blob: 8bbaf4f8a4e916bfce094f6e9094cd0a2878c396 [file] [log] [blame]
/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
* Copyright (c) 2010 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qemu/memalign.h"
#include "qemu/guest-random.h"
#include "qapi/error.h"
#include "qapi/qapi-events-machine.h"
#include "qapi/qapi-events-qdev.h"
#include "qapi/visitor.h"
#include "sysemu/sysemu.h"
#include "sysemu/hostmem.h"
#include "sysemu/numa.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "qemu/log.h"
#include "hw/fw-path-provider.h"
#include "elf.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/cpus.h"
#include "sysemu/hw_accel.h"
#include "kvm_ppc.h"
#include "migration/misc.h"
#include "migration/qemu-file-types.h"
#include "migration/global_state.h"
#include "migration/register.h"
#include "migration/blocker.h"
#include "mmu-hash64.h"
#include "mmu-book3s-v3.h"
#include "cpu-models.h"
#include "hw/core/cpu.h"
#include "hw/ppc/ppc.h"
#include "hw/loader.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/qdev-properties.h"
#include "hw/pci-host/spapr.h"
#include "hw/pci/msi.h"
#include "hw/pci/pci.h"
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
#include "hw/virtio/vhost-scsi-common.h"
#include "exec/ram_addr.h"
#include "hw/usb.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "hw/nmi.h"
#include "hw/intc/intc.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/mem/memory-device.h"
#include "hw/ppc/spapr_tpm_proxy.h"
#include "hw/ppc/spapr_nvdimm.h"
#include "hw/ppc/spapr_numa.h"
#include "hw/ppc/pef.h"
#include "monitor/monitor.h"
#include <libfdt.h>
/* SLOF memory layout:
*
* SLOF raw image loaded at 0, copies its romfs right below the flat
* device-tree, then position SLOF itself 31M below that
*
* So we set FW_OVERHEAD to 40MB which should account for all of that
* and more
*
* We load our kernel at 4M, leaving space for SLOF initial image
*/
#define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
#define FW_MAX_SIZE 0x400000
#define FW_FILE_NAME "slof.bin"
#define FW_FILE_NAME_VOF "vof.bin"
#define FW_OVERHEAD 0x2800000
#define KERNEL_LOAD_ADDR FW_MAX_SIZE
#define MIN_RMA_SLOF (128 * MiB)
#define PHANDLE_INTC 0x00001111
/* These two functions implement the VCPU id numbering: one to compute them
* all and one to identify thread 0 of a VCORE. Any change to the first one
* is likely to have an impact on the second one, so let's keep them close.
*/
static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
{
MachineState *ms = MACHINE(spapr);
unsigned int smp_threads = ms->smp.threads;
assert(spapr->vsmt);
return
(cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
}
static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
PowerPCCPU *cpu)
{
assert(spapr->vsmt);
return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
}
static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
{
/* Dummy entries correspond to unused ICPState objects in older QEMUs,
* and newer QEMUs don't even have them. In both cases, we don't want
* to send anything on the wire.
*/
return false;
}
static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
.name = "icp/server",
.version_id = 1,
.minimum_version_id = 1,
.needed = pre_2_10_vmstate_dummy_icp_needed,
.fields = (VMStateField[]) {
VMSTATE_UNUSED(4), /* uint32_t xirr */
VMSTATE_UNUSED(1), /* uint8_t pending_priority */
VMSTATE_UNUSED(1), /* uint8_t mfrr */
VMSTATE_END_OF_LIST()
},
};
static void pre_2_10_vmstate_register_dummy_icp(int i)
{
vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
(void *)(uintptr_t) i);
}
static void pre_2_10_vmstate_unregister_dummy_icp(int i)
{
vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
(void *)(uintptr_t) i);
}
int spapr_max_server_number(SpaprMachineState *spapr)
{
MachineState *ms = MACHINE(spapr);
assert(spapr->vsmt);
return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
}
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
int smt_threads)
{
int i, ret = 0;
g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
int index = spapr_get_vcpu_id(cpu);
if (cpu->compat_pvr) {
ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
if (ret < 0) {
return ret;
}
}
/* Build interrupt servers and gservers properties */
for (i = 0; i < smt_threads; i++) {
servers_prop[i] = cpu_to_be32(index + i);
/* Hack, direct the group queues back to cpu 0 */
gservers_prop[i*2] = cpu_to_be32(index + i);
gservers_prop[i*2 + 1] = 0;
}
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
servers_prop, sizeof(*servers_prop) * smt_threads);
if (ret < 0) {
return ret;
}
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
return ret;
}
static void spapr_dt_pa_features(SpaprMachineState *spapr,
PowerPCCPU *cpu,
void *fdt, int offset)
{
uint8_t pa_features_206[] = { 6, 0,
0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
uint8_t pa_features_207[] = { 24, 0,
0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
uint8_t pa_features_300[] = { 66, 0,
/* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
/* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
/* 6: DS207 */
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
/* 16: Vector */
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
/* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
/* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
/* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
/* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
/* 42: PM, 44: PC RA, 46: SC vec'd */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
/* 48: SIMD, 50: QP BFP, 52: String */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
/* 54: DecFP, 56: DecI, 58: SHA */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
/* 60: NM atomic, 62: RNG */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
};
uint8_t *pa_features = NULL;
size_t pa_size;
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
pa_features = pa_features_206;
pa_size = sizeof(pa_features_206);
}
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
pa_features = pa_features_207;
pa_size = sizeof(pa_features_207);
}
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
pa_features = pa_features_300;
pa_size = sizeof(pa_features_300);
}
if (!pa_features) {
return;
}
if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
/*
* Note: we keep CI large pages off by default because a 64K capable
* guest provisioned with large pages might otherwise try to map a qemu
* framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
* even if that qemu runs on a 4k host.
* We dd this bit back here if we are confident this is not an issue
*/
pa_features[3] |= 0x20;
}
if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
pa_features[24] |= 0x80; /* Transactional memory support */
}
if (spapr->cas_pre_isa3_guest && pa_size > 40) {
/* Workaround for broken kernels that attempt (guest) radix
* mode when they can't handle it, if they see the radix bit set
* in pa-features. So hide it from them. */
pa_features[40 + 2] &= ~0x80; /* Radix MMU */
}
_FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
}
static hwaddr spapr_node0_size(MachineState *machine)
{
if (machine->numa_state->num_nodes) {
int i;
for (i = 0; i < machine->numa_state->num_nodes; ++i) {
if (machine->numa_state->nodes[i].node_mem) {
return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
machine->ram_size);
}
}
}
return machine->ram_size;
}
static void add_str(GString *s, const gchar *s1)
{
g_string_append_len(s, s1, strlen(s1) + 1);
}
static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
hwaddr start, hwaddr size)
{
char mem_name[32];
uint64_t mem_reg_property[2];
int off;
mem_reg_property[0] = cpu_to_be64(start);
mem_reg_property[1] = cpu_to_be64(size);
sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
off = fdt_add_subnode(fdt, 0, mem_name);
_FDT(off);
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
sizeof(mem_reg_property))));
spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
return off;
}
static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
{
MemoryDeviceInfoList *info;
for (info = list; info; info = info->next) {
MemoryDeviceInfo *value = info->value;
if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
if (addr >= pcdimm_info->addr &&
addr < (pcdimm_info->addr + pcdimm_info->size)) {
return pcdimm_info->node;
}
}
}
return -1;
}
struct sPAPRDrconfCellV2 {
uint32_t seq_lmbs;
uint64_t base_addr;
uint32_t drc_index;
uint32_t aa_index;
uint32_t flags;
} QEMU_PACKED;
typedef struct DrconfCellQueue {
struct sPAPRDrconfCellV2 cell;
QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
} DrconfCellQueue;
static DrconfCellQueue *
spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
uint32_t drc_index, uint32_t aa_index,
uint32_t flags)
{
DrconfCellQueue *elem;
elem = g_malloc0(sizeof(*elem));
elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
elem->cell.base_addr = cpu_to_be64(base_addr);
elem->cell.drc_index = cpu_to_be32(drc_index);
elem->cell.aa_index = cpu_to_be32(aa_index);
elem->cell.flags = cpu_to_be32(flags);
return elem;
}
static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
int offset, MemoryDeviceInfoList *dimms)
{
MachineState *machine = MACHINE(spapr);
uint8_t *int_buf, *cur_index;
int ret;
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint64_t addr, cur_addr, size;
uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
uint64_t mem_end = machine->device_memory->base +
memory_region_size(&machine->device_memory->mr);
uint32_t node, buf_len, nr_entries = 0;
SpaprDrc *drc;
DrconfCellQueue *elem, *next;
MemoryDeviceInfoList *info;
QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
= QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
/* Entry to cover RAM and the gap area */
elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
SPAPR_LMB_FLAGS_RESERVED |
SPAPR_LMB_FLAGS_DRC_INVALID);
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
nr_entries++;
cur_addr = machine->device_memory->base;
for (info = dimms; info; info = info->next) {
PCDIMMDeviceInfo *di = info->value->u.dimm.data;
addr = di->addr;
size = di->size;
node = di->node;
/*
* The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
* area is marked hotpluggable in the next iteration for the bigger
* chunk including the NVDIMM occupied area.
*/
if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
continue;
/* Entry for hot-pluggable area */
if (cur_addr < addr) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
g_assert(drc);
elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
cur_addr, spapr_drc_index(drc), -1, 0);
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
nr_entries++;
}
/* Entry for DIMM */
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
g_assert(drc);
elem = spapr_get_drconf_cell(size / lmb_size, addr,
spapr_drc_index(drc), node,
(SPAPR_LMB_FLAGS_ASSIGNED |
SPAPR_LMB_FLAGS_HOTREMOVABLE));
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
nr_entries++;
cur_addr = addr + size;
}
/* Entry for remaining hotpluggable area */
if (cur_addr < mem_end) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
g_assert(drc);
elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
cur_addr, spapr_drc_index(drc), -1, 0);
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
nr_entries++;
}
buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
int_buf = cur_index = g_malloc0(buf_len);
*(uint32_t *)int_buf = cpu_to_be32(nr_entries);
cur_index += sizeof(nr_entries);
QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
memcpy(cur_index, &elem->cell, sizeof(elem->cell));
cur_index += sizeof(elem->cell);
QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
g_free(elem);
}
ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
g_free(int_buf);
if (ret < 0) {
return -1;
}
return 0;
}
static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
int offset, MemoryDeviceInfoList *dimms)
{
MachineState *machine = MACHINE(spapr);
int i, ret;
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
uint32_t nr_lmbs = (machine->device_memory->base +
memory_region_size(&machine->device_memory->mr)) /
lmb_size;
uint32_t *int_buf, *cur_index, buf_len;
/*
* Allocate enough buffer size to fit in ibm,dynamic-memory
*/
buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
cur_index = int_buf = g_malloc0(buf_len);
int_buf[0] = cpu_to_be32(nr_lmbs);
cur_index++;
for (i = 0; i < nr_lmbs; i++) {
uint64_t addr = i * lmb_size;
uint32_t *dynamic_memory = cur_index;
if (i >= device_lmb_start) {
SpaprDrc *drc;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
g_assert(drc);
dynamic_memory[0] = cpu_to_be32(addr >> 32);
dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
dynamic_memory[3] = cpu_to_be32(0); /* reserved */
dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
if (memory_region_present(get_system_memory(), addr)) {
dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
} else {
dynamic_memory[5] = cpu_to_be32(0);
}
} else {
/*
* LMB information for RMA, boot time RAM and gap b/n RAM and
* device memory region -- all these are marked as reserved
* and as having no valid DRC.
*/
dynamic_memory[0] = cpu_to_be32(addr >> 32);
dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
dynamic_memory[2] = cpu_to_be32(0);
dynamic_memory[3] = cpu_to_be32(0); /* reserved */
dynamic_memory[4] = cpu_to_be32(-1);
dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
SPAPR_LMB_FLAGS_DRC_INVALID);
}
cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
}
ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
g_free(int_buf);
if (ret < 0) {
return -1;
}
return 0;
}
/*
* Adds ibm,dynamic-reconfiguration-memory node.
* Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
* of this device tree node.
