| /* |
| * STM32L4X5 RCC (Reset and clock control) |
| * |
| * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr> |
| * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr> |
| * |
| * SPDX-License-Identifier: GPL-2.0-or-later |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| * The reference used is the STMicroElectronics RM0351 Reference manual |
| * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs. |
| * |
| * Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "qemu/timer.h" |
| #include "qapi/error.h" |
| #include "migration/vmstate.h" |
| #include "hw/misc/stm32l4x5_rcc.h" |
| #include "hw/misc/stm32l4x5_rcc_internals.h" |
| #include "hw/clock.h" |
| #include "hw/irq.h" |
| #include "hw/qdev-clock.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-properties-system.h" |
| #include "hw/registerfields.h" |
| #include "trace.h" |
| |
| #define HSE_DEFAULT_FRQ 48000000ULL |
| #define HSI_FRQ 16000000ULL |
| #define MSI_DEFAULT_FRQ 4000000ULL |
| #define LSE_FRQ 32768ULL |
| #define LSI_FRQ 32000ULL |
| |
| /* |
| * Function to simply acknowledge and propagate changes in a clock mux |
| * frequency. |
| * `bypass_source` allows to bypass the period of the current source and just |
| * consider it equal to 0. This is useful during the hold phase of reset. |
| */ |
| static void clock_mux_update(RccClockMuxState *mux, bool bypass_source) |
| { |
| uint64_t src_freq; |
| Clock *current_source = mux->srcs[mux->src]; |
| uint32_t freq_multiplier = 0; |
| bool clk_changed = false; |
| |
| /* |
| * To avoid rounding errors, we use the clock period instead of the |
| * frequency. |
| * This means that the multiplier of the mux becomes the divider of |
| * the clock and the divider of the mux becomes the multiplier of the |
| * clock. |
| */ |
| if (!bypass_source && mux->enabled && mux->divider) { |
| freq_multiplier = mux->divider; |
| } |
| |
| clk_changed |= clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier); |
| clk_changed |= clock_set(mux->out, clock_get(current_source)); |
| if (clk_changed) { |
| clock_propagate(mux->out); |
| } |
| |
| src_freq = clock_get_hz(current_source); |
| /* TODO: can we simply detect if the config changed so that we reduce log spam ? */ |
| trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq, |
| mux->multiplier, mux->divider); |
| } |
| |
| static void clock_mux_src_update(void *opaque, ClockEvent event) |
| { |
| RccClockMuxState **backref = opaque; |
| RccClockMuxState *s = *backref; |
| /* |
| * The backref value is equal to: |
| * s->backref + (sizeof(RccClockMuxState *) * update_src). |
| * By subtracting we can get back the index of the updated clock. |
| */ |
| const uint32_t update_src = backref - s->backref; |
| /* Only update if the clock that was updated is the current source */ |
| if (update_src == s->src) { |
| clock_mux_update(s, false); |
| } |
| } |
| |
| static void clock_mux_init(Object *obj) |
| { |
| RccClockMuxState *s = RCC_CLOCK_MUX(obj); |
| size_t i; |
| |
| for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) { |
| char *name = g_strdup_printf("srcs[%zu]", i); |
| s->backref[i] = s; |
| s->srcs[i] = qdev_init_clock_in(DEVICE(s), name, |
| clock_mux_src_update, |
| &s->backref[i], |
| ClockUpdate); |
| g_free(name); |
| } |
| |
| s->out = qdev_init_clock_out(DEVICE(s), "out"); |
| } |
| |
| static void clock_mux_reset_enter(Object *obj, ResetType type) |
| { |
| RccClockMuxState *s = RCC_CLOCK_MUX(obj); |
| set_clock_mux_init_info(s, s->id); |
| } |
| |
| static void clock_mux_reset_hold(Object *obj, ResetType type) |
| { |
| RccClockMuxState *s = RCC_CLOCK_MUX(obj); |
| clock_mux_update(s, true); |
| } |
| |
| static void clock_mux_reset_exit(Object *obj, ResetType type) |
| { |
| RccClockMuxState *s = RCC_CLOCK_MUX(obj); |
| clock_mux_update(s, false); |
| } |
| |
| static const VMStateDescription clock_mux_vmstate = { |
| .name = TYPE_RCC_CLOCK_MUX, |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(id, RccClockMuxState), |
| VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState, |
| RCC_NUM_CLOCK_MUX_SRC), |
| VMSTATE_BOOL(enabled, RccClockMuxState), |
| VMSTATE_UINT32(src, RccClockMuxState), |
| VMSTATE_UINT32(multiplier, RccClockMuxState), |
| VMSTATE_UINT32(divider, RccClockMuxState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void clock_mux_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ResettableClass *rc = RESETTABLE_CLASS(klass); |
| |
| rc->phases.enter = clock_mux_reset_enter; |
| rc->phases.hold = clock_mux_reset_hold; |
| rc->phases.exit = clock_mux_reset_exit; |
| dc->vmsd = &clock_mux_vmstate; |
| } |
| |
| static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled) |
| { |
| if (mux->enabled == enabled) { |
| return; |
| } |
| |
| if (enabled) { |
| trace_stm32l4x5_rcc_mux_enable(mux->id); |
| } else { |
| trace_stm32l4x5_rcc_mux_disable(mux->id); |
| } |
| |
| mux->enabled = enabled; |
| clock_mux_update(mux, false); |
| } |
| |
| static void clock_mux_set_factor(RccClockMuxState *mux, |
| uint32_t multiplier, uint32_t divider) |
| { |
| if (mux->multiplier == multiplier && mux->divider == divider) { |
| return; |
