mask_out: page mask for the translated address. This | 
|  | *            should only be meaningful for IOMMU translated | 
|  | *            addresses, since there may be huge pages that this bit | 
|  | *            would tell. It can be %NULL if we don't care about it. | 
|  | * @is_write: whether the translation operation is for write | 
|  | * @is_mmio: whether this can be MMIO, set true if it can | 
|  | * @target_as: the address space targeted by the IOMMU | 
|  | * @attrs: transaction attributes | 
|  | * | 
|  | * This function is called from RCU critical section.  It is the common | 
|  | * part of flatview_do_translate and address_space_translate_cached. | 
|  | */ | 
|  | static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, | 
|  | hwaddr *xlat, | 
|  | hwaddr *plen_out, | 
|  | hwaddr *page_mask_out, | 
|  | bool is_write, | 
|  | bool is_mmio, | 
|  | AddressSpace **target_as, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | MemoryRegionSection *section; | 
|  | hwaddr page_mask = (hwaddr)-1; | 
|  |  | 
|  | do { | 
|  | hwaddr addr = *xlat; | 
|  | IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | 
|  | int iommu_idx = 0; | 
|  | IOMMUTLBEntry iotlb; | 
|  |  | 
|  | if (imrc->attrs_to_index) { | 
|  | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | 
|  | } | 
|  |  | 
|  | iotlb = imrc->translate(iommu_mr, addr, is_write ? | 
|  | IOMMU_WO : IOMMU_RO, iommu_idx); | 
|  |  | 
|  | if (!(iotlb.perm & (1 << is_write))) { | 
|  | goto unassigned; | 
|  | } | 
|  |  | 
|  | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | 
|  | | (addr & iotlb.addr_mask)); | 
|  | page_mask &= iotlb.addr_mask; | 
|  | *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); | 
|  | *target_as = iotlb.target_as; | 
|  |  | 
|  | section = address_space_translate_internal( | 
|  | address_space_to_dispatch(iotlb.target_as), addr, xlat, | 
|  | plen_out, is_mmio); | 
|  |  | 
|  | iommu_mr = memory_region_get_iommu(section->mr); | 
|  | } while (unlikely(iommu_mr)); | 
|  |  | 
|  | if (page_mask_out) { | 
|  | *page_mask_out = page_mask; | 
|  | } | 
|  | return *section; | 
|  |  | 
|  | unassigned: | 
|  | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * flatview_do_translate - translate an address in FlatView | 
|  | * | 
|  | * @fv: the flat view that we want to translate on | 
|  | * @addr: the address to be translated in above address space | 
|  | * @xlat: the translated address offset within memory region. It | 
|  | *        cannot be @NULL. | 
|  | * @plen_out: valid read/write length of the translated address. It | 
|  | *            can be @NULL when we don't care about it. | 
|  | * @page_mask_out: page mask for the translated address. This | 
|  | *            should only be meaningful for IOMMU translated | 
|  | *            addresses, since there may be huge pages that this bit | 
|  | *            would tell. It can be @NULL if we don't care about it. | 
|  | * @is_write: whether the translation operation is for write | 
|  | * @is_mmio: whether this can be MMIO, set true if it can | 
|  | * @target_as: the address space targeted by the IOMMU | 
|  | * @attrs: memory transaction attributes | 
|  | * | 
|  | * This function is called from RCU critical section | 
|  | */ | 
|  | static MemoryRegionSection flatview_do_translate(FlatView *fv, | 
|  | hwaddr addr, | 
|  | hwaddr *xlat, | 
|  | hwaddr *plen_out, | 
|  | hwaddr *page_mask_out, | 
|  | bool is_write, | 
|  | bool is_mmio, | 
|  | AddressSpace **target_as, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | MemoryRegionSection *section; | 
|  | IOMMUMemoryRegion *iommu_mr; | 
|  | hwaddr plen = (hwaddr)(-1); | 
|  |  | 
|  | if (!plen_out) { | 
|  | plen_out = &plen; | 
|  | } | 
|  |  | 
|  | section = address_space_translate_internal( | 
|  | flatview_to_dispatch(fv), addr, xlat, | 
|  | plen_out, is_mmio); | 
|  |  | 
|  | iommu_mr = memory_region_get_iommu(section->mr); | 
|  | if (unlikely(iommu_mr)) { | 
|  | return address_space_translate_iommu(iommu_mr, xlat, | 
|  | plen_out, page_mask_out, | 
|  | is_write, is_mmio, | 
|  | target_as, attrs); | 
|  | } | 
|  | if (page_mask_out) { | 
|  | /* Not behind an IOMMU, use default page size. */ | 
|  | *page_mask_out = ~TARGET_PAGE_MASK; | 
|  | } | 
|  |  | 
|  | return *section; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section */ | 
|  | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, | 
|  | bool is_write, MemTxAttrs attrs) | 
|  | { | 
|  | MemoryRegionSection section; | 
|  | hwaddr xlat, page_mask; | 
|  |  | 
|  | /* | 
|  | * This can never be MMIO, and we don't really care about plen, | 
|  | * but page mask. | 
|  | */ | 
|  | section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, | 
|  | NULL, &page_mask, is_write, false, &as, | 
|  | attrs); | 
|  |  | 
|  | /* Illegal translation */ | 
|  | if (section.mr == &io_mem_unassigned) { | 
|  | goto iotlb_fail; | 
|  | } | 
|  |  | 
|  | /* Convert memory region offset into address space offset */ | 
|  | xlat += section.offset_within_address_space - | 
|  | section.offset_within_region; | 
|  |  | 
|  | return (IOMMUTLBEntry) { | 
|  | .target_as = as, | 
|  | .iova = addr & ~page_mask, | 
|  | .translated_addr = xlat & ~page_mask, | 
|  | .addr_mask = page_mask, | 
|  | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ | 
|  | .perm = IOMMU_RW, | 
|  | }; | 
|  |  | 
|  | iotlb_fail: | 
|  | return (IOMMUTLBEntry) {0}; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section */ | 
|  | MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, | 
|  | hwaddr *plen, bool is_write, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | MemoryRegion *mr; | 
|  | MemoryRegionSection section; | 
|  | AddressSpace *as = NULL; | 
|  |  | 
|  | /* This can be MMIO, so setup MMIO bit. */ | 
|  | section = flatview_do_translate(fv, addr, xlat, plen, NULL, | 
|  | is_write, true, &as, attrs); | 
|  | mr = section.mr; | 
|  |  | 
|  | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { | 
|  | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; | 
|  | *plen = MIN(page, *plen); | 
|  | } | 
|  |  | 
|  | return mr; | 
|  | } | 
|  |  | 
|  | typedef struct TCGIOMMUNotifier { | 
|  | IOMMUNotifier n; | 
|  | MemoryRegion *mr; | 
|  | CPUState *cpu; | 
|  | int iommu_idx; | 
|  | bool active; | 
|  | } TCGIOMMUNotifier; | 
|  |  | 
|  | static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) | 
|  | { | 
|  | TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); | 
|  |  | 
|  | if (!notifier->active) { | 
|  | return; | 
|  | } | 
|  | tlb_flush(notifier->cpu); | 
|  | notifier->active = false; | 
|  | /* We leave the notifier struct on the list to avoid reallocating it later. | 
|  | * Generally the number of IOMMUs a CPU deals with will be small. | 
|  | * In any case we can't unregister the iommu notifier from a notify | 
|  | * callback. | 
|  | */ | 
|  | } | 
|  |  | 
|  | static void tcg_register_iommu_notifier(CPUState *cpu, | 
|  | IOMMUMemoryRegion *iommu_mr, | 
|  | int iommu_idx) | 
|  | { | 
|  | /* Make sure this CPU has an IOMMU notifier registered for this | 
|  | * IOMMU/IOMMU index combination, so that we can flush its TLB | 
|  | * when the IOMMU tells us the mappings we've cached have changed. | 
|  | */ | 
|  | MemoryRegion *mr = MEMORY_REGION(iommu_mr); | 
|  | TCGIOMMUNotifier *notifier = NULL; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | 
|  | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); | 
|  | if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == cpu->iommu_notifiers->len) { | 
|  | /* Not found, add a new entry at the end of the array */ | 
|  | cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); | 
|  | notifier = g_new0(TCGIOMMUNotifier, 1); | 
|  | g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; | 
|  |  | 
|  | notifier->mr = mr; | 
|  | notifier->iommu_idx = iommu_idx; | 
|  | notifier->cpu = cpu; | 
|  | /* Rather than trying to register interest in the specific part | 
|  | * of the iommu's address space that we've accessed and then | 
|  | * expand it later as subsequent accesses touch more of it, we | 
|  | * just register interest in the whole thing, on the assumption | 
|  | * that iommu reconfiguration will be rare. | 
|  | */ | 
|  | iommu_notifier_init(¬ifier->n, | 
|  | tcg_iommu_unmap_notify, | 
|  | IOMMU_NOTIFIER_UNMAP, | 
|  | 0, | 
|  | HWADDR_MAX, | 
|  | iommu_idx); | 
|  | memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, | 
|  | &error_fatal); | 
|  | } | 
|  |  | 
|  | if (!notifier->active) { | 
|  | notifier->active = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void tcg_iommu_free_notifier_list(CPUState *cpu) | 
|  | { | 
|  | /* Destroy the CPU's notifier list */ | 
|  | int i; | 
|  | TCGIOMMUNotifier *notifier; | 
|  |  | 
|  | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | 
|  | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); | 
|  | memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); | 
|  | g_free(notifier); | 
|  | } | 
|  | g_array_free(cpu->iommu_notifiers, true); | 
|  | } | 
|  |  | 
|  | void tcg_iommu_init_notifier_list(CPUState *cpu) | 
|  | { | 
|  | cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section */ | 
|  | MemoryRegionSection * | 
|  | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, | 
|  | hwaddr *xlat, hwaddr *plen, | 
|  | MemTxAttrs attrs, int *prot) | 
|  | { | 
|  | MemoryRegionSection *section; | 
|  | IOMMUMemoryRegion *iommu_mr; | 
|  | IOMMUMemoryRegionClass *imrc; | 
|  | IOMMUTLBEntry iotlb; | 
|  | int iommu_idx; | 
|  | hwaddr addr = orig_addr; | 
|  | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; | 
|  |  | 
|  | for (;;) { | 
|  | section = address_space_translate_internal(d, addr, &addr, plen, false); | 
|  |  | 
|  | iommu_mr = memory_region_get_iommu(section->mr); | 
|  | if (!iommu_mr) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | 
|  |  | 
|  | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | 
|  | tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); | 
|  | /* We need all the permissions, so pass IOMMU_NONE so the IOMMU | 
|  | * doesn't short-cut its translation table walk. | 
|  | */ | 
|  | iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); | 
|  | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | 
|  | | (addr & iotlb.addr_mask)); | 
|  | /* Update the caller's prot bits to remove permissions the IOMMU | 
|  | * is giving us a failure response for. If we get down to no | 
|  | * permissions left at all we can give up now. | 
|  | */ | 
|  | if (!(iotlb.perm & IOMMU_RO)) { | 
|  | *prot &= ~(PAGE_READ | PAGE_EXEC); | 
|  | } | 
|  | if (!(iotlb.perm & IOMMU_WO)) { | 
|  | *prot &= ~PAGE_WRITE; | 
|  | } | 
|  |  | 
|  | if (!*prot) { | 
|  | goto translate_fail; | 
|  | } | 
|  |  | 
|  | d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); | 
|  | } | 
|  |  | 
|  | assert(!memory_region_is_iommu(section->mr)); | 
|  | *xlat = addr; | 
|  | return section; | 
|  |  | 
|  | translate_fail: | 
|  | /* | 
|  | * We should be given a page-aligned address -- certainly | 
|  | * tlb_set_page_with_attrs() does so.  The page offset of xlat | 
|  | * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. | 
|  | * The page portion of xlat will be logged by memory_region_access_valid() | 
|  | * when this memory access is rejected, so use the original untranslated | 
|  | * physical address. | 
|  | */ | 
|  | assert((orig_addr & ~TARGET_PAGE_MASK) == 0); | 
|  | *xlat = orig_addr; | 
|  | return &d->map.sections[PHYS_SECTION_UNASSIGNED]; | 
|  | } | 
|  |  | 
|  | void cpu_address_space_init(CPUState *cpu, int asidx, | 
|  | const char *prefix, MemoryRegion *mr) | 
|  | { | 
|  | CPUAddressSpace *newas; | 
|  | AddressSpace *as = g_new0(AddressSpace, 1); | 
|  | char *as_name; | 
|  |  | 
|  | assert(mr); | 
|  | as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); | 
|  | address_space_init(as, mr, as_name); | 
|  | g_free(as_name); | 
|  |  | 
|  | /* Target code should have set num_ases before calling us */ | 
|  | assert(asidx < cpu->num_ases); | 
|  |  | 
|  | if (asidx == 0) { | 
|  | /* address space 0 gets the convenience alias */ | 
|  | cpu->as = as; | 
|  | } | 
|  |  | 
|  | /* KVM cannot currently support multiple address spaces. */ | 
|  | assert(asidx == 0 || !kvm_enabled()); | 
|  |  | 
|  | if (!cpu->cpu_ases) { | 
|  | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | 
|  | cpu->cpu_ases_count = cpu->num_ases; | 
|  | } | 
|  |  | 
|  | newas = &cpu->cpu_ases[asidx]; | 
|  | newas->cpu = cpu; | 
|  | newas->as = as; | 
|  | if (tcg_enabled()) { | 
|  | newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; | 
|  | newas->tcg_as_listener.commit = tcg_commit; | 
|  | newas->tcg_as_listener.name = "tcg"; | 
|  | memory_listener_register(&newas->tcg_as_listener, as); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_address_space_destroy(CPUState *cpu, int asidx) | 
|  | { | 
|  | CPUAddressSpace *cpuas; | 
|  |  | 
|  | assert(cpu->cpu_ases); | 
|  | assert(asidx >= 0 && asidx < cpu->num_ases); | 
|  | /* KVM cannot currently support multiple address spaces. */ | 
|  | assert(asidx == 0 || !kvm_enabled()); | 
|  |  | 
|  | cpuas = &cpu->cpu_ases[asidx]; | 
|  | if (tcg_enabled()) { | 
|  | memory_listener_unregister(&cpuas->tcg_as_listener); | 
|  | } | 
|  |  | 
|  | address_space_destroy(cpuas->as); | 
|  | g_free_rcu(cpuas->as, rcu); | 
|  |  | 
|  | if (asidx == 0) { | 
|  | /* reset the convenience alias for address space 0 */ | 
|  | cpu->as = NULL; | 
|  | } | 
|  |  | 
|  | if (--cpu->cpu_ases_count == 0) { | 
|  | g_free(cpu->cpu_ases); | 
|  | cpu->cpu_ases = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | 
|  | { | 