*/
static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
void *fdt)
{
MachineState *machine = MACHINE(spapr);
int ret, offset;
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
cpu_to_be32(lmb_size & 0xffffffff)};
MemoryDeviceInfoList *dimms = NULL;
/*
* Don't create the node if there is no device memory
*/
if (machine->ram_size == machine->maxram_size) {
return 0;
}
offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
sizeof(prop_lmb_size));
if (ret < 0) {
return ret;
}
ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
if (ret < 0) {
return ret;
}
ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
if (ret < 0) {
return ret;
}
/* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
dimms = qmp_memory_device_list();
if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
} else {
ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
}
qapi_free_MemoryDeviceInfoList(dimms);
if (ret < 0) {
return ret;
}
ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
return ret;
}
static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
{
MachineState *machine = MACHINE(spapr);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
hwaddr mem_start, node_size;
int i, nb_nodes = machine->numa_state->num_nodes;
NodeInfo *nodes = machine->numa_state->nodes;
for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
if (!nodes[i].node_mem) {
continue;
}
if (mem_start >= machine->ram_size) {
node_size = 0;
} else {
node_size = nodes[i].node_mem;
if (node_size > machine->ram_size - mem_start) {
node_size = machine->ram_size - mem_start;
}
}
if (!mem_start) {
/* spapr_machine_init() checks for rma_size <= node0_size
* already */
spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
mem_start += spapr->rma_size;
node_size -= spapr->rma_size;
}
for ( ; node_size; ) {
hwaddr sizetmp = pow2floor(node_size);
/* mem_start != 0 here */
if (ctzl(mem_start) < ctzl(sizetmp)) {
sizetmp = 1ULL << ctzl(mem_start);
}
spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
node_size -= sizetmp;
mem_start += sizetmp;
}
}
/* Generate ibm,dynamic-reconfiguration-memory node if required */
if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
int ret;
g_assert(smc->dr_lmb_enabled);
ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
if (ret) {
return ret;
}
}
return 0;
}
static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
SpaprMachineState *spapr)
{
MachineState *ms = MACHINE(spapr);
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
int index = spapr_get_vcpu_id(cpu);
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
0xffffffff, 0xffffffff};
uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
: SPAPR_TIMEBASE_FREQ;
uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
uint32_t page_sizes_prop[64];
size_t page_sizes_prop_size;
unsigned int smp_threads = ms->smp.threads;
uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
SpaprDrc *drc;
int drc_index;
uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
int i;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
if (drc) {
drc_index = spapr_drc_index(drc);
_FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
}
_FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
_FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
_FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
env->icache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
env->icache_line_size)));
if (pcc->l1_dcache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
pcc->l1_dcache_size)));
} else {
warn_report("Unknown L1 dcache size for cpu");
}
if (pcc->l1_icache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
pcc->l1_icache_size)));
} else {
warn_report("Unknown L1 icache size for cpu");
}
_FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
_FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
_FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
_FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
_FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
_FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
if (ppc_has_spr(cpu, SPR_PURR)) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
}
if (ppc_has_spr(cpu, SPR_PURR)) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
}
if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
_FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
segs, sizeof(segs))));
}
/* Advertise VSX (vector extensions) if available
* 1 == VMX / Altivec available
* 2 == VSX available
*
* Only CPUs for which we create core types in spapr_cpu_core.c
* are possible, and all of those have VMX */
if (env->insns_flags & PPC_ALTIVEC) {
if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
} else {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
}
}
/* Advertise DFP (Decimal Floating Point) if available
* 0 / no property == no DFP
* 1 == DFP available */
if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
}
page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
sizeof(page_sizes_prop));
if (page_sizes_prop_size) {
_FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
page_sizes_prop, page_sizes_prop_size)));
}
spapr_dt_pa_features(spapr, cpu, fdt, offset);
_FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
cs->cpu_index / vcpus_per_socket)));
_FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
pft_size_prop, sizeof(pft_size_prop))));
if (ms->numa_state->num_nodes > 1) {
_FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
}
_FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
if (pcc->radix_page_info) {
for (i = 0; i < pcc->radix_page_info->count; i++) {
radix_AP_encodings[i] =
cpu_to_be32(pcc->radix_page_info->entries[i]);
}
_FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
radix_AP_encodings,
pcc->radix_page_info->count *
sizeof(radix_AP_encodings[0]))));
}
/*
* We set this property to let the guest know that it can use the large
* decrementer and its width in bits.
*/
if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
_FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
pcc->lrg_decr_bits)));
}
static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
{
CPUState **rev;
CPUState *cs;
int n_cpus;
int cpus_offset;
int i;
cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
_FDT(cpus_offset);
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
/*
* We walk the CPUs in reverse order to ensure that CPU DT nodes
* created by fdt_add_subnode() end up in the right order in FDT
* for the guest kernel the enumerate the CPUs correctly.
*
* The CPU list cannot be traversed in reverse order, so we need
* to do extra work.
*/
n_cpus = 0;
rev = NULL;
CPU_FOREACH(cs) {
rev = g_renew(CPUState *, rev, n_cpus + 1);
rev[n_cpus++] = cs;
}
for (i = n_cpus - 1; i >= 0; i--) {
CPUState *cs = rev[i];
PowerPCCPU *cpu = POWERPC_CPU(cs);
int index = spapr_get_vcpu_id(cpu);
DeviceClass *dc = DEVICE_GET_CLASS(cs);
g_autofree char *nodename = NULL;
int offset;
if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
continue;
}
nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
offset = fdt_add_subnode(fdt, cpus_offset, nodename);
_FDT(offset);
spapr_dt_cpu(cs, fdt, offset, spapr);
}
g_free(rev);
}
static int spapr_dt_rng(void *fdt)
{
int node;
int ret;
node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
if (node <= 0) {
return -1;
}
ret = fdt_setprop_string(fdt, node, "device_type",
"ibm,platform-facilities");
ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
node = fdt_add_subnode(fdt, node, "ibm,random-v1");
if (node <= 0) {
return -1;
}
ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
return ret ? -1 : 0;
}
static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
{
MachineState *ms = MACHINE(spapr);
int rtas;
GString *hypertas = g_string_sized_new(256);
GString *qemu_hypertas = g_string_sized_new(256);
uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
memory_region_size(&MACHINE(spapr)->device_memory->mr);
uint32_t lrdr_capacity[] = {
cpu_to_be32(max_device_addr >> 32),
cpu_to_be32(max_device_addr & 0xffffffff),
cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
};
_FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
/* hypertas */
add_str(hypertas, "hcall-pft");
add_str(hypertas, "hcall-term");
add_str(hypertas, "hcall-dabr");
add_str(hypertas, "hcall-interrupt");
add_str(hypertas, "hcall-tce");
add_str(hypertas, "hcall-vio");
add_str(hypertas, "hcall-splpar");
add_str(hypertas, "hcall-join");
add_str(hypertas, "hcall-bulk");
add_str(hypertas, "hcall-set-mode");
add_str(hypertas, "hcall-sprg0");
add_str(hypertas, "hcall-copy");
add_str(hypertas, "hcall-debug");
add_str(hypertas, "hcall-vphn");
if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
add_str(hypertas, "hcall-rpt-invalidate");
}
add_str(qemu_hypertas, "hcall-memop1");
if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
add_str(hypertas, "hcall-multi-tce");
}
if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
add_str(hypertas, "hcall-hpt-resize");
}
add_str(hypertas, "hcall-watchdog");
_FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
hypertas->str, hypertas->len));
g_string_free(hypertas, TRUE);
_FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
qemu_hypertas->str, qemu_hypertas->len));
g_string_free(qemu_hypertas, TRUE);
spapr_numa_write_rtas_dt(spapr, fdt, rtas);
/*
* FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
* and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
*
* The system reset requirements are driven by existing Linux and PowerVM
* implementation which (contrary to PAPR) saves r3 in the error log
* structure like machine check, so Linux expects to find the saved r3
* value at the address in r3 upon FWNMI-enabled sreset interrupt (and
* does not look at the error value).
*
* System reset interrupts are not subject to interlock like machine
* check, so this memory area could be corrupted if the sreset is
* interrupted by a machine check (or vice versa) if it was shared. To
* prevent this, system reset uses per-CPU areas for the sreset save
* area. A system reset that interrupts a system reset handler could
* still overwrite this area, but Linux doesn't try to recover in that
* case anyway.
*
* The extra 8 bytes is required because Linux's FWNMI error log check
* is off-by-one.
*
* RTAS_MIN_SIZE is required for the RTAS blob itself.
*/
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
RTAS_ERROR_LOG_MAX +
ms->smp.max_cpus * sizeof(uint64_t) * 2 +
sizeof(uint64_t)));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
RTAS_ERROR_LOG_MAX));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
RTAS_EVENT_SCAN_RATE));
g_assert(msi_nonbroken);
_FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
/*
* According to PAPR, rtas ibm,os-term does not guarantee a return
* back to the guest cpu.
*
* While an additional ibm,extended-os-term property indicates
* that rtas call return will always occur. Set this property.
*/
_FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
_FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
lrdr_capacity, sizeof(lrdr_capacity)));
spapr_dt_rtas_tokens(fdt, rtas);
}
/*
* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
* and the XIVE features that the guest may request and thus the valid
* values for bytes 23..26 of option vector 5:
*/
static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
int chosen)
{
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
char val[2 * 4] = {
23, 0x00, /* XICS / XIVE mode */
24, 0x00, /* Hash/Radix, filled in below. */
25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
26, 0x40, /* Radix options: GTSE == yes. */
};
if (spapr->irq->xics && spapr->irq->xive) {
val[1] = SPAPR_OV5_XIVE_BOTH;
} else if (spapr->irq->xive) {
val[1] = SPAPR_OV5_XIVE_EXPLOIT;
} else {
assert(spapr->irq->xics);
val[1] = SPAPR_OV5_XIVE_LEGACY;
}
if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
first_ppc_cpu->compat_pvr)) {
/*
* If we're in a pre POWER9 compat mode then the guest should
* do hash and use the legacy interrupt mode
*/
val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
val[3] = 0x00; /* Hash */
spapr_check_mmu_mode(false);
} else if (kvm_enabled()) {
if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
val[3] = 0x80; /* OV5_MMU_BOTH */
} else if (kvmppc_has_cap_mmu_radix()) {
val[3] = 0x40; /* OV5_MMU_RADIX_300 */
} else {
val[3] = 0x00; /* Hash */
}
} else {
/* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
val[3] = 0xC0;
}
_FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
val, sizeof(val)));
}
static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
{
MachineState *machine = MACHINE(spapr);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
uint8_t rng_seed[32];
int chosen;
_FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
if (reset) {
const char *boot_device = spapr->boot_device;
g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
size_t cb = 0;
g_autofree char *bootlist = get_boot_devices_list(&cb);
if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
_FDT(fdt_setprop_string(fdt, chosen, "bootargs",
machine->kernel_cmdline));
}
if (spapr->initrd_size) {
_FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
spapr->initrd_base));
_FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
spapr->initrd_base + spapr->initrd_size));
}
if (spapr->kernel_size) {
uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
cpu_to_be64(spapr->kernel_size) };
_FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
&kprop, sizeof(kprop)));
if (spapr->kernel_le) {
_FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
}
}
if (machine->boot_config.has_menu && machine->boot_config.menu) {
_FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
}
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
if (cb && bootlist) {
int i;
for (i = 0; i < cb; i++) {
if (bootlist[i] == '\n') {
bootlist[i] = ' ';
}
}
_FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
}
if (boot_device && strlen(boot_device)) {
_FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
}
if (spapr->want_stdout_path && stdout_path) {
/*
* "linux,stdout-path" and "stdout" properties are
* deprecated by linux kernel. New platforms should only
* use the "stdout-path" property. Set the new property
* and continue using older property to remain compatible
* with the existing firmware.
*/
_FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
_FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
}
/*
* We can deal with BAR reallocation just fine, advertise it
* to the guest
*/
if (smc->linux_pci_probe) {
_FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
}
spapr_dt_ov5_platform_support(spapr, fdt, chosen);
}
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
_FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
_FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
}
static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
{
/* The /hypervisor node isn't in PAPR - this is a hack to allow PR
* KVM to work under pHyp with some guest co-operation */
int hypervisor;
uint8_t hypercall[16];
_FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
/* indicate KVM hypercall interface */
_FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
if (kvmppc_has_cap_fixup_hcalls()) {
/*
* Older KVM versions with older guest kernels were broken
* with the magic page, don't allow the guest to map it.