| } |
| trace_stm32l4x5_rcc_mux_set_factor(mux->id, |
| mux->multiplier, multiplier, mux->divider, divider); |
| |
| mux->multiplier = multiplier; |
| mux->divider = divider; |
| clock_mux_update(mux, false); |
| } |
| |
| static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src) |
| { |
| if (mux->src == src) { |
| return; |
| } |
| |
| trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src); |
| mux->src = src; |
| clock_mux_update(mux, false); |
| } |
| |
| /* |
| * Acknowledge and propagate changes in a PLL frequency. |
| * `bypass_source` allows to bypass the period of the current source and just |
| * consider it equal to 0. This is useful during the hold phase of reset. |
| */ |
| static void pll_update(RccPllState *pll, bool bypass_source) |
| { |
| uint64_t vco_freq, old_channel_freq, channel_freq; |
| int i; |
| |
| /* The common PLLM factor is handled by the PLL mux */ |
| vco_freq = muldiv64(clock_get_hz(pll->in), pll->vco_multiplier, 1); |
| |
| for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) { |
| if (!pll->channel_exists[i]) { |
| continue; |
| } |
| |
| old_channel_freq = clock_get_hz(pll->channels[i]); |
| if (bypass_source || |
| !pll->enabled || |
| !pll->channel_enabled[i] || |
| !pll->channel_divider[i]) { |
| channel_freq = 0; |
| } else { |
| channel_freq = muldiv64(vco_freq, |
| 1, |
| pll->channel_divider[i]); |
| } |
| |
| /* No change, early continue to avoid log spam and useless propagation */ |
| if (old_channel_freq == channel_freq) { |
| continue; |
| } |
| |
| clock_update_hz(pll->channels[i], channel_freq); |
| trace_stm32l4x5_rcc_pll_update(pll->id, i, vco_freq, |
| old_channel_freq, channel_freq); |
| } |
| } |
| |
| static void pll_src_update(void *opaque, ClockEvent event) |
| { |
| RccPllState *s = opaque; |
| pll_update(s, false); |
| } |
| |
| static void pll_init(Object *obj) |
| { |
| RccPllState *s = RCC_PLL(obj); |
| size_t i; |
| |
| s->in = qdev_init_clock_in(DEVICE(s), "in", |
| pll_src_update, s, ClockUpdate); |
| |
| const char *names[] = { |
| "out-p", "out-q", "out-r", |
| }; |
| |
| for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) { |
| s->channels[i] = qdev_init_clock_out(DEVICE(s), names[i]); |
| } |
| } |
| |
| static void pll_reset_enter(Object *obj, ResetType type) |
| { |
| RccPllState *s = RCC_PLL(obj); |
| set_pll_init_info(s, s->id); |
| } |
| |
| static void pll_reset_hold(Object *obj, ResetType type) |
| { |
| RccPllState *s = RCC_PLL(obj); |
| pll_update(s, true); |
| } |
| |
| static void pll_reset_exit(Object *obj, ResetType type) |
| { |
| RccPllState *s = RCC_PLL(obj); |
| pll_update(s, false); |
| } |
| |
| static const VMStateDescription pll_vmstate = { |
| .name = TYPE_RCC_PLL, |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(id, RccPllState), |
| VMSTATE_CLOCK(in, RccPllState), |
| VMSTATE_ARRAY_CLOCK(channels, RccPllState, |
| RCC_NUM_CHANNEL_PLL_OUT), |
| VMSTATE_BOOL(enabled, RccPllState), |
| VMSTATE_UINT32(vco_multiplier, RccPllState), |
| VMSTATE_BOOL_ARRAY(channel_enabled, RccPllState, RCC_NUM_CHANNEL_PLL_OUT), |
| VMSTATE_BOOL_ARRAY(channel_exists, RccPllState, RCC_NUM_CHANNEL_PLL_OUT), |
| VMSTATE_UINT32_ARRAY(channel_divider, RccPllState, RCC_NUM_CHANNEL_PLL_OUT), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void pll_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ResettableClass *rc = RESETTABLE_CLASS(klass); |
| |
| rc->phases.enter = pll_reset_enter; |
| rc->phases.hold = pll_reset_hold; |
| rc->phases.exit = pll_reset_exit; |
| dc->vmsd = &pll_vmstate; |
| } |
| |
| static void pll_set_vco_multiplier(RccPllState *pll, uint32_t vco_multiplier) |
| { |
| if (pll->vco_multiplier == vco_multiplier) { |
| return; |
| } |
| |
| if (vco_multiplier < 8 || vco_multiplier > 86) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: VCO multiplier is out of bound (%u) for PLL %u\n", |
| __func__, vco_multiplier, pll->id); |
| return; |
| } |
| |
| trace_stm32l4x5_rcc_pll_set_vco_multiplier(pll->id, |
| pll->vco_multiplier, vco_multiplier); |
| |
| pll->vco_multiplier = vco_multiplier; |
| pll_update(pll, false); |
| } |
| |
| static void pll_set_enable(RccPllState *pll, bool enabled) |
| { |
| if (pll->enabled == enabled) { |
| return; |
| } |
| |
| pll->enabled = enabled; |
| pll_update(pll, false); |
| } |
| |
| static void pll_set_channel_enable(RccPllState *pll, |
| PllCommonChannels channel, |
| bool enabled) |
| { |
| if (pll->channel_enabled[channel] == enabled) { |
| return; |
| } |
| |
| if (enabled) { |
| trace_stm32l4x5_rcc_pll_channel_enable(pll->id, channel); |
| } else { |
| trace_stm32l4x5_rcc_pll_channel_disable(pll->id, channel); |
| } |
| |
| pll->channel_enabled[channel] = enabled; |
| pll_update(pll, false); |
| } |
| |
| static void pll_set_channel_divider(RccPllState *pll, |
| PllCommonChannels channel, |
| uint32_t divider) |
| { |
| if (pll->channel_divider[channel] == divider) { |
| return; |
| } |
| |
| trace_stm32l4x5_rcc_pll_set_channel_divider(pll->id, |
| channel, pll->channel_divider[channel], divider); |
| |
| pll->channel_divider[channel] = divider; |
| pll_update(pll, false); |
| } |
| |