|  | /* Return the AddressSpace corresponding to the specified index */ | 
|  | return cpu->cpu_ases[asidx].as; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section */ | 
|  | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | block = qatomic_rcu_read(&ram_list.mru_block); | 
|  | if (block && addr - block->offset < block->max_length) { | 
|  | return block; | 
|  | } | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | if (addr - block->offset < block->max_length) { | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | 
|  | abort(); | 
|  |  | 
|  | found: | 
|  | /* It is safe to write mru_block outside the BQL.  This | 
|  | * is what happens: | 
|  | * | 
|  | *     mru_block = xxx | 
|  | *     rcu_read_unlock() | 
|  | *                                        xxx removed from list | 
|  | *                  rcu_read_lock() | 
|  | *                  read mru_block | 
|  | *                                        mru_block = NULL; | 
|  | *                                        call_rcu(reclaim_ramblock, xxx); | 
|  | *                  rcu_read_unlock() | 
|  | * | 
|  | * qatomic_rcu_set is not needed here.  The block was already published | 
|  | * when it was placed into the list.  Here we're just making an extra | 
|  | * copy of the pointer. | 
|  | */ | 
|  | ram_list.mru_block = block; | 
|  | return block; | 
|  | } | 
|  |  | 
|  | void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) | 
|  | { | 
|  | CPUState *cpu; | 
|  | ram_addr_t start1; | 
|  | RAMBlock *block; | 
|  | ram_addr_t end; | 
|  |  | 
|  | assert(tcg_enabled()); | 
|  | end = TARGET_PAGE_ALIGN(start + length); | 
|  | start &= TARGET_PAGE_MASK; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | block = qemu_get_ram_block(start); | 
|  | assert(block == qemu_get_ram_block(end - 1)); | 
|  | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); | 
|  | CPU_FOREACH(cpu) { | 
|  | tlb_reset_dirty(cpu, start1, length); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Note: start and end must be within the same ram block.  */ | 
|  | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, | 
|  | ram_addr_t length, | 
|  | unsigned client) | 
|  | { | 
|  | DirtyMemoryBlocks *blocks; | 
|  | unsigned long end, page, start_page; | 
|  | bool dirty = false; | 
|  | RAMBlock *ramblock; | 
|  | uint64_t mr_offset, mr_size; | 
|  |  | 
|  | if (length == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; | 
|  | start_page = start >> TARGET_PAGE_BITS; | 
|  | page = start_page; | 
|  |  | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); | 
|  | ramblock = qemu_get_ram_block(start); | 
|  | /* Range sanity check on the ramblock */ | 
|  | assert(start >= ramblock->offset && | 
|  | start + length <= ramblock->offset + ramblock->used_length); | 
|  |  | 
|  | while (page < end) { | 
|  | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | 
|  | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | 
|  | unsigned long num = MIN(end - page, | 
|  | DIRTY_MEMORY_BLOCK_SIZE - offset); | 
|  |  | 
|  | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | 
|  | offset, num); | 
|  | page += num; | 
|  | } | 
|  |  | 
|  | mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; | 
|  | mr_size = (end - start_page) << TARGET_PAGE_BITS; | 
|  | memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); | 
|  | } | 
|  |  | 
|  | if (dirty) { | 
|  | cpu_physical_memory_dirty_bits_cleared(start, length); | 
|  | } | 
|  |  | 
|  | return dirty; | 
|  | } | 
|  |  | 
|  | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty | 
|  | (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) | 
|  | { | 
|  | DirtyMemoryBlocks *blocks; | 
|  | ram_addr_t start, first, last; | 
|  | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); | 
|  | DirtyBitmapSnapshot *snap; | 
|  | unsigned long page, end, dest; | 
|  |  | 
|  | start = memory_region_get_ram_addr(mr); | 
|  | /* We know we're only called for RAM MemoryRegions */ | 
|  | assert(start != RAM_ADDR_INVALID); | 
|  | start += offset; | 
|  |  | 
|  | first = QEMU_ALIGN_DOWN(start, align); | 
|  | last  = QEMU_ALIGN_UP(start + length, align); | 
|  |  | 
|  | snap = g_malloc0(sizeof(*snap) + | 
|  | ((last - first) >> (TARGET_PAGE_BITS + 3))); | 
|  | snap->start = first; | 
|  | snap->end   = last; | 
|  |  | 
|  | page = first >> TARGET_PAGE_BITS; | 
|  | end  = last  >> TARGET_PAGE_BITS; | 
|  | dest = 0; | 
|  |  | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); | 
|  |  | 
|  | while (page < end) { | 
|  | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | 
|  | unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; | 
|  | unsigned long num = MIN(end - page, | 
|  | DIRTY_MEMORY_BLOCK_SIZE - ofs); | 
|  |  | 
|  | assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); | 
|  | assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL))); | 
|  | ofs >>= BITS_PER_LEVEL; | 
|  |  | 
|  | bitmap_copy_and_clear_atomic(snap->dirty + dest, | 
|  | blocks->blocks[idx] + ofs, | 
|  | num); | 
|  | page += num; | 
|  | dest += num >> BITS_PER_LEVEL; | 
|  | } | 
|  | } | 
|  |  | 
|  | cpu_physical_memory_dirty_bits_cleared(start, length); | 
|  |  | 
|  | memory_region_clear_dirty_bitmap(mr, offset, length); | 
|  |  | 
|  | return snap; | 
|  | } | 
|  |  | 
|  | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | 
|  | ram_addr_t start, | 
|  | ram_addr_t length) | 
|  | { | 
|  | unsigned long page, end; | 
|  |  | 
|  | assert(start >= snap->start); | 
|  | assert(start + length <= snap->end); | 
|  |  | 
|  | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | 
|  | page = (start - snap->start) >> TARGET_PAGE_BITS; | 
|  |  | 
|  | while (page < end) { | 
|  | if (test_bit(page, snap->dirty)) { | 
|  | return true; | 
|  | } | 
|  | page++; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section */ | 
|  | hwaddr memory_region_section_get_iotlb(CPUState *cpu, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); | 
|  | return section - d->map.sections; | 
|  | } | 
|  |  | 
|  | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, | 
|  | uint16_t section); | 
|  | static subpage_t *subpage_init(FlatView *fv, hwaddr base); | 
|  |  | 
|  | static uint16_t phys_section_add(PhysPageMap *map, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | /* The physical section number is ORed with a page-aligned | 
|  | * pointer to produce the iotlb entries.  Thus it should | 
|  | * never overflow into the page-aligned value. | 
|  | */ | 
|  | assert(map->sections_nb < TARGET_PAGE_SIZE); | 
|  |  | 
|  | if (map->sections_nb == map->sections_nb_alloc) { | 
|  | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | 
|  | map->sections = g_renew(MemoryRegionSection, map->sections, | 
|  | map->sections_nb_alloc); | 
|  | } | 
|  | map->sections[map->sections_nb] = *section; | 
|  | memory_region_ref(section->mr); | 
|  | return map->sections_nb++; | 
|  | } | 
|  |  | 
|  | static void phys_section_destroy(MemoryRegion *mr) | 
|  | { | 
|  | bool have_sub_page = mr->subpage; | 
|  |  | 
|  | memory_region_unref(mr); | 
|  |  | 
|  | if (have_sub_page) { | 
|  | subpage_t *subpage = container_of(mr, subpage_t, iomem); | 
|  | object_unref(OBJECT(&subpage->iomem)); | 
|  | g_free(subpage); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void phys_sections_free(PhysPageMap *map) | 
|  | { | 
|  | while (map->sections_nb > 0) { | 
|  | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | 
|  | phys_section_destroy(section->mr); | 
|  | } | 
|  | g_free(map->sections); | 
|  | g_free(map->nodes); | 
|  | } | 
|  |  | 
|  | static void register_subpage(FlatView *fv, MemoryRegionSection *section) | 
|  | { | 
|  | AddressSpaceDispatch *d = flatview_to_dispatch(fv); | 
|  | subpage_t *subpage; | 
|  | hwaddr base = section->offset_within_address_space | 
|  | & TARGET_PAGE_MASK; | 
|  | MemoryRegionSection *existing = phys_page_find(d, base); | 
|  | MemoryRegionSection subsection = { | 
|  | .offset_within_address_space = base, | 
|  | .size = int128_make64(TARGET_PAGE_SIZE), | 
|  | }; | 
|  | hwaddr start, end; | 
|  |  | 
|  | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | 
|  |  | 
|  | if (!(existing->mr->subpage)) { | 
|  | subpage = subpage_init(fv, base); | 
|  | subsection.fv = fv; | 
|  | subsection.mr = &subpage->iomem; | 
|  | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | 
|  | phys_section_add(&d->map, &subsection)); | 
|  | } else { | 
|  | subpage = container_of(existing->mr, subpage_t, iomem); | 
|  | } | 
|  | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | 
|  | end = start + int128_get64(section->size) - 1; | 
|  | subpage_register(subpage, start, end, | 
|  | phys_section_add(&d->map, section)); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void register_multipage(FlatView *fv, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | AddressSpaceDispatch *d = flatview_to_dispatch(fv); | 
|  | hwaddr start_addr = section->offset_within_address_space; | 
|  | uint16_t section_index = phys_section_add(&d->map, section); | 
|  | uint64_t num_pages = int128_get64(int128_rshift(section->size, | 
|  | TARGET_PAGE_BITS)); | 
|  |  | 
|  | assert(num_pages); | 
|  | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The range in *section* may look like this: | 
|  | * | 
|  | *      |s|PPPPPPP|s| | 
|  | * | 
|  | * where s stands for subpage and P for page. | 
|  | */ | 
|  | void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) | 
|  | { | 
|  | MemoryRegionSection remain = *section; | 
|  | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); | 
|  |  | 
|  | /* register first subpage */ | 
|  | if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | 
|  | uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) | 
|  | - remain.offset_within_address_space; | 
|  |  | 
|  | MemoryRegionSection now = remain; | 
|  | now.size = int128_min(int128_make64(left), now.size); | 
|  | register_subpage(fv, &now); | 
|  | if (int128_eq(remain.size, now.size)) { | 
|  | return; | 
|  | } | 
|  | remain.size = int128_sub(remain.size, now.size); | 
|  | remain.offset_within_address_space += int128_get64(now.size); | 
|  | remain.offset_within_region += int128_get64(now.size); | 
|  | } | 
|  |  | 
|  | /* register whole pages */ | 
|  | if (int128_ge(remain.size, page_size)) { | 
|  | MemoryRegionSection now = remain; | 
|  | now.size = int128_and(now.size, int128_neg(page_size)); | 
|  | register_multipage(fv, &now); | 
|  | if (int128_eq(remain.size, now.size)) { | 
|  | return; | 
|  | } | 
|  | remain.size = int128_sub(remain.size, now.size); | 
|  | remain.offset_within_address_space += int128_get64(now.size); | 
|  | remain.offset_within_region += int128_get64(now.size); | 
|  | } | 
|  |  | 
|  | /* register last subpage */ | 
|  | register_subpage(fv, &remain); | 
|  | } | 
|  |  | 
|  | void qemu_flush_coalesced_mmio_buffer(void) | 
|  | { | 
|  | if (kvm_enabled()) | 
|  | kvm_flush_coalesced_mmio_buffer(); | 
|  | } | 
|  |  | 
|  | void qemu_mutex_lock_ramlist(void) | 
|  | { | 
|  | qemu_mutex_lock(&ram_list.mutex); | 
|  | } | 
|  |  | 
|  | void qemu_mutex_unlock_ramlist(void) | 
|  | { | 
|  | qemu_mutex_unlock(&ram_list.mutex); | 
|  | } | 
|  |  | 
|  | GString *ram_block_format(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  | char *psize; | 
|  | GString *buf = g_string_new(""); | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n", | 
|  | "Block Name", "PSize", "Offset", "Used", "Total", | 
|  | "HVA", "RO"); | 
|  |  | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | psize = size_to_str(block->page_size); | 
|  | g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64 | 
|  | " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", | 
|  | block->idstr, psize, | 
|  | (uint64_t)block->offset, | 
|  | (uint64_t)block->used_length, | 
|  | (uint64_t)block->max_length, | 
|  | (uint64_t)(uintptr_t)block->host, | 
|  | block->mr->readonly ? "ro" : "rw"); | 
|  |  | 
|  | g_free(psize); | 
|  | } | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static int find_min_backend_pagesize(Object *obj, void *opaque) | 
|  | { | 
|  | long *hpsize_min = opaque; | 
|  |  | 
|  | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | 
|  | HostMemoryBackend *backend = MEMORY_BACKEND(obj); | 
|  | long hpsize = host_memory_backend_pagesize(backend); | 
|  |  | 
|  | if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { | 
|  | *hpsize_min = hpsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int find_max_backend_pagesize(Object *obj, void *opaque) | 
|  | { | 
|  | long *hpsize_max = opaque; | 
|  |  | 
|  | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | 
|  | HostMemoryBackend *backend = MEMORY_BACKEND(obj); | 
|  | long hpsize = host_memory_backend_pagesize(backend); | 
|  |  | 
|  | if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { | 
|  | *hpsize_max = hpsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: We assume right now that all mapped host memory backends are | 
|  | * used as RAM, however some might be used for different purposes. | 
|  | */ | 
|  | long qemu_minrampagesize(void) | 
|  | { | 
|  | long hpsize = LONG_MAX; | 
|  | Object *memdev_root = object_resolve_path("/objects", NULL); | 
|  |  | 
|  | object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); | 
|  | return hpsize; | 
|  | } | 
|  |  | 
|  | long qemu_maxrampagesize(void) | 
|  | { | 
|  | long pagesize = 0; | 
|  | Object *memdev_root = object_resolve_path("/objects", NULL); | 
|  |  | 
|  | object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); | 
|  | return pagesize; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_POSIX | 
|  | static int64_t get_file_size(int fd) | 
