blob: 862fb12c84dfd68ca81f23302a4f40677cd00ef5 [file] [log] [blame]
/*
* QEMU S390x KVM implementation
*
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
* Copyright IBM Corp. 2012
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* Contributions after 2012-10-29 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*
* You should have received a copy of the GNU (Lesser) General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include <asm/ptrace.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "cpu.h"
#include "sysemu/device_tree.h"
#include "qapi/qmp/qjson.h"
#include "monitor/monitor.h"
/* #define DEBUG_KVM */
#ifdef DEBUG_KVM
#define dprintf(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define dprintf(fmt, ...) \
do { } while (0)
#endif
#define IPA0_DIAG 0x8300
#define IPA0_SIGP 0xae00
#define IPA0_B2 0xb200
#define IPA0_B9 0xb900
#define IPA0_EB 0xeb00
#define PRIV_SCLP_CALL 0x20
#define PRIV_CSCH 0x30
#define PRIV_HSCH 0x31
#define PRIV_MSCH 0x32
#define PRIV_SSCH 0x33
#define PRIV_STSCH 0x34
#define PRIV_TSCH 0x35
#define PRIV_TPI 0x36
#define PRIV_SAL 0x37
#define PRIV_RSCH 0x38
#define PRIV_STCRW 0x39
#define PRIV_STCPS 0x3a
#define PRIV_RCHP 0x3b
#define PRIV_SCHM 0x3c
#define PRIV_CHSC 0x5f
#define PRIV_SIGA 0x74
#define PRIV_XSCH 0x76
#define PRIV_SQBS 0x8a
#define PRIV_EQBS 0x9c
#define DIAG_KVM_HYPERCALL 0x500
#define DIAG_KVM_BREAKPOINT 0x501
#define ICPT_INSTRUCTION 0x04
#define ICPT_WAITPSW 0x1c
#define ICPT_SOFT_INTERCEPT 0x24
#define ICPT_CPU_STOP 0x28
#define ICPT_IO 0x40
#define SIGP_RESTART 0x06
#define SIGP_INITIAL_CPU_RESET 0x0b
#define SIGP_STORE_STATUS_ADDR 0x0e
#define SIGP_SET_ARCH 0x12
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static int cap_sync_regs;
int kvm_arch_init(KVMState *s)
{
cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
int kvm_arch_init_vcpu(CPUState *cpu)
{
/* nothing todo yet */
return 0;
}
void kvm_arch_reset_vcpu(CPUState *cpu)
{
/* The initial reset call is needed here to reset in-kernel
* vcpu data that we can't access directly from QEMU
* (i.e. with older kernels which don't support sync_regs/ONE_REG).
* Before this ioctl cpu_synchronize_state() is called in common kvm
* code (kvm-all) */
if (kvm_vcpu_ioctl(cpu, KVM_S390_INITIAL_RESET, NULL)) {
perror("Can't reset vcpu\n");
}
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_one_reg reg;
struct kvm_sregs sregs;
struct kvm_regs regs;
int ret;
int i;
/* always save the PSW and the GPRS*/
cs->kvm_run->psw_addr = env->psw.addr;
cs->kvm_run->psw_mask = env->psw.mask;
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.gprs[i] = env->regs[i];
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
}
} else {
for (i = 0; i < 16; i++) {
regs.gprs[i] = env->regs[i];
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) {
return ret;
}
}
if (env->runtime_reg_dirty_mask == KVM_S390_RUNTIME_DIRTY_FULL) {
reg.id = KVM_REG_S390_CPU_TIMER;
reg.addr = (__u64)&(env->cputm);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
reg.id = KVM_REG_S390_CLOCK_COMP;
reg.addr = (__u64)&(env->ckc);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
reg.id = KVM_REG_S390_TODPR;
reg.addr = (__u64)&(env->todpr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
}
env->runtime_reg_dirty_mask = KVM_S390_RUNTIME_DIRTY_NONE;
/* Do we need to save more than that? */
if (level == KVM_PUT_RUNTIME_STATE) {
return 0;
}
if (cap_sync_regs &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
cs->kvm_run->s.regs.crs[i] = env->cregs[i];
}
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