*/
if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
sizeof(hypercall))) {
_FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
hypercall, sizeof(hypercall)));
}
}
}
void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
{
MachineState *machine = MACHINE(spapr);
MachineClass *mc = MACHINE_GET_CLASS(machine);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
uint32_t root_drc_type_mask = 0;
int ret;
void *fdt;
SpaprPhbState *phb;
char *buf;
fdt = g_malloc0(space);
_FDT((fdt_create_empty_tree(fdt, space)));
/* Root node */
_FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
_FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
_FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
/* Guest UUID & Name*/
buf = qemu_uuid_unparse_strdup(&qemu_uuid);
_FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
if (qemu_uuid_set) {
_FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
}
g_free(buf);
if (qemu_get_vm_name()) {
_FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
qemu_get_vm_name()));
}
/* Host Model & Serial Number */
if (spapr->host_model) {
_FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
} else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
_FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
g_free(buf);
}
if (spapr->host_serial) {
_FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
} else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
_FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
g_free(buf);
}
_FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
_FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
/* /interrupt controller */
spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
ret = spapr_dt_memory(spapr, fdt);
if (ret < 0) {
error_report("couldn't setup memory nodes in fdt");
exit(1);
}
/* /vdevice */
spapr_dt_vdevice(spapr->vio_bus, fdt);
if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
ret = spapr_dt_rng(fdt);
if (ret < 0) {
error_report("could not set up rng device in the fdt");
exit(1);
}
}
QLIST_FOREACH(phb, &spapr->phbs, list) {
ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
if (ret < 0) {
error_report("couldn't setup PCI devices in fdt");
exit(1);
}
}
spapr_dt_cpus(fdt, spapr);
/* ibm,drc-indexes and friends */
if (smc->dr_lmb_enabled) {
root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
}
if (smc->dr_phb_enabled) {
root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
}
if (mc->nvdimm_supported) {
root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
}
if (root_drc_type_mask) {
_FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
}
if (mc->has_hotpluggable_cpus) {
int offset = fdt_path_offset(fdt, "/cpus");
ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
if (ret < 0) {
error_report("Couldn't set up CPU DR device tree properties");
exit(1);
}
}
/* /event-sources */
spapr_dt_events(spapr, fdt);
/* /rtas */
spapr_dt_rtas(spapr, fdt);
/* /chosen */
spapr_dt_chosen(spapr, fdt, reset);
/* /hypervisor */
if (kvm_enabled()) {
spapr_dt_hypervisor(spapr, fdt);
}
/* Build memory reserve map */
if (reset) {
if (spapr->kernel_size) {
_FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
spapr->kernel_size)));
}
if (spapr->initrd_size) {
_FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
spapr->initrd_size)));
}
}
/* NVDIMM devices */
if (mc->nvdimm_supported) {
spapr_dt_persistent_memory(spapr, fdt);
}
return fdt;
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
SpaprMachineState *spapr = opaque;
return (addr & 0x0fffffff) + spapr->kernel_addr;
}
static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
/* The TCG path should also be holding the BQL at this point */
g_assert(qemu_mutex_iothread_locked());
g_assert(!vhyp_cpu_in_nested(cpu));
if (FIELD_EX64(env->msr, MSR, PR)) {
hcall_dprintf("Hypercall made with MSR[PR]=1\n");
env->gpr[3] = H_PRIVILEGE;
} else {
env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
}
}
struct LPCRSyncState {
target_ulong value;
target_ulong mask;
};
static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
{
struct LPCRSyncState *s = arg.host_ptr;
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
target_ulong lpcr;
cpu_synchronize_state(cs);
lpcr = env->spr[SPR_LPCR];
lpcr &= ~s->mask;
lpcr |= s->value;
ppc_store_lpcr(cpu, lpcr);
}
void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
{
CPUState *cs;
struct LPCRSyncState s = {
.value = value,
.mask = mask
};
CPU_FOREACH(cs) {
run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
}
}
static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
target_ulong lpid, ppc_v3_pate_t *entry)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
if (!spapr_cpu->in_nested) {
assert(lpid == 0);
/* Copy PATE1:GR into PATE0:HR */
entry->dw0 = spapr->patb_entry & PATE0_HR;
entry->dw1 = spapr->patb_entry;
} else {
uint64_t patb, pats;
assert(lpid != 0);
patb = spapr->nested_ptcr & PTCR_PATB;
pats = spapr->nested_ptcr & PTCR_PATS;
/* Check if partition table is properly aligned */
if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
return false;
}
/* Calculate number of entries */
pats = 1ull << (pats + 12 - 4);
if (pats <= lpid) {
return false;
}
/* Grab entry */
patb += 16 * lpid;
entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
}
return true;
}
#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
/*
* Get the fd to access the kernel htab, re-opening it if necessary
*/
static int get_htab_fd(SpaprMachineState *spapr)
{
Error *local_err = NULL;
if (spapr->htab_fd >= 0) {
return spapr->htab_fd;
}
spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
if (spapr->htab_fd < 0) {
error_report_err(local_err);
}
return spapr->htab_fd;
}
void close_htab_fd(SpaprMachineState *spapr)
{
if (spapr->htab_fd >= 0) {
close(spapr->htab_fd);
}
spapr->htab_fd = -1;
}
static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
}
static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
assert(kvm_enabled());
if (!spapr->htab) {
return 0;
}
return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
}
static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
hwaddr ptex, int n)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
if (!spapr->htab) {
/*
* HTAB is controlled by KVM. Fetch into temporary buffer
*/
ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
kvmppc_read_hptes(hptes, ptex, n);
return hptes;
}
/*
* HTAB is controlled by QEMU. Just point to the internally
* accessible PTEG.
*/
return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
}
static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
const ppc_hash_pte64_t *hptes,
hwaddr ptex, int n)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
if (!spapr->htab) {
g_free((void *)hptes);
}
/* Nothing to do for qemu managed HPT */
}
void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
uint64_t pte0, uint64_t pte1)
{
SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
hwaddr offset = ptex * HASH_PTE_SIZE_64;
if (!spapr->htab) {
kvmppc_write_hpte(ptex, pte0, pte1);
} else {
if (pte0 & HPTE64_V_VALID) {
stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
/*
* When setting valid, we write PTE1 first. This ensures
* proper synchronization with the reading code in
* ppc_hash64_pteg_search()
*/
smp_wmb();
stq_p(spapr->htab + offset, pte0);
} else {
stq_p(spapr->htab + offset, pte0);
/*
* When clearing it we set PTE0 first. This ensures proper
* synchronization with the reading code in
* ppc_hash64_pteg_search()
*/
smp_wmb();
stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
}
}
}
static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
uint64_t pte1)
{
hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
if (!spapr->htab) {
/* There should always be a hash table when this is called */
error_report("spapr_hpte_set_c called with no hash table !");
return;
}
/* The HW performs a non-atomic byte update */
stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
}
static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
uint64_t pte1)
{
hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
if (!spapr->htab) {
/* There should always be a hash table when this is called */
error_report("spapr_hpte_set_r called with no hash table !");
return;
}
/* The HW performs a non-atomic byte update */
stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
}
int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
int shift;
/* We aim for a hash table of size 1/128 the size of RAM (rounded
* up). The PAPR recommendation is actually 1/64 of RAM size, but
* that's much more than is needed for Linux guests */
shift = ctz64(pow2ceil(ramsize)) - 7;
shift = MAX(shift, 18); /* Minimum architected size */
shift = MIN(shift, 46); /* Maximum architected size */
return shift;
}
void spapr_free_hpt(SpaprMachineState *spapr)
{
qemu_vfree(spapr->htab);
spapr->htab = NULL;
spapr->htab_shift = 0;
close_htab_fd(spapr);
}
int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
{
ERRP_GUARD();
long rc;
/* Clean up any HPT info from a previous boot */
spapr_free_hpt(spapr);
rc = kvmppc_reset_htab(shift);
if (rc == -EOPNOTSUPP) {
error_setg(errp, "HPT not supported in nested guests");
return -EOPNOTSUPP;
}
if (rc < 0) {
/* kernel-side HPT needed, but couldn't allocate one */
error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
shift);
error_append_hint(errp, "Try smaller maxmem?\n");
return -errno;
} else if (rc > 0) {
/* kernel-side HPT allocated */
if (rc != shift) {
error_setg(errp,
"Requested order %d HPT, but kernel allocated order %ld",
shift, rc);
error_append_hint(errp, "Try smaller maxmem?\n");
return -ENOSPC;
}
spapr->htab_shift = shift;
spapr->htab = NULL;
} else {
/* kernel-side HPT not needed, allocate in userspace instead */
size_t size = 1ULL << shift;
int i;
spapr->htab = qemu_memalign(size, size);
memset(spapr->htab, 0, size);
spapr->htab_shift = shift;
for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
DIRTY_HPTE(HPTE(spapr->htab, i));
}
}
/* We're setting up a hash table, so that means we're not radix */
spapr->patb_entry = 0;
spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
return 0;
}
void spapr_setup_hpt(SpaprMachineState *spapr)
{
int hpt_shift;
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
} else {
uint64_t current_ram_size;
current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
}
spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
if (kvm_enabled()) {
hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
/* Check our RMA fits in the possible VRMA */
if (vrma_limit < spapr->rma_size) {
error_report("Unable to create %" HWADDR_PRIu
"MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
spapr->rma_size / MiB, vrma_limit / MiB);
exit(EXIT_FAILURE);
}
}
}
void spapr_check_mmu_mode(bool guest_radix)
{
if (guest_radix) {
if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
error_report("Guest requested unavailable MMU mode (radix).");
exit(EXIT_FAILURE);
}
} else {
if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
&& !kvmppc_has_cap_mmu_hash_v3()) {
error_report("Guest requested unavailable MMU mode (hash).");
exit(EXIT_FAILURE);
}
}
}
static void spapr_machine_reset(MachineState *machine)
{
SpaprMachineState *spapr = SPAPR_MACHINE(machine);
PowerPCCPU *first_ppc_cpu;
hwaddr fdt_addr;
void *fdt;
int rc;
pef_kvm_reset(machine->cgs, &error_fatal);
spapr_caps_apply(spapr);
first_ppc_cpu = POWERPC_CPU(first_cpu);
if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
spapr->max_compat_pvr)) {
/*
* If using KVM with radix mode available, VCPUs can be started
* without a HPT because KVM will start them in radix mode.
* Set the GR bit in PATE so that we know there is no HPT.
*/
spapr->patb_entry = PATE1_GR;
spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
} else {
spapr_setup_hpt(spapr);
}
qemu_devices_reset();
spapr_ovec_cleanup(spapr->ov5_cas);
spapr->ov5_cas = spapr_ovec_new();
ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
/*
* This is fixing some of the default configuration of the XIVE
* devices. To be called after the reset of the machine devices.
*/
spapr_irq_reset(spapr, &error_fatal);
/*
* There is no CAS under qtest. Simulate one to please the code that
* depends on spapr->ov5_cas. This is especially needed to test device
* unplug, so we do that before resetting the DRCs.
*/
if (qtest_enabled()) {
spapr_ovec_cleanup(spapr->ov5_cas);
spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
}
spapr_nvdimm_finish_flushes();
/* DRC reset may cause a device to be unplugged. This will cause troubles
* if this device is used by another device (eg, a running vhost backend
* will crash QEMU if the DIMM holding the vring goes away). To avoid such
* situations, we reset DRCs after all devices have been reset.
*/
spapr_drc_reset_all(spapr);
spapr_clear_pending_events(spapr);
/*
* We place the device tree just below either the top of the RMA,
* or just below 2GB, whichever is lower, so that it can be
* processed with 32-bit real mode code if necessary
*/
fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
if (spapr->vof) {
spapr_vof_reset(spapr, fdt, &error_fatal);
/*
* Do not pack the FDT as the client may change properties.
* VOF client does not expect the FDT so we do not load it to the VM.
*/
} else {
rc = fdt_pack(fdt);
/* Should only fail if we've built a corrupted tree */
assert(rc == 0);
spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
0, fdt_addr, 0);
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
}
qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
g_free(spapr->fdt_blob);
spapr->fdt_size = fdt_totalsize(fdt);
spapr->fdt_initial_size = spapr->fdt_size;
spapr->fdt_blob = fdt;
/* Set up the entry state */
first_ppc_cpu->env.gpr[5] = 0;
spapr->fwnmi_system_reset_addr = -1;
spapr->fwnmi_machine_check_addr = -1;
spapr->fwnmi_machine_check_interlock = -1;
/* Signal all vCPUs waiting on this condition */
qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
migrate_del_blocker(spapr->fwnmi_migration_blocker);
}
static void spapr_create_nvram(SpaprMachineState *spapr)
{
DeviceState *dev = qdev_new("spapr-nvram");
DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
if (dinfo) {
qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
}
qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
spapr->nvram = (struct SpaprNvram *)dev;
}
static void spapr_rtc_create(SpaprMachineState *spapr)
{
object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
sizeof(spapr->rtc), TYPE_SPAPR_RTC,
&error_fatal, NULL);
qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
"date");
}
/* Returns whether we want to use VGA or not */
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
{
vga_interface_created = true;
switch (vga_interface_type) {
case VGA_NONE:
return false;
case VGA_DEVICE:
return true;
case VGA_STD:
case VGA_VIRTIO:
case VGA_CIRRUS:
return pci_vga_init(pci_bus) != NULL;
default:
error_setg(errp,
"Unsupported VGA mode, only -vga std or -vga virtio is supported");
return false;
}
}
static int spapr_pre_load(void *opaque)
{
int rc;
rc = spapr_caps_pre_load(opaque);
if (rc) {
return rc;
}
return 0;
}
static int spapr_post_load(void *opaque, int version_id)
{
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
int err = 0;
err = spapr_caps_post_migration(spapr);
if (err) {
return err;
}
/*
* In earlier versions, there was no separate qdev for the PAPR
* RTC, so the RTC offset was stored directly in sPAPREnvironment.