|  | { | 
|  | int64_t size; | 
|  | #if defined(__linux__) | 
|  | struct stat st; | 
|  |  | 
|  | if (fstat(fd, &st) < 0) { | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | /* Special handling for devdax character devices */ | 
|  | if (S_ISCHR(st.st_mode)) { | 
|  | g_autofree char *subsystem_path = NULL; | 
|  | g_autofree char *subsystem = NULL; | 
|  |  | 
|  | subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", | 
|  | major(st.st_rdev), minor(st.st_rdev)); | 
|  | subsystem = g_file_read_link(subsystem_path, NULL); | 
|  |  | 
|  | if (subsystem && g_str_has_suffix(subsystem, "/dax")) { | 
|  | g_autofree char *size_path = NULL; | 
|  | g_autofree char *size_str = NULL; | 
|  |  | 
|  | size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", | 
|  | major(st.st_rdev), minor(st.st_rdev)); | 
|  |  | 
|  | if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { | 
|  | return g_ascii_strtoll(size_str, NULL, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* defined(__linux__) */ | 
|  |  | 
|  | /* st.st_size may be zero for special files yet lseek(2) works */ | 
|  | size = lseek(fd, 0, SEEK_END); | 
|  | if (size < 0) { | 
|  | return -errno; | 
|  | } | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static int64_t get_file_align(int fd) | 
|  | { | 
|  | int64_t align = -1; | 
|  | #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) | 
|  | struct stat st; | 
|  |  | 
|  | if (fstat(fd, &st) < 0) { | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | /* Special handling for devdax character devices */ | 
|  | if (S_ISCHR(st.st_mode)) { | 
|  | g_autofree char *path = NULL; | 
|  | g_autofree char *rpath = NULL; | 
|  | struct daxctl_ctx *ctx; | 
|  | struct daxctl_region *region; | 
|  | int rc = 0; | 
|  |  | 
|  | path = g_strdup_printf("/sys/dev/char/%d:%d", | 
|  | major(st.st_rdev), minor(st.st_rdev)); | 
|  | rpath = realpath(path, NULL); | 
|  | if (!rpath) { | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | rc = daxctl_new(&ctx); | 
|  | if (rc) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | daxctl_region_foreach(ctx, region) { | 
|  | if (strstr(rpath, daxctl_region_get_path(region))) { | 
|  | align = daxctl_region_get_align(region); | 
|  | break; | 
|  | } | 
|  | } | 
|  | daxctl_unref(ctx); | 
|  | } | 
|  | #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ | 
|  |  | 
|  | return align; | 
|  | } | 
|  |  | 
|  | static int file_ram_open(const char *path, | 
|  | const char *region_name, | 
|  | bool readonly, | 
|  | bool *created) | 
|  | { | 
|  | char *filename; | 
|  | char *sanitized_name; | 
|  | char *c; | 
|  | int fd = -1; | 
|  |  | 
|  | *created = false; | 
|  | for (;;) { | 
|  | fd = open(path, readonly ? O_RDONLY : O_RDWR); | 
|  | if (fd >= 0) { | 
|  | /* | 
|  | * open(O_RDONLY) won't fail with EISDIR. Check manually if we | 
|  | * opened a directory and fail similarly to how we fail ENOENT | 
|  | * in readonly mode. Note that mkstemp() would imply O_RDWR. | 
|  | */ | 
|  | if (readonly) { | 
|  | struct stat file_stat; | 
|  |  | 
|  | if (fstat(fd, &file_stat)) { | 
|  | close(fd); | 
|  | if (errno == EINTR) { | 
|  | continue; | 
|  | } | 
|  | return -errno; | 
|  | } else if (S_ISDIR(file_stat.st_mode)) { | 
|  | close(fd); | 
|  | return -EISDIR; | 
|  | } | 
|  | } | 
|  | /* @path names an existing file, use it */ | 
|  | break; | 
|  | } | 
|  | if (errno == ENOENT) { | 
|  | if (readonly) { | 
|  | /* Refuse to create new, readonly files. */ | 
|  | return -ENOENT; | 
|  | } | 
|  | /* @path names a file that doesn't exist, create it */ | 
|  | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | 
|  | if (fd >= 0) { | 
|  | *created = true; | 
|  | break; | 
|  | } | 
|  | } else if (errno == EISDIR) { | 
|  | /* @path names a directory, create a file there */ | 
|  | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | 
|  | sanitized_name = g_strdup(region_name); | 
|  | for (c = sanitized_name; *c != '\0'; c++) { | 
|  | if (*c == '/') { | 
|  | *c = '_'; | 
|  | } | 
|  | } | 
|  |  | 
|  | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | 
|  | sanitized_name); | 
|  | g_free(sanitized_name); | 
|  |  | 
|  | fd = mkstemp(filename); | 
|  | if (fd >= 0) { | 
|  | unlink(filename); | 
|  | g_free(filename); | 
|  | break; | 
|  | } | 
|  | g_free(filename); | 
|  | } | 
|  | if (errno != EEXIST && errno != EINTR) { | 
|  | return -errno; | 
|  | } | 
|  | /* | 
|  | * Try again on EINTR and EEXIST.  The latter happens when | 
|  | * something else creates the file between our two open(). | 
|  | */ | 
|  | } | 
|  |  | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static void *file_ram_alloc(RAMBlock *block, | 
|  | ram_addr_t memory, | 
|  | int fd, | 
|  | bool truncate, | 
|  | off_t offset, | 
|  | Error **errp) | 
|  | { | 
|  | uint32_t qemu_map_flags; | 
|  | void *area; | 
|  |  | 
|  | block->page_size = qemu_fd_getpagesize(fd); | 
|  | if (block->mr->align % block->page_size) { | 
|  | error_setg(errp, "alignment 0x%" PRIx64 | 
|  | " must be multiples of page size 0x%zx", | 
|  | block->mr->align, block->page_size); | 
|  | return NULL; | 
|  | } else if (block->mr->align && !is_power_of_2(block->mr->align)) { | 
|  | error_setg(errp, "alignment 0x%" PRIx64 | 
|  | " must be a power of two", block->mr->align); | 
|  | return NULL; | 
|  | } else if (offset % block->page_size) { | 
|  | error_setg(errp, "offset 0x%" PRIx64 | 
|  | " must be multiples of page size 0x%zx", | 
|  | offset, block->page_size); | 
|  | return NULL; | 
|  | } | 
|  | block->mr->align = MAX(block->page_size, block->mr->align); | 
|  | #if defined(__s390x__) | 
|  | if (kvm_enabled()) { | 
|  | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (memory < block->page_size) { | 
|  | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " | 
|  | "or larger than page size 0x%zx", | 
|  | memory, block->page_size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | memory = ROUND_UP(memory, block->page_size); | 
|  |  | 
|  | /* | 
|  | * ftruncate is not supported by hugetlbfs in older | 
|  | * hosts, so don't bother bailing out on errors. | 
|  | * If anything goes wrong with it under other filesystems, | 
|  | * mmap will fail. | 
|  | * | 
|  | * Do not truncate the non-empty backend file to avoid corrupting | 
|  | * the existing data in the file. Disabling shrinking is not | 
|  | * enough. For example, the current vNVDIMM implementation stores | 
|  | * the guest NVDIMM labels at the end of the backend file. If the | 
|  | * backend file is later extended, QEMU will not be able to find | 
|  | * those labels. Therefore, extending the non-empty backend file | 
|  | * is disabled as well. | 
|  | */ | 
|  | if (truncate && ftruncate(fd, offset + memory)) { | 
|  | perror("ftruncate"); | 
|  | } | 
|  |  | 
|  | qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; | 
|  | qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; | 
|  | qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; | 
|  | qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; | 
|  | area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); | 
|  | if (area == MAP_FAILED) { | 
|  | error_setg_errno(errp, errno, | 
|  | "unable to map backing store for guest RAM"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | block->fd = fd; | 
|  | block->fd_offset = offset; | 
|  | return area; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Allocate space within the ram_addr_t space that governs the | 
|  | * dirty bitmaps. | 
|  | * Called with the ramlist lock held. | 
|  | */ | 
|  | static ram_addr_t find_ram_offset(ram_addr_t size) | 
|  | { | 
|  | RAMBlock *block, *next_block; | 
|  | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | 
|  |  | 
|  | assert(size != 0); /* it would hand out same offset multiple times */ | 
|  |  | 
|  | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | ram_addr_t candidate, next = RAM_ADDR_MAX; | 
|  |  | 
|  | /* Align blocks to start on a 'long' in the bitmap | 
|  | * which makes the bitmap sync'ing take the fast path. | 
|  | */ | 
|  | candidate = block->offset + block->max_length; | 
|  | candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); | 
|  |  | 
|  | /* Search for the closest following block | 
|  | * and find the gap. | 
|  | */ | 
|  | RAMBLOCK_FOREACH(next_block) { | 
|  | if (next_block->offset >= candidate) { | 
|  | next = MIN(next, next_block->offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If it fits remember our place and remember the size | 
|  | * of gap, but keep going so that we might find a smaller | 
|  | * gap to fill so avoiding fragmentation. | 
|  | */ | 
|  | if (next - candidate >= size && next - candidate < mingap) { | 
|  | offset = candidate; | 
|  | mingap = next - candidate; | 
|  | } | 
|  |  | 
|  | trace_find_ram_offset_loop(size, candidate, offset, next, mingap); | 
|  | } | 
|  |  | 
|  | if (offset == RAM_ADDR_MAX) { | 
|  | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | 
|  | (uint64_t)size); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | trace_find_ram_offset(size, offset); | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | 
|  | if (!machine_dump_guest_core(current_machine)) { | 
|  | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | 
|  | if (ret) { | 
|  | perror("qemu_madvise"); | 
|  | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | 
|  | "but dump-guest-core=off specified\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *qemu_ram_get_idstr(RAMBlock *rb) | 
|  | { | 
|  | return rb->idstr; | 
|  | } | 
|  |  | 
|  | void *qemu_ram_get_host_addr(RAMBlock *rb) | 
|  | { | 
|  | return rb->host; | 
|  | } | 
|  |  | 
|  | ram_addr_t qemu_ram_get_offset(RAMBlock *rb) | 
|  | { | 
|  | return rb->offset; | 
|  | } | 
|  |  | 
|  | ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) | 
|  | { | 
|  | return rb->used_length; | 
|  | } | 
|  |  | 
|  | ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) | 
|  | { | 
|  | return rb->max_length; | 
|  | } | 
|  |  | 
|  | bool qemu_ram_is_shared(RAMBlock *rb) | 
|  | { | 
|  | return rb->flags & RAM_SHARED; | 
|  | } | 
|  |  | 
|  | bool qemu_ram_is_noreserve(RAMBlock *rb) | 
|  | { | 
|  | return rb->flags & RAM_NORESERVE; | 
|  | } | 
|  |  | 
|  | /* Note: Only set at the start of postcopy */ | 
|  | bool qemu_ram_is_uf_zeroable(RAMBlock *rb) | 
|  | { | 
|  | return rb->flags & RAM_UF_ZEROPAGE; | 
|  | } | 
|  |  | 
|  | void qemu_ram_set_uf_zeroable(RAMBlock *rb) | 
|  | { | 
|  | rb->flags |= RAM_UF_ZEROPAGE; | 
|  | } | 
|  |  | 
|  | bool qemu_ram_is_migratable(RAMBlock *rb) | 
|  | { | 
|  | return rb->flags & RAM_MIGRATABLE; | 
|  | } | 
|  |  | 
|  | void qemu_ram_set_migratable(RAMBlock *rb) | 
|  | { | 
|  | rb->flags |= RAM_MIGRATABLE; | 
|  | } | 
|  |  | 
|  | void qemu_ram_unset_migratable(RAMBlock *rb) | 
|  | { | 
|  | rb->flags &= ~RAM_MIGRATABLE; | 
|  | } | 
|  |  | 
|  | bool qemu_ram_is_named_file(RAMBlock *rb) | 
|  | { | 
|  | return rb->flags & RAM_NAMED_FILE; | 
|  | } | 
|  |  | 
|  | int qemu_ram_get_fd(RAMBlock *rb) | 
|  | { | 
|  | return rb->fd; | 
|  | } | 
|  |  | 
|  | /* Called with the BQL held.  */ | 
|  | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | assert(new_block); | 
|  | assert(!new_block->idstr[0]); | 
|  |  | 
|  | if (dev) { | 
|  | char *id = qdev_get_dev_path(dev); | 
|  | if (id) { | 
|  | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | 
|  | g_free(id); | 
|  | } | 
|  | } | 
|  | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | if (block != new_block && | 
|  | !strcmp(block->idstr, new_block->idstr)) { | 
|  | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | 
|  | new_block->idstr); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called with the BQL held.  */ | 
|  | void qemu_ram_unset_idstr(RAMBlock *block) | 
|  | { | 
|  | /* FIXME: arch_init.c assumes that this is not called throughout | 
|  | * migration.  Ignore the problem since hot-unplug during migration | 
|  | * does not work anyway. | 
|  | */ | 
|  | if (block) { | 
|  | memset(block->idstr, 0, sizeof(block->idstr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t qemu_ram_pagesize(RAMBlock *rb) | 
|  | { | 
|  | return rb->page_size; | 
|  | } | 
|  |  | 
|  | /* Returns the largest size of page in use */ | 
|  | size_t qemu_ram_pagesize_largest(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  | size_t largest = 0; | 
|  |  | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | largest = MAX(largest, qemu_ram_pagesize(block)); | 
|  | } | 
|  |  | 
|  | return largest; | 
|  | } | 
|  |  | 
|  | static int memory_try_enable_merging(void *addr, size_t len) | 
|  | { | 
|  | if (!machine_mem_merge(current_machine)) { | 
|  | /* disabled by the user */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resizing RAM while migrating can result in the migration being canceled. | 
|  | * Care has to be taken if the guest might have already detected the memory. | 
|  | * | 
|  | * As memory core doesn't know how is memory accessed, it is up to | 
|  | * resize callback to update device state and/or add assertions to detect | 
|  | * misuse, if necessary. | 
|  | */ | 
|  | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) | 
|  | { | 
|  | const ram_addr_t oldsize = block->used_length; | 
|  | const ram_addr_t unaligned_size = newsize; | 
|  |  | 
|  | assert(block); | 
|  |  | 
|  | newsize = TARGET_PAGE_ALIGN(newsize); | 
|  | newsize = REAL_HOST_PAGE_ALIGN(newsize); | 
|  |  | 
|  | if (block->used_length == newsize) { | 
|  | /* | 
|  | * We don't have to resize the ram block (which only knows aligned | 
|  | * sizes), however, we have to notify if the unaligned size changed. | 
