| /* |
| * PowerPC implementation of KVM hooks |
| * |
| * Copyright IBM Corp. 2007 |
| * |
| * Authors: |
| * Jerone Young <jyoung5@us.ibm.com> |
| * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> |
| * Hollis Blanchard <hollisb@us.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <sys/types.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "qemu-timer.h" |
| #include "sysemu.h" |
| #include "kvm.h" |
| #include "kvm_ppc.h" |
| #include "cpu.h" |
| #include "device_tree.h" |
| |
| //#define DEBUG_KVM |
| |
| #ifdef DEBUG_KVM |
| #define dprintf(fmt, ...) \ |
| do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define dprintf(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static int cap_interrupt_unset = false; |
| static int cap_interrupt_level = false; |
| |
| /* XXX We have a race condition where we actually have a level triggered |
| * interrupt, but the infrastructure can't expose that yet, so the guest |
| * takes but ignores it, goes to sleep and never gets notified that there's |
| * still an interrupt pending. |
| * |
| * As a quick workaround, let's just wake up again 20 ms after we injected |
| * an interrupt. That way we can assure that we're always reinjecting |
| * interrupts in case the guest swallowed them. |
| */ |
| static QEMUTimer *idle_timer; |
| |
| static void kvm_kick_env(void *env) |
| { |
| qemu_cpu_kick(env); |
| } |
| |
| int kvm_arch_init(KVMState *s) |
| { |
| #ifdef KVM_CAP_PPC_UNSET_IRQ |
| cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); |
| #endif |
| #ifdef KVM_CAP_PPC_IRQ_LEVEL |
| cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL); |
| #endif |
| |
| if (!cap_interrupt_level) { |
| fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the " |
| "VM to stall at times!\n"); |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arch_init_vcpu(CPUState *cenv) |
| { |
| int ret = 0; |
| struct kvm_sregs sregs; |
| |
| sregs.pvr = cenv->spr[SPR_PVR]; |
| ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs); |
| |
| idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_env, cenv); |
| |
| return ret; |
| } |
| |
| void kvm_arch_reset_vcpu(CPUState *env) |
| { |
| } |
| |
| int kvm_arch_put_registers(CPUState *env, int level) |
| { |
| struct kvm_regs regs; |
| int ret; |
| int i; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); |
| if (ret < 0) |
| return ret; |
| |
| regs.ctr = env->ctr; |
| regs.lr = env->lr; |
| regs.xer = env->xer; |
| regs.msr = env->msr; |
| regs.pc = env->nip; |
| |
| regs.srr0 = env->spr[SPR_SRR0]; |
| regs.srr1 = env->spr[SPR_SRR1]; |
| |
| regs.sprg0 = env->spr[SPR_SPRG0]; |
| regs.sprg1 = env->spr[SPR_SPRG1]; |
| regs.sprg2 = env->spr[SPR_SPRG2]; |
| regs.sprg3 = env->spr[SPR_SPRG3]; |
| regs.sprg4 = env->spr[SPR_SPRG4]; |
| regs.sprg5 = env->spr[SPR_SPRG5]; |
| regs.sprg6 = env->spr[SPR_SPRG6]; |
| regs.sprg7 = env->spr[SPR_SPRG7]; |
| |
| for (i = 0;i < 32; i++) |
| regs.gpr[i] = env->gpr[i]; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); |
| if (ret < 0) |
| return ret; |
| |
| return ret; |
| } |
| |
| int kvm_arch_get_registers(CPUState *env) |
| { |
| struct kvm_regs regs; |
| struct kvm_sregs sregs; |
| int i, ret; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); |
| if (ret < 0) |
| return ret; |
| |
| ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); |
| if (ret < 0) |
| return ret; |
| |
| env->ctr = regs.ctr; |
| env->lr = regs.lr; |
| env->xer = regs.xer; |
| env->msr = regs.msr; |
| env->nip = regs.pc; |
| |
| env->spr[SPR_SRR0] = regs.srr0; |
| env->spr[SPR_SRR1] = regs.srr1; |
| |
| env->spr[SPR_SPRG0] = regs.sprg0; |
| env->spr[SPR_SPRG1] = regs.sprg1; |
| env->spr[SPR_SPRG2] = regs.sprg2; |
| env->spr[SPR_SPRG3] = regs.sprg3; |
| env->spr[SPR_SPRG4] = regs.sprg4; |
| env->spr[SPR_SPRG5] = regs.sprg5; |
| env->spr[SPR_SPRG6] = regs.sprg6; |
| env->spr[SPR_SPRG7] = regs.sprg7; |
| |
| for (i = 0;i < 32; i++) |
| env->gpr[i] = regs.gpr[i]; |
| |
| #ifdef KVM_CAP_PPC_SEGSTATE |
| if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) { |
| env->sdr1 = sregs.u.s.sdr1; |
| |
| /* Sync SLB */ |
| #ifdef TARGET_PPC64 |
| for (i = 0; i < 64; i++) { |
| ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe, |
| sregs.u.s.ppc64.slb[i].slbv); |
| } |
| #endif |
| |
| /* Sync SRs */ |
| for (i = 0; i < 16; i++) { |
| env->sr[i] = sregs.u.s.ppc32.sr[i]; |
| } |
| |
| /* Sync BATs */ |
| for (i = 0; i < 8; i++) { |
| env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; |
| env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; |
| env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; |
| env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; |
| } |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| int kvmppc_set_interrupt(CPUState *env, int irq, int level) |
| { |
| unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; |
| |