| static void rcc_update_irq(Stm32l4x5RccState *s) |
| { |
| /* |
| * TODO: Handle LSECSSF and CSSF flags when the CSS is implemented. |
| */ |
| if (s->cifr & CIFR_IRQ_MASK) { |
| qemu_irq_raise(s->irq); |
| } else { |
| qemu_irq_lower(s->irq); |
| } |
| } |
| |
| static void rcc_update_msi(Stm32l4x5RccState *s, uint32_t previous_value) |
| { |
| uint32_t val; |
| |
| static const uint32_t msirange[] = { |
| 100000, 200000, 400000, 800000, 1000000, 2000000, |
| 4000000, 8000000, 16000000, 24000000, 32000000, 48000000 |
| }; |
| /* MSIRANGE and MSIRGSEL */ |
| val = extract32(s->cr, R_CR_MSIRGSEL_SHIFT, R_CR_MSIRGSEL_LENGTH); |
| if (val) { |
| /* MSIRGSEL is set, use the MSIRANGE field */ |
| val = extract32(s->cr, R_CR_MSIRANGE_SHIFT, R_CR_MSIRANGE_LENGTH); |
| } else { |
| /* MSIRGSEL is not set, use the MSISRANGE field */ |
| val = extract32(s->csr, R_CSR_MSISRANGE_SHIFT, R_CSR_MSISRANGE_LENGTH); |
| } |
| |
| if (val < ARRAY_SIZE(msirange)) { |
| clock_update_hz(s->msi_rc, msirange[val]); |
| } else { |
| /* |
| * There is a hardware write protection if the value is out of bound. |
| * Restore the previous value. |
| */ |
| s->cr = (s->cr & ~R_CSR_MSISRANGE_MASK) | |
| (previous_value & R_CSR_MSISRANGE_MASK); |
| } |
| } |
| |
| /* |
| * TODO: Add write-protection for all registers: |
| * DONE: CR |
| */ |
| |
| static void rcc_update_cr_register(Stm32l4x5RccState *s, uint32_t previous_value) |
| { |
| int val; |
| const RccClockMuxSource current_pll_src = |
| CLOCK_MUX_INIT_INFO[RCC_CLOCK_MUX_PLL_INPUT].src_mapping[ |
| s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].src]; |
| |
| /* PLLSAI2ON and update PLLSAI2RDY */ |
| val = FIELD_EX32(s->cr, CR, PLLSAI2ON); |
| pll_set_enable(&s->plls[RCC_PLL_PLLSAI2], val); |
| s->cr = (s->cr & ~R_CR_PLLSAI2RDY_MASK) | |
| (val << R_CR_PLLSAI2RDY_SHIFT); |
| if (s->cier & R_CIER_PLLSAI2RDYIE_MASK) { |
| s->cifr |= R_CIFR_PLLSAI2RDYF_MASK; |
| } |
| |
| /* PLLSAI1ON and update PLLSAI1RDY */ |
| val = FIELD_EX32(s->cr, CR, PLLSAI1ON); |
| pll_set_enable(&s->plls[RCC_PLL_PLLSAI1], val); |
| s->cr = (s->cr & ~R_CR_PLLSAI1RDY_MASK) | |
| (val << R_CR_PLLSAI1RDY_SHIFT); |
| if (s->cier & R_CIER_PLLSAI1RDYIE_MASK) { |
| s->cifr |= R_CIFR_PLLSAI1RDYF_MASK; |
| } |
| |
| /* |
| * PLLON and update PLLRDY |
| * PLLON cannot be reset if the PLL clock is used as the system clock. |
| */ |
| val = FIELD_EX32(s->cr, CR, PLLON); |
| if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b11) { |
| pll_set_enable(&s->plls[RCC_PLL_PLL], val); |
| s->cr = (s->cr & ~R_CR_PLLRDY_MASK) | |
| (val << R_CR_PLLRDY_SHIFT); |
| if (s->cier & R_CIER_PLLRDYIE_MASK) { |
| s->cifr |= R_CIFR_PLLRDYF_MASK; |
| } |
| } else { |
| s->cr |= R_CR_PLLON_MASK; |
| } |
| |
| /* CSSON: TODO */ |
| /* HSEBYP: TODO */ |
| |
| /* |
| * HSEON and update HSERDY. |
| * HSEON cannot be reset if the HSE oscillator is used directly or |
| * indirectly as the system clock. |
| */ |
| val = FIELD_EX32(s->cr, CR, HSEON); |
| if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b10 && |
| current_pll_src != RCC_CLOCK_MUX_SRC_HSE) { |
| s->cr = (s->cr & ~R_CR_HSERDY_MASK) | |
| (val << R_CR_HSERDY_SHIFT); |
| if (val) { |
| clock_update_hz(s->hse, s->hse_frequency); |
| if (s->cier & R_CIER_HSERDYIE_MASK) { |
| s->cifr |= R_CIFR_HSERDYF_MASK; |
| } |
| } else { |
| clock_update(s->hse, 0); |
| } |
| } else { |
| s->cr |= R_CR_HSEON_MASK; |
| } |
| |
| /* HSIAFS: TODO*/ |
| /* HSIKERON: TODO*/ |
| |
| /* |
| * HSION and update HSIRDY |
| * HSION is set by hardware if the HSI16 is used directly |
| * or indirectly as system clock. |
| */ |
| if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b01 || |
| current_pll_src == RCC_CLOCK_MUX_SRC_HSI) { |
| s->cr |= (R_CR_HSION_MASK | R_CR_HSIRDY_MASK); |
| clock_update_hz(s->hsi16_rc, HSI_FRQ); |
| if (s->cier & R_CIER_HSIRDYIE_MASK) { |
| s->cifr |= R_CIFR_HSIRDYF_MASK; |
| } |
| } else { |
| val = FIELD_EX32(s->cr, CR, HSION); |
| if (val) { |
| clock_update_hz(s->hsi16_rc, HSI_FRQ); |
| s->cr |= R_CR_HSIRDY_MASK; |
| if (s->cier & R_CIER_HSIRDYIE_MASK) { |
| s->cifr |= R_CIFR_HSIRDYF_MASK; |
| } |
| } else { |
| clock_update(s->hsi16_rc, 0); |
| s->cr &= ~R_CR_HSIRDY_MASK; |
| } |
| } |
| |
| /* MSIPLLEN: TODO */ |
| |
| /* |
| * MSION and update MSIRDY |
| * Set by hardware when used directly or indirectly as system clock. |
| */ |
| if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b00 || |
| current_pll_src == RCC_CLOCK_MUX_SRC_MSI) { |
| s->cr |= (R_CR_MSION_MASK | R_CR_MSIRDY_MASK); |
| if (!(previous_value & R_CR_MSION_MASK) && (s->cier & R_CIER_MSIRDYIE_MASK)) { |
| s->cifr |= R_CIFR_MSIRDYF_MASK; |
| } |
| rcc_update_msi(s, previous_value); |
| } else { |
| val = FIELD_EX32(s->cr, CR, MSION); |
| if (val) { |
| s->cr |= R_CR_MSIRDY_MASK; |
| rcc_update_msi(s, previous_value); |
| if (s->cier & R_CIER_MSIRDYIE_MASK) { |
| s->cifr |= R_CIFR_MSIRDYF_MASK; |
| } |
| } else { |
| s->cr &= ~R_CR_MSIRDY_MASK; |
| clock_update(s->msi_rc, 0); |
| } |
| } |
| rcc_update_irq(s); |
| } |
| |
| static void rcc_update_cfgr_register(Stm32l4x5RccState *s) |
| { |
| uint32_t val; |
| /* MCOPRE */ |