} else {
for (i = 0; i < 16; i++) {
sregs.acrs[i] = env->aregs[i];
sregs.crs[i] = env->cregs[i];
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
}
/* Finally the prefix */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) {
cs->kvm_run->s.regs.prefix = env->psa;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
} else {
/* prefix is only supported via sync regs */
}
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_one_reg reg;
int r;
r = kvm_s390_get_registers_partial(cs);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_CPU_TIMER;
reg.addr = (__u64)&(env->cputm);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_CLOCK_COMP;
reg.addr = (__u64)&(env->ckc);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_TODPR;
reg.addr = (__u64)&(env->todpr);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
env->runtime_reg_dirty_mask = KVM_S390_RUNTIME_DIRTY_FULL;
return 0;
}
int kvm_s390_get_registers_partial(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_sregs sregs;
struct kvm_regs regs;
int ret;
int i;
if (env->runtime_reg_dirty_mask) {
return 0;
}
/* get the PSW */
env->psw.addr = cs->kvm_run->psw_addr;
env->psw.mask = cs->kvm_run->psw_mask;
/* the GPRS */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) {
for (i = 0; i < 16; i++) {
env->regs[i] = cs->kvm_run->s.regs.gprs[i];
}
} else {
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) {
return ret;
}
for (i = 0; i < 16; i++) {
env->regs[i] = regs.gprs[i];
}
}
/* The ACRS and CRS */
if (cap_sync_regs &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) {
for (i = 0; i < 16; i++) {
env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
env->cregs[i] = cs->kvm_run->s.regs.crs[i];
}
} else {
ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
for (i = 0; i < 16; i++) {
env->aregs[i] = sregs.acrs[i];
env->cregs[i] = sregs.crs[i];
}
}
/* Finally the prefix */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) {
env->psa = cs->kvm_run->s.regs.prefix;
} else {
/* no prefix without sync regs */
}
env->runtime_reg_dirty_mask = KVM_S390_RUNTIME_DIRTY_PARTIAL;
return 0;
}
/*
* Legacy layout for s390:
* Older S390 KVM requires the topmost vma of the RAM to be
* smaller than an system defined value, which is at least 256GB.
* Larger systems have larger values. We put the guest between
* the end of data segment (system break) and this value. We
* use 32GB as a base to have enough room for the system break
* to grow. We also have to use MAP parameters that avoid
* read-only mapping of guest pages.
*/
static void *legacy_s390_alloc(ram_addr_t size)
{
void *mem;
mem = mmap((void *) 0x800000000ULL, size,
PROT_EXEC|PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
if (mem == MAP_FAILED) {
fprintf(stderr, "Allocating RAM failed\n");
abort();
}
return mem;
}
void *kvm_arch_ram_alloc(ram_addr_t size)
{
/* Can we use the standard allocation ? */
if (kvm_check_extension(kvm_state, KVM_CAP_S390_GMAP) &&
kvm_check_extension(kvm_state, KVM_CAP_S390_COW)) {
return NULL;
} else {
return legacy_s390_alloc(size);
}
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)diag_501, 4, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
uint8_t t[4];
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(env, bp->pc, t, 4, 0)) {
return -EINVAL;
} else if (memcmp(t, diag_501, 4)) {
return -EINVAL;
} else if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
return -EINVAL;
}
return 0;
}
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
{
}
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
{
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
