|  | /* | 
|  | *  vm86 linux syscall support | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "qemu/osdep.h" | 
|  |  | 
|  | #include "qemu.h" | 
|  | #include "user-internals.h" | 
|  |  | 
|  | //#define DEBUG_VM86 | 
|  |  | 
|  | #ifdef DEBUG_VM86 | 
|  | #  define LOG_VM86(...) qemu_log(__VA_ARGS__); | 
|  | #else | 
|  | #  define LOG_VM86(...) do { } while (0) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #define set_flags(X,new,mask) \ | 
|  | ((X) = ((X) & ~(mask)) | ((new) & (mask))) | 
|  |  | 
|  | #define SAFE_MASK	(0xDD5) | 
|  | #define RETURN_MASK	(0xDFF) | 
|  |  | 
|  | static inline int is_revectored(int nr, struct target_revectored_struct *bitmap) | 
|  | { | 
|  | return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1; | 
|  | } | 
|  |  | 
|  | static inline void vm_putw(CPUX86State *env, uint32_t segptr, | 
|  | unsigned int reg16, unsigned int val) | 
|  | { | 
|  | cpu_stw_data(env, segptr + (reg16 & 0xffff), val); | 
|  | } | 
|  |  | 
|  | static inline void vm_putl(CPUX86State *env, uint32_t segptr, | 
|  | unsigned int reg16, unsigned int val) | 
|  | { | 
|  | cpu_stl_data(env, segptr + (reg16 & 0xffff), val); | 
|  | } | 
|  |  | 
|  | static inline unsigned int vm_getb(CPUX86State *env, | 
|  | uint32_t segptr, unsigned int reg16) | 
|  | { | 
|  | return cpu_ldub_data(env, segptr + (reg16 & 0xffff)); | 
|  | } | 
|  |  | 
|  | static inline unsigned int vm_getw(CPUX86State *env, | 
|  | uint32_t segptr, unsigned int reg16) | 
|  | { | 
|  | return cpu_lduw_data(env, segptr + (reg16 & 0xffff)); | 
|  | } | 
|  |  | 
|  | static inline unsigned int vm_getl(CPUX86State *env, | 
|  | uint32_t segptr, unsigned int reg16) | 
|  | { | 
|  | return cpu_ldl_data(env, segptr + (reg16 & 0xffff)); | 
|  | } | 
|  |  | 
|  | void save_v86_state(CPUX86State *env) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  | struct target_vm86plus_struct * target_v86; | 
|  |  | 
|  | if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0)) | 
|  | /* FIXME - should return an error */ | 
|  | return; | 
|  | /* put the VM86 registers in the userspace register structure */ | 
|  | target_v86->regs.eax = tswap32(env->regs[R_EAX]); | 
|  | target_v86->regs.ebx = tswap32(env->regs[R_EBX]); | 
|  | target_v86->regs.ecx = tswap32(env->regs[R_ECX]); | 
|  | target_v86->regs.edx = tswap32(env->regs[R_EDX]); | 
|  | target_v86->regs.esi = tswap32(env->regs[R_ESI]); | 
|  | target_v86->regs.edi = tswap32(env->regs[R_EDI]); | 
|  | target_v86->regs.ebp = tswap32(env->regs[R_EBP]); | 
|  | target_v86->regs.esp = tswap32(env->regs[R_ESP]); | 
|  | target_v86->regs.eip = tswap32(env->eip); | 
|  | target_v86->regs.cs = tswap16(env->segs[R_CS].selector); | 
|  | target_v86->regs.ss = tswap16(env->segs[R_SS].selector); | 
|  | target_v86->regs.ds = tswap16(env->segs[R_DS].selector); | 
|  | target_v86->regs.es = tswap16(env->segs[R_ES].selector); | 
|  | target_v86->regs.fs = tswap16(env->segs[R_FS].selector); | 
|  | target_v86->regs.gs = tswap16(env->segs[R_GS].selector); | 
|  | set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask); | 
|  | target_v86->regs.eflags = tswap32(env->eflags); | 
|  | unlock_user_struct(target_v86, ts->target_v86, 1); | 
|  | LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n", | 