* So when migrating from those versions, poke the incoming offset
* value into the RTC device
*/
if (version_id < 3) {
err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
if (err) {
return err;
}
}
if (kvm_enabled() && spapr->patb_entry) {
PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
bool radix = !!(spapr->patb_entry & PATE1_GR);
bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
/*
* Update LPCR:HR and UPRT as they may not be set properly in
* the stream
*/
spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
LPCR_HR | LPCR_UPRT);
err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
if (err) {
error_report("Process table config unsupported by the host");
return -EINVAL;
}
}
err = spapr_irq_post_load(spapr, version_id);
if (err) {
return err;
}
return err;
}
static int spapr_pre_save(void *opaque)
{
int rc;
rc = spapr_caps_pre_save(opaque);
if (rc) {
return rc;
}
return 0;
}
static bool version_before_3(void *opaque, int version_id)
{
return version_id < 3;
}
static bool spapr_pending_events_needed(void *opaque)
{
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
return !QTAILQ_EMPTY(&spapr->pending_events);
}
static const VMStateDescription vmstate_spapr_event_entry = {
.name = "spapr_event_log_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(summary, SpaprEventLogEntry),
VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
NULL, extended_length),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr_pending_events = {
.name = "spapr_pending_events",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_pending_events_needed,
.fields = (VMStateField[]) {
VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
vmstate_spapr_event_entry, SpaprEventLogEntry, next),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_ov5_cas_needed(void *opaque)
{
SpaprMachineState *spapr = opaque;
SpaprOptionVector *ov5_mask = spapr_ovec_new();
bool cas_needed;
/* Prior to the introduction of SpaprOptionVector, we had two option
* vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
* Both of these options encode machine topology into the device-tree
* in such a way that the now-booted OS should still be able to interact
* appropriately with QEMU regardless of what options were actually
* negotiatied on the source side.
*
* As such, we can avoid migrating the CAS-negotiated options if these
* are the only options available on the current machine/platform.
* Since these are the only options available for pseries-2.7 and
* earlier, this allows us to maintain old->new/new->old migration
* compatibility.
*
* For QEMU 2.8+, there are additional CAS-negotiatable options available
* via default pseries-2.8 machines and explicit command-line parameters.
* Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
* of the actual CAS-negotiated values to continue working properly. For
* example, availability of memory unplug depends on knowing whether
* OV5_HP_EVT was negotiated via CAS.
*
* Thus, for any cases where the set of available CAS-negotiatable
* options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
* include the CAS-negotiated options in the migration stream, unless
* if they affect boot time behaviour only.
*/
spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
/* We need extra information if we have any bits outside the mask
* defined above */
cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
spapr_ovec_cleanup(ov5_mask);
return cas_needed;
}
static const VMStateDescription vmstate_spapr_ov5_cas = {
.name = "spapr_option_vector_ov5_cas",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_ov5_cas_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
vmstate_spapr_ovec, SpaprOptionVector),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_patb_entry_needed(void *opaque)
{
SpaprMachineState *spapr = opaque;
return !!spapr->patb_entry;
}
static const VMStateDescription vmstate_spapr_patb_entry = {
.name = "spapr_patb_entry",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_patb_entry_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(patb_entry, SpaprMachineState),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_irq_map_needed(void *opaque)
{
SpaprMachineState *spapr = opaque;
return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
}
static const VMStateDescription vmstate_spapr_irq_map = {
.name = "spapr_irq_map",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_irq_map_needed,
.fields = (VMStateField[]) {
VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_dtb_needed(void *opaque)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
return smc->update_dt_enabled;
}
static int spapr_dtb_pre_load(void *opaque)
{
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
g_free(spapr->fdt_blob);
spapr->fdt_blob = NULL;
spapr->fdt_size = 0;
return 0;
}
static const VMStateDescription vmstate_spapr_dtb = {
.name = "spapr_dtb",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_dtb_needed,
.pre_load = spapr_dtb_pre_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
VMSTATE_UINT32(fdt_size, SpaprMachineState),
VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
fdt_size),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_fwnmi_needed(void *opaque)
{
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
return spapr->fwnmi_machine_check_addr != -1;
}
static int spapr_fwnmi_pre_save(void *opaque)
{
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
/*
* Check if machine check handling is in progress and print a
* warning message.
*/
if (spapr->fwnmi_machine_check_interlock != -1) {
warn_report("A machine check is being handled during migration. The"
"handler may run and log hardware error on the destination");
}
return 0;
}
static const VMStateDescription vmstate_spapr_fwnmi = {
.name = "spapr_fwnmi",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_fwnmi_needed,
.pre_save = spapr_fwnmi_pre_save,
.fields = (VMStateField[]) {
VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr = {
.name = "spapr",
.version_id = 3,
.minimum_version_id = 1,
.pre_load = spapr_pre_load,
.post_load = spapr_post_load,
.pre_save = spapr_pre_save,
.fields = (VMStateField[]) {
/* used to be @next_irq */
VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
/* RTC offset */
VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_spapr_ov5_cas,
&vmstate_spapr_patb_entry,
&vmstate_spapr_pending_events,
&vmstate_spapr_cap_htm,
&vmstate_spapr_cap_vsx,
&vmstate_spapr_cap_dfp,
&vmstate_spapr_cap_cfpc,
&vmstate_spapr_cap_sbbc,
&vmstate_spapr_cap_ibs,
&vmstate_spapr_cap_hpt_maxpagesize,
&vmstate_spapr_irq_map,
&vmstate_spapr_cap_nested_kvm_hv,
&vmstate_spapr_dtb,
&vmstate_spapr_cap_large_decr,
&vmstate_spapr_cap_ccf_assist,
&vmstate_spapr_cap_fwnmi,
&vmstate_spapr_fwnmi,
&vmstate_spapr_cap_rpt_invalidate,
NULL
}
};
static int htab_save_setup(QEMUFile *f, void *opaque)
{
SpaprMachineState *spapr = opaque;
/* "Iteration" header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
} else {
qemu_put_be32(f, spapr->htab_shift);
}
if (spapr->htab) {
spapr->htab_save_index = 0;
spapr->htab_first_pass = true;
} else {
if (spapr->htab_shift) {
assert(kvm_enabled());
}
}
return 0;
}
static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
int chunkstart, int n_valid, int n_invalid)
{
qemu_put_be32(f, chunkstart);
qemu_put_be16(f, n_valid);
qemu_put_be16(f, n_invalid);
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
HASH_PTE_SIZE_64 * n_valid);
}
static void htab_save_end_marker(QEMUFile *f)
{
qemu_put_be32(f, 0);
qemu_put_be16(f, 0);
qemu_put_be16(f, 0);
}
static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
int64_t max_ns)
{
bool has_timeout = max_ns != -1;
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
assert(spapr->htab_first_pass);
do {
int chunkstart;
/* Consume invalid HPTEs */
while ((index < htabslots)
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
}
/* Consume valid HPTEs */
chunkstart = index;
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
&& HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
}
if (index > chunkstart) {
int n_valid = index - chunkstart;
htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
if (has_timeout &&
(qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break;
}
}
} while ((index < htabslots) && !qemu_file_rate_limit(f));
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
spapr->htab_first_pass = false;
}
spapr->htab_save_index = index;
}
static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
int64_t max_ns)
{
bool final = max_ns < 0;
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int examined = 0, sent = 0;
int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
assert(!spapr->htab_first_pass);
do {
int chunkstart, invalidstart;
/* Consume non-dirty HPTEs */
while ((index < htabslots)
&& !HPTE_DIRTY(HPTE(spapr->htab, index))) {
index++;
examined++;
}
chunkstart = index;
/* Consume valid dirty HPTEs */
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
&& HPTE_DIRTY(HPTE(spapr->htab, index))
&& HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
examined++;
}
invalidstart = index;
/* Consume invalid dirty HPTEs */
while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
&& HPTE_DIRTY(HPTE(spapr->htab, index))
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
examined++;
}
if (index > chunkstart) {
int n_valid = invalidstart - chunkstart;
int n_invalid = index - invalidstart;
htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
sent += index - chunkstart;
if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break;
}
}
if (examined >= htabslots) {
break;
}
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
}
} while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
}
spapr->htab_save_index = index;
return (examined >= htabslots) && (sent == 0) ? 1 : 0;
}
#define MAX_ITERATION_NS 5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE 2048
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
SpaprMachineState *spapr = opaque;
int fd;
int rc = 0;
/* Iteration header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
return 1;
} else {
qemu_put_be32(f, 0);
}
if (!spapr->htab) {
assert(kvm_enabled());
fd = get_htab_fd(spapr);
if (fd < 0) {
return fd;
}
rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
if (rc < 0) {
return rc;
}
} else if (spapr->htab_first_pass) {
htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
} else {
rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
}
htab_save_end_marker(f);
return rc;
}
static int htab_save_complete(QEMUFile *f, void *opaque)
{
SpaprMachineState *spapr = opaque;
int fd;
/* Iteration header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
return 0;
} else {
qemu_put_be32(f, 0);
}
if (!spapr->htab) {
int rc;
assert(kvm_enabled());
fd = get_htab_fd(spapr);
if (fd < 0) {
return fd;
}
rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
if (rc < 0) {
return rc;
}
} else {
if (spapr->htab_first_pass) {
htab_save_first_pass(f, spapr, -1);
}
htab_save_later_pass(f, spapr, -1);
}
/* End marker */
htab_save_end_marker(f);
return 0;
}
static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
SpaprMachineState *spapr = opaque;
uint32_t section_hdr;
int fd = -1;
Error *local_err = NULL;
if (version_id < 1 || version_id > 1) {
error_report("htab_load() bad version");
return -EINVAL;
}
section_hdr = qemu_get_be32(f);
if (section_hdr == -1) {
spapr_free_hpt(spapr);
return 0;
}
if (section_hdr) {
int ret;
/* First section gives the htab size */
ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
if (ret < 0) {
error_report_err(local_err);
return ret;
}
return 0;
}
if (!spapr->htab) {
assert(kvm_enabled());
fd = kvmppc_get_htab_fd(true, 0, &local_err);
if (fd < 0) {
error_report_err(local_err);
return fd;
}
}
while (true) {
uint32_t index;
uint16_t n_valid, n_invalid;
index = qemu_get_be32(f);
n_valid = qemu_get_be16(f);
n_invalid = qemu_get_be16(f);
if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
/* End of Stream */
break;
}
if ((index + n_valid + n_invalid) >
(HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
/* Bad index in stream */
error_report(
"htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
index, n_valid, n_invalid, spapr->htab_shift);
return -EINVAL;
}
if (spapr->htab) {
if (n_valid) {
qemu_get_buffer(f, HPTE(spapr->htab, index),
HASH_PTE_SIZE_64 * n_valid);
}
if (n_invalid) {
memset(HPTE(spapr->htab, index + n_valid), 0,
HASH_PTE_SIZE_64 * n_invalid);
}
} else {
int rc;
assert(fd >= 0);
rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
&local_err);
if (rc < 0) {
error_report_err(local_err);
return rc;
}
}
}
if (!spapr->htab) {
assert(fd >= 0);
close(fd);
}
return 0;
}
static void htab_save_cleanup(void *opaque)
{
SpaprMachineState *spapr = opaque;
close_htab_fd(spapr);
}
static SaveVMHandlers savevm_htab_handlers = {
.save_setup = htab_save_setup,
.save_live_iterate = htab_save_iterate,
.save_live_complete_precopy = htab_save_complete,
.save_cleanup = htab_save_cleanup,
.load_state = htab_load,
};
static void spapr_boot_set(void *opaque, const char *boot_device,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
g_free(spapr->boot_device);
spapr->boot_device = g_strdup(boot_device);
}
static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
int i;
for (i = 0; i < nr_lmbs; i++) {
uint64_t addr;
addr = i * lmb_size + machine->device_memory->base;
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
addr / lmb_size);
}
}
/*
* If RAM size, maxmem size and individual node mem sizes aren't aligned
* to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
* since we can't support such unaligned sizes with DRCONF_MEMORY.