|  | */ | 
|  | if (unaligned_size != memory_region_size(block->mr)) { | 
|  | memory_region_set_size(block->mr, unaligned_size); | 
|  | if (block->resized) { | 
|  | block->resized(block->idstr, unaligned_size, block->host); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!(block->flags & RAM_RESIZEABLE)) { | 
|  | error_setg_errno(errp, EINVAL, | 
|  | "Size mismatch: %s: 0x" RAM_ADDR_FMT | 
|  | " != 0x" RAM_ADDR_FMT, block->idstr, | 
|  | newsize, block->used_length); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (block->max_length < newsize) { | 
|  | error_setg_errno(errp, EINVAL, | 
|  | "Size too large: %s: 0x" RAM_ADDR_FMT | 
|  | " > 0x" RAM_ADDR_FMT, block->idstr, | 
|  | newsize, block->max_length); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Notify before modifying the ram block and touching the bitmaps. */ | 
|  | if (block->host) { | 
|  | ram_block_notify_resize(block->host, oldsize, newsize); | 
|  | } | 
|  |  | 
|  | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | 
|  | block->used_length = newsize; | 
|  | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, | 
|  | DIRTY_CLIENTS_ALL); | 
|  | memory_region_set_size(block->mr, unaligned_size); | 
|  | if (block->resized) { | 
|  | block->resized(block->idstr, unaligned_size, block->host); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trigger sync on the given ram block for range [start, start + length] | 
|  | * with the backing store if one is available. | 
|  | * Otherwise no-op. | 
|  | * @Note: this is supposed to be a synchronous op. | 
|  | */ | 
|  | void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) | 
|  | { | 
|  | /* The requested range should fit in within the block range */ | 
|  | g_assert((start + length) <= block->used_length); | 
|  |  | 
|  | #ifdef CONFIG_LIBPMEM | 
|  | /* The lack of support for pmem should not block the sync */ | 
|  | if (ramblock_is_pmem(block)) { | 
|  | void *addr = ramblock_ptr(block, start); | 
|  | pmem_persist(addr, length); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | if (block->fd >= 0) { | 
|  | /** | 
|  | * Case there is no support for PMEM or the memory has not been | 
|  | * specified as persistent (or is not one) - use the msync. | 
|  | * Less optimal but still achieves the same goal | 
|  | */ | 
|  | void *addr = ramblock_ptr(block, start); | 
|  | if (qemu_msync(addr, length, block->fd)) { | 
|  | warn_report("%s: failed to sync memory range: start: " | 
|  | RAM_ADDR_FMT " length: " RAM_ADDR_FMT, | 
|  | __func__, start, length); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called with ram_list.mutex held */ | 
|  | static void dirty_memory_extend(ram_addr_t new_ram_size) | 
|  | { | 
|  | unsigned int old_num_blocks = ram_list.num_dirty_blocks; | 
|  | unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size, | 
|  | DIRTY_MEMORY_BLOCK_SIZE); | 
|  | int i; | 
|  |  | 
|  | /* Only need to extend if block count increased */ | 
|  | if (new_num_blocks <= old_num_blocks) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | 
|  | DirtyMemoryBlocks *old_blocks; | 
|  | DirtyMemoryBlocks *new_blocks; | 
|  | int j; | 
|  |  | 
|  | old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); | 
|  | new_blocks = g_malloc(sizeof(*new_blocks) + | 
|  | sizeof(new_blocks->blocks[0]) * new_num_blocks); | 
|  |  | 
|  | if (old_num_blocks) { | 
|  | memcpy(new_blocks->blocks, old_blocks->blocks, | 
|  | old_num_blocks * sizeof(old_blocks->blocks[0])); | 
|  | } | 
|  |  | 
|  | for (j = old_num_blocks; j < new_num_blocks; j++) { | 
|  | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | 
|  |  | 
|  | if (old_blocks) { | 
|  | g_free_rcu(old_blocks, rcu); | 
|  | } | 
|  | } | 
|  |  | 
|  | ram_list.num_dirty_blocks = new_num_blocks; | 
|  | } | 
|  |  | 
|  | static void ram_block_add(RAMBlock *new_block, Error **errp) | 
|  | { | 
|  | const bool noreserve = qemu_ram_is_noreserve(new_block); | 
|  | const bool shared = qemu_ram_is_shared(new_block); | 
|  | RAMBlock *block; | 
|  | RAMBlock *last_block = NULL; | 
|  | bool free_on_error = false; | 
|  | ram_addr_t ram_size; | 
|  | Error *err = NULL; | 
|  |  | 
|  | qemu_mutex_lock_ramlist(); | 
|  | new_block->offset = find_ram_offset(new_block->max_length); | 
|  |  | 
|  | if (!new_block->host) { | 
|  | if (xen_enabled()) { | 
|  | xen_ram_alloc(new_block->offset, new_block->max_length, | 
|  | new_block->mr, &err); | 
|  | if (err) { | 
|  | error_propagate(errp, err); | 
|  | qemu_mutex_unlock_ramlist(); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | new_block->host = qemu_anon_ram_alloc(new_block->max_length, | 
|  | &new_block->mr->align, | 
|  | shared, noreserve); | 
|  | if (!new_block->host) { | 
|  | error_setg_errno(errp, errno, | 
|  | "cannot set up guest memory '%s'", | 
|  | memory_region_name(new_block->mr)); | 
|  | qemu_mutex_unlock_ramlist(); | 
|  | return; | 
|  | } | 
|  | memory_try_enable_merging(new_block->host, new_block->max_length); | 
|  | free_on_error = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (new_block->flags & RAM_GUEST_MEMFD) { | 
|  | int ret; | 
|  |  | 
|  | assert(kvm_enabled()); | 
|  | assert(new_block->guest_memfd < 0); | 
|  |  | 
|  | ret = ram_block_discard_require(true); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, | 
|  | "cannot set up private guest memory: discard currently blocked"); | 
|  | error_append_hint(errp, "Are you using assigned devices?\n"); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, | 
|  | 0, errp); | 
|  | if (new_block->guest_memfd < 0) { | 
|  | qemu_mutex_unlock_ramlist(); | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS; | 
|  | dirty_memory_extend(ram_size); | 
|  | /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ, | 
|  | * QLIST (which has an RCU-friendly variant) does not have insertion at | 
|  | * tail, so save the last element in last_block. | 
|  | */ | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | last_block = block; | 
|  | if (block->max_length < new_block->max_length) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (block) { | 
|  | QLIST_INSERT_BEFORE_RCU(block, new_block, next); | 
|  | } else if (last_block) { | 
|  | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); | 
|  | } else { /* list is empty */ | 
|  | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); | 
|  | } | 
|  | ram_list.mru_block = NULL; | 
|  |  | 
|  | /* Write list before version */ | 
|  | smp_wmb(); | 
|  | ram_list.version++; | 
|  | qemu_mutex_unlock_ramlist(); | 
|  |  | 
|  | cpu_physical_memory_set_dirty_range(new_block->offset, | 
|  | new_block->used_length, | 
|  | DIRTY_CLIENTS_ALL); | 
|  |  | 
|  | if (new_block->host) { | 
|  | qemu_ram_setup_dump(new_block->host, new_block->max_length); | 
|  | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | 
|  | /* | 
|  | * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU | 
|  | * Configure it unless the machine is a qtest server, in which case | 
|  | * KVM is not used and it may be forked (eg for fuzzing purposes). | 
|  | */ | 
|  | if (!qtest_enabled()) { | 
|  | qemu_madvise(new_block->host, new_block->max_length, | 
|  | QEMU_MADV_DONTFORK); | 
|  | } | 
|  | ram_block_notify_add(new_block->host, new_block->used_length, | 
|  | new_block->max_length); | 
|  | } | 
|  | return; | 
|  |  | 
|  | out_free: | 
|  | if (free_on_error) { | 
|  | qemu_anon_ram_free(new_block->host, new_block->max_length); | 
|  | new_block->host = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_POSIX | 
|  | RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, | 
|  | uint32_t ram_flags, int fd, off_t offset, | 
|  | Error **errp) | 
|  | { | 
|  | RAMBlock *new_block; | 
|  | Error *local_err = NULL; | 
|  | int64_t file_size, file_align; | 
|  |  | 
|  | /* Just support these ram flags by now. */ | 
|  | assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | | 
|  | RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | | 
|  | RAM_READONLY_FD | RAM_GUEST_MEMFD)) == 0); | 
|  |  | 
|  | if (xen_enabled()) { | 
|  | error_setg(errp, "-mem-path not supported with Xen"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (kvm_enabled() && !kvm_has_sync_mmu()) { | 
|  | error_setg(errp, | 
|  | "host lacks kvm mmu notifiers, -mem-path unsupported"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | size = TARGET_PAGE_ALIGN(size); | 
|  | size = REAL_HOST_PAGE_ALIGN(size); | 
|  |  | 
|  | file_size = get_file_size(fd); | 
|  | if (file_size > offset && file_size < (offset + size)) { | 
|  | error_setg(errp, "backing store size 0x%" PRIx64 | 
|  | " does not match 'size' option 0x" RAM_ADDR_FMT, | 
|  | file_size, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | file_align = get_file_align(fd); | 
|  | if (file_align > 0 && file_align > mr->align) { | 
|  | error_setg(errp, "backing store align 0x%" PRIx64 | 
|  | " is larger than 'align' option 0x%" PRIx64, | 
|  | file_align, mr->align); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | new_block = g_malloc0(sizeof(*new_block)); | 
|  | new_block->mr = mr; | 
|  | new_block->used_length = size; | 
|  | new_block->max_length = size; | 
|  | new_block->flags = ram_flags; | 
|  | new_block->guest_memfd = -1; | 
|  | new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, | 
|  | errp); | 
|  | if (!new_block->host) { | 
|  | g_free(new_block); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ram_block_add(new_block, &local_err); | 
|  | if (local_err) { | 
|  | g_free(new_block); | 
|  | error_propagate(errp, local_err); | 
|  | return NULL; | 
|  | } | 
|  | return new_block; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | 
|  | uint32_t ram_flags, const char *mem_path, | 
|  | off_t offset, Error **errp) | 
|  | { | 
|  | int fd; | 
|  | bool created; | 
|  | RAMBlock *block; | 
|  |  | 
|  | fd = file_ram_open(mem_path, memory_region_name(mr), | 
|  | !!(ram_flags & RAM_READONLY_FD), &created); | 
|  | if (fd < 0) { | 
|  | error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", | 
|  | mem_path); | 
|  | if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && | 
|  | fd == -EACCES) { | 
|  | /* | 
|  | * If we can open the file R/O (note: will never create a new file) | 
|  | * and we are dealing with a private mapping, there are still ways | 
|  | * to consume such files and get RAM instead of ROM. | 
|  | */ | 
|  | fd = file_ram_open(mem_path, memory_region_name(mr), true, | 
|  | &created); | 
|  | if (fd < 0) { | 
|  | return NULL; | 
|  | } | 
|  | assert(!created); | 
|  | close(fd); | 
|  | error_append_hint(errp, "Consider opening the backing store" | 
|  | " read-only but still creating writable RAM using" | 
|  | " '-object memory-backend-file,readonly=on,rom=off...'" | 
|  | " (see \"VM templating\" documentation)\n"); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); | 
|  | if (!block) { | 
|  | if (created) { | 
|  | unlink(mem_path); | 
|  | } | 
|  | close(fd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return block; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static | 
|  | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | 
|  | void (*resized)(const char*, | 
|  | uint64_t length, | 
|  | void *host), | 
|  | void *host, uint32_t ram_flags, | 
|  | MemoryRegion *mr, Error **errp) | 
|  | { | 
|  | RAMBlock *new_block; | 
|  | Error *local_err = NULL; | 
|  | int align; | 
|  |  | 
|  | assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | | 
|  | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); | 
|  | assert(!host ^ (ram_flags & RAM_PREALLOC)); | 
|  |  | 
|  | align = qemu_real_host_page_size(); | 
|  | align = MAX(align, TARGET_PAGE_SIZE); | 
|  | size = ROUND_UP(size, align); | 
|  | max_size = ROUND_UP(max_size, align); | 
|  |  | 
|  | new_block = g_malloc0(sizeof(*new_block)); | 
|  | new_block->mr = mr; | 
|  | new_block->resized = resized; | 
|  | new_block->used_length = size; | 
|  | new_block->max_length = max_size; | 
|  | assert(max_size >= size); | 
|  | new_block->fd = -1; | 
|  | new_block->guest_memfd = -1; | 
|  | new_block->page_size = qemu_real_host_page_size(); | 
|  | new_block->host = host; | 
|  | new_block->flags = ram_flags; | 
|  | ram_block_add(new_block, &local_err); | 
|  | if (local_err) { | 
|  | g_free(new_block); | 
|  | error_propagate(errp, local_err); | 
|  | return NULL; | 
|  | } | 
|  | return new_block; | 
|  | } | 
|  |  | 
|  | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | 
|  | MemoryRegion *mr, Error **errp) | 
|  | { | 
|  | return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, | 
|  | errp); | 
|  | } | 
|  |  | 
|  | RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, | 
|  | MemoryRegion *mr, Error **errp) | 
|  | { | 
|  | assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); | 
|  | return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); | 
|  | } | 
|  |  | 
|  | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | 
|  | void (*resized)(const char*, | 
|  | uint64_t length, | 
|  | void *host), | 
|  | MemoryRegion *mr, Error **errp) | 
|  | { | 
|  | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, | 
|  | RAM_RESIZEABLE, mr, errp); | 
|  | } | 
|  |  | 
|  | static void reclaim_ramblock(RAMBlock *block) | 
|  | { | 
|  | if (block->flags & RAM_PREALLOC) { | 
|  | ; | 
|  | } else if (xen_enabled()) { | 
|  | xen_invalidate_map_cache_entry(block->host); | 
|  | #ifndef _WIN32 | 
|  | } else if (block->fd >= 0) { | 
|  | qemu_ram_munmap(block->fd, block->host, block->max_length); | 
|  | close(block->fd); | 
|  | #endif | 
|  | } else { | 
|  | qemu_anon_ram_free(block->host, block->max_length); | 
|  | } | 
|  |  | 
|  | if (block->guest_memfd >= 0) { | 