| val = FIELD_EX32(s->cfgr, CFGR, MCOPRE); |
| assert(val <= 0b100); |
| clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_MCO], |
| 1, 1 << val); |
| |
| /* MCOSEL */ |
| val = FIELD_EX32(s->cfgr, CFGR, MCOSEL); |
| assert(val <= 0b111); |
| if (val == 0) { |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false); |
| } else { |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], true); |
| clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_MCO], |
| val - 1); |
| } |
| |
| /* STOPWUCK */ |
| /* TODO */ |
| |
| /* PPRE2 */ |
| val = FIELD_EX32(s->cfgr, CFGR, PPRE2); |
| if (val < 0b100) { |
| clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2], |
| 1, 1); |
| } else { |
| clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2], |
| 1, 1 << (val - 0b11)); |
| } |
| |
| /* PPRE1 */ |
| val = FIELD_EX32(s->cfgr, CFGR, PPRE1); |
| if (val < 0b100) { |
| clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1], |
| 1, 1); |
| } else { |
| clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1], |
| 1, 1 << (val - 0b11)); |
| } |
| |
| /* HPRE */ |
| val = FIELD_EX32(s->cfgr, CFGR, HPRE); |
| if (val < 0b1000) { |
| clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK], |
| 1, 1); |
| } else { |
| clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK], |
| 1, 1 << (val - 0b111)); |
| } |
| |
| /* Update SWS */ |
| val = FIELD_EX32(s->cfgr, CFGR, SW); |
| clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_SYSCLK], |
| val); |
| s->cfgr &= ~R_CFGR_SWS_MASK; |
| s->cfgr |= val << R_CFGR_SWS_SHIFT; |
| } |
| |
| static void rcc_update_ahb1enr(Stm32l4x5RccState *s) |
| { |
| #define AHB1ENR_SET_ENABLE(_peripheral_name) \ |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ |
| FIELD_EX32(s->ahb1enr, AHB1ENR, _peripheral_name##EN)) |
| |
| /* DMA2DEN: reserved for STM32L475xx */ |
| AHB1ENR_SET_ENABLE(TSC); |
| AHB1ENR_SET_ENABLE(CRC); |
| AHB1ENR_SET_ENABLE(FLASH); |
| AHB1ENR_SET_ENABLE(DMA2); |
| AHB1ENR_SET_ENABLE(DMA1); |
| |
| #undef AHB1ENR_SET_ENABLE |
| } |
| |
| static void rcc_update_ahb2enr(Stm32l4x5RccState *s) |
| { |
| #define AHB2ENR_SET_ENABLE(_peripheral_name) \ |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ |
| FIELD_EX32(s->ahb2enr, AHB2ENR, _peripheral_name##EN)) |
| |
| AHB2ENR_SET_ENABLE(RNG); |
| /* HASHEN: reserved for STM32L475xx */ |
| AHB2ENR_SET_ENABLE(AES); |
| /* DCMIEN: reserved for STM32L475xx */ |
| AHB2ENR_SET_ENABLE(ADC); |
| AHB2ENR_SET_ENABLE(OTGFS); |
| /* GPIOIEN: reserved for STM32L475xx */ |
| AHB2ENR_SET_ENABLE(GPIOA); |
| AHB2ENR_SET_ENABLE(GPIOB); |
| AHB2ENR_SET_ENABLE(GPIOC); |
| AHB2ENR_SET_ENABLE(GPIOD); |
| AHB2ENR_SET_ENABLE(GPIOE); |
| AHB2ENR_SET_ENABLE(GPIOF); |
| AHB2ENR_SET_ENABLE(GPIOG); |
| AHB2ENR_SET_ENABLE(GPIOH); |
| |
| #undef AHB2ENR_SET_ENABLE |
| } |
| |
| static void rcc_update_ahb3enr(Stm32l4x5RccState *s) |
| { |
| #define AHB3ENR_SET_ENABLE(_peripheral_name) \ |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ |
| FIELD_EX32(s->ahb3enr, AHB3ENR, _peripheral_name##EN)) |
| |
| AHB3ENR_SET_ENABLE(QSPI); |
| AHB3ENR_SET_ENABLE(FMC); |
| |
| #undef AHB3ENR_SET_ENABLE |
| } |
| |
| static void rcc_update_apb1enr(Stm32l4x5RccState *s) |
| { |
| #define APB1ENR1_SET_ENABLE(_peripheral_name) \ |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ |
| FIELD_EX32(s->apb1enr1, APB1ENR1, _peripheral_name##EN)) |
| #define APB1ENR2_SET_ENABLE(_peripheral_name) \ |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ |
| FIELD_EX32(s->apb1enr2, APB1ENR2, _peripheral_name##EN)) |
| |
| /* APB1ENR1 */ |
| APB1ENR1_SET_ENABLE(LPTIM1); |
| APB1ENR1_SET_ENABLE(OPAMP); |
| APB1ENR1_SET_ENABLE(DAC1); |
| APB1ENR1_SET_ENABLE(PWR); |
| /* CAN2: reserved for STM32L4x5 */ |
| APB1ENR1_SET_ENABLE(CAN1); |
| /* CRSEN: reserved for STM32L4x5 */ |
| APB1ENR1_SET_ENABLE(I2C3); |
| APB1ENR1_SET_ENABLE(I2C2); |
| APB1ENR1_SET_ENABLE(I2C1); |
| APB1ENR1_SET_ENABLE(UART5); |
| APB1ENR1_SET_ENABLE(UART4); |
| APB1ENR1_SET_ENABLE(USART3); |
| APB1ENR1_SET_ENABLE(USART2); |
| APB1ENR1_SET_ENABLE(SPI3); |
| APB1ENR1_SET_ENABLE(SPI2); |
| APB1ENR1_SET_ENABLE(WWDG); |
| /* RTCAPB: reserved for STM32L4x5 */ |
| APB1ENR1_SET_ENABLE(LCD); |
| APB1ENR1_SET_ENABLE(TIM7); |
| APB1ENR1_SET_ENABLE(TIM6); |
| APB1ENR1_SET_ENABLE(TIM5); |
| APB1ENR1_SET_ENABLE(TIM4); |
| APB1ENR1_SET_ENABLE(TIM3); |
| APB1ENR1_SET_ENABLE(TIM2); |
| |
| /* APB1ENR2 */ |
| APB1ENR2_SET_ENABLE(LPTIM2); |
| APB1ENR2_SET_ENABLE(SWPMI1); |
| /* I2C4EN: reserved for STM32L4x5 */ |
| APB1ENR2_SET_ENABLE(LPUART1); |
| |
| #undef APB1ENR1_SET_ENABLE |
| #undef APB1ENR2_SET_ENABLE |
| } |
| |
| static void rcc_update_apb2enr(Stm32l4x5RccState *s) |
| { |
| #define APB2ENR_SET_ENABLE(_peripheral_name) \ |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ |
| FIELD_EX32(s->apb2enr, APB2ENR, _peripheral_name##EN)) |
| |
| APB2ENR_SET_ENABLE(DFSDM1); |
| APB2ENR_SET_ENABLE(SAI2); |
| APB2ENR_SET_ENABLE(SAI1); |
| APB2ENR_SET_ENABLE(TIM17); |
| APB2ENR_SET_ENABLE(TIM16); |
| APB2ENR_SET_ENABLE(TIM15); |
| APB2ENR_SET_ENABLE(USART1); |
| APB2ENR_SET_ENABLE(TIM8); |
| APB2ENR_SET_ENABLE(SPI1); |
| APB2ENR_SET_ENABLE(TIM1); |