*/
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
{
int i;
if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
" is not aligned to %" PRIu64 " MiB",
machine->ram_size,
SPAPR_MEMORY_BLOCK_SIZE / MiB);
return;
}
if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
" is not aligned to %" PRIu64 " MiB",
machine->ram_size,
SPAPR_MEMORY_BLOCK_SIZE / MiB);
return;
}
for (i = 0; i < machine->numa_state->num_nodes; i++) {
if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp,
"Node %d memory size 0x%" PRIx64
" is not aligned to %" PRIu64 " MiB",
i, machine->numa_state->nodes[i].node_mem,
SPAPR_MEMORY_BLOCK_SIZE / MiB);
return;
}
}
}
/* find cpu slot in machine->possible_cpus by core_id */
static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
int index = id / ms->smp.threads;
if (index >= ms->possible_cpus->len) {
return NULL;
}
if (idx) {
*idx = index;
}
return &ms->possible_cpus->cpus[index];
}
static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
{
MachineState *ms = MACHINE(spapr);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
Error *local_err = NULL;
bool vsmt_user = !!spapr->vsmt;
int kvm_smt = kvmppc_smt_threads();
int ret;
unsigned int smp_threads = ms->smp.threads;
if (!kvm_enabled() && (smp_threads > 1)) {
error_setg(errp, "TCG cannot support more than 1 thread/core "
"on a pseries machine");
return;
}
if (!is_power_of_2(smp_threads)) {
error_setg(errp, "Cannot support %d threads/core on a pseries "
"machine because it must be a power of 2", smp_threads);
return;
}
/* Detemine the VSMT mode to use: */
if (vsmt_user) {
if (spapr->vsmt < smp_threads) {
error_setg(errp, "Cannot support VSMT mode %d"
" because it must be >= threads/core (%d)",
spapr->vsmt, smp_threads);
return;
}
/* In this case, spapr->vsmt has been set by the command line */
} else if (!smc->smp_threads_vsmt) {
/*
* Default VSMT value is tricky, because we need it to be as
* consistent as possible (for migration), but this requires
* changing it for at least some existing cases. We pick 8 as
* the value that we'd get with KVM on POWER8, the
* overwhelmingly common case in production systems.
*/
spapr->vsmt = MAX(8, smp_threads);
} else {
spapr->vsmt = smp_threads;
}
/* KVM: If necessary, set the SMT mode: */
if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
ret = kvmppc_set_smt_threads(spapr->vsmt);
if (ret) {
/* Looks like KVM isn't able to change VSMT mode */
error_setg(&local_err,
"Failed to set KVM's VSMT mode to %d (errno %d)",
spapr->vsmt, ret);
/* We can live with that if the default one is big enough
* for the number of threads, and a submultiple of the one
* we want. In this case we'll waste some vcpu ids, but
* behaviour will be correct */
if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
warn_report_err(local_err);
} else {
if (!vsmt_user) {
error_append_hint(&local_err,
"On PPC, a VM with %d threads/core"
" on a host with %d threads/core"
" requires the use of VSMT mode %d.\n",
smp_threads, kvm_smt, spapr->vsmt);
}
kvmppc_error_append_smt_possible_hint(&local_err);
error_propagate(errp, local_err);
}
}
}
/* else TCG: nothing to do currently */
}
static void spapr_init_cpus(SpaprMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
MachineClass *mc = MACHINE_GET_CLASS(machine);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
const char *type = spapr_get_cpu_core_type(machine->cpu_type);
const CPUArchIdList *possible_cpus;
unsigned int smp_cpus = machine->smp.cpus;
unsigned int smp_threads = machine->smp.threads;
unsigned int max_cpus = machine->smp.max_cpus;
int boot_cores_nr = smp_cpus / smp_threads;
int i;
possible_cpus = mc->possible_cpu_arch_ids(machine);
if (mc->has_hotpluggable_cpus) {
if (smp_cpus % smp_threads) {
error_report("smp_cpus (%u) must be multiple of threads (%u)",
smp_cpus, smp_threads);
exit(1);
}
if (max_cpus % smp_threads) {
error_report("max_cpus (%u) must be multiple of threads (%u)",
max_cpus, smp_threads);
exit(1);
}
} else {
if (max_cpus != smp_cpus) {
error_report("This machine version does not support CPU hotplug");
exit(1);
}
boot_cores_nr = possible_cpus->len;
}
if (smc->pre_2_10_has_unused_icps) {
int i;
for (i = 0; i < spapr_max_server_number(spapr); i++) {
/* Dummy entries get deregistered when real ICPState objects
* are registered during CPU core hotplug.
*/
pre_2_10_vmstate_register_dummy_icp(i);
}
}
for (i = 0; i < possible_cpus->len; i++) {
int core_id = i * smp_threads;
if (mc->has_hotpluggable_cpus) {
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
spapr_vcpu_id(spapr, core_id));
}
if (i < boot_cores_nr) {
Object *core = object_new(type);
int nr_threads = smp_threads;
/* Handle the partially filled core for older machine types */
if ((i + 1) * smp_threads >= smp_cpus) {
nr_threads = smp_cpus - i * smp_threads;
}
object_property_set_int(core, "nr-threads", nr_threads,
&error_fatal);
object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
&error_fatal);
qdev_realize(DEVICE(core), NULL, &error_fatal);
object_unref(core);
}
}
}
static PCIHostState *spapr_create_default_phb(void)
{
DeviceState *dev;
dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
qdev_prop_set_uint32(dev, "index", 0);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
return PCI_HOST_BRIDGE(dev);
}
static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
{
MachineState *machine = MACHINE(spapr);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
hwaddr rma_size = machine->ram_size;
hwaddr node0_size = spapr_node0_size(machine);
/* RMA has to fit in the first NUMA node */
rma_size = MIN(rma_size, node0_size);
/*
* VRMA access is via a special 1TiB SLB mapping, so the RMA can
* never exceed that
*/
rma_size = MIN(rma_size, 1 * TiB);
/*
* Clamp the RMA size based on machine type. This is for
* migration compatibility with older qemu versions, which limited
* the RMA size for complicated and mostly bad reasons.
*/
if (smc->rma_limit) {
rma_size = MIN(rma_size, smc->rma_limit);
}
if (rma_size < MIN_RMA_SLOF) {
error_setg(errp,
"pSeries SLOF firmware requires >= %" HWADDR_PRIx
"ldMiB guest RMA (Real Mode Area memory)",
MIN_RMA_SLOF / MiB);
return 0;
}
return rma_size;
}
static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
int i;
for (i = 0; i < machine->ram_slots; i++) {
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
}
}
/* pSeries LPAR / sPAPR hardware init */
static void spapr_machine_init(MachineState *machine)
{
SpaprMachineState *spapr = SPAPR_MACHINE(machine);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
const char *bios_name = machine->firmware ?: bios_default;
g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
PCIHostState *phb;
bool has_vga;
int i;
MemoryRegion *sysmem = get_system_memory();
long load_limit, fw_size;
Error *resize_hpt_err = NULL;
if (!filename) {
error_report("Could not find LPAR firmware '%s'", bios_name);
exit(1);
}
fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
if (fw_size <= 0) {
error_report("Could not load LPAR firmware '%s'", filename);
exit(1);
}
/*
* if Secure VM (PEF) support is configured, then initialize it
*/
pef_kvm_init(machine->cgs, &error_fatal);
msi_nonbroken = true;
QLIST_INIT(&spapr->phbs);
QTAILQ_INIT(&spapr->pending_dimm_unplugs);
/* Determine capabilities to run with */
spapr_caps_init(spapr);
kvmppc_check_papr_resize_hpt(&resize_hpt_err);
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
/*
* If the user explicitly requested a mode we should either
* supply it, or fail completely (which we do below). But if
* it's not set explicitly, we reset our mode to something
* that works
*/
if (resize_hpt_err) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
error_free(resize_hpt_err);
resize_hpt_err = NULL;
} else {
spapr->resize_hpt = smc->resize_hpt_default;
}
}
assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
/*
* User requested HPT resize, but this host can't supply it. Bail out
*/
error_report_err(resize_hpt_err);
exit(1);
}
error_free(resize_hpt_err);
spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
/* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
/*
* VSMT must be set in order to be able to compute VCPU ids, ie to
* call spapr_max_server_number() or spapr_vcpu_id().
*/
spapr_set_vsmt_mode(spapr, &error_fatal);
/* Set up Interrupt Controller before we create the VCPUs */
spapr_irq_init(spapr, &error_fatal);
/* Set up containers for ibm,client-architecture-support negotiated options
*/
spapr->ov5 = spapr_ovec_new();
spapr->ov5_cas = spapr_ovec_new();
if (smc->dr_lmb_enabled) {
spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
spapr_validate_node_memory(machine, &error_fatal);
}
spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
/* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
if (!smc->pre_6_2_numa_affinity) {
spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
}
/* advertise support for dedicated HP event source to guests */
if (spapr->use_hotplug_event_source) {
spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
}
/* advertise support for HPT resizing */
if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
}
/* advertise support for ibm,dyamic-memory-v2 */
spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
/* advertise XIVE on POWER9 machines */
if (spapr->irq->xive) {
spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
}
/* init CPUs */
spapr_init_cpus(spapr);
spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
/* Init numa_assoc_array */
spapr_numa_associativity_init(spapr, machine);
if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
spapr->max_compat_pvr)) {
spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
/* KVM and TCG always allow GTSE with radix... */
spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
}
/* ... but not with hash (currently). */
if (kvm_enabled()) {
/* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
kvmppc_enable_logical_ci_hcalls();
kvmppc_enable_set_mode_hcall();
/* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
kvmppc_enable_clear_ref_mod_hcalls();
/* Enable H_PAGE_INIT */
kvmppc_enable_h_page_init();
}
/* map RAM */
memory_region_add_subregion(sysmem, 0, machine->ram);
/* always allocate the device memory information */
machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
/* initialize hotplug memory address space */
if (machine->ram_size < machine->maxram_size) {
ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
/*
* Limit the number of hotpluggable memory slots to half the number
* slots that KVM supports, leaving the other half for PCI and other
* devices. However ensure that number of slots doesn't drop below 32.
*/
int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
SPAPR_MAX_RAM_SLOTS;
if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
max_memslots = SPAPR_MAX_RAM_SLOTS;
}
if (machine->ram_slots > max_memslots) {
error_report("Specified number of memory slots %"
PRIu64" exceeds max supported %d",
machine->ram_slots, max_memslots);
exit(1);
}
machine->device_memory->base = ROUND_UP(machine->ram_size,
SPAPR_DEVICE_MEM_ALIGN);
memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
"device-memory", device_mem_size);
memory_region_add_subregion(sysmem, machine->device_memory->base,
&machine->device_memory->mr);
}
if (smc->dr_lmb_enabled) {
spapr_create_lmb_dr_connectors(spapr);
}
if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
/* Create the error string for live migration blocker */
error_setg(&spapr->fwnmi_migration_blocker,
"A machine check is being handled during migration. The handler"
"may run and log hardware error on the destination");
}
if (mc->nvdimm_supported) {
spapr_create_nvdimm_dr_connectors(spapr);
}
/* Set up RTAS event infrastructure */
spapr_events_init(spapr);
/* Set up the RTC RTAS interfaces */
spapr_rtc_create(spapr);
/* Set up VIO bus */
spapr->vio_bus = spapr_vio_bus_init();
for (i = 0; serial_hd(i); i++) {
spapr_vty_create(spapr->vio_bus, serial_hd(i));
}
/* We always have at least the nvram device on VIO */
spapr_create_nvram(spapr);
/*
* Setup hotplug / dynamic-reconfiguration connectors. top-level
* connectors (described in root DT node's "ibm,drc-types" property)
* are pre-initialized here. additional child connectors (such as
* connectors for a PHBs PCI slots) are added as needed during their
* parent's realization.
*/
if (smc->dr_phb_enabled) {
for (i = 0; i < SPAPR_MAX_PHBS; i++) {
spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
}
}
/* Set up PCI */
spapr_pci_rtas_init();
phb = spapr_create_default_phb();
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("spapr-vlan");
}
if (g_str_equal(nd->model, "spapr-vlan") ||
g_str_equal(nd->model, "ibmveth")) {
spapr_vlan_create(spapr->vio_bus, nd);
} else {
pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
}
}
for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
spapr_vscsi_create(spapr->vio_bus);
}
/* Graphics */
has_vga = spapr_vga_init(phb->bus, &error_fatal);
if (has_vga) {
spapr->want_stdout_path = !machine->enable_graphics;
machine->usb |= defaults_enabled() && !machine->usb_disabled;
} else {
spapr->want_stdout_path = true;
}
if (machine->usb) {
if (smc->use_ohci_by_default) {
pci_create_simple(phb->bus, -1, "pci-ohci");
} else {
pci_create_simple(phb->bus, -1, "nec-usb-xhci");
}
if (has_vga) {
USBBus *usb_bus = usb_bus_find(-1);
usb_create_simple(usb_bus, "usb-kbd");
usb_create_simple(usb_bus, "usb-mouse");
}
}
if (kernel_filename) {
uint64_t loaded_addr = 0;
spapr->kernel_size = load_elf(kernel_filename, NULL,
translate_kernel_address, spapr,
NULL, &loaded_addr, NULL, NULL, 1,
PPC_ELF_MACHINE, 0, 0);
if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
spapr->kernel_size = load_elf(kernel_filename, NULL,
translate_kernel_address, spapr,
NULL, &loaded_addr, NULL, NULL, 0,
PPC_ELF_MACHINE, 0, 0);
spapr->kernel_le = spapr->kernel_size > 0;
}
if (spapr->kernel_size < 0) {
error_report("error loading %s: %s", kernel_filename,
load_elf_strerror(spapr->kernel_size));
exit(1);
}
if (spapr->kernel_addr != loaded_addr) {
warn_report("spapr: kernel_addr changed from 0x%"PRIx64
" to 0x%"PRIx64,
spapr->kernel_addr, loaded_addr);
spapr->kernel_addr = loaded_addr;
}
/* load initrd */
if (initrd_filename) {
/* Try to locate the initrd in the gap between the kernel
* and the firmware. Add a bit of space just in case
*/
spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
+ 0x1ffff) & ~0xffff;
spapr->initrd_size = load_image_targphys(initrd_filename,
spapr->initrd_base,
load_limit
- spapr->initrd_base);
if (spapr->initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
}
}
/* FIXME: Should register things through the MachineState's qdev
* interface, this is a legacy from the sPAPREnvironment structure
* which predated MachineState but had a similar function */
vmstate_register(NULL, 0, &vmstate_spapr, spapr);
register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
&savevm_htab_handlers, spapr);
qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
qemu_register_boot_set(spapr_boot_set, spapr);
/*
* Nothing needs to be done to resume a suspended guest because
* suspending does not change the machine state, so no need for
* a ->wakeup method.