|  | close(block->guest_memfd); | 
|  | ram_block_discard_require(false); | 
|  | } | 
|  |  | 
|  | g_free(block); | 
|  | } | 
|  |  | 
|  | void qemu_ram_free(RAMBlock *block) | 
|  | { | 
|  | if (!block) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (block->host) { | 
|  | ram_block_notify_remove(block->host, block->used_length, | 
|  | block->max_length); | 
|  | } | 
|  |  | 
|  | qemu_mutex_lock_ramlist(); | 
|  | QLIST_REMOVE_RCU(block, next); | 
|  | ram_list.mru_block = NULL; | 
|  | /* Write list before version */ | 
|  | smp_wmb(); | 
|  | ram_list.version++; | 
|  | call_rcu(block, reclaim_ramblock, rcu); | 
|  | qemu_mutex_unlock_ramlist(); | 
|  | } | 
|  |  | 
|  | #ifndef _WIN32 | 
|  | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | 
|  | { | 
|  | RAMBlock *block; | 
|  | ram_addr_t offset; | 
|  | int flags; | 
|  | void *area, *vaddr; | 
|  | int prot; | 
|  |  | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | offset = addr - block->offset; | 
|  | if (offset < block->max_length) { | 
|  | vaddr = ramblock_ptr(block, offset); | 
|  | if (block->flags & RAM_PREALLOC) { | 
|  | ; | 
|  | } else if (xen_enabled()) { | 
|  | abort(); | 
|  | } else { | 
|  | flags = MAP_FIXED; | 
|  | flags |= block->flags & RAM_SHARED ? | 
|  | MAP_SHARED : MAP_PRIVATE; | 
|  | flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; | 
|  | prot = PROT_READ; | 
|  | prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; | 
|  | if (block->fd >= 0) { | 
|  | area = mmap(vaddr, length, prot, flags, block->fd, | 
|  | offset + block->fd_offset); | 
|  | } else { | 
|  | flags |= MAP_ANONYMOUS; | 
|  | area = mmap(vaddr, length, prot, flags, -1, 0); | 
|  | } | 
|  | if (area != vaddr) { | 
|  | error_report("Could not remap addr: " | 
|  | RAM_ADDR_FMT "@" RAM_ADDR_FMT "", | 
|  | length, addr); | 
|  | exit(1); | 
|  | } | 
|  | memory_try_enable_merging(vaddr, length); | 
|  | qemu_ram_setup_dump(vaddr, length); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* !_WIN32 */ | 
|  |  | 
|  | /* | 
|  | * Return a host pointer to guest's ram. | 
|  | * For Xen, foreign mappings get created if they don't already exist. | 
|  | * | 
|  | * @block: block for the RAM to lookup (optional and may be NULL). | 
|  | * @addr: address within the memory region. | 
|  | * @size: pointer to requested size (optional and may be NULL). | 
|  | *        size may get modified and return a value smaller than | 
|  | *        what was requested. | 
|  | * @lock: wether to lock the mapping in xen-mapcache until invalidated. | 
|  | * @is_write: hint wether to map RW or RO in the xen-mapcache. | 
|  | *            (optional and may always be set to true). | 
|  | * | 
|  | * Called within RCU critical section. | 
|  | */ | 
|  | static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, | 
|  | hwaddr *size, bool lock, | 
|  | bool is_write) | 
|  | { | 
|  | hwaddr len = 0; | 
|  |  | 
|  | if (size && *size == 0) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (block == NULL) { | 
|  | block = qemu_get_ram_block(addr); | 
|  | addr -= block->offset; | 
|  | } | 
|  | if (size) { | 
|  | *size = MIN(*size, block->max_length - addr); | 
|  | len = *size; | 
|  | } | 
|  |  | 
|  | if (xen_enabled() && block->host == NULL) { | 
|  | /* We need to check if the requested address is in the RAM | 
|  | * because we don't want to map the entire memory in QEMU. | 
|  | * In that case just map the requested area. | 
|  | */ | 
|  | if (xen_mr_is_memory(block->mr)) { | 
|  | return xen_map_cache(block->mr, block->offset + addr, | 
|  | len, block->offset, | 
|  | lock, lock, is_write); | 
|  | } | 
|  |  | 
|  | block->host = xen_map_cache(block->mr, block->offset, | 
|  | block->max_length, | 
|  | block->offset, | 
|  | 1, lock, is_write); | 
|  | } | 
|  |  | 
|  | return ramblock_ptr(block, addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a host pointer to ram allocated with qemu_ram_alloc. | 
|  | * This should not be used for general purpose DMA.  Use address_space_map | 
|  | * or address_space_rw instead. For local memory (e.g. video ram) that the | 
|  | * device owns, use memory_region_get_ram_ptr. | 
|  | * | 
|  | * Called within RCU critical section. | 
|  | */ | 
|  | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) | 
|  | { | 
|  | return qemu_ram_ptr_length(ram_block, addr, NULL, false, true); | 
|  | } | 
|  |  | 
|  | /* Return the offset of a hostpointer within a ramblock */ | 
|  | ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) | 
|  | { | 
|  | ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; | 
|  | assert((uintptr_t)host >= (uintptr_t)rb->host); | 
|  | assert(res < rb->max_length); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, | 
|  | ram_addr_t *offset) | 
|  | { | 
|  | RAMBlock *block; | 
|  | uint8_t *host = ptr; | 
|  |  | 
|  | if (xen_enabled()) { | 
|  | ram_addr_t ram_addr; | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | ram_addr = xen_ram_addr_from_mapcache(ptr); | 
|  | if (ram_addr == RAM_ADDR_INVALID) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | block = qemu_get_ram_block(ram_addr); | 
|  | if (block) { | 
|  | *offset = ram_addr - block->offset; | 
|  | } | 
|  | return block; | 
|  | } | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | block = qatomic_rcu_read(&ram_list.mru_block); | 
|  | if (block && block->host && host - block->host < block->max_length) { | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | /* This case append when the block is not mapped. */ | 
|  | if (block->host == NULL) { | 
|  | continue; | 
|  | } | 
|  | if (host - block->host < block->max_length) { | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  |  | 
|  | found: | 
|  | *offset = (host - block->host); | 
|  | if (round_offset) { | 
|  | *offset &= TARGET_PAGE_MASK; | 
|  | } | 
|  | return block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finds the named RAMBlock | 
|  | * | 
|  | * name: The name of RAMBlock to find | 
|  | * | 
|  | * Returns: RAMBlock (or NULL if not found) | 
|  | */ | 
|  | RAMBlock *qemu_ram_block_by_name(const char *name) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | if (!strcmp(name, block->idstr)) { | 
|  | return block; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some of the system routines need to translate from a host pointer | 
|  | * (typically a TLB entry) back to a ram offset. | 
|  | */ | 
|  | ram_addr_t qemu_ram_addr_from_host(void *ptr) | 
|  | { | 
|  | RAMBlock *block; | 
|  | ram_addr_t offset; | 
|  |  | 
|  | block = qemu_ram_block_from_host(ptr, false, &offset); | 
|  | if (!block) { | 
|  | return RAM_ADDR_INVALID; | 
|  | } | 
|  |  | 
|  | return block->offset + offset; | 
|  | } | 
|  |  | 
|  | ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) | 
|  | { | 
|  | ram_addr_t ram_addr; | 
|  |  | 
|  | ram_addr = qemu_ram_addr_from_host(ptr); | 
|  | if (ram_addr == RAM_ADDR_INVALID) { | 
|  | error_report("Bad ram pointer %p", ptr); | 
|  | abort(); | 
|  | } | 
|  | return ram_addr; | 
|  | } | 
|  |  | 
|  | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, | 
|  | MemTxAttrs attrs, void *buf, hwaddr len); | 
|  | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, | 
|  | const void *buf, hwaddr len); | 
|  | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, | 
|  | bool is_write, MemTxAttrs attrs); | 
|  |  | 
|  | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, | 
|  | unsigned len, MemTxAttrs attrs) | 
|  | { | 
|  | subpage_t *subpage = opaque; | 
|  | uint8_t buf[8]; | 
|  | MemTxResult res; | 
|  |  | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, | 
|  | subpage, len, addr); | 
|  | #endif | 
|  | res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); | 
|  | if (res) { | 
|  | return res; | 
|  | } | 
|  | *data = ldn_p(buf, len); | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | static MemTxResult subpage_write(void *opaque, hwaddr addr, | 
|  | uint64_t value, unsigned len, MemTxAttrs attrs) | 
|  | { | 
|  | subpage_t *subpage = opaque; | 
|  | uint8_t buf[8]; | 
|  |  | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: subpage %p len %u addr " HWADDR_FMT_plx | 
|  | " value %"PRIx64"\n", | 
|  | __func__, subpage, len, addr, value); | 
|  | #endif | 
|  | stn_p(buf, len, value); | 
|  | return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); | 
|  | } | 
|  |  | 
|  | static bool subpage_accepts(void *opaque, hwaddr addr, | 
|  | unsigned len, bool is_write, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | subpage_t *subpage = opaque; | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", | 
|  | __func__, subpage, is_write ? 'w' : 'r', len, addr); | 
|  | #endif | 
|  |  | 
|  | return flatview_access_valid(subpage->fv, addr + subpage->base, | 
|  | len, is_write, attrs); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps subpage_ops = { | 
|  | .read_with_attrs = subpage_read, | 
|  | .write_with_attrs = subpage_write, | 
|  | .impl.min_access_size = 1, | 
|  | .impl.max_access_size = 8, | 
|  | .valid.min_access_size = 1, | 
|  | .valid.max_access_size = 8, | 
|  | .valid.accepts = subpage_accepts, | 
|  | .endianness = DEVICE_NATIVE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, | 
|  | uint16_t section) | 
|  | { | 
|  | int idx, eidx; | 
|  |  | 
|  | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | 
|  | return -1; | 
|  | idx = SUBPAGE_IDX(start); | 
|  | eidx = SUBPAGE_IDX(end); | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", | 
|  | __func__, mmio, start, end, idx, eidx, section); | 
|  | #endif | 
|  | for (; idx <= eidx; idx++) { | 
|  | mmio->sub_section[idx] = section; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static subpage_t *subpage_init(FlatView *fv, hwaddr base) | 
|  | { | 
|  | subpage_t *mmio; | 
|  |  | 
|  | /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ | 
|  | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); | 
|  | mmio->fv = fv; | 
|  | mmio->base = base; | 
|  | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, | 
|  | NULL, TARGET_PAGE_SIZE); | 
|  | mmio->iomem.subpage = true; | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, | 
|  | mmio, base, TARGET_PAGE_SIZE); | 
|  | #endif | 
|  |  | 
|  | return mmio; | 
|  | } | 
|  |  | 
|  | static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) | 
|  | { | 
|  | assert(fv); | 
|  | MemoryRegionSection section = { | 
|  | .fv = fv, | 
|  | .mr = mr, | 
|  | .offset_within_address_space = 0, | 
|  | .offset_within_region = 0, | 
|  | .size = int128_2_64(), | 
|  | }; | 
|  |  | 
|  | return phys_section_add(map, §ion); | 
|  | } | 
|  |  | 
|  | MemoryRegionSection *iotlb_to_section(CPUState *cpu, | 
|  | hwaddr index, MemTxAttrs attrs) | 
|  | { | 
|  | int asidx = cpu_asidx_from_attrs(cpu, attrs); | 
|  | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | 
|  | AddressSpaceDispatch *d = cpuas->memory_dispatch; | 
|  | int section_index = index & ~TARGET_PAGE_MASK; | 
|  | MemoryRegionSection *ret; | 
|  |  | 
|  | assert(section_index < d->map.sections_nb); | 
|  | ret = d->map.sections + section_index; | 
|  | assert(ret->mr); | 
|  | assert(ret->mr->ops); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void io_mem_init(void) | 
|  | { | 
|  | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, | 
|  | NULL, UINT64_MAX); | 
|  | } | 
|  |  | 
|  | AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) | 
|  | { | 
|  | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); | 
|  | uint16_t n; | 
|  |  | 
|  | n = dummy_section(&d->map, fv, &io_mem_unassigned); | 
|  | assert(n == PHYS_SECTION_UNASSIGNED); | 
|  |  | 
|  | d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; | 
|  |  | 
|  | return d; | 
|  | } | 
|  |  | 
|  | void address_space_dispatch_free(AddressSpaceDispatch *d) | 
|  | { | 
|  | phys_sections_free(&d->map); | 
|  | g_free(d); | 
|  | } | 
|  |  | 
|  | static void do_nothing(CPUState *cpu, run_on_cpu_data d) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void tcg_log_global_after_sync(MemoryListener *listener) | 
|  | { | 
|  | CPUAddressSpace *cpuas; | 
|  |  | 
|  | /* Wait for the CPU to end the current TB.  This avoids the following | 
|  | * incorrect race: | 
|  | * | 
|  | *      vCPU                         migration | 
|  | *      ----------------------       ------------------------- | 
|  | *      TLB check -> slow path | 
|  | *        notdirty_mem_write | 
|  | *          write to RAM | 
|  | *          mark dirty | 
|  | *                                   clear dirty flag | 
|  | *      TLB check -> fast path | 
|  | *                                   read memory | 
|  | *        write to RAM | 
|  | * | 
|  | * by pushing the migration thread's memory read after the vCPU thread has | 
|  | * written the memory. | 
|  | */ | 
|  | if (replay_mode == REPLAY_MODE_NONE) { | 
|  | /* | 
|  | * VGA can make calls to this function while updating the screen. | 
|  | * In record/replay mode this causes a deadlock, because | 
|  | * run_on_cpu waits for rr mutex. Therefore no races are possible | 
|  | * in this case and no need for making run_on_cpu when | 
|  | * record/replay is enabled. | 
|  | */ | 
|  | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | 
|  | run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) | 
|  | { | 
|  | CPUAddressSpace *cpuas = data.host_ptr; | 
|  |  | 
|  | cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); | 
|  | tlb_flush(cpu); | 
|  | } | 
|  |  | 
|  | static void tcg_commit(MemoryListener *listener) | 
|  | { | 
|  | CPUAddressSpace *cpuas; | 
|  | CPUState *cpu; | 
|  |  | 
|  | assert(tcg_enabled()); | 
|  | /* since each CPU stores ram addresses in its TLB cache, we must | 