|  | env->eflags, env->segs[R_CS].selector, env->eip); | 
|  |  | 
|  | /* restore 32 bit registers */ | 
|  | env->regs[R_EAX] = ts->vm86_saved_regs.eax; | 
|  | env->regs[R_EBX] = ts->vm86_saved_regs.ebx; | 
|  | env->regs[R_ECX] = ts->vm86_saved_regs.ecx; | 
|  | env->regs[R_EDX] = ts->vm86_saved_regs.edx; | 
|  | env->regs[R_ESI] = ts->vm86_saved_regs.esi; | 
|  | env->regs[R_EDI] = ts->vm86_saved_regs.edi; | 
|  | env->regs[R_EBP] = ts->vm86_saved_regs.ebp; | 
|  | env->regs[R_ESP] = ts->vm86_saved_regs.esp; | 
|  | env->eflags = ts->vm86_saved_regs.eflags; | 
|  | env->eip = ts->vm86_saved_regs.eip; | 
|  |  | 
|  | cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs); | 
|  | cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss); | 
|  | cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds); | 
|  | cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es); | 
|  | cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs); | 
|  | cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs); | 
|  | } | 
|  |  | 
|  | /* return from vm86 mode to 32 bit. The vm86() syscall will return | 
|  | 'retval' */ | 
|  | static inline void return_to_32bit(CPUX86State *env, int retval) | 
|  | { | 
|  | LOG_VM86("return_to_32bit: ret=0x%x\n", retval); | 
|  | save_v86_state(env); | 
|  | env->regs[R_EAX] = retval; | 
|  | } | 
|  |  | 
|  | static inline int set_IF(CPUX86State *env) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  |  | 
|  | ts->v86flags |= VIF_MASK; | 
|  | if (ts->v86flags & VIP_MASK) { | 
|  | return_to_32bit(env, TARGET_VM86_STI); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void clear_IF(CPUX86State *env) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  |  | 
|  | ts->v86flags &= ~VIF_MASK; | 
|  | } | 
|  |  | 
|  | static inline void clear_TF(CPUX86State *env) | 
|  | { | 
|  | env->eflags &= ~TF_MASK; | 
|  | } | 
|  |  | 
|  | static inline void clear_AC(CPUX86State *env) | 
|  | { | 
|  | env->eflags &= ~AC_MASK; | 
|  | } | 
|  |  | 
|  | static inline int set_vflags_long(unsigned long eflags, CPUX86State *env) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  |  | 
|  | set_flags(ts->v86flags, eflags, ts->v86mask); | 
|  | set_flags(env->eflags, eflags, SAFE_MASK); | 
|  | if (eflags & IF_MASK) | 
|  | return set_IF(env); | 
|  | else | 
|  | clear_IF(env); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int set_vflags_short(unsigned short flags, CPUX86State *env) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  |  | 
|  | set_flags(ts->v86flags, flags, ts->v86mask & 0xffff); | 
|  | set_flags(env->eflags, flags, SAFE_MASK); | 
|  | if (flags & IF_MASK) | 
|  | return set_IF(env); | 
|  | else | 
|  | clear_IF(env); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned int get_vflags(CPUX86State *env) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  | unsigned int flags; | 
|  |  | 
|  | flags = env->eflags & RETURN_MASK; | 
|  | if (ts->v86flags & VIF_MASK) | 
|  | flags |= IF_MASK; | 
|  | flags |= IOPL_MASK; | 
|  | return flags | (ts->v86flags & ts->v86mask); | 
|  | } | 
|  |  | 
|  | #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff) | 
|  |  | 
|  | /* handle VM86 interrupt (NOTE: the CPU core currently does not | 
|  | support TSS interrupt revectoring, so this code is always executed) */ | 