*/
qemu_register_wakeup_support();
if (kvm_enabled()) {
/* to stop and start vmclock */
qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
&spapr->tb);
kvmppc_spapr_enable_inkernel_multitce();
}
qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
if (spapr->vof) {
spapr->vof->fw_size = fw_size; /* for claim() on itself */
spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
}
spapr_watchdog_init(spapr);
}
#define DEFAULT_KVM_TYPE "auto"
static int spapr_kvm_type(MachineState *machine, const char *vm_type)
{
/*
* The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
* accomodate the 'HV' and 'PV' formats that exists in the
* wild. The 'auto' mode is being introduced already as
* lower-case, thus we don't need to bother checking for
* "AUTO".
*/
if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
return 0;
}
if (!g_ascii_strcasecmp(vm_type, "hv")) {
return 1;
}
if (!g_ascii_strcasecmp(vm_type, "pr")) {
return 2;
}
error_report("Unknown kvm-type specified '%s'", vm_type);
exit(1);
}
/*
* Implementation of an interface to adjust firmware path
* for the bootindex property handling.
*/
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
DeviceState *dev)
{
#define CAST(type, obj, name) \
((type *)object_dynamic_cast(OBJECT(obj), (name)))
SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
if (d && bus) {
void *spapr = CAST(void, bus->parent, "spapr-vscsi");
VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
if (spapr) {
/*
* Replace "channel@0/disk@0,0" with "disk@8000000000000000":
* In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
* 0x8000 | (target << 8) | (bus << 5) | lun
* (see the "Logical unit addressing format" table in SAM5)
*/
unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 48);
} else if (virtio) {
/*
* We use SRP luns of the form 01000000 | (target << 8) | lun
* in the top 32 bits of the 64-bit LUN
* Note: the quote above is from SLOF and it is wrong,
* the actual binding is:
* swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
*/
unsigned id = 0x1000000 | (d->id << 16) | d->lun;
if (d->lun >= 256) {
/* Use the LUN "flat space addressing method" */
id |= 0x4000;
}
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 32);
} else if (usb) {
/*
* We use SRP luns of the form 01000000 | (usb-port << 16) | lun
* in the top 32 bits of the 64-bit LUN
*/
unsigned usb_port = atoi(usb->port->path);
unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 32);
}
}
/*
* SLOF probes the USB devices, and if it recognizes that the device is a
* storage device, it changes its name to "storage" instead of "usb-host",
* and additionally adds a child node for the SCSI LUN, so the correct
* boot path in SLOF is something like .../storage@1/disk@xxx" instead.
*/
if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
if (usb_device_is_scsi_storage(usbdev)) {
return g_strdup_printf("storage@%s/disk", usbdev->port->path);
}
}
if (phb) {
/* Replace "pci" with "pci@800000020000000" */
return g_strdup_printf("pci@%"PRIX64, phb->buid);
}
if (vsc) {
/* Same logic as virtio above */
unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
}
if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
/* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
}
if (pcidev) {
return spapr_pci_fw_dev_name(pcidev);
}
return NULL;
}
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return g_strdup(spapr->kvm_type);
}
static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->kvm_type);
spapr->kvm_type = g_strdup(value);
}
static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return spapr->use_hotplug_event_source;
}
static void spapr_set_modern_hotplug_events(Object *obj, bool value,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
spapr->use_hotplug_event_source = value;
}
static bool spapr_get_msix_emulation(Object *obj, Error **errp)
{
return true;
}
static char *spapr_get_resize_hpt(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
switch (spapr->resize_hpt) {
case SPAPR_RESIZE_HPT_DEFAULT:
return g_strdup("default");
case SPAPR_RESIZE_HPT_DISABLED:
return g_strdup("disabled");
case SPAPR_RESIZE_HPT_ENABLED:
return g_strdup("enabled");
case SPAPR_RESIZE_HPT_REQUIRED:
return g_strdup("required");
}
g_assert_not_reached();
}
static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
if (strcmp(value, "default") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
} else if (strcmp(value, "disabled") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
} else if (strcmp(value, "enabled") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
} else if (strcmp(value, "required") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
} else {
error_setg(errp, "Bad value for \"resize-hpt\" property");
}
}
static bool spapr_get_vof(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return spapr->vof != NULL;
}
static void spapr_set_vof(Object *obj, bool value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
if (spapr->vof) {
vof_cleanup(spapr->vof);
g_free(spapr->vof);
spapr->vof = NULL;
}
if (!value) {
return;
}
spapr->vof = g_malloc0(sizeof(*spapr->vof));
}
static char *spapr_get_ic_mode(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
if (spapr->irq == &spapr_irq_xics_legacy) {
return g_strdup("legacy");
} else if (spapr->irq == &spapr_irq_xics) {
return g_strdup("xics");
} else if (spapr->irq == &spapr_irq_xive) {
return g_strdup("xive");
} else if (spapr->irq == &spapr_irq_dual) {
return g_strdup("dual");
}
g_assert_not_reached();
}
static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
return;
}
/* The legacy IRQ backend can not be set */
if (strcmp(value, "xics") == 0) {
spapr->irq = &spapr_irq_xics;
} else if (strcmp(value, "xive") == 0) {
spapr->irq = &spapr_irq_xive;
} else if (strcmp(value, "dual") == 0) {
spapr->irq = &spapr_irq_dual;
} else {
error_setg(errp, "Bad value for \"ic-mode\" property");
}
}
static char *spapr_get_host_model(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return g_strdup(spapr->host_model);
}
static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->host_model);
spapr->host_model = g_strdup(value);
}
static char *spapr_get_host_serial(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return g_strdup(spapr->host_serial);
}
static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->host_serial);
spapr->host_serial = g_strdup(value);
}
static void spapr_instance_init(Object *obj)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
MachineState *ms = MACHINE(spapr);
MachineClass *mc = MACHINE_GET_CLASS(ms);
/*
* NVDIMM support went live in 5.1 without considering that, in
* other archs, the user needs to enable NVDIMM support with the
* 'nvdimm' machine option and the default behavior is NVDIMM
* support disabled. It is too late to roll back to the standard
* behavior without breaking 5.1 guests.
*/
if (mc->nvdimm_supported) {
ms->nvdimms_state->is_enabled = true;
}
spapr->htab_fd = -1;
spapr->use_hotplug_event_source = true;
spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
object_property_add_str(obj, "kvm-type",
spapr_get_kvm_type, spapr_set_kvm_type);
object_property_set_description(obj, "kvm-type",
"Specifies the KVM virtualization mode (auto,"
" hv, pr). Defaults to 'auto'. This mode will use"
" any available KVM module loaded in the host,"
" where kvm_hv takes precedence if both kvm_hv and"
" kvm_pr are loaded.");
object_property_add_bool(obj, "modern-hotplug-events",
spapr_get_modern_hotplug_events,
spapr_set_modern_hotplug_events);
object_property_set_description(obj, "modern-hotplug-events",
"Use dedicated hotplug event mechanism in"
" place of standard EPOW events when possible"
" (required for memory hot-unplug support)");
ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
"Maximum permitted CPU compatibility mode");
object_property_add_str(obj, "resize-hpt",
spapr_get_resize_hpt, spapr_set_resize_hpt);
object_property_set_description(obj, "resize-hpt",
"Resizing of the Hash Page Table (enabled, disabled, required)");
object_property_add_uint32_ptr(obj, "vsmt",
&spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
object_property_set_description(obj, "vsmt",
"Virtual SMT: KVM behaves as if this were"
" the host's SMT mode");
object_property_add_bool(obj, "vfio-no-msix-emulation",
spapr_get_msix_emulation, NULL);
object_property_add_uint64_ptr(obj, "kernel-addr",
&spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
object_property_set_description(obj, "kernel-addr",
stringify(KERNEL_LOAD_ADDR)
" for -kernel is the default");
spapr->kernel_addr = KERNEL_LOAD_ADDR;
object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
object_property_set_description(obj, "x-vof",
"Enable Virtual Open Firmware (experimental)");
/* The machine class defines the default interrupt controller mode */
spapr->irq = smc->irq;
object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
spapr_set_ic_mode);
object_property_set_description(obj, "ic-mode",
"Specifies the interrupt controller mode (xics, xive, dual)");
object_property_add_str(obj, "host-model",
spapr_get_host_model, spapr_set_host_model);
object_property_set_description(obj, "host-model",
"Host model to advertise in guest device tree");
object_property_add_str(obj, "host-serial",
spapr_get_host_serial, spapr_set_host_serial);
object_property_set_description(obj, "host-serial",
"Host serial number to advertise in guest device tree");
}
static void spapr_machine_finalizefn(Object *obj)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->kvm_type);
}
void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
cpu_synchronize_state(cs);
/* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
if (spapr->fwnmi_system_reset_addr != -1) {
uint64_t rtas_addr, addr;
/* get rtas addr from fdt */
rtas_addr = spapr_get_rtas_addr();
if (!rtas_addr) {
qemu_system_guest_panicked(NULL);
return;
}
addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
stq_be_phys(&address_space_memory, addr, env->gpr[3]);
stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
env->gpr[3] = addr;
}
ppc_cpu_do_system_reset(cs);
if (spapr->fwnmi_system_reset_addr != -1) {
env->nip = spapr->fwnmi_system_reset_addr;
}
}
static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
CPUState *cs;
CPU_FOREACH(cs) {
async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
}
}
int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
void *fdt, int *fdt_start_offset, Error **errp)
{
uint64_t addr;
uint32_t node;
addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
&error_abort);
*fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
SPAPR_MEMORY_BLOCK_SIZE);
return 0;
}
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
bool dedicated_hp_event_source)
{
SpaprDrc *drc;
uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
int i;
uint64_t addr = addr_start;
bool hotplugged = spapr_drc_hotplugged(dev);
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
/*
* memory_device_get_free_addr() provided a range of free addresses
* that doesn't overlap with any existing mapping at pre-plug. The
* corresponding LMB DRCs are thus assumed to be all attachable.
*/
spapr_drc_attach(drc, dev);
if (!hotplugged) {
spapr_drc_reset(drc);
}
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
/* send hotplug notification to the
* guest only in case of hotplugged memory
*/
if (hotplugged) {
if (dedicated_hp_event_source) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr_start / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs,
spapr_drc_index(drc));
} else {
spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs);
}
}
}
static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
uint64_t size, addr;
int64_t slot;
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
pc_dimm_plug(dimm, MACHINE(ms));
if (!is_nvdimm) {
addr = object_property_get_uint(OBJECT(dimm),
PC_DIMM_ADDR_PROP, &error_abort);
spapr_add_lmbs(dev, addr, size,
spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
} else {
slot = object_property_get_int(OBJECT(dimm),
PC_DIMM_SLOT_PROP, &error_abort);
/* We should have valid slot number at this point */
g_assert(slot >= 0);
spapr_add_nvdimm(dev, slot);
}
}
static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
PCDIMMDevice *dimm = PC_DIMM(dev);
Error *local_err = NULL;
uint64_t size;
Object *memdev;
hwaddr pagesize;
if (!smc->dr_lmb_enabled) {
error_setg(errp, "Memory hotplug not supported for this machine");
return;
}
size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (is_nvdimm) {
if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
return;
}
} else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Hotplugged memory size must be a multiple of "
"%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
return;
}
memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
&error_abort);
pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
if (!spapr_check_pagesize(spapr, pagesize, errp)) {
return;
}
pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
}
struct SpaprDimmState {
PCDIMMDevice *dimm;
uint32_t nr_lmbs;
QTAILQ_ENTRY(SpaprDimmState) next;
};
static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
PCDIMMDevice *dimm)
{
SpaprDimmState *dimm_state = NULL;
QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
if (dimm_state->dimm == dimm) {
break;
}
}
return dimm_state;
}
static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
uint32_t nr_lmbs,
PCDIMMDevice *dimm)
{
SpaprDimmState *ds = NULL;
/*
* If this request is for a DIMM whose removal had failed earlier
* (due to guest's refusal to remove the LMBs), we would have this
* dimm already in the pending_dimm_unplugs list. In that
* case don't add again.