|  | reset the modified entries */ | 
|  | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | 
|  | cpu = cpuas->cpu; | 
|  |  | 
|  | /* | 
|  | * Defer changes to as->memory_dispatch until the cpu is quiescent. | 
|  | * Otherwise we race between (1) other cpu threads and (2) ongoing | 
|  | * i/o for the current cpu thread, with data cached by mmu_lookup(). | 
|  | * | 
|  | * In addition, queueing the work function will kick the cpu back to | 
|  | * the main loop, which will end the RCU critical section and reclaim | 
|  | * the memory data structures. | 
|  | * | 
|  | * That said, the listener is also called during realize, before | 
|  | * all of the tcg machinery for run-on is initialized: thus halt_cond. | 
|  | */ | 
|  | if (cpu->halt_cond) { | 
|  | async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); | 
|  | } else { | 
|  | tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void memory_map_init(void) | 
|  | { | 
|  | system_memory = g_malloc(sizeof(*system_memory)); | 
|  |  | 
|  | memory_region_init(system_memory, NULL, "system", UINT64_MAX); | 
|  | address_space_init(&address_space_memory, system_memory, "memory"); | 
|  |  | 
|  | system_io = g_malloc(sizeof(*system_io)); | 
|  | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", | 
|  | 65536); | 
|  | address_space_init(&address_space_io, system_io, "I/O"); | 
|  | } | 
|  |  | 
|  | MemoryRegion *get_system_memory(void) | 
|  | { | 
|  | return system_memory; | 
|  | } | 
|  |  | 
|  | MemoryRegion *get_system_io(void) | 
|  | { | 
|  | return system_io; | 
|  | } | 
|  |  | 
|  | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, | 
|  | hwaddr length) | 
|  | { | 
|  | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); | 
|  | ram_addr_t ramaddr = memory_region_get_ram_addr(mr); | 
|  |  | 
|  | /* We know we're only called for RAM MemoryRegions */ | 
|  | assert(ramaddr != RAM_ADDR_INVALID); | 
|  | addr += ramaddr; | 
|  |  | 
|  | /* No early return if dirty_log_mask is or becomes 0, because | 
|  | * cpu_physical_memory_set_dirty_range will still call | 
|  | * xen_modified_memory. | 
|  | */ | 
|  | if (dirty_log_mask) { | 
|  | dirty_log_mask = | 
|  | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | 
|  | } | 
|  | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | 
|  | assert(tcg_enabled()); | 
|  | tb_invalidate_phys_range(addr, addr + length - 1); | 
|  | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | 
|  | } | 
|  | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); | 
|  | } | 
|  |  | 
|  | void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) | 
|  | { | 
|  | /* | 
|  | * In principle this function would work on other memory region types too, | 
|  | * but the ROM device use case is the only one where this operation is | 
|  | * necessary.  Other memory regions should use the | 
|  | * address_space_read/write() APIs. | 
|  | */ | 
|  | assert(memory_region_is_romd(mr)); | 
|  |  | 
|  | invalidate_and_set_dirty(mr, addr, size); | 
|  | } | 
|  |  | 
|  | int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) | 
|  | { | 
|  | unsigned access_size_max = mr->ops->valid.max_access_size; | 
|  |  | 
|  | /* Regions are assumed to support 1-4 byte accesses unless | 
|  | otherwise specified.  */ | 
|  | if (access_size_max == 0) { | 
|  | access_size_max = 4; | 
|  | } | 
|  |  | 
|  | /* Bound the maximum access by the alignment of the address.  */ | 
|  | if (!mr->ops->impl.unaligned) { | 
|  | unsigned align_size_max = addr & -addr; | 
|  | if (align_size_max != 0 && align_size_max < access_size_max) { | 
|  | access_size_max = align_size_max; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Don't attempt accesses larger than the maximum.  */ | 
|  | if (l > access_size_max) { | 
|  | l = access_size_max; | 
|  | } | 
|  | l = pow2floor(l); | 
|  |  | 
|  | return l; | 
|  | } | 
|  |  | 
|  | bool prepare_mmio_access(MemoryRegion *mr) | 
|  | { | 
|  | bool release_lock = false; | 
|  |  | 
|  | if (!bql_locked()) { | 
|  | bql_lock(); | 
|  | release_lock = true; | 
|  | } | 
|  | if (mr->flush_coalesced_mmio) { | 
|  | qemu_flush_coalesced_mmio_buffer(); | 
|  | } | 
|  |  | 
|  | return release_lock; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * flatview_access_allowed | 
|  | * @mr: #MemoryRegion to be accessed | 
|  | * @attrs: memory transaction attributes | 
|  | * @addr: address within that memory region | 
|  | * @len: the number of bytes to access | 
|  | * | 
|  | * Check if a memory transaction is allowed. | 
|  | * | 
|  | * Returns: true if transaction is allowed, false if denied. | 
|  | */ | 
|  | static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, | 
|  | hwaddr addr, hwaddr len) | 
|  | { | 
|  | if (likely(!attrs.memory)) { | 
|  | return true; | 
|  | } | 
|  | if (memory_region_is_ram(mr)) { | 
|  | return true; | 
|  | } | 
|  | qemu_log_mask(LOG_INVALID_MEM, | 
|  | "Invalid access to non-RAM device at " | 
|  | "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " | 
|  | "region '%s'\n", addr, len, memory_region_name(mr)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, | 
|  | const uint8_t *buf, | 
|  | hwaddr len, hwaddr mr_addr, | 
|  | hwaddr *l, MemoryRegion *mr) | 
|  | { | 
|  | if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { | 
|  | return MEMTX_ACCESS_ERROR; | 
|  | } | 
|  |  | 
|  | if (!memory_access_is_direct(mr, true)) { | 
|  | uint64_t val; | 
|  | MemTxResult result; | 
|  | bool release_lock = prepare_mmio_access(mr); | 
|  |  | 
|  | *l = memory_access_size(mr, *l, mr_addr); | 
|  | /* | 
|  | * XXX: could force current_cpu to NULL to avoid | 
|  | * potential bugs | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Assure Coverity (and ourselves) that we are not going to OVERRUN | 
|  | * the buffer by following ldn_he_p(). | 
|  | */ | 
|  | #ifdef QEMU_STATIC_ANALYSIS | 
|  | assert((*l == 1 && len >= 1) || | 
|  | (*l == 2 && len >= 2) || | 
|  | (*l == 4 && len >= 4) || | 
|  | (*l == 8 && len >= 8)); | 
|  | #endif | 
|  | val = ldn_he_p(buf, *l); | 
|  | result = memory_region_dispatch_write(mr, mr_addr, val, | 
|  | size_memop(*l), attrs); | 
|  | if (release_lock) { | 
|  | bql_unlock(); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } else { | 
|  | /* RAM case */ | 
|  | uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, | 
|  | false, true); | 
|  |  | 
|  | memmove(ram_ptr, buf, *l); | 
|  | invalidate_and_set_dirty(mr, mr_addr, *l); | 
|  |  | 
|  | return MEMTX_OK; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called within RCU critical section.  */ | 
|  | static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, | 
|  | MemTxAttrs attrs, | 
|  | const void *ptr, | 
|  | hwaddr len, hwaddr mr_addr, | 
|  | hwaddr l, MemoryRegion *mr) | 
|  | { | 
|  | MemTxResult result = MEMTX_OK; | 
|  | const uint8_t *buf = ptr; | 
|  |  | 
|  | for (;;) { | 
|  | result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, | 
|  | mr); | 
|  |  | 
|  | len -= l; | 
|  | buf += l; | 
|  | addr += l; | 
|  |  | 
|  | if (!len) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | l = len; | 
|  | mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section.  */ | 
|  | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, | 
|  | const void *buf, hwaddr len) | 
|  | { | 
|  | hwaddr l; | 
|  | hwaddr mr_addr; | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | l = len; | 
|  | mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); | 
|  | if (!flatview_access_allowed(mr, attrs, addr, len)) { | 
|  | return MEMTX_ACCESS_ERROR; | 
|  | } | 
|  | return flatview_write_continue(fv, addr, attrs, buf, len, | 
|  | mr_addr, l, mr); | 
|  | } | 
|  |  | 
|  | static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, | 
|  | hwaddr len, hwaddr mr_addr, | 
|  | hwaddr *l, | 
|  | MemoryRegion *mr) | 
|  | { | 
|  | if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { | 
|  | return MEMTX_ACCESS_ERROR; | 
|  | } | 
|  |  | 
|  | if (!memory_access_is_direct(mr, false)) { | 
|  | /* I/O case */ | 
|  | uint64_t val; | 
|  | MemTxResult result; | 
|  | bool release_lock = prepare_mmio_access(mr); | 
|  |  | 
|  | *l = memory_access_size(mr, *l, mr_addr); | 
|  | result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), | 
|  | attrs); | 
|  |  | 
|  | /* | 
|  | * Assure Coverity (and ourselves) that we are not going to OVERRUN | 
|  | * the buffer by following stn_he_p(). | 
|  | */ | 
|  | #ifdef QEMU_STATIC_ANALYSIS | 
|  | assert((*l == 1 && len >= 1) || | 
|  | (*l == 2 && len >= 2) || | 
|  | (*l == 4 && len >= 4) || | 
|  | (*l == 8 && len >= 8)); | 
|  | #endif | 
|  | stn_he_p(buf, *l, val); | 
|  |  | 
|  | if (release_lock) { | 
|  | bql_unlock(); | 
|  | } | 
|  | return result; | 
|  | } else { | 
|  | /* RAM case */ | 
|  | uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, | 
|  | false, false); | 
|  |  | 
|  | memcpy(buf, ram_ptr, *l); | 
|  |  | 
|  | return MEMTX_OK; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called within RCU critical section.  */ | 
|  | MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, | 
|  | MemTxAttrs attrs, void *ptr, | 
|  | hwaddr len, hwaddr mr_addr, hwaddr l, | 
|  | MemoryRegion *mr) | 
|  | { | 
|  | MemTxResult result = MEMTX_OK; | 
|  | uint8_t *buf = ptr; | 
|  |  | 
|  | fuzz_dma_read_cb(addr, len, mr); | 
|  | for (;;) { | 
|  | result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); | 
|  |  | 
|  | len -= l; | 
|  | buf += l; | 
|  | addr += l; | 
|  |  | 
|  | if (!len) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | l = len; | 
|  | mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section.  */ | 
|  | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, | 
|  | MemTxAttrs attrs, void *buf, hwaddr len) | 
|  | { | 
|  | hwaddr l; | 
|  | hwaddr mr_addr; | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | l = len; | 
|  | mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); | 
|  | if (!flatview_access_allowed(mr, attrs, addr, len)) { | 
|  | return MEMTX_ACCESS_ERROR; | 
|  | } | 
|  | return flatview_read_continue(fv, addr, attrs, buf, len, | 
|  | mr_addr, l, mr); | 
|  | } | 
|  |  | 
|  | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, | 
|  | MemTxAttrs attrs, void *buf, hwaddr len) | 
|  | { | 
|  | MemTxResult result = MEMTX_OK; | 
|  | FlatView *fv; | 
|  |  | 
|  | if (len > 0) { | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | fv = address_space_to_flatview(as); | 
|  | result = flatview_read(fv, addr, attrs, buf, len); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, | 
|  | MemTxAttrs attrs, | 
|  | const void *buf, hwaddr len) | 
|  | { | 
|  | MemTxResult result = MEMTX_OK; | 
|  | FlatView *fv; | 
|  |  | 
|  | if (len > 0) { | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | fv = address_space_to_flatview(as); | 
|  | result = flatview_write(fv, addr, attrs, buf, len); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | 
|  | void *buf, hwaddr len, bool is_write) | 
|  | { | 
|  | if (is_write) { | 
|  | return address_space_write(as, addr, attrs, buf, len); | 
|  | } else { | 
|  | return address_space_read_full(as, addr, attrs, buf, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | MemTxResult address_space_set(AddressSpace *as, hwaddr addr, | 
|  | uint8_t c, hwaddr len, MemTxAttrs attrs) | 
|  | { | 
|  | #define FILLBUF_SIZE 512 | 
|  | uint8_t fillbuf[FILLBUF_SIZE]; | 
|  | int l; | 
|  | MemTxResult error = MEMTX_OK; | 
|  |  | 
|  | memset(fillbuf, c, FILLBUF_SIZE); | 
|  | while (len > 0) { | 
|  | l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; | 
|  | error |= address_space_write(as, addr, attrs, fillbuf, l); | 
|  | len -= l; | 
|  | addr += l; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void cpu_physical_memory_rw(hwaddr addr, void *buf, | 
|  | hwaddr len, bool is_write) | 
|  | { | 
|  | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, | 
|  | buf, len, is_write); | 
|  | } | 
|  |  | 
|  | enum write_rom_type { | 
|  | WRITE_DATA, | 
|  | FLUSH_CACHE, | 
|  | }; | 
|  |  | 
|  | static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, | 
|  | hwaddr addr, | 
|  | MemTxAttrs attrs, | 
|  | const void *ptr, | 
|  | hwaddr len, | 
|  | enum write_rom_type type) | 
|  | { | 
|  | hwaddr l; | 
|  | uint8_t *ram_ptr; | 
|  | hwaddr addr1; | 
|  | MemoryRegion *mr; | 
|  | const uint8_t *buf = ptr; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | while (len > 0) { | 
|  | l = len; | 
|  | mr = address_space_translate(as, addr, &addr1, &l, true, attrs); | 
|  |  | 
|  | if (!(memory_region_is_ram(mr) || | 
|  | memory_region_is_romd(mr))) { | 
|  | l = memory_access_size(mr, l, addr1); | 
|  | } else { | 
|  | /* ROM/RAM case */ | 
|  | ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); | 
|  | switch (type) { | 
|  | case WRITE_DATA: | 
|  | memcpy(ram_ptr, buf, l); | 
|  | invalidate_and_set_dirty(mr, addr1, l); | 
|  | break; | 
|  | case FLUSH_CACHE: | 
|  | flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); | 
|  | break; | 
|  | } | 
|  | } | 
|  | len -= l; | 
|  | buf += l; | 
|  | addr += l; | 
|  | } | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | /* used for ROM loading : can write in RAM and ROM */ | 
|  | MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, | 
|  | MemTxAttrs attrs, | 
|  | const void *buf, hwaddr len) | 
|  | { | 
|  | return address_space_write_rom_internal(as, addr, attrs, | 
|  | buf, len, WRITE_DATA); | 
|  | } | 
|  |  | 
|  | void cpu_flush_icache_range(hwaddr start, hwaddr len) | 
|  | { | 
|  | /* | 
|  | * This function should do the same thing as an icache flush that was | 
|  | * triggered from within the guest. For TCG we are always cache coherent, | 