|  | static void do_int(CPUX86State *env, int intno) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  | uint32_t int_addr, segoffs, ssp; | 
|  | unsigned int sp; | 
|  |  | 
|  | if (env->segs[R_CS].selector == TARGET_BIOSSEG) | 
|  | goto cannot_handle; | 
|  | if (is_revectored(intno, &ts->vm86plus.int_revectored)) | 
|  | goto cannot_handle; | 
|  | if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, | 
|  | &ts->vm86plus.int21_revectored)) | 
|  | goto cannot_handle; | 
|  | int_addr = (intno << 2); | 
|  | segoffs = cpu_ldl_data(env, int_addr); | 
|  | if ((segoffs >> 16) == TARGET_BIOSSEG) | 
|  | goto cannot_handle; | 
|  | LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", | 
|  | intno, segoffs >> 16, segoffs & 0xffff); | 
|  | /* save old state */ | 
|  | ssp = env->segs[R_SS].selector << 4; | 
|  | sp = env->regs[R_ESP] & 0xffff; | 
|  | vm_putw(env, ssp, sp - 2, get_vflags(env)); | 
|  | vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector); | 
|  | vm_putw(env, ssp, sp - 6, env->eip); | 
|  | ADD16(env->regs[R_ESP], -6); | 
|  | /* goto interrupt handler */ | 
|  | env->eip = segoffs & 0xffff; | 
|  | cpu_x86_load_seg(env, R_CS, segoffs >> 16); | 
|  | clear_TF(env); | 
|  | clear_IF(env); | 
|  | clear_AC(env); | 
|  | return; | 
|  | cannot_handle: | 
|  | LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno); | 
|  | return_to_32bit(env, TARGET_VM86_INTx | (intno << 8)); | 
|  | } | 
|  |  | 
|  | void handle_vm86_trap(CPUX86State *env, int trapno) | 
|  | { | 
|  | if (trapno == 1 || trapno == 3) { | 
|  | return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8)); | 
|  | } else { | 
|  | do_int(env, trapno); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define CHECK_IF_IN_TRAP() \ | 
|  | if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \ | 
|  | (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \ | 
|  | newflags |= TF_MASK | 
|  |  | 
|  | #define VM86_FAULT_RETURN \ | 
|  | if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \ | 
|  | (ts->v86flags & (IF_MASK | VIF_MASK))) \ | 
|  | return_to_32bit(env, TARGET_VM86_PICRETURN); \ | 
|  | return | 
|  |  | 
|  | void handle_vm86_fault(CPUX86State *env) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  | uint32_t csp, ssp; | 
|  | unsigned int ip, sp, newflags, newip, newcs, opcode, intno; | 
|  | int data32, pref_done; | 
|  |  | 
|  | csp = env->segs[R_CS].selector << 4; | 
|  | ip = env->eip & 0xffff; | 
|  |  | 
|  | ssp = env->segs[R_SS].selector << 4; | 
|  | sp = env->regs[R_ESP] & 0xffff; | 
|  |  | 
|  | LOG_VM86("VM86 exception %04x:%08x\n", | 
|  | env->segs[R_CS].selector, env->eip); | 
|  |  | 
|  | data32 = 0; | 
|  | pref_done = 0; | 
|  | do { | 
|  | opcode = vm_getb(env, csp, ip); | 
|  | ADD16(ip, 1); | 
|  | switch (opcode) { | 
|  | case 0x66:      /* 32-bit data */     data32=1; break; | 
|  | case 0x67:      /* 32-bit address */  break; | 
|  | case 0x2e:      /* CS */              break; | 
|  | case 0x3e:      /* DS */              break; | 
|  | case 0x26:      /* ES */              break; | 
|  | case 0x36:      /* SS */              break; | 
|  | case 0x65:      /* GS */              break; | 
|  | case 0x64:      /* FS */              break; | 
|  | case 0xf2:      /* repnz */	      break; | 