*/
ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
if (!ds) {
ds = g_new0(SpaprDimmState, 1);
ds->nr_lmbs = nr_lmbs;
ds->dimm = dimm;
QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
}
return ds;
}
static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
SpaprDimmState *dimm_state)
{
QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
g_free(dimm_state);
}
static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
PCDIMMDevice *dimm)
{
SpaprDrc *drc;
uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
&error_abort);
uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
uint32_t avail_lmbs = 0;
uint64_t addr_start, addr;
int i;
addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
&error_abort);
addr = addr_start;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
if (drc->dev) {
avail_lmbs++;
}
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
}
void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
{
SpaprDimmState *ds;
PCDIMMDevice *dimm;
SpaprDrc *drc;
uint32_t nr_lmbs;
uint64_t size, addr_start, addr;
g_autofree char *qapi_error = NULL;
int i;
if (!dev) {
return;
}
dimm = PC_DIMM(dev);
ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
/*
* 'ds == NULL' would mean that the DIMM doesn't have a pending
* unplug state, but one of its DRC is marked as unplug_requested.
* This is bad and weird enough to g_assert() out.
*/
g_assert(ds);
spapr_pending_dimm_unplugs_remove(spapr, ds);
size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
&error_abort);
addr = addr_start;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
drc->unplug_requested = false;
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
/*
* Tell QAPI that something happened and the memory
* hotunplug wasn't successful. Keep sending
* MEM_UNPLUG_ERROR even while sending
* DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
* MEM_UNPLUG_ERROR is due.
*/
qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
"for device %s", dev->id);
qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
dev->canonical_path);
}
/* Callback to be called during DRC release. */
void spapr_lmb_release(DeviceState *dev)
{
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
/* This information will get lost if a migration occurs
* during the unplug process. In this case recover it. */
if (ds == NULL) {
ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
g_assert(ds);
/* The DRC being examined by the caller at least must be counted */
g_assert(ds->nr_lmbs);
}
if (--ds->nr_lmbs) {
return;
}
/*
* Now that all the LMBs have been removed by the guest, call the
* unplug handler chain. This can never fail.
*/
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
object_unparent(OBJECT(dev));
}
static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
/* We really shouldn't get this far without anything to unplug */
g_assert(ds);
pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
qdev_unrealize(dev);
spapr_pending_dimm_unplugs_remove(spapr, ds);
}
static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
uint32_t nr_lmbs;
uint64_t size, addr_start, addr;
int i;
SpaprDrc *drc;
if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
error_setg(errp, "nvdimm device hot unplug is not supported yet.");
return;
}
size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
&error_abort);
/*
* An existing pending dimm state for this DIMM means that there is an
* unplug operation in progress, waiting for the spapr_lmb_release
* callback to complete the job (BQL can't cover that far). In this case,
* bail out to avoid detaching DRCs that were already released.
*/
if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
error_setg(errp, "Memory unplug already in progress for device %s",
dev->id);
return;
}
spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
addr = addr_start;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
spapr_drc_unplug_request(drc);
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr_start / SPAPR_MEMORY_BLOCK_SIZE);
spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs, spapr_drc_index(drc));
}
/* Callback to be called during DRC release. */
void spapr_core_release(DeviceState *dev)
{
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
/* Call the unplug handler chain. This can never fail. */
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
object_unparent(OBJECT(dev));
}
static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
MachineState *ms = MACHINE(hotplug_dev);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
CPUCore *cc = CPU_CORE(dev);
CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
if (smc->pre_2_10_has_unused_icps) {
SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
int i;
for (i = 0; i < cc->nr_threads; i++) {
CPUState *cs = CPU(sc->threads[i]);
pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
}
}
assert(core_slot);
core_slot->cpu = NULL;
qdev_unrealize(dev);
}
static
void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
int index;
SpaprDrc *drc;
CPUCore *cc = CPU_CORE(dev);
if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
error_setg(errp, "Unable to find CPU core with core-id: %d",
cc->core_id);
return;
}
if (index == 0) {
error_setg(errp, "Boot CPU core may not be unplugged");
return;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
spapr_vcpu_id(spapr, cc->core_id));
g_assert(drc);
if (!spapr_drc_unplug_requested(drc)) {
spapr_drc_unplug_request(drc);
}
/*
* spapr_hotplug_req_remove_by_index is left unguarded, out of the
* "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
* pulses removing the same CPU. Otherwise, in an failed hotunplug
* attempt (e.g. the kernel will refuse to remove the last online
* CPU), we will never attempt it again because unplug_requested
* will still be 'true' in that case.
*/
spapr_hotplug_req_remove_by_index(drc);
}
int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
void *fdt, int *fdt_start_offset, Error **errp)
{
SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
CPUState *cs = CPU(core->threads[0]);
PowerPCCPU *cpu = POWERPC_CPU(cs);
DeviceClass *dc = DEVICE_GET_CLASS(cs);
int id = spapr_get_vcpu_id(cpu);
g_autofree char *nodename = NULL;
int offset;
nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
offset = fdt_add_subnode(fdt, 0, nodename);
spapr_dt_cpu(cs, fdt, offset, spapr);
/*
* spapr_dt_cpu() does not fill the 'name' property in the
* CPU node. The function is called during boot process, before
* and after CAS, and overwriting the 'name' property written
* by SLOF is not allowed.
*
* Write it manually after spapr_dt_cpu(). This makes the hotplug
* CPUs more compatible with the coldplugged ones, which have
* the 'name' property. Linux Kernel also relies on this
* property to identify CPU nodes.
*/
_FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
*fdt_start_offset = offset;
return 0;
}
static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(spapr);
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
CPUCore *cc = CPU_CORE(dev);
CPUState *cs;
SpaprDrc *drc;
CPUArchId *core_slot;
int index;
bool hotplugged = spapr_drc_hotplugged(dev);
int i;
core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
spapr_vcpu_id(spapr, cc->core_id));
g_assert(drc || !mc->has_hotpluggable_cpus);
if (drc) {
/*
* spapr_core_pre_plug() already buys us this is a brand new
* core being plugged into a free slot. Nothing should already
* be attached to the corresponding DRC.
*/
spapr_drc_attach(drc, dev);
if (hotplugged) {
/*
* Send hotplug notification interrupt to the guest only
* in case of hotplugged CPUs.
*/
spapr_hotplug_req_add_by_index(drc);
} else {
spapr_drc_reset(drc);
}
}
core_slot->cpu = OBJECT(dev);
/*
* Set compatibility mode to match the boot CPU, which was either set
* by the machine reset code or by CAS. This really shouldn't fail at
* this point.
*/
if (hotplugged) {
for (i = 0; i < cc->nr_threads; i++) {
ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
&error_abort);
}
}
if (smc->pre_2_10_has_unused_icps) {
for (i = 0; i < cc->nr_threads; i++) {
cs = CPU(core->threads[i]);
pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
}
}
}
static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
MachineState *machine = MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
CPUCore *cc = CPU_CORE(dev);
const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
const char *type = object_get_typename(OBJECT(dev));
CPUArchId *core_slot;
int index;
unsigned int smp_threads = machine->smp.threads;
if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
error_setg(errp, "CPU hotplug not supported for this machine");
return;
}
if (strcmp(base_core_type, type)) {
error_setg(errp, "CPU core type should be %s", base_core_type);
return;
}
if (cc->core_id % smp_threads) {
error_setg(errp, "invalid core id %d", cc->core_id);
return;
}
/*
* In general we should have homogeneous threads-per-core, but old
* (pre hotplug support) machine types allow the last core to have
* reduced threads as a compatibility hack for when we allowed
* total vcpus not a multiple of threads-per-core.
*/
if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
smp_threads);
return;
}
core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
if (!core_slot) {
error_setg(errp, "core id %d out of range", cc->core_id);
return;
}
if (core_slot->cpu) {
error_setg(errp, "core %d already populated", cc->core_id);
return;
}
numa_cpu_pre_plug(core_slot, dev, errp);
}
int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
void *fdt, int *fdt_start_offset, Error **errp)
{
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
int intc_phandle;
intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
if (intc_phandle <= 0) {
return -1;
}
if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
return -1;
}
/* generally SLOF creates these, for hotplug it's up to QEMU */
_FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
return 0;
}
static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
const unsigned windows_supported = spapr_phb_windows_supported(sphb);
SpaprDrc *drc;
if (dev->hotplugged && !smc->dr_phb_enabled) {
error_setg(errp, "PHB hotplug not supported for this machine");
return false;
}
if (sphb->index == (uint32_t)-1) {
error_setg(errp, "\"index\" for PAPR PHB is mandatory");
return false;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
if (drc && drc->dev) {
error_setg(errp, "PHB %d already attached", sphb->index);
return false;
}
/*
* This will check that sphb->index doesn't exceed the maximum number of
* PHBs for the current machine type.
*/
return
smc->phb_placement(spapr, sphb->index,
&sphb->buid, &sphb->io_win_addr,
&sphb->mem_win_addr, &sphb->mem64_win_addr,
windows_supported, sphb->dma_liobn,
&sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
errp);
}
static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
SpaprDrc *drc;
bool hotplugged = spapr_drc_hotplugged(dev);
if (!smc->dr_phb_enabled) {
return;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
/* hotplug hooks should check it's enabled before getting this far */
assert(drc);
/* spapr_phb_pre_plug() already checked the DRC is attachable */
spapr_drc_attach(drc, dev);
if (hotplugged) {
spapr_hotplug_req_add_by_index(drc);
} else {
spapr_drc_reset(drc);
}
}
void spapr_phb_release(DeviceState *dev)
{
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
object_unparent(OBJECT(dev));
}
static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
qdev_unrealize(dev);
}
static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
SpaprDrc *drc;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
assert(drc);
if (!spapr_drc_unplug_requested(drc)) {
spapr_drc_unplug_request(drc);
spapr_hotplug_req_remove_by_index(drc);
} else {
error_setg(errp,
"PCI Host Bridge unplug already in progress for device %s",
dev->id);
}
}
static
bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
if (spapr->tpm_proxy != NULL) {
error_setg(errp, "Only one TPM proxy can be specified for this machine");
return false;
}
return true;
}
static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
/* Already checked in spapr_tpm_proxy_pre_plug() */
g_assert(spapr->tpm_proxy == NULL);
spapr->tpm_proxy = tpm_proxy;
}
static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
qdev_unrealize(dev);
object_unparent(OBJECT(dev));
spapr->tpm_proxy = NULL;
}
static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
spapr_memory_plug(hotplug_dev, dev);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
spapr_core_plug(hotplug_dev, dev);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
spapr_phb_plug(hotplug_dev, dev);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
spapr_tpm_proxy_plug(hotplug_dev, dev);
}
}
static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
spapr_memory_unplug(hotplug_dev, dev);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
spapr_core_unplug(hotplug_dev, dev);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
spapr_phb_unplug(hotplug_dev, dev);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
spapr_tpm_proxy_unplug(hotplug_dev, dev);
}
}
bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
{
return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
/*
* CAS will process all pending unplug requests.
*
* HACK: a guest could theoretically have cleared all bits in OV5,
* but none of the guests we care for do.
*/
spapr_ovec_empty(spapr->ov5_cas);
}
static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(sms);
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
if (spapr_memory_hot_unplug_supported(sms)) {
spapr_memory_unplug_request(hotplug_dev, dev, errp);
} else {
error_setg(errp, "Memory hot unplug not supported for this guest");
}
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
if (!mc->has_hotpluggable_cpus) {
error_setg(errp, "CPU hot unplug not supported on this machine");
return;
}
spapr_core_unplug_request(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
if (!smc->dr_phb_enabled) {
error_setg(errp, "PHB hot unplug not supported on this machine");
return;
}
spapr_phb_unplug_request(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
spapr_tpm_proxy_unplug(hotplug_dev, dev);
}
}
static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
spapr_memory_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
spapr_core_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
spapr_phb_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
}
}
static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
return HOTPLUG_HANDLER(machine);
}
if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
PCIDevice *pcidev = PCI_DEVICE(dev);
PCIBus *root = pci_device_root_bus(pcidev);
SpaprPhbState *phb =
(SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
TYPE_SPAPR_PCI_HOST_BRIDGE);
if (phb) {
return HOTPLUG_HANDLER(phb);
}
}
return NULL;
}
static CpuInstanceProperties
spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
{
CPUArchId *core_slot;
MachineClass *mc = MACHINE_GET_CLASS(machine);
/* make sure possible_cpu are intialized */
mc->possible_cpu_arch_ids(machine);
/* get CPU core slot containing thread that matches cpu_index */
core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
assert(core_slot);
return core_slot->props;
}
static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
{
return idx / ms->smp.cores % ms->numa_state->num_nodes;
}
static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
{
int i;
unsigned int smp_threads = machine->smp.threads;
unsigned int smp_cpus = machine->smp.cpus;
const char *core_type;
int spapr_max_cores = machine->smp.max_cpus / smp_threads;
MachineClass *mc = MACHINE_GET_CLASS(machine);
if (!mc->has_hotpluggable_cpus) {
spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
}
if (machine->possible_cpus) {
assert(machine->possible_cpus->len == spapr_max_cores);
return machine->possible_cpus;
}
core_type = spapr_get_cpu_core_type(machine->cpu_type);
if (!core_type) {
error_report("Unable to find sPAPR CPU Core definition");
exit(1);
}
machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * spapr_max_cores);
machine->possible_cpus->len = spapr_max_cores;
for (i = 0; i < machine->possible_cpus->len; i++) {
int core_id = i * smp_threads;
machine->possible_cpus->cpus[i].type = core_type;
machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
machine->possible_cpus->cpus[i].arch_id = core_id;
machine->possible_cpus->cpus[i].props.has_core_id = true;
machine->possible_cpus->cpus[i].props.core_id = core_id;
}
return machine->possible_cpus;
}
static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
uint64_t *buid, hwaddr *pio,
hwaddr *mmio32, hwaddr *mmio64,
unsigned n_dma, uint32_t *liobns,
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
{
/*
* New-style PHB window placement.