| APB2ENR_SET_ENABLE(SDMMC1); |
| APB2ENR_SET_ENABLE(FW); |
| APB2ENR_SET_ENABLE(SYSCFG); |
| |
| #undef APB2ENR_SET_ENABLE |
| } |
| |
| /* |
| * The 3 PLLs share the same register layout |
| * so we can use the same function for all of them |
| * Note: no frequency bounds checking is done here. |
| */ |
| static void rcc_update_pllsaixcfgr(Stm32l4x5RccState *s, RccPll pll_id) |
| { |
| uint32_t reg, val; |
| switch (pll_id) { |
| case RCC_PLL_PLL: |
| reg = s->pllcfgr; |
| break; |
| case RCC_PLL_PLLSAI1: |
| reg = s->pllsai1cfgr; |
| break; |
| case RCC_PLL_PLLSAI2: |
| reg = s->pllsai2cfgr; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: Invalid PLL ID: %u\n", __func__, pll_id); |
| return; |
| } |
| |
| /* PLLPDIV */ |
| val = FIELD_EX32(reg, PLLCFGR, PLLPDIV); |
| /* 1 is a reserved value */ |
| if (val == 0) { |
| /* Get PLLP value */ |
| val = FIELD_EX32(reg, PLLCFGR, PLLP); |
| pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, |
| (val ? 17 : 7)); |
| } else if (val > 1) { |
| pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, |
| val); |
| } |
| |
| |
| /* PLLR */ |
| val = FIELD_EX32(reg, PLLCFGR, PLLR); |
| pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, |
| 2 * (val + 1)); |
| |
| /* PLLREN */ |
| val = FIELD_EX32(reg, PLLCFGR, PLLREN); |
| pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, val); |
| |
| /* PLLQ */ |
| val = FIELD_EX32(reg, PLLCFGR, PLLQ); |
| pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, |
| 2 * (val + 1)); |
| |
| /* PLLQEN */ |
| val = FIELD_EX32(reg, PLLCFGR, PLLQEN); |
| pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, val); |
| |
| /* PLLPEN */ |
| val = FIELD_EX32(reg, PLLCFGR, PLLPEN); |
| pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, val); |
| |
| /* PLLN */ |
| val = FIELD_EX32(reg, PLLCFGR, PLLN); |
| pll_set_vco_multiplier(&s->plls[pll_id], val); |
| } |
| |
| static void rcc_update_pllcfgr(Stm32l4x5RccState *s) |
| { |
| int val; |
| |
| /* Use common layout */ |
| rcc_update_pllsaixcfgr(s, RCC_PLL_PLL); |
| |
| /* Fetch specific fields for pllcfgr */ |
| |
| /* PLLM */ |
| val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLM); |
| clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], 1, (val + 1)); |
| |
| /* PLLSRC */ |
| val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLSRC); |
| if (val == 0) { |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], false); |
| } else { |
| clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], val - 1); |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], true); |
| } |
| } |
| |
| static void rcc_update_ccipr(Stm32l4x5RccState *s) |
| { |
| #define CCIPR_SET_SOURCE(_peripheral_name) \ |
| clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ |
| FIELD_EX32(s->ccipr, CCIPR, _peripheral_name##SEL)) |
| |
| CCIPR_SET_SOURCE(DFSDM1); |
| CCIPR_SET_SOURCE(SWPMI1); |
| CCIPR_SET_SOURCE(ADC); |
| CCIPR_SET_SOURCE(CLK48); |
| CCIPR_SET_SOURCE(SAI2); |
| CCIPR_SET_SOURCE(SAI1); |
| CCIPR_SET_SOURCE(LPTIM2); |
| CCIPR_SET_SOURCE(LPTIM1); |
| CCIPR_SET_SOURCE(I2C3); |
| CCIPR_SET_SOURCE(I2C2); |
| CCIPR_SET_SOURCE(I2C1); |
| CCIPR_SET_SOURCE(LPUART1); |
| CCIPR_SET_SOURCE(UART5); |
| CCIPR_SET_SOURCE(UART4); |
| CCIPR_SET_SOURCE(USART3); |
| CCIPR_SET_SOURCE(USART2); |
| CCIPR_SET_SOURCE(USART1); |
| |
| #undef CCIPR_SET_SOURCE |
| } |
| |
| static void rcc_update_bdcr(Stm32l4x5RccState *s) |
| { |
| int val; |
| |
| /* LSCOSEL */ |
| val = FIELD_EX32(s->bdcr, BDCR, LSCOSEL); |
| clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val); |
| |
| val = FIELD_EX32(s->bdcr, BDCR, LSCOEN); |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val); |
| |
| /* BDRST */ |
| /* |
| * The documentation is not clear if the RTCEN flag disables the RTC and |
| * the LCD common mux or if it only affects the RTC. |
| * As the LCDEN flag exists, we assume here that it only affects the RTC. |
| */ |
| val = FIELD_EX32(s->bdcr, BDCR, RTCEN); |
| clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_RTC], val); |
| /* LCD and RTC share the same clock */ |
| val = FIELD_EX32(s->bdcr, BDCR, RTCSEL); |
| clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON], val); |
| |
| /* LSECSSON */ |
| /* LSEDRV[1:0] */ |
| /* LSEBYP */ |
| |
| /* LSEON: Update LSERDY at the same time */ |
| val = FIELD_EX32(s->bdcr, BDCR, LSEON); |
| if (val) { |
| clock_update_hz(s->lse_crystal, LSE_FRQ); |
| s->bdcr |= R_BDCR_LSERDY_MASK; |
| if (s->cier & R_CIER_LSERDYIE_MASK) { |
| s->cifr |= R_CIFR_LSERDYF_MASK; |
| } |
| } else { |
| clock_update(s->lse_crystal, 0); |
| s->bdcr &= ~R_BDCR_LSERDY_MASK; |
| } |
| |
| rcc_update_irq(s); |
| } |
| |
| static void rcc_update_csr(Stm32l4x5RccState *s) |
| { |
| int val; |
| |
| /* Reset flags: Not implemented */ |
| /* MSISRANGE: Not implemented after reset */ |
| |
| /* LSION: Update LSIRDY at the same time */ |
| val = FIELD_EX32(s->csr, CSR, LSION); |
| if (val) { |
| clock_update_hz(s->lsi_rc, LSI_FRQ); |
| s->csr |= R_CSR_LSIRDY_MASK; |
| if (s->cier & R_CIER_LSIRDYIE_MASK) { |
| s->cifr |= R_CIFR_LSIRDYF_MASK; |
| } |
| } else { |
| /* |
| * TODO: Handle when the LSI is set independently of LSION. |