|  | case 0xf3:      /* rep */             break; | 
|  | default: pref_done = 1; | 
|  | } | 
|  | } while (!pref_done); | 
|  |  | 
|  | /* VM86 mode */ | 
|  | switch(opcode) { | 
|  | case 0x9c: /* pushf */ | 
|  | if (data32) { | 
|  | vm_putl(env, ssp, sp - 4, get_vflags(env)); | 
|  | ADD16(env->regs[R_ESP], -4); | 
|  | } else { | 
|  | vm_putw(env, ssp, sp - 2, get_vflags(env)); | 
|  | ADD16(env->regs[R_ESP], -2); | 
|  | } | 
|  | env->eip = ip; | 
|  | VM86_FAULT_RETURN; | 
|  |  | 
|  | case 0x9d: /* popf */ | 
|  | if (data32) { | 
|  | newflags = vm_getl(env, ssp, sp); | 
|  | ADD16(env->regs[R_ESP], 4); | 
|  | } else { | 
|  | newflags = vm_getw(env, ssp, sp); | 
|  | ADD16(env->regs[R_ESP], 2); | 
|  | } | 
|  | env->eip = ip; | 
|  | CHECK_IF_IN_TRAP(); | 
|  | if (data32) { | 
|  | if (set_vflags_long(newflags, env)) | 
|  | return; | 
|  | } else { | 
|  | if (set_vflags_short(newflags, env)) | 
|  | return; | 
|  | } | 
|  | VM86_FAULT_RETURN; | 
|  |  | 
|  | case 0xcd: /* int */ | 
|  | intno = vm_getb(env, csp, ip); | 
|  | ADD16(ip, 1); | 
|  | env->eip = ip; | 
|  | if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) { | 
|  | if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >> | 
|  | (intno &7)) & 1) { | 
|  | return_to_32bit(env, TARGET_VM86_INTx + (intno << 8)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | do_int(env, intno); | 
|  | break; | 
|  |  | 
|  | case 0xcf: /* iret */ | 
|  | if (data32) { | 
|  | newip = vm_getl(env, ssp, sp) & 0xffff; | 
|  | newcs = vm_getl(env, ssp, sp + 4) & 0xffff; | 
|  | newflags = vm_getl(env, ssp, sp + 8); | 
|  | ADD16(env->regs[R_ESP], 12); | 
|  | } else { | 
|  | newip = vm_getw(env, ssp, sp); | 
|  | newcs = vm_getw(env, ssp, sp + 2); | 
|  | newflags = vm_getw(env, ssp, sp + 4); | 
|  | ADD16(env->regs[R_ESP], 6); | 
|  | } | 
|  | env->eip = newip; | 
|  | cpu_x86_load_seg(env, R_CS, newcs); | 
|  | CHECK_IF_IN_TRAP(); | 
|  | if (data32) { | 
|  | if (set_vflags_long(newflags, env)) | 
|  | return; | 
|  | } else { | 
|  | if (set_vflags_short(newflags, env)) | 
|  | return; | 
|  | } | 
|  | VM86_FAULT_RETURN; | 
|  |  | 
|  | case 0xfa: /* cli */ | 
|  | env->eip = ip; | 
|  | clear_IF(env); | 
|  | VM86_FAULT_RETURN; | 
|  |  | 
|  | case 0xfb: /* sti */ | 
|  | env->eip = ip; | 
|  | if (set_IF(env)) | 
|  | return; | 
|  | VM86_FAULT_RETURN; | 
|  |  | 
|  | default: | 
|  | /* real VM86 GPF exception */ | 
|  | return_to_32bit(env, TARGET_VM86_UNKNOWN); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | TaskState *ts = cs->opaque; | 
|  | struct target_vm86plus_struct * target_v86; | 
|  | int ret; | 
|  |  | 
|  | switch (subfunction) { | 
|  | case TARGET_VM86_REQUEST_IRQ: | 
|  | case TARGET_VM86_FREE_IRQ: | 
|  | case TARGET_VM86_GET_IRQ_BITS: | 
|  | case TARGET_VM86_GET_AND_RESET_IRQ: | 
|  | qemu_log_mask(LOG_UNIMP, "qemu: unsupported vm86 subfunction (%ld)\n", | 
|  | subfunction); | 
|  | ret = -TARGET_EINVAL; | 
|  | goto out; | 
|  | case TARGET_VM86_PLUS_INSTALL_CHECK: | 
|  | /* NOTE: on old vm86 stuff this will return the error | 
|  | from verify_area(), because the subfunction is | 
|  | interpreted as (invalid) address to vm86_struct. | 
|  | So the installation check works. | 
|  | */ | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* save current CPU regs */ | 