void kvm_s390_interrupt_internal(S390CPU *cpu, int type, uint32_t parm,
uint64_t parm64, int vm)
{
CPUState *cs = CPU(cpu);
struct kvm_s390_interrupt kvmint;
int r;
if (!cs->kvm_state) {
return;
}
kvmint.type = type;
kvmint.parm = parm;
kvmint.parm64 = parm64;
if (vm) {
r = kvm_vm_ioctl(cs->kvm_state, KVM_S390_INTERRUPT, &kvmint);
} else {
r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
}
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_virtio_irq(S390CPU *cpu, int config_change, uint64_t token)
{
kvm_s390_interrupt_internal(cpu, KVM_S390_INT_VIRTIO, config_change,
token, 1);
}
void kvm_s390_interrupt(S390CPU *cpu, int type, uint32_t code)
{
kvm_s390_interrupt_internal(cpu, type, code, 0, 0);
}
static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
{
kvm_s390_interrupt(cpu, KVM_S390_PROGRAM_INT, code);
}
static inline void setcc(S390CPU *cpu, uint64_t cc)
{
CPUS390XState *env = &cpu->env;
CPUState *cs = CPU(cpu);
cs->kvm_run->psw_mask &= ~(3ull << 44);
cs->kvm_run->psw_mask |= (cc & 3) << 44;
env->psw.mask &= ~(3ul << 44);
env->psw.mask |= (cc & 3) << 44;
}
static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
uint16_t ipbh0)
{
CPUS390XState *env = &cpu->env;
uint32_t sccb;
uint64_t code;
int r = 0;
cpu_synchronize_state(env);
sccb = env->regs[ipbh0 & 0xf];
code = env->regs[(ipbh0 & 0xf0) >> 4];
r = sclp_service_call(sccb, code);
if (r < 0) {
enter_pgmcheck(cpu, -r);
}
setcc(cpu, r);
return 0;
}
static int kvm_handle_css_inst(S390CPU *cpu, struct kvm_run *run,
uint8_t ipa0, uint8_t ipa1, uint8_t ipb)
{
int r = 0;
int no_cc = 0;
CPUS390XState *env = &cpu->env;
CPUState *cs = ENV_GET_CPU(env);
if (ipa0 != 0xb2) {
/* Not handled for now. */
return -1;
}
kvm_s390_get_registers_partial(cs);
cs->kvm_vcpu_dirty = true;
switch (ipa1) {
case PRIV_XSCH:
r = ioinst_handle_xsch(env, env->regs[1]);
break;
case PRIV_CSCH:
r = ioinst_handle_csch(env, env->regs[1]);
break;
case PRIV_HSCH:
r = ioinst_handle_hsch(env, env->regs[1]);
break;
case PRIV_MSCH:
r = ioinst_handle_msch(env, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_SSCH:
r = ioinst_handle_ssch(env, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_STCRW:
r = ioinst_handle_stcrw(env, run->s390_sieic.ipb);
break;
case PRIV_STSCH:
r = ioinst_handle_stsch(env, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_TSCH:
/* We should only get tsch via KVM_EXIT_S390_TSCH. */
fprintf(stderr, "Spurious tsch intercept\n");
break;
case PRIV_CHSC:
r = ioinst_handle_chsc(env, run->s390_sieic.ipb);
break;
case PRIV_TPI:
/* This should have been handled by kvm already. */
fprintf(stderr, "Spurious tpi intercept\n");
break;
case PRIV_SCHM:
no_cc = 1;
r = ioinst_handle_schm(env, env->regs[1], env->regs[2],
run->s390_sieic.ipb);
break;
case PRIV_RSCH:
r = ioinst_handle_rsch(env, env->regs[1]);
break;
case PRIV_RCHP:
r = ioinst_handle_rchp(env, env->regs[1]);
break;
case PRIV_STCPS:
/* We do not provide this instruction, it is suppressed. */
no_cc = 1;
r = 0;
break;
case PRIV_SAL:
no_cc = 1;
r = ioinst_handle_sal(env, env->regs[1]);
break;
default:
r = -1;
break;
}
if (r >= 0) {
if (!no_cc) {
setcc(cpu, r);
}
r = 0;
} else if (r < -1) {
r = 0;
}
return r;
}
static int is_ioinst(uint8_t ipa0, uint8_t ipa1, uint8_t ipb)
{
int ret = 0;
uint16_t ipa = (ipa0 << 8) | ipa1;
switch (ipa) {
case IPA0_B2 | PRIV_CSCH:
case IPA0_B2 | PRIV_HSCH:
case IPA0_B2 | PRIV_MSCH:
case IPA0_B2 | PRIV_SSCH:
case IPA0_B2 | PRIV_STSCH:
case IPA0_B2 | PRIV_TPI:
case IPA0_B2 | PRIV_SAL:
case IPA0_B2 | PRIV_RSCH:
case IPA0_B2 | PRIV_STCRW:
case IPA0_B2 | PRIV_STCPS:
case IPA0_B2 | PRIV_RCHP:
case IPA0_B2 | PRIV_SCHM:
case IPA0_B2 | PRIV_CHSC:
case IPA0_B2 | PRIV_SIGA:
case IPA0_B2 | PRIV_XSCH:
case IPA0_B9 | PRIV_EQBS:
case IPA0_EB | PRIV_SQBS:
ret = 1;
break;
}
return ret;
}
static int handle_priv(S390CPU *cpu, struct kvm_run *run,
uint8_t ipa0, uint8_t ipa1)
{
int r = 0;
uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
uint8_t ipb = run->s390_sieic.ipb & 0xff;
dprintf("KVM: PRIV: %d\n", ipa1);
switch (ipa1) {
case PRIV_SCLP_CALL:
r = kvm_sclp_service_call(cpu, run, ipbh0);
break;
default:
if (is_ioinst(ipa0, ipa1, ipb)) {
r = kvm_handle_css_inst(cpu, run, ipa0, ipa1, ipb);
if (r == -1) {
setcc(cpu, 3);
r = 0;
}
} else {
dprintf("KVM: unknown PRIV: 0x%x\n", ipa1);
r = -1;
}
break;
}
return r;
}
static int handle_hypercall(CPUS390XState *env, struct kvm_run *run)
{
CPUState *cs = ENV_GET_CPU(env);
kvm_s390_get_registers_partial(cs);
cs->kvm_vcpu_dirty = true;
env->regs[2] = s390_virtio_hypercall(env);
return 0;
}
static int handle_diag(CPUS390XState *env, struct kvm_run *run, int ipb_code)
{
int r = 0;
switch (ipb_code) {
case DIAG_KVM_HYPERCALL:
r = handle_hypercall(env, run);
break;
case DIAG_KVM_BREAKPOINT:
sleep(10);
break;
default:
dprintf("KVM: unknown DIAG: 0x%x\n", ipb_code);
r = -1;
break;
}
return r;
}
static int s390_cpu_restart(S390CPU *cpu)
{
kvm_s390_interrupt(cpu, KVM_S390_RESTART, 0);
s390_add_running_cpu(cpu);
qemu_cpu_kick(CPU(cpu));
dprintf("DONE: SIGP cpu restart: %p\n", &cpu->env);
return 0;
}
static int s390_store_status(CPUS390XState *env, uint32_t parameter)
{
/* XXX */
fprintf(stderr, "XXX SIGP store status\n");
return -1;
}
static int s390_cpu_initial_reset(S390CPU *cpu)
{
CPUS390XState *env = &cpu->env;
int i;
s390_del_running_cpu(cpu);
if (kvm_vcpu_ioctl(CPU(cpu), KVM_S390_INITIAL_RESET, NULL) < 0) {
perror("cannot init reset vcpu");
}
/* Manually zero out all registers */
cpu_synchronize_state(env);
for (i = 0; i < 16; i++) {
env->regs[i] = 0;
}
dprintf("DONE: SIGP initial reset: %p\n", env);
return 0;
}
static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
CPUS390XState *env = &cpu->env;
uint8_t order_code;
uint32_t parameter;
uint16_t cpu_addr;
uint8_t t;
int r = -1;
S390CPU *target_cpu;
CPUS390XState *target_env;
cpu_synchronize_state(env);
/* get order code */
order_code = run->s390_sieic.ipb >> 28;
if (order_code > 0) {
order_code = env->regs[order_code];
}
order_code += (run->s390_sieic.ipb & 0x0fff0000) >> 16;
/* get parameters */
t = (ipa1 & 0xf0) >> 4;
if (!(t % 2)) {
t++;
}
parameter = env->regs[t] & 0x7ffffe00;
cpu_addr = env->regs[ipa1 & 0x0f];
target_cpu = s390_cpu_addr2state(cpu_addr);
if (target_cpu == NULL) {
goto out;
}
target_env = &target_cpu->env;
switch (order_code) {
case SIGP_RESTART:
r = s390_cpu_restart(target_cpu);
break;
case SIGP_STORE_STATUS_ADDR:
r = s390_store_status(target_env, parameter);
break;
case SIGP_SET_ARCH:
/* make the caller panic */
return -1;
case SIGP_INITIAL_CPU_RESET:
r = s390_cpu_initial_reset(target_cpu);
break;
default:
fprintf(stderr, "KVM: unknown SIGP: 0x%x\n", order_code);
break;
}
out:
setcc(cpu, r ? 3 : 0);
return 0;
}
static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
{
CPUS390XState *env = &cpu->env;
unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
int ipb_code = (run->s390_sieic.ipb & 0x0fff0000) >> 16;
int r = -1;
dprintf("handle_instruction 0x%x 0x%x\n", run->s390_sieic.ipa, run->s390_sieic.ipb);
switch (ipa0) {
case IPA0_B2:
case IPA0_B9:
case IPA0_EB:
r = handle_priv(cpu, run, ipa0 >> 8, ipa1);
break;
case IPA0_DIAG:
r = handle_diag(env, run, ipb_code);
break;
case IPA0_SIGP:
r = handle_sigp(cpu, run, ipa1);
break;
}
if (r < 0) {
enter_pgmcheck(cpu, 0x0001);
}
return 0;
}
static bool is_special_wait_psw(CPUState *cs)
{
/* signal quiesce */
return cs->kvm_run->psw_addr == 0xfffUL;
}
static int handle_intercept(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int icpt_code = run->s390_sieic.icptcode;
int r = 0;
dprintf("intercept: 0x%x (at 0x%lx)\n", icpt_code,
(long)cs->kvm_run->psw_addr);
switch (icpt_code) {
case ICPT_INSTRUCTION:
r = handle_instruction(cpu, run);
break;
case ICPT_WAITPSW:
/* disabled wait, since enabled wait is handled in kernel */
if (s390_del_running_cpu(cpu) == 0) {
if (is_special_wait_psw(cs)) {
qemu_system_shutdown_request();
} else {
QObject *data;
data = qobject_from_jsonf("{ 'action': %s }", "pause");
monitor_protocol_event(QEVENT_GUEST_PANICKED, data);
qobject_decref(data);
vm_stop(RUN_STATE_GUEST_PANICKED);
}
}
r = EXCP_HALTED;
break;
case ICPT_CPU_STOP:
if (s390_del_running_cpu(cpu) == 0) {
qemu_system_shutdown_request();
}
r = EXCP_HALTED;
break;
case ICPT_SOFT_INTERCEPT:
fprintf(stderr, "KVM unimplemented icpt SOFT\n");
exit(1);
break;
case ICPT_IO:
fprintf(stderr, "KVM unimplemented icpt IO\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
exit(1);
break;
}
return r;
}
static int handle_tsch(S390CPU *cpu)
{
CPUS390XState *env = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int ret;
kvm_s390_get_registers_partial(cs);
cs->kvm_vcpu_dirty = true;
ret = ioinst_handle_tsch(env, env->regs[1], run->s390_tsch.ipb);
if (ret >= 0) {
/* Success; set condition code. */
setcc(cpu, ret);
ret = 0;
} else if (ret < -1) {
/*
* Failure.
* If an I/O interrupt had been dequeued, we have to reinject it.
*/
if (run->s390_tsch.dequeued) {
uint16_t subchannel_id = run->s390_tsch.subchannel_id;
uint16_t subchannel_nr = run->s390_tsch.subchannel_nr;
uint32_t io_int_parm = run->s390_tsch.io_int_parm;
uint32_t io_int_word = run->s390_tsch.io_int_word;
uint32_t type = ((subchannel_id & 0xff00) << 24) |
((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
kvm_s390_interrupt_internal(cpu, type,
((uint32_t)subchannel_id << 16)
| subchannel_nr,
((uint64_t)io_int_parm << 32)
| io_int_word, 1);
}
ret = 0;
}
return ret;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
S390CPU *cpu = S390_CPU(cs);
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_S390_SIEIC:
ret = handle_intercept(cpu);
break;
case KVM_EXIT_S390_RESET:
qemu_system_reset_request();
break;
case KVM_EXIT_S390_TSCH:
ret = handle_tsch(cpu);
break;
default:
fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
break;
}
if (ret == 0) {
ret = EXCP_INTERRUPT;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
{
return true;
}
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
return 1;
}
void kvm_s390_io_interrupt(S390CPU *cpu, uint16_t subchannel_id,
uint16_t subchannel_nr, uint32_t io_int_parm,
uint32_t io_int_word)
{
uint32_t type;
type = ((subchannel_id & 0xff00) << 24) |
((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
kvm_s390_interrupt_internal(cpu, type,
((uint32_t)subchannel_id << 16) | subchannel_nr,
((uint64_t)io_int_parm << 32) | io_int_word, 1);
}
void kvm_s390_crw_mchk(S390CPU *cpu)
{
kvm_s390_interrupt_internal(cpu, KVM_S390_MCHK, 1 << 28,
0x00400f1d40330000, 1);
}
void kvm_s390_enable_css_support(S390CPU *cpu)
{
struct kvm_enable_cap cap = {};
int r;
/* Activate host kernel channel subsystem support. */
cap.cap = KVM_CAP_S390_CSS_SUPPORT;
r = kvm_vcpu_ioctl(CPU(cpu), KVM_ENABLE_CAP, &cap);
assert(r == 0);
}