| * E.g. when the LSI is set by the RTC. |
| * See the reference manual for more details. |
| */ |
| clock_update(s->lsi_rc, 0); |
| s->csr &= ~R_CSR_LSIRDY_MASK; |
| } |
| |
| rcc_update_irq(s); |
| } |
| |
| static void stm32l4x5_rcc_reset_hold(Object *obj, ResetType type) |
| { |
| Stm32l4x5RccState *s = STM32L4X5_RCC(obj); |
| s->cr = 0x00000063; |
| /* |
| * Factory-programmed calibration data |
| * From the reference manual: 0x10XX 00XX |
| * Value taken from a real card. |
| */ |
| s->icscr = 0x106E0082; |
| s->cfgr = 0x0; |
| s->pllcfgr = 0x00001000; |
| s->pllsai1cfgr = 0x00001000; |
| s->pllsai2cfgr = 0x00001000; |
| s->cier = 0x0; |
| s->cifr = 0x0; |
| s->ahb1rstr = 0x0; |
| s->ahb2rstr = 0x0; |
| s->ahb3rstr = 0x0; |
| s->apb1rstr1 = 0x0; |
| s->apb1rstr2 = 0x0; |
| s->apb2rstr = 0x0; |
| s->ahb1enr = 0x00000100; |
| s->ahb2enr = 0x0; |
| s->ahb3enr = 0x0; |
| s->apb1enr1 = 0x0; |
| s->apb1enr2 = 0x0; |
| s->apb2enr = 0x0; |
| s->ahb1smenr = 0x00011303; |
| s->ahb2smenr = 0x000532FF; |
| s->ahb3smenr = 0x00000101; |
| s->apb1smenr1 = 0xF2FECA3F; |
| s->apb1smenr2 = 0x00000025; |
| s->apb2smenr = 0x01677C01; |
| s->ccipr = 0x0; |
| s->bdcr = 0x0; |
| s->csr = 0x0C000600; |
| } |
| |
| static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr, |
| unsigned int size) |
| { |
| Stm32l4x5RccState *s = opaque; |
| uint64_t retvalue = 0; |
| |
| switch (addr) { |
| case A_CR: |
| retvalue = s->cr; |
| break; |
| case A_ICSCR: |
| retvalue = s->icscr; |
| break; |
| case A_CFGR: |
| retvalue = s->cfgr; |
| break; |
| case A_PLLCFGR: |
| retvalue = s->pllcfgr; |
| break; |
| case A_PLLSAI1CFGR: |
| retvalue = s->pllsai1cfgr; |
| break; |
| case A_PLLSAI2CFGR: |
| retvalue = s->pllsai2cfgr; |
| break; |
| case A_CIER: |
| retvalue = s->cier; |
| break; |
| case A_CIFR: |
| retvalue = s->cifr; |
| break; |
| case A_CICR: |
| /* CICR is write only, return the reset value = 0 */ |
| break; |
| case A_AHB1RSTR: |
| retvalue = s->ahb1rstr; |
| break; |
| case A_AHB2RSTR: |
| retvalue = s->ahb2rstr; |
| break; |
| case A_AHB3RSTR: |
| retvalue = s->ahb3rstr; |
| break; |
| case A_APB1RSTR1: |
| retvalue = s->apb1rstr1; |
| break; |
| case A_APB1RSTR2: |
| retvalue = s->apb1rstr2; |
| break; |
| case A_APB2RSTR: |
| retvalue = s->apb2rstr; |
| break; |
| case A_AHB1ENR: |
| retvalue = s->ahb1enr; |
| break; |
| case A_AHB2ENR: |
| retvalue = s->ahb2enr; |
| break; |
| case A_AHB3ENR: |
| retvalue = s->ahb3enr; |
| break; |
| case A_APB1ENR1: |
| retvalue = s->apb1enr1; |
| break; |
| case A_APB1ENR2: |
| retvalue = s->apb1enr2; |
| break; |
| case A_APB2ENR: |
| retvalue = s->apb2enr; |
| break; |
| case A_AHB1SMENR: |
| retvalue = s->ahb1smenr; |
| break; |
| case A_AHB2SMENR: |
| retvalue = s->ahb2smenr; |
| break; |
| case A_AHB3SMENR: |
| retvalue = s->ahb3smenr; |
| break; |
| case A_APB1SMENR1: |
| retvalue = s->apb1smenr1; |
| break; |
| case A_APB1SMENR2: |
| retvalue = s->apb1smenr2; |
| break; |
| case A_APB2SMENR: |
| retvalue = s->apb2smenr; |
| break; |
| case A_CCIPR: |
| retvalue = s->ccipr; |
| break; |
| case A_BDCR: |
| retvalue = s->bdcr; |
| break; |
| case A_CSR: |
| retvalue = s->csr; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); |
| break; |
| } |
| |
| trace_stm32l4x5_rcc_read(addr, retvalue); |
| |
| return retvalue; |
| } |
| |
| static void stm32l4x5_rcc_write(void *opaque, hwaddr addr, |
| uint64_t val64, unsigned int size) |
| { |
| Stm32l4x5RccState *s = opaque; |
| uint32_t previous_value = 0; |
| const uint32_t value = val64; |
| |
| trace_stm32l4x5_rcc_write(addr, value); |
| |
| switch (addr) { |
| case A_CR: |
| previous_value = s->cr; |
| s->cr = (s->cr & CR_READ_SET_MASK) | |
| (value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK)); |
| rcc_update_cr_register(s, previous_value); |
| break; |
| case A_ICSCR: |
| s->icscr = value & ~ICSCR_READ_ONLY_MASK; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for ICSCR\n", __func__); |
| break; |
| case A_CFGR: |
| s->cfgr = value & ~CFGR_READ_ONLY_MASK; |
| rcc_update_cfgr_register(s); |
| break; |
| case A_PLLCFGR: |
| s->pllcfgr = value; |
| rcc_update_pllcfgr(s); |
| break; |
| case A_PLLSAI1CFGR: |
| s->pllsai1cfgr = value; |
| rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI1); |
| break; |
| case A_PLLSAI2CFGR: |
| s->pllsai2cfgr = value; |
| rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI2); |
| break; |
| case A_CIER: |
| s->cier = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for CIER\n", __func__); |
| break; |
| case A_CIFR: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n", |
| __func__, value); |
| break; |
| case A_CICR: |
| /* Clear interrupt flags by writing a 1 to the CICR register */ |
| s->cifr &= ~value; |
| rcc_update_irq(s); |
| break; |
| /* Reset behaviors are not implemented */ |
| case A_AHB1RSTR: |
| s->ahb1rstr = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for AHB1RSTR\n", __func__); |
| break; |
| case A_AHB2RSTR: |
| s->ahb2rstr = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for AHB2RSTR\n", __func__); |
| break; |
| case A_AHB3RSTR: |