|  | ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */ | 
|  | ts->vm86_saved_regs.ebx = env->regs[R_EBX]; | 
|  | ts->vm86_saved_regs.ecx = env->regs[R_ECX]; | 
|  | ts->vm86_saved_regs.edx = env->regs[R_EDX]; | 
|  | ts->vm86_saved_regs.esi = env->regs[R_ESI]; | 
|  | ts->vm86_saved_regs.edi = env->regs[R_EDI]; | 
|  | ts->vm86_saved_regs.ebp = env->regs[R_EBP]; | 
|  | ts->vm86_saved_regs.esp = env->regs[R_ESP]; | 
|  | ts->vm86_saved_regs.eflags = env->eflags; | 
|  | ts->vm86_saved_regs.eip  = env->eip; | 
|  | ts->vm86_saved_regs.cs = env->segs[R_CS].selector; | 
|  | ts->vm86_saved_regs.ss = env->segs[R_SS].selector; | 
|  | ts->vm86_saved_regs.ds = env->segs[R_DS].selector; | 
|  | ts->vm86_saved_regs.es = env->segs[R_ES].selector; | 
|  | ts->vm86_saved_regs.fs = env->segs[R_FS].selector; | 
|  | ts->vm86_saved_regs.gs = env->segs[R_GS].selector; | 
|  |  | 
|  | ts->target_v86 = vm86_addr; | 
|  | if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1)) | 
|  | return -TARGET_EFAULT; | 
|  | /* build vm86 CPU state */ | 
|  | ts->v86flags = tswap32(target_v86->regs.eflags); | 
|  | env->eflags = (env->eflags & ~SAFE_MASK) | | 
|  | (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK; | 
|  |  | 
|  | ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type); | 
|  | switch (ts->vm86plus.cpu_type) { | 
|  | case TARGET_CPU_286: | 
|  | ts->v86mask = 0; | 
|  | break; | 
|  | case TARGET_CPU_386: | 
|  | ts->v86mask = NT_MASK | IOPL_MASK; | 
|  | break; | 
|  | case TARGET_CPU_486: | 
|  | ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK; | 
|  | break; | 
|  | default: | 
|  | ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK; | 
|  | break; | 
|  | } | 
|  |  | 
|  | env->regs[R_EBX] = tswap32(target_v86->regs.ebx); | 
|  | env->regs[R_ECX] = tswap32(target_v86->regs.ecx); | 
|  | env->regs[R_EDX] = tswap32(target_v86->regs.edx); | 
|  | env->regs[R_ESI] = tswap32(target_v86->regs.esi); | 
|  | env->regs[R_EDI] = tswap32(target_v86->regs.edi); | 
|  | env->regs[R_EBP] = tswap32(target_v86->regs.ebp); | 
|  | env->regs[R_ESP] = tswap32(target_v86->regs.esp); | 
|  | env->eip = tswap32(target_v86->regs.eip); | 
|  | cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs)); | 
|  | cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss)); | 
|  | cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds)); | 
|  | cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es)); | 
|  | cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs)); | 
|  | cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs)); | 
|  | ret = tswap32(target_v86->regs.eax); /* eax will be restored at | 
|  | the end of the syscall */ | 
|  | memcpy(&ts->vm86plus.int_revectored, | 
|  | &target_v86->int_revectored, 32); | 
|  | memcpy(&ts->vm86plus.int21_revectored, | 
|  | &target_v86->int21_revectored, 32); | 
|  | ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags); | 
|  | memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab, | 
|  | target_v86->vm86plus.vm86dbg_intxxtab, 32); | 
|  | unlock_user_struct(target_v86, vm86_addr, 0); | 
|  |  | 
|  | LOG_VM86("do_vm86: cs:ip=%04x:%04x\n", | 
|  | env->segs[R_CS].selector, env->eip); | 
|  | /* now the virtual CPU is ready for vm86 execution ! */ | 
|  | out: | 
|  | return ret; | 
|  | } |