|  | * so there is no need to flush anything. For KVM / Xen we need to flush | 
|  | * the host's instruction cache at least. | 
|  | */ | 
|  | if (tcg_enabled()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | address_space_write_rom_internal(&address_space_memory, | 
|  | start, MEMTXATTRS_UNSPECIFIED, | 
|  | NULL, len, FLUSH_CACHE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A magic value stored in the first 8 bytes of the bounce buffer struct. Used | 
|  | * to detect illegal pointers passed to address_space_unmap. | 
|  | */ | 
|  | #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed | 
|  |  | 
|  | typedef struct { | 
|  | uint64_t magic; | 
|  | MemoryRegion *mr; | 
|  | hwaddr addr; | 
|  | size_t len; | 
|  | uint8_t buffer[]; | 
|  | } BounceBuffer; | 
|  |  | 
|  | static void | 
|  | address_space_unregister_map_client_do(AddressSpaceMapClient *client) | 
|  | { | 
|  | QLIST_REMOVE(client, link); | 
|  | g_free(client); | 
|  | } | 
|  |  | 
|  | static void address_space_notify_map_clients_locked(AddressSpace *as) | 
|  | { | 
|  | AddressSpaceMapClient *client; | 
|  |  | 
|  | while (!QLIST_EMPTY(&as->map_client_list)) { | 
|  | client = QLIST_FIRST(&as->map_client_list); | 
|  | qemu_bh_schedule(client->bh); | 
|  | address_space_unregister_map_client_do(client); | 
|  | } | 
|  | } | 
|  |  | 
|  | void address_space_register_map_client(AddressSpace *as, QEMUBH *bh) | 
|  | { | 
|  | AddressSpaceMapClient *client = g_malloc(sizeof(*client)); | 
|  |  | 
|  | QEMU_LOCK_GUARD(&as->map_client_list_lock); | 
|  | client->bh = bh; | 
|  | QLIST_INSERT_HEAD(&as->map_client_list, client, link); | 
|  | /* Write map_client_list before reading bounce_buffer_size. */ | 
|  | smp_mb(); | 
|  | if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) { | 
|  | address_space_notify_map_clients_locked(as); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_exec_init_all(void) | 
|  | { | 
|  | qemu_mutex_init(&ram_list.mutex); | 
|  | /* The data structures we set up here depend on knowing the page size, | 
|  | * so no more changes can be made after this point. | 
|  | * In an ideal world, nothing we did before we had finished the | 
|  | * machine setup would care about the target page size, and we could | 
|  | * do this much later, rather than requiring board models to state | 
|  | * up front what their requirements are. | 
|  | */ | 
|  | finalize_target_page_bits(); | 
|  | io_mem_init(); | 
|  | memory_map_init(); | 
|  | } | 
|  |  | 
|  | void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh) | 
|  | { | 
|  | AddressSpaceMapClient *client; | 
|  |  | 
|  | QEMU_LOCK_GUARD(&as->map_client_list_lock); | 
|  | QLIST_FOREACH(client, &as->map_client_list, link) { | 
|  | if (client->bh == bh) { | 
|  | address_space_unregister_map_client_do(client); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void address_space_notify_map_clients(AddressSpace *as) | 
|  | { | 
|  | QEMU_LOCK_GUARD(&as->map_client_list_lock); | 
|  | address_space_notify_map_clients_locked(as); | 
|  | } | 
|  |  | 
|  | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, | 
|  | bool is_write, MemTxAttrs attrs) | 
|  | { | 
|  | MemoryRegion *mr; | 
|  | hwaddr l, xlat; | 
|  |  | 
|  | while (len > 0) { | 
|  | l = len; | 
|  | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); | 
|  | if (!memory_access_is_direct(mr, is_write)) { | 
|  | l = memory_access_size(mr, l, addr); | 
|  | if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | len -= l; | 
|  | addr += l; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool address_space_access_valid(AddressSpace *as, hwaddr addr, | 
|  | hwaddr len, bool is_write, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | FlatView *fv; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | fv = address_space_to_flatview(as); | 
|  | return flatview_access_valid(fv, addr, len, is_write, attrs); | 
|  | } | 
|  |  | 
|  | static hwaddr | 
|  | flatview_extend_translation(FlatView *fv, hwaddr addr, | 
|  | hwaddr target_len, | 
|  | MemoryRegion *mr, hwaddr base, hwaddr len, | 
|  | bool is_write, MemTxAttrs attrs) | 
|  | { | 
|  | hwaddr done = 0; | 
|  | hwaddr xlat; | 
|  | MemoryRegion *this_mr; | 
|  |  | 
|  | for (;;) { | 
|  | target_len -= len; | 
|  | addr += len; | 
|  | done += len; | 
|  | if (target_len == 0) { | 
|  | return done; | 
|  | } | 
|  |  | 
|  | len = target_len; | 
|  | this_mr = flatview_translate(fv, addr, &xlat, | 
|  | &len, is_write, attrs); | 
|  | if (this_mr != mr || xlat != base + done) { | 
|  | return done; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Map a physical memory region into a host virtual address. | 
|  | * May map a subset of the requested range, given by and returned in *plen. | 
|  | * May return NULL if resources needed to perform the mapping are exhausted. | 
|  | * Use only for reads OR writes - not for read-modify-write operations. | 
|  | * Use address_space_register_map_client() to know when retrying the map | 
|  | * operation is likely to succeed. | 
|  | */ | 
|  | void *address_space_map(AddressSpace *as, | 
|  | hwaddr addr, | 
|  | hwaddr *plen, | 
|  | bool is_write, | 
|  | MemTxAttrs attrs) | 
|  | { | 
|  | hwaddr len = *plen; | 
|  | hwaddr l, xlat; | 
|  | MemoryRegion *mr; | 
|  | FlatView *fv; | 
|  |  | 
|  | trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs); | 
|  |  | 
|  | if (len == 0) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | l = len; | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | fv = address_space_to_flatview(as); | 
|  | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); | 
|  |  | 
|  | if (!memory_access_is_direct(mr, is_write)) { | 
|  | size_t used = qatomic_read(&as->bounce_buffer_size); | 
|  | for (;;) { | 
|  | hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l); | 
|  | size_t new_size = used + alloc; | 
|  | size_t actual = | 
|  | qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size); | 
|  | if (actual == used) { | 
|  | l = alloc; | 
|  | break; | 
|  | } | 
|  | used = actual; | 
|  | } | 
|  |  | 
|  | if (l == 0) { | 
|  | *plen = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer)); | 
|  | bounce->magic = BOUNCE_BUFFER_MAGIC; | 
|  | memory_region_ref(mr); | 
|  | bounce->mr = mr; | 
|  | bounce->addr = addr; | 
|  | bounce->len = l; | 
|  |  | 
|  | if (!is_write) { | 
|  | flatview_read(fv, addr, attrs, | 
|  | bounce->buffer, l); | 
|  | } | 
|  |  | 
|  | *plen = l; | 
|  | return bounce->buffer; | 
|  | } | 
|  |  | 
|  | memory_region_ref(mr); | 
|  | *plen = flatview_extend_translation(fv, addr, len, mr, xlat, | 
|  | l, is_write, attrs); | 
|  | fuzz_dma_read_cb(addr, *plen, mr); | 
|  | return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write); | 
|  | } | 
|  |  | 
|  | /* Unmaps a memory region previously mapped by address_space_map(). | 
|  | * Will also mark the memory as dirty if is_write is true.  access_len gives | 
|  | * the amount of memory that was actually read or written by the caller. | 
|  | */ | 
|  | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | 
|  | bool is_write, hwaddr access_len) | 
|  | { | 
|  | MemoryRegion *mr; | 
|  | ram_addr_t addr1; | 
|  |  | 
|  | mr = memory_region_from_host(buffer, &addr1); | 
|  | if (mr != NULL) { | 
|  | if (is_write) { | 
|  | invalidate_and_set_dirty(mr, addr1, access_len); | 
|  | } | 
|  | if (xen_enabled()) { | 
|  | xen_invalidate_map_cache_entry(buffer); | 
|  | } | 
|  | memory_region_unref(mr); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer); | 
|  | assert(bounce->magic == BOUNCE_BUFFER_MAGIC); | 
|  |  | 
|  | if (is_write) { | 
|  | address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED, | 
|  | bounce->buffer, access_len); | 
|  | } | 
|  |  | 
|  | qatomic_sub(&as->bounce_buffer_size, bounce->len); | 
|  | bounce->magic = ~BOUNCE_BUFFER_MAGIC; | 
|  | memory_region_unref(bounce->mr); | 
|  | g_free(bounce); | 
|  | /* Write bounce_buffer_size before reading map_client_list. */ | 
|  | smp_mb(); | 
|  | address_space_notify_map_clients(as); | 
|  | } | 
|  |  | 
|  | void *cpu_physical_memory_map(hwaddr addr, | 
|  | hwaddr *plen, | 
|  | bool is_write) | 
|  | { | 
|  | return address_space_map(&address_space_memory, addr, plen, is_write, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  | } | 
|  |  | 
|  | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | 
|  | bool is_write, hwaddr access_len) | 
|  | { | 
|  | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | 
|  | } | 
|  |  | 
|  | #define ARG1_DECL                AddressSpace *as | 
|  | #define ARG1                     as | 
|  | #define SUFFIX | 
|  | #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__) | 
|  | #define RCU_READ_LOCK(...)       rcu_read_lock() | 
|  | #define RCU_READ_UNLOCK(...)     rcu_read_unlock() | 
|  | #include "memory_ldst.c.inc" | 
|  |  | 
|  | int64_t address_space_cache_init(MemoryRegionCache *cache, | 
|  | AddressSpace *as, | 
|  | hwaddr addr, | 
|  | hwaddr len, | 
|  | bool is_write) | 
|  | { | 
|  | AddressSpaceDispatch *d; | 
|  | hwaddr l; | 
|  | MemoryRegion *mr; | 
|  | Int128 diff; | 
|  |  | 
|  | assert(len > 0); | 
|  |  | 
|  | l = len; | 
|  | cache->fv = address_space_get_flatview(as); | 
|  | d = flatview_to_dispatch(cache->fv); | 
|  | cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); | 
|  |  | 
|  | /* | 
|  | * cache->xlat is now relative to cache->mrs.mr, not to the section itself. | 
|  | * Take that into account to compute how many bytes are there between | 
|  | * cache->xlat and the end of the section. | 
|  | */ | 
|  | diff = int128_sub(cache->mrs.size, | 
|  | int128_make64(cache->xlat - cache->mrs.offset_within_region)); | 
|  | l = int128_get64(int128_min(diff, int128_make64(l))); | 
|  |  | 
|  | mr = cache->mrs.mr; | 
|  | memory_region_ref(mr); | 
|  | if (memory_access_is_direct(mr, is_write)) { | 
|  | /* We don't care about the memory attributes here as we're only | 
|  | * doing this if we found actual RAM, which behaves the same | 
|  | * regardless of attributes; so UNSPECIFIED is fine. | 
|  | */ | 
|  | l = flatview_extend_translation(cache->fv, addr, len, mr, | 
|  | cache->xlat, l, is_write, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  | cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true, | 
|  | is_write); | 
|  | } else { | 
|  | cache->ptr = NULL; | 
|  | } | 
|  |  | 
|  | cache->len = l; | 
|  | cache->is_write = is_write; | 
|  | return l; | 
|  | } | 
|  |  | 
|  | void address_space_cache_invalidate(MemoryRegionCache *cache, | 
|  | hwaddr addr, | 
|  | hwaddr access_len) | 
|  | { | 
|  | assert(cache->is_write); | 
|  | if (likely(cache->ptr)) { | 
|  | invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | void address_space_cache_destroy(MemoryRegionCache *cache) | 
|  | { | 
|  | if (!cache->mrs.mr) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (xen_enabled()) { | 
|  | xen_invalidate_map_cache_entry(cache->ptr); | 
|  | } | 
|  | memory_region_unref(cache->mrs.mr); | 
|  | flatview_unref(cache->fv); | 
|  | cache->mrs.mr = NULL; | 
|  | cache->fv = NULL; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section.  This function has the same | 
|  | * semantics as address_space_translate, but it only works on a | 
|  | * predefined range of a MemoryRegion that was mapped with | 
|  | * address_space_cache_init. | 
|  | */ | 
|  | static inline MemoryRegion *address_space_translate_cached( | 
|  | MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, | 
|  | hwaddr *plen, bool is_write, MemTxAttrs attrs) | 
|  | { | 
|  | MemoryRegionSection section; | 
|  | MemoryRegion *mr; | 
|  | IOMMUMemoryRegion *iommu_mr; | 
|  | AddressSpace *target_as; | 
|  |  | 
|  | assert(!cache->ptr); | 
|  | *xlat = addr + cache->xlat; | 
|  |  | 
|  | mr = cache->mrs.mr; | 
|  | iommu_mr = memory_region_get_iommu(mr); | 
|  | if (!iommu_mr) { | 
|  | /* MMIO region.  */ | 
|  | return mr; | 
|  | } | 
|  |  | 
|  | section = address_space_translate_iommu(iommu_mr, xlat, plen, | 
|  | NULL, is_write, true, | 
|  | &target_as, attrs); | 
|  | return section.mr; | 
|  | } | 
|  |  | 
|  | /* Called within RCU critical section.  */ | 
|  | static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, | 
|  | const void *ptr, | 
|  | hwaddr len, | 
|  | hwaddr mr_addr, | 
|  | hwaddr l, | 
|  | MemoryRegion *mr) | 
|  | { | 
|  | MemTxResult result = MEMTX_OK; | 
|  | const uint8_t *buf = ptr; | 
|  |  | 
|  | for (;;) { | 
|  | result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, | 
|  | mr); | 
|  |  | 
|  | len -= l; | 
|  | buf += l; | 
|  | mr_addr += l; | 
|  |  | 
|  | if (!len) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | l = len; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Called within RCU critical section.  */ | 
|  | static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, | 
|  | void *ptr, hwaddr len, | 
|  | hwaddr mr_addr, hwaddr l, | 
|  | MemoryRegion *mr) | 
|  | { | 
|  | MemTxResult result = MEMTX_OK; | 
|  | uint8_t *buf = ptr; | 
|  |  | 
|  | for (;;) { | 
|  | result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); | 
|  | len -= l; | 
|  | buf += l; | 
|  | mr_addr += l; | 
|  |  | 
|  | if (!len) { | 
|  | break; | 
|  | } | 
|  | l = len; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section. address_space_read_cached uses this | 
|  | * out of line function when the target is an MMIO or IOMMU region. | 
|  | */ | 
|  | MemTxResult | 
|  | address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, | 
|  | void *buf, hwaddr len) | 
|  | { | 
|  | hwaddr mr_addr, l; | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | l = len; | 