| s->ahb3rstr = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for AHB3RSTR\n", __func__); |
| break; |
| case A_APB1RSTR1: |
| s->apb1rstr1 = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for APB1RSTR1\n", __func__); |
| break; |
| case A_APB1RSTR2: |
| s->apb1rstr2 = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for APB1RSTR2\n", __func__); |
| break; |
| case A_APB2RSTR: |
| s->apb2rstr = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for APB2RSTR\n", __func__); |
| break; |
| case A_AHB1ENR: |
| s->ahb1enr = value; |
| rcc_update_ahb1enr(s); |
| break; |
| case A_AHB2ENR: |
| s->ahb2enr = value; |
| rcc_update_ahb2enr(s); |
| break; |
| case A_AHB3ENR: |
| s->ahb3enr = value; |
| rcc_update_ahb3enr(s); |
| break; |
| case A_APB1ENR1: |
| s->apb1enr1 = value; |
| rcc_update_apb1enr(s); |
| break; |
| case A_APB1ENR2: |
| s->apb1enr2 = value; |
| rcc_update_apb1enr(s); |
| break; |
| case A_APB2ENR: |
| s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value; |
| rcc_update_apb2enr(s); |
| break; |
| /* Behaviors for Sleep and Stop modes are not implemented */ |
| case A_AHB1SMENR: |
| s->ahb1smenr = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for AHB1SMENR\n", __func__); |
| break; |
| case A_AHB2SMENR: |
| s->ahb2smenr = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for AHB2SMENR\n", __func__); |
| break; |
| case A_AHB3SMENR: |
| s->ahb3smenr = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for AHB3SMENR\n", __func__); |
| break; |
| case A_APB1SMENR1: |
| s->apb1smenr1 = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for APB1SMENR1\n", __func__); |
| break; |
| case A_APB1SMENR2: |
| s->apb1smenr2 = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for APB1SMENR2\n", __func__); |
| break; |
| case A_APB2SMENR: |
| s->apb2smenr = value; |
| qemu_log_mask(LOG_UNIMP, |
| "%s: Side-effects not implemented for APB2SMENR\n", __func__); |
| break; |
| case A_CCIPR: |
| s->ccipr = value; |
| rcc_update_ccipr(s); |
| break; |
| case A_BDCR: |
| s->bdcr = value & ~BDCR_READ_ONLY_MASK; |
| rcc_update_bdcr(s); |
| break; |
| case A_CSR: |
| s->csr = value & ~CSR_READ_ONLY_MASK; |
| rcc_update_csr(s); |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); |
| } |
| } |
| |
| static const MemoryRegionOps stm32l4x5_rcc_ops = { |
| .read = stm32l4x5_rcc_read, |
| .write = stm32l4x5_rcc_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid = { |
| .max_access_size = 4, |
| .min_access_size = 4, |
| .unaligned = false |
| }, |
| .impl = { |
| .max_access_size = 4, |
| .min_access_size = 4, |
| .unaligned = false |
| }, |
| }; |
| |
| static const ClockPortInitArray stm32l4x5_rcc_clocks = { |
| QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0), |
| QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0), |
| QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0), |
| QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0), |
| QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0), |
| QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0), |
| QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0), |
| QDEV_CLOCK_END |
| }; |
| |
| |
| static void stm32l4x5_rcc_init(Object *obj) |
| { |
| Stm32l4x5RccState *s = STM32L4X5_RCC(obj); |
| size_t i; |
| |
| sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq); |
| |
| memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s, |
| TYPE_STM32L4X5_RCC, 0x400); |
| sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); |
| |
| qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks); |
| |
| for (i = 0; i < RCC_NUM_PLL; i++) { |
| object_initialize_child(obj, PLL_INIT_INFO[i].name, |
| &s->plls[i], TYPE_RCC_PLL); |
| set_pll_init_info(&s->plls[i], i); |
| } |
| |
| for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) { |
| char *alias; |
| |
| object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name, |
| &s->clock_muxes[i], |
| TYPE_RCC_CLOCK_MUX); |
| set_clock_mux_init_info(&s->clock_muxes[i], i); |
| |
| if (!CLOCK_MUX_INIT_INFO[i].hidden) { |
| /* Expose muxes output as RCC outputs */ |
| alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name); |
| qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias); |
| g_free(alias); |
| } |
| } |
| |
| s->gnd = clock_new(obj, "gnd"); |
| } |
| |
| static void connect_mux_sources(Stm32l4x5RccState *s, |
| RccClockMuxState *mux, |
| const RccClockMuxSource *clk_mapping) |
| { |
| size_t i; |
| |
| Clock * const CLK_SRC_MAPPING[] = { |
| [RCC_CLOCK_MUX_SRC_GND] = s->gnd, |
| [RCC_CLOCK_MUX_SRC_HSI] = s->hsi16_rc, |
| [RCC_CLOCK_MUX_SRC_HSE] = s->hse, |
| [RCC_CLOCK_MUX_SRC_MSI] = s->msi_rc, |
| [RCC_CLOCK_MUX_SRC_LSI] = s->lsi_rc, |
| [RCC_CLOCK_MUX_SRC_LSE] = s->lse_crystal, |
| [RCC_CLOCK_MUX_SRC_SAI1_EXTCLK] = s->sai1_extclk, |
| [RCC_CLOCK_MUX_SRC_SAI2_EXTCLK] = s->sai2_extclk, |
| [RCC_CLOCK_MUX_SRC_PLL] = |
| s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLCLK], |
| [RCC_CLOCK_MUX_SRC_PLLSAI1] = |
| s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLSAI1CLK], |
| [RCC_CLOCK_MUX_SRC_PLLSAI2] = |
| s->plls[RCC_PLL_PLLSAI2].channels[RCC_PLLSAI2_CHANNEL_PLLSAI2CLK], |
| [RCC_CLOCK_MUX_SRC_PLLSAI3] = |