| if (irq != PPC_INTERRUPT_EXT) { |
| return 0; |
| } |
| |
| if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) { |
| return 0; |
| } |
| |
| kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq); |
| |
| return 0; |
| } |
| |
| #if defined(TARGET_PPCEMB) |
| #define PPC_INPUT_INT PPC40x_INPUT_INT |
| #elif defined(TARGET_PPC64) |
| #define PPC_INPUT_INT PPC970_INPUT_INT |
| #else |
| #define PPC_INPUT_INT PPC6xx_INPUT_INT |
| #endif |
| |
| void kvm_arch_pre_run(CPUState *env, struct kvm_run *run) |
| { |
| int r; |
| unsigned irq; |
| |
| /* PowerPC Qemu tracks the various core input pins (interrupt, critical |
| * interrupt, reset, etc) in PPC-specific env->irq_input_state. */ |
| if (!cap_interrupt_level && |
| run->ready_for_interrupt_injection && |
| (env->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->irq_input_state & (1<<PPC_INPUT_INT))) |
| { |
| /* For now KVM disregards the 'irq' argument. However, in the |
| * future KVM could cache it in-kernel to avoid a heavyweight exit |
| * when reading the UIC. |
| */ |
| irq = KVM_INTERRUPT_SET; |
| |
| dprintf("injected interrupt %d\n", irq); |
| r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq); |
| if (r < 0) |
| printf("cpu %d fail inject %x\n", env->cpu_index, irq); |
| |
| /* Always wake up soon in case the interrupt was level based */ |
| qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) + |
| (get_ticks_per_sec() / 50)); |
| } |
| |
| /* We don't know if there are more interrupts pending after this. However, |
| * the guest will return to userspace in the course of handling this one |
| * anyways, so we will get a chance to deliver the rest. */ |
| } |
| |
| void kvm_arch_post_run(CPUState *env, struct kvm_run *run) |
| { |
| } |
| |
| int kvm_arch_process_async_events(CPUState *env) |
| { |
| return 0; |
| } |
| |
| static int kvmppc_handle_halt(CPUState *env) |
| { |
| if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { |
| env->halted = 1; |
| env->exception_index = EXCP_HLT; |
| } |
| |
| return 0; |
| } |
| |
| /* map dcr access to existing qemu dcr emulation */ |
| static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data) |
| { |
| if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) |
| fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); |
| |
| return 0; |
| } |
| |
| static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data) |
| { |
| if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) |
| fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); |
| |
| return 0; |
| } |
| |
| int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) |
| { |
| int ret; |
| |
| switch (run->exit_reason) { |
| case KVM_EXIT_DCR: |
| if (run->dcr.is_write) { |
| dprintf("handle dcr write\n"); |
| ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); |
| } else { |
| dprintf("handle dcr read\n"); |
| ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); |
| } |
| break; |
| case KVM_EXIT_HLT: |
| dprintf("handle halt\n"); |
| ret = kvmppc_handle_halt(env); |
| break; |
| default: |
| fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); |
| ret = -1; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int read_cpuinfo(const char *field, char *value, int len) |
| { |
| FILE *f; |
| int ret = -1; |
| int field_len = strlen(field); |
| char line[512]; |
| |
| f = fopen("/proc/cpuinfo", "r"); |
| if (!f) { |
| return -1; |
| } |
| |
| do { |
| if(!fgets(line, sizeof(line), f)) { |
| break; |
| } |
| if (!strncmp(line, field, field_len)) { |
| strncpy(value, line, len); |
| ret = 0; |
| break; |
| } |
| } while(*line); |
| |
| fclose(f); |
| |
| return ret; |
| } |
| |
| uint32_t kvmppc_get_tbfreq(void) |
| { |
| char line[512]; |
| char *ns; |
| uint32_t retval = get_ticks_per_sec(); |
| |
| if (read_cpuinfo("timebase", line, sizeof(line))) { |
| return retval; |
| } |
| |
| if (!(ns = strchr(line, ':'))) { |
| return retval; |
| } |
| |
| ns++; |
| |
| retval = atoi(ns); |
| return retval; |
| } |
| |
| int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len) |
| { |
| uint32_t *hc = (uint32_t*)buf; |
| |
| #ifdef KVM_CAP_PPC_GET_PVINFO |
| struct kvm_ppc_pvinfo pvinfo; |
| |
| if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) && |
| !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) { |
| memcpy(buf, pvinfo.hcall, buf_len); |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Fallback to always fail hypercalls: |
| * |
| * li r3, -1 |
| * nop |
| * nop |
| * nop |
| */ |
| |
| hc[0] = 0x3860ffff; |
| hc[1] = 0x60000000; |
| hc[2] = 0x60000000; |
| hc[3] = 0x60000000; |
| |
| return 0; |
| } |
| |
| bool kvm_arch_stop_on_emulation_error(CPUState *env) |
| { |
| return true; |
| } |
| |
| int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr) |
| { |
| return 1; |
| } |
| |
| int kvm_arch_on_sigbus(int code, void *addr) |
| { |
| return 1; |
| } |