|  | mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  | return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, | 
|  | buf, len, mr_addr, l, mr); | 
|  | } | 
|  |  | 
|  | /* Called from RCU critical section. address_space_write_cached uses this | 
|  | * out of line function when the target is an MMIO or IOMMU region. | 
|  | */ | 
|  | MemTxResult | 
|  | address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, | 
|  | const void *buf, hwaddr len) | 
|  | { | 
|  | hwaddr mr_addr, l; | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | l = len; | 
|  | mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  | return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, | 
|  | buf, len, mr_addr, l, mr); | 
|  | } | 
|  |  | 
|  | #define ARG1_DECL                MemoryRegionCache *cache | 
|  | #define ARG1                     cache | 
|  | #define SUFFIX                   _cached_slow | 
|  | #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__) | 
|  | #define RCU_READ_LOCK()          ((void)0) | 
|  | #define RCU_READ_UNLOCK()        ((void)0) | 
|  | #include "memory_ldst.c.inc" | 
|  |  | 
|  | /* virtual memory access for debug (includes writing to ROM) */ | 
|  | int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, | 
|  | void *ptr, size_t len, bool is_write) | 
|  | { | 
|  | hwaddr phys_addr; | 
|  | vaddr l, page; | 
|  | uint8_t *buf = ptr; | 
|  |  | 
|  | cpu_synchronize_state(cpu); | 
|  | while (len > 0) { | 
|  | int asidx; | 
|  | MemTxAttrs attrs; | 
|  | MemTxResult res; | 
|  |  | 
|  | page = addr & TARGET_PAGE_MASK; | 
|  | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); | 
|  | asidx = cpu_asidx_from_attrs(cpu, attrs); | 
|  | /* if no physical page mapped, return an error */ | 
|  | if (phys_addr == -1) | 
|  | return -1; | 
|  | l = (page + TARGET_PAGE_SIZE) - addr; | 
|  | if (l > len) | 
|  | l = len; | 
|  | phys_addr += (addr & ~TARGET_PAGE_MASK); | 
|  | if (is_write) { | 
|  | res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, | 
|  | attrs, buf, l); | 
|  | } else { | 
|  | res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, | 
|  | attrs, buf, l); | 
|  | } | 
|  | if (res != MEMTX_OK) { | 
|  | return -1; | 
|  | } | 
|  | len -= l; | 
|  | buf += l; | 
|  | addr += l; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool cpu_physical_memory_is_io(hwaddr phys_addr) | 
|  | { | 
|  | MemoryRegion*mr; | 
|  | hwaddr l = 1; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | mr = address_space_translate(&address_space_memory, | 
|  | phys_addr, &phys_addr, &l, false, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  |  | 
|  | return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); | 
|  | } | 
|  |  | 
|  | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) | 
|  | { | 
|  | RAMBlock *block; | 
|  | int ret = 0; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | RAMBLOCK_FOREACH(block) { | 
|  | ret = func(block, opaque); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmap pages of memory from start to start+length such that | 
|  | * they a) read as 0, b) Trigger whatever fault mechanism | 
|  | * the OS provides for postcopy. | 
|  | * The pages must be unmapped by the end of the function. | 
|  | * Returns: 0 on success, none-0 on failure | 
|  | * | 
|  | */ | 
|  | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | 
|  | { | 
|  | int ret = -1; | 
|  |  | 
|  | uint8_t *host_startaddr = rb->host + start; | 
|  |  | 
|  | if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { | 
|  | error_report("%s: Unaligned start address: %p", | 
|  | __func__, host_startaddr); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if ((start + length) <= rb->max_length) { | 
|  | bool need_madvise, need_fallocate; | 
|  | if (!QEMU_IS_ALIGNED(length, rb->page_size)) { | 
|  | error_report("%s: Unaligned length: %zx", __func__, length); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | errno = ENOTSUP; /* If we are missing MADVISE etc */ | 
|  |  | 
|  | /* The logic here is messy; | 
|  | *    madvise DONTNEED fails for hugepages | 
|  | *    fallocate works on hugepages and shmem | 
|  | *    shared anonymous memory requires madvise REMOVE | 
|  | */ | 
|  | need_madvise = (rb->page_size == qemu_real_host_page_size()); | 
|  | need_fallocate = rb->fd != -1; | 
|  | if (need_fallocate) { | 
|  | /* For a file, this causes the area of the file to be zero'd | 
|  | * if read, and for hugetlbfs also causes it to be unmapped | 
|  | * so a userfault will trigger. | 
|  | */ | 
|  | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | 
|  | /* | 
|  | * fallocate() will fail with readonly files. Let's print a | 
|  | * proper error message. | 
|  | */ | 
|  | if (rb->flags & RAM_READONLY_FD) { | 
|  | error_report("%s: Discarding RAM with readonly files is not" | 
|  | " supported", __func__); | 
|  | goto err; | 
|  |  | 
|  | } | 
|  | /* | 
|  | * We'll discard data from the actual file, even though we only | 
|  | * have a MAP_PRIVATE mapping, possibly messing with other | 
|  | * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to | 
|  | * change that behavior whithout violating the promised | 
|  | * semantics of ram_block_discard_range(). | 
|  | * | 
|  | * Only warn, because it works as long as nobody else uses that | 
|  | * file. | 
|  | */ | 
|  | if (!qemu_ram_is_shared(rb)) { | 
|  | warn_report_once("%s: Discarding RAM" | 
|  | " in private file mappings is possibly" | 
|  | " dangerous, because it will modify the" | 
|  | " underlying file and will affect other" | 
|  | " users of the file", __func__); | 
|  | } | 
|  |  | 
|  | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | 
|  | start, length); | 
|  | if (ret) { | 
|  | ret = -errno; | 
|  | error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", | 
|  | __func__, rb->idstr, start, length, ret); | 
|  | goto err; | 
|  | } | 
|  | #else | 
|  | ret = -ENOSYS; | 
|  | error_report("%s: fallocate not available/file" | 
|  | "%s:%" PRIx64 " +%zx (%d)", | 
|  | __func__, rb->idstr, start, length, ret); | 
|  | goto err; | 
|  | #endif | 
|  | } | 
|  | if (need_madvise) { | 
|  | /* For normal RAM this causes it to be unmapped, | 
|  | * for shared memory it causes the local mapping to disappear | 
|  | * and to fall back on the file contents (which we just | 
|  | * fallocate'd away). | 
|  | */ | 
|  | #if defined(CONFIG_MADVISE) | 
|  | if (qemu_ram_is_shared(rb) && rb->fd < 0) { | 
|  | ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); | 
|  | } else { | 
|  | ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); | 
|  | } | 
|  | if (ret) { | 
|  | ret = -errno; | 
|  | error_report("%s: Failed to discard range " | 
|  | "%s:%" PRIx64 " +%zx (%d)", | 
|  | __func__, rb->idstr, start, length, ret); | 
|  | goto err; | 
|  | } | 
|  | #else | 
|  | ret = -ENOSYS; | 
|  | error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", | 
|  | __func__, rb->idstr, start, length, ret); | 
|  | goto err; | 
|  | #endif | 
|  | } | 
|  | trace_ram_block_discard_range(rb->idstr, host_startaddr, length, | 
|  | need_madvise, need_fallocate, ret); | 
|  | } else { | 
|  | error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", | 
|  | __func__, rb->idstr, start, length, rb->max_length); | 
|  | } | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, | 
|  | size_t length) | 
|  | { | 
|  | int ret = -1; | 
|  |  | 
|  | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | 
|  | ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | 
|  | start, length); | 
|  |  | 
|  | if (ret) { | 
|  | ret = -errno; | 
|  | error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", | 
|  | __func__, rb->idstr, start, length, ret); | 
|  | } | 
|  | #else | 
|  | ret = -ENOSYS; | 
|  | error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", | 
|  | __func__, rb->idstr, start, length, ret); | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool ramblock_is_pmem(RAMBlock *rb) | 
|  | { | 
|  | return rb->flags & RAM_PMEM; | 
|  | } | 
|  |  | 
|  | static void mtree_print_phys_entries(int start, int end, int skip, int ptr) | 
|  | { | 
|  | if (start == end - 1) { | 
|  | qemu_printf("\t%3d      ", start); | 
|  | } else { | 
|  | qemu_printf("\t%3d..%-3d ", start, end - 1); | 
|  | } | 
|  | qemu_printf(" skip=%d ", skip); | 
|  | if (ptr == PHYS_MAP_NODE_NIL) { | 
|  | qemu_printf(" ptr=NIL"); | 
|  | } else if (!skip) { | 
|  | qemu_printf(" ptr=#%d", ptr); | 
|  | } else { | 
|  | qemu_printf(" ptr=[%d]", ptr); | 
|  | } | 
|  | qemu_printf("\n"); | 
|  | } | 
|  |  | 
|  | #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ | 
|  | int128_sub((size), int128_one())) : 0) | 
|  |  | 
|  | void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | qemu_printf("  Dispatch\n"); | 
|  | qemu_printf("    Physical sections\n"); | 
|  |  | 
|  | for (i = 0; i < d->map.sections_nb; ++i) { | 
|  | MemoryRegionSection *s = d->map.sections + i; | 
|  | const char *names[] = { " [unassigned]", " [not dirty]", | 
|  | " [ROM]", " [watch]" }; | 
|  |  | 
|  | qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx | 
|  | " %s%s%s%s%s", | 
|  | i, | 
|  | s->offset_within_address_space, | 
|  | s->offset_within_address_space + MR_SIZE(s->size), | 
|  | s->mr->name ? s->mr->name : "(noname)", | 
|  | i < ARRAY_SIZE(names) ? names[i] : "", | 
|  | s->mr == root ? " [ROOT]" : "", | 
|  | s == d->mru_section ? " [MRU]" : "", | 
|  | s->mr->is_iommu ? " [iommu]" : ""); | 
|  |  | 
|  | if (s->mr->alias) { | 
|  | qemu_printf(" alias=%s", s->mr->alias->name ? | 
|  | s->mr->alias->name : "noname"); | 
|  | } | 
|  | qemu_printf("\n"); | 
|  | } | 
|  |  | 
|  | qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", | 
|  | P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); | 
|  | for (i = 0; i < d->map.nodes_nb; ++i) { | 
|  | int j, jprev; | 
|  | PhysPageEntry prev; | 
|  | Node *n = d->map.nodes + i; | 
|  |  | 
|  | qemu_printf("      [%d]\n", i); | 
|  |  | 
|  | for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { | 
|  | PhysPageEntry *pe = *n + j; | 
|  |  | 
|  | if (pe->ptr == prev.ptr && pe->skip == prev.skip) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); | 
|  |  | 
|  | jprev = j; | 
|  | prev = *pe; | 
|  | } | 
|  |  | 
|  | if (jprev != ARRAY_SIZE(*n)) { | 
|  | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Require any discards to work. */ | 
|  | static unsigned int ram_block_discard_required_cnt; | 
|  | /* Require only coordinated discards to work. */ | 
|  | static unsigned int ram_block_coordinated_discard_required_cnt; | 
|  | /* Disable any discards. */ | 
|  | static unsigned int ram_block_discard_disabled_cnt; | 
|  | /* Disable only uncoordinated discards. */ | 
|  | static unsigned int ram_block_uncoordinated_discard_disabled_cnt; | 
|  | static QemuMutex ram_block_discard_disable_mutex; | 
|  |  | 
|  | static void ram_block_discard_disable_mutex_lock(void) | 
|  | { | 
|  | static gsize initialized; | 
|  |  | 
|  | if (g_once_init_enter(&initialized)) { | 
|  | qemu_mutex_init(&ram_block_discard_disable_mutex); | 
|  | g_once_init_leave(&initialized, 1); | 
|  | } | 
|  | qemu_mutex_lock(&ram_block_discard_disable_mutex); | 
|  | } | 
|  |  | 
|  | static void ram_block_discard_disable_mutex_unlock(void) | 
|  | { | 
|  | qemu_mutex_unlock(&ram_block_discard_disable_mutex); | 
|  | } | 
|  |  | 
|  | int ram_block_discard_disable(bool state) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ram_block_discard_disable_mutex_lock(); | 
|  | if (!state) { | 
|  | ram_block_discard_disabled_cnt--; | 
|  | } else if (ram_block_discard_required_cnt || | 
|  | ram_block_coordinated_discard_required_cnt) { | 
|  | ret = -EBUSY; | 
|  | } else { | 
|  | ram_block_discard_disabled_cnt++; | 
|  | } | 
|  | ram_block_discard_disable_mutex_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ram_block_uncoordinated_discard_disable(bool state) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ram_block_discard_disable_mutex_lock(); | 
|  | if (!state) { | 
|  | ram_block_uncoordinated_discard_disabled_cnt--; | 
|  | } else if (ram_block_discard_required_cnt) { | 
|  | ret = -EBUSY; | 
|  | } else { | 
|  | ram_block_uncoordinated_discard_disabled_cnt++; | 
|  | } | 
|  | ram_block_discard_disable_mutex_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ram_block_discard_require(bool state) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ram_block_discard_disable_mutex_lock(); | 
|  | if (!state) { | 
|  | ram_block_discard_required_cnt--; | 
|  | } else if (ram_block_discard_disabled_cnt || | 
|  | ram_block_uncoordinated_discard_disabled_cnt) { | 
|  | ret = -EBUSY; | 
|  | } else { | 
|  | ram_block_discard_required_cnt++; | 
|  | } | 
|  | ram_block_discard_disable_mutex_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ram_block_coordinated_discard_require(bool state) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ram_block_discard_disable_mutex_lock(); | 
|  | if (!state) { | 
|  | ram_block_coordinated_discard_required_cnt--; | 
|  | } else if (ram_block_discard_disabled_cnt) { | 
|  | ret = -EBUSY; | 
|  | } else { | 
|  | ram_block_coordinated_discard_required_cnt++; | 
|  | } | 
|  | ram_block_discard_disable_mutex_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool ram_block_discard_is_disabled(void) | 
|  | { | 
|  | return qatomic_read(&ram_block_discard_disabled_cnt) || | 
|  | qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); | 
|  | } | 
|  |  | 
|  | bool ram_block_discard_is_required(void) | 
|  | { | 
|  | return qatomic_read(&ram_block_discard_required_cnt) || | 
|  | qatomic_read(&ram_block_coordinated_discard_required_cnt); | 
|  | } |