| s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLSAI3CLK], |
| [RCC_CLOCK_MUX_SRC_PLL48M1] = |
| s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLL48M1CLK], |
| [RCC_CLOCK_MUX_SRC_PLL48M2] = |
| s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLL48M2CLK], |
| [RCC_CLOCK_MUX_SRC_PLLADC1] = |
| s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLADC1CLK], |
| [RCC_CLOCK_MUX_SRC_PLLADC2] = |
| s->plls[RCC_PLL_PLLSAI2] .channels[RCC_PLLSAI2_CHANNEL_PLLADC2CLK], |
| [RCC_CLOCK_MUX_SRC_SYSCLK] = s->clock_muxes[RCC_CLOCK_MUX_SYSCLK].out, |
| [RCC_CLOCK_MUX_SRC_HCLK] = s->clock_muxes[RCC_CLOCK_MUX_HCLK].out, |
| [RCC_CLOCK_MUX_SRC_PCLK1] = s->clock_muxes[RCC_CLOCK_MUX_PCLK1].out, |
| [RCC_CLOCK_MUX_SRC_PCLK2] = s->clock_muxes[RCC_CLOCK_MUX_PCLK2].out, |
| [RCC_CLOCK_MUX_SRC_HSE_OVER_32] = s->clock_muxes[RCC_CLOCK_MUX_HSE_OVER_32].out, |
| [RCC_CLOCK_MUX_SRC_LCD_AND_RTC_COMMON] = |
| s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON].out, |
| }; |
| |
| assert(ARRAY_SIZE(CLK_SRC_MAPPING) == RCC_CLOCK_MUX_SRC_NUMBER); |
| |
| for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) { |
| RccClockMuxSource mapping = clk_mapping[i]; |
| clock_set_source(mux->srcs[i], CLK_SRC_MAPPING[mapping]); |
| } |
| } |
| |
| |
| static const VMStateDescription vmstate_stm32l4x5_rcc = { |
| .name = TYPE_STM32L4X5_RCC, |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(cr, Stm32l4x5RccState), |
| VMSTATE_UINT32(icscr, Stm32l4x5RccState), |
| VMSTATE_UINT32(cfgr, Stm32l4x5RccState), |
| VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState), |
| VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState), |
| VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState), |
| VMSTATE_UINT32(cier, Stm32l4x5RccState), |
| VMSTATE_UINT32(cifr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb2enr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState), |
| VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState), |
| VMSTATE_UINT32(ccipr, Stm32l4x5RccState), |
| VMSTATE_UINT32(bdcr, Stm32l4x5RccState), |
| VMSTATE_UINT32(csr, Stm32l4x5RccState), |
| VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState), |
| VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState), |
| VMSTATE_CLOCK(hse, Stm32l4x5RccState), |
| VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState), |
| VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState), |
| VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState), |
| VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| |
| static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp) |
| { |
| Stm32l4x5RccState *s = STM32L4X5_RCC(dev); |
| size_t i; |
| |
| if (s->hse_frequency < 4000000ULL || |
| s->hse_frequency > 48000000ULL) { |
| error_setg(errp, |
| "HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "", |
| s->hse_frequency); |
| return; |
| } |
| |
| for (i = 0; i < RCC_NUM_PLL; i++) { |
| RccPllState *pll = &s->plls[i]; |
| |
| clock_set_source(pll->in, s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].out); |
| |
| if (!qdev_realize(DEVICE(pll), NULL, errp)) { |
| return; |
| } |
| } |
| |
| for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) { |
| RccClockMuxState *clock_mux = &s->clock_muxes[i]; |
| |
| connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping); |
| |
| if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) { |
| return; |
| } |
| } |
| |
| /* |
| * Start clocks after everything is connected |
| * to propagate the frequencies along the tree. |
| */ |
| clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ); |
| clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency); |
| clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency); |
| clock_update(s->gnd, 0); |
| } |
| |
| static Property stm32l4x5_rcc_properties[] = { |
| DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState, |
| hse_frequency, HSE_DEFAULT_FRQ), |
| DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState, |
| sai1_extclk_frequency, 0), |
| DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState, |
| sai2_extclk_frequency, 0), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ResettableClass *rc = RESETTABLE_CLASS(klass); |
| |
| assert(ARRAY_SIZE(CLOCK_MUX_INIT_INFO) == RCC_NUM_CLOCK_MUX); |
| |
| rc->phases.hold = stm32l4x5_rcc_reset_hold; |
| device_class_set_props(dc, stm32l4x5_rcc_properties); |
| dc->realize = stm32l4x5_rcc_realize; |
| dc->vmsd = &vmstate_stm32l4x5_rcc; |
| } |
| |
| static const TypeInfo stm32l4x5_rcc_types[] = { |
| { |
| .name = TYPE_STM32L4X5_RCC, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(Stm32l4x5RccState), |
| .instance_init = stm32l4x5_rcc_init, |
| .class_init = stm32l4x5_rcc_class_init, |
| }, { |
| .name = TYPE_RCC_CLOCK_MUX, |
| .parent = TYPE_DEVICE, |
| .instance_size = sizeof(RccClockMuxState), |
| .instance_init = clock_mux_init, |
| .class_init = clock_mux_class_init, |
| }, { |
| .name = TYPE_RCC_PLL, |
| .parent = TYPE_DEVICE, |
| .instance_size = sizeof(RccPllState), |
| .instance_init = pll_init, |
| .class_init = pll_class_init, |
| } |
| }; |
| |
| DEFINE_TYPES(stm32l4x5_rcc_types) |