*
* Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
* for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
* windows.
*
* Some guest kernels can't work with MMIO windows above 1<<46
* (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
*
* 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
* PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
* 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
* 1TiB 64-bit MMIO windows for each PHB.
*/
const uint64_t base_buid = 0x800000020000000ULL;
int i;
/* Sanity check natural alignments */
QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
/* Sanity check bounds */
QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
SPAPR_PCI_MEM32_WIN_SIZE);
QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
SPAPR_PCI_MEM64_WIN_SIZE);
if (index >= SPAPR_MAX_PHBS) {
error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
SPAPR_MAX_PHBS - 1);
return false;
}
*buid = base_buid + index;
for (i = 0; i < n_dma; ++i) {
liobns[i] = SPAPR_PCI_LIOBN(index, i);
}
*pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
*mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
*mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
*nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
*nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
return true;
}
static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
{
SpaprMachineState *spapr = SPAPR_MACHINE(dev);
return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
}
static void spapr_ics_resend(XICSFabric *dev)
{
SpaprMachineState *spapr = SPAPR_MACHINE(dev);
ics_resend(spapr->ics);
}
static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
{
PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
return cpu ? spapr_cpu_state(cpu)->icp : NULL;
}
static void spapr_pic_print_info(InterruptStatsProvider *obj,
Monitor *mon)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
spapr_irq_print_info(spapr, mon);
monitor_printf(mon, "irqchip: %s\n",
kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
}
/*
* This is a XIVE only operation
*/
static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv, XiveTCTXMatch *match)
{
SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
int count;
count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
priority, logic_serv, match);
if (count < 0) {
return count;
}
/*
* When we implement the save and restore of the thread interrupt
* contexts in the enter/exit CPU handlers of the machine and the
* escalations in QEMU, we should be able to handle non dispatched
* vCPUs.
*
* Until this is done, the sPAPR machine should find at least one
* matching context always.
*/
if (count == 0) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
nvt_blk, nvt_idx);
}
return count;
}
int spapr_get_vcpu_id(PowerPCCPU *cpu)
{
return cpu->vcpu_id;
}
bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
MachineState *ms = MACHINE(spapr);
int vcpu_id;
vcpu_id = spapr_vcpu_id(spapr, cpu_index);
if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
error_append_hint(errp, "Adjust the number of cpus to %d "
"or try to raise the number of threads per core\n",
vcpu_id * ms->smp.threads / spapr->vsmt);
return false;
}
cpu->vcpu_id = vcpu_id;
return true;
}
PowerPCCPU *spapr_find_cpu(int vcpu_id)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
if (spapr_get_vcpu_id(cpu) == vcpu_id) {
return cpu;
}
}
return NULL;
}
static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
{
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
return spapr_cpu->in_nested;
}
static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
{
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
/* These are only called by TCG, KVM maintains dispatch state */
spapr_cpu->prod = false;
if (spapr_cpu->vpa_addr) {
CPUState *cs = CPU(cpu);
uint32_t dispatch;
dispatch = ldl_be_phys(cs->as,
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
dispatch++;
if ((dispatch & 1) != 0) {
qemu_log_mask(LOG_GUEST_ERROR,
"VPA: incorrect dispatch counter value for "
"dispatched partition %u, correcting.\n", dispatch);
dispatch++;
}
stl_be_phys(cs->as,
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
}
}
static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
{
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
if (spapr_cpu->vpa_addr) {
CPUState *cs = CPU(cpu);
uint32_t dispatch;
dispatch = ldl_be_phys(cs->as,
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
dispatch++;
if ((dispatch & 1) != 1) {
qemu_log_mask(LOG_GUEST_ERROR,
"VPA: incorrect dispatch counter value for "
"preempted partition %u, correcting.\n", dispatch);
dispatch++;
}
stl_be_phys(cs->as,
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
}
}
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
mc->desc = "pSeries Logical Partition (PAPR compliant)";
mc->ignore_boot_device_suffixes = true;
/*
* We set up the default / latest behaviour here. The class_init
* functions for the specific versioned machine types can override
* these details for backwards compatibility
*/
mc->init = spapr_machine_init;
mc->reset = spapr_machine_reset;
mc->block_default_type = IF_SCSI;
/*
* Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
* should be limited by the host capability instead of hardcoded.
* max_cpus for KVM guests will be checked in kvm_init(), and TCG
* guests are welcome to have as many CPUs as the host are capable
* of emulate.
*/
mc->max_cpus = INT32_MAX;
mc->no_parallel = 1;
mc->default_boot_order = "";
mc->default_ram_size = 512 * MiB;
mc->default_ram_id = "ppc_spapr.ram";
mc->default_display = "std";
mc->kvm_type = spapr_kvm_type;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
mc->pci_allow_0_address = true;
assert(!mc->get_hotplug_handler);
mc->get_hotplug_handler = spapr_get_hotplug_handler;
hc->pre_plug = spapr_machine_device_pre_plug;
hc->plug = spapr_machine_device_plug;
mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
hc->unplug_request = spapr_machine_device_unplug_request;
hc->unplug = spapr_machine_device_unplug;
smc->dr_lmb_enabled = true;
smc->update_dt_enabled = true;
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
mc->has_hotpluggable_cpus = true;
mc->nvdimm_supported = true;
smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
fwc->get_dev_path = spapr_get_fw_dev_path;
nc->nmi_monitor_handler = spapr_nmi;
smc->phb_placement = spapr_phb_placement;
vhc->cpu_in_nested = spapr_cpu_in_nested;
vhc->deliver_hv_excp = spapr_exit_nested;
vhc->hypercall = emulate_spapr_hypercall;
vhc->hpt_mask = spapr_hpt_mask;
vhc->map_hptes = spapr_map_hptes;
vhc->unmap_hptes = spapr_unmap_hptes;
vhc->hpte_set_c = spapr_hpte_set_c;
vhc->hpte_set_r = spapr_hpte_set_r;
vhc->get_pate = spapr_get_pate;
vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
vhc->cpu_exec_enter = spapr_cpu_exec_enter;
vhc->cpu_exec_exit = spapr_cpu_exec_exit;
xic->ics_get = spapr_ics_get;
xic->ics_resend = spapr_ics_resend;
xic->icp_get = spapr_icp_get;
ispc->print_info = spapr_pic_print_info;
/* Force NUMA node memory size to be a multiple of
* SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
* in which LMBs are represented and hot-added
*/
mc->numa_mem_align_shift = 28;
mc->auto_enable_numa = true;
smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
spapr_caps_add_properties(smc);
smc->irq = &spapr_irq_dual;
smc->dr_phb_enabled = true;
smc->linux_pci_probe = true;
smc->smp_threads_vsmt = true;
smc->nr_xirqs = SPAPR_NR_XIRQS;
xfc->match_nvt = spapr_match_nvt;
vmc->client_architecture_support = spapr_vof_client_architecture_support;
vmc->quiesce = spapr_vof_quiesce;
vmc->setprop = spapr_vof_setprop;
}
static const TypeInfo spapr_machine_info = {
.name = TYPE_SPAPR_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(SpaprMachineState),
.instance_init = spapr_instance_init,
.instance_finalize = spapr_machine_finalizefn,
.class_size = sizeof(SpaprMachineClass),
.class_init = spapr_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_FW_PATH_PROVIDER },
{ TYPE_NMI },
{ TYPE_HOTPLUG_HANDLER },
{ TYPE_PPC_VIRTUAL_HYPERVISOR },
{ TYPE_XICS_FABRIC },
{ TYPE_INTERRUPT_STATS_PROVIDER },
{ TYPE_XIVE_FABRIC },
{ TYPE_VOF_MACHINE_IF },
{ }
},
};
static void spapr_machine_latest_class_options(MachineClass *mc)
{
mc->alias = "pseries";
mc->is_default = true;
}
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
void *data) \
{ \
MachineClass *mc = MACHINE_CLASS(oc); \
spapr_machine_##suffix##_class_options(mc); \
if (latest) { \
spapr_machine_latest_class_options(mc); \
} \
} \
static const TypeInfo spapr_machine_##suffix##_info = { \
.name = MACHINE_TYPE_NAME("pseries-" verstr), \
.parent = TYPE_SPAPR_MACHINE, \
.class_init = spapr_machine_##suffix##_class_init, \
}; \
static void spapr_machine_register_##suffix(void) \
{ \
type_register(&spapr_machine_##suffix##_info); \
} \
type_init(spapr_machine_register_##suffix)
/*
* pseries-7.2
*/
static void spapr_machine_7_2_class_options(MachineClass *mc)
{
/* Defaults for the latest behaviour inherited from the base class */
}
DEFINE_SPAPR_MACHINE(7_2, "7.2", true);
/*
* pseries-7.1
*/
static void spapr_machine_7_1_class_options(MachineClass *mc)
{
spapr_machine_7_2_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
}
DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
/*
* pseries-7.0
*/
static void spapr_machine_7_0_class_options(MachineClass *mc)
{
spapr_machine_7_1_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
}
DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
/*
* pseries-6.2
*/
static void spapr_machine_6_2_class_options(MachineClass *mc)
{
spapr_machine_7_0_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
}
DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
/*
* pseries-6.1
*/
static void spapr_machine_6_1_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_6_2_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
smc->pre_6_2_numa_affinity = true;
mc->smp_props.prefer_sockets = true;
}
DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
/*
* pseries-6.0
*/
static void spapr_machine_6_0_class_options(MachineClass *mc)
{
spapr_machine_6_1_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
}
DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
/*
* pseries-5.2
*/
static void spapr_machine_5_2_class_options(MachineClass *mc)
{
spapr_machine_6_0_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
}
DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
/*
* pseries-5.1
*/
static void spapr_machine_5_1_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_5_2_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
smc->pre_5_2_numa_associativity = true;
}
DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
/*
* pseries-5.0
*/
static void spapr_machine_5_0_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
};
spapr_machine_5_1_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
mc->numa_mem_supported = true;
smc->pre_5_1_assoc_refpoints = true;
}
DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
/*
* pseries-4.2
*/
static void spapr_machine_4_2_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_5_0_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
smc->rma_limit = 16 * GiB;
mc->nvdimm_supported = false;
}
DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
/*
* pseries-4.1
*/
static void spapr_machine_4_1_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
/* Only allow 4kiB and 64kiB IOMMU pagesizes */
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
};
spapr_machine_4_2_class_options(mc);
smc->linux_pci_probe = false;
smc->smp_threads_vsmt = false;
compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
/*
* pseries-4.0
*/
static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
uint64_t *buid, hwaddr *pio,
hwaddr *mmio32, hwaddr *mmio64,
unsigned n_dma, uint32_t *liobns,
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
{
if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
liobns, nv2gpa, nv2atsd, errp)) {
return false;
}
*nv2gpa = 0;
*nv2atsd = 0;
return true;
}
static void spapr_machine_4_0_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_4_1_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
smc->phb_placement = phb_placement_4_0;
smc->irq = &spapr_irq_xics;
smc->pre_4_1_migration = true;
}
DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
/*
* pseries-3.1
*/
static void spapr_machine_3_1_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_4_0_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
smc->update_dt_enabled = false;
smc->dr_phb_enabled = false;
smc->broken_host_serial_model = true;
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
}
DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
/*
* pseries-3.0
*/
static void spapr_machine_3_0_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_3_1_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
smc->legacy_irq_allocation = true;
smc->nr_xirqs = 0x400;
smc->irq = &spapr_irq_xics_legacy;
}
DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
/*
* pseries-2.12
*/
static void spapr_machine_2_12_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
{ TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
};
spapr_machine_3_0_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
/* We depend on kvm_enabled() to choose a default value for the
* hpt-max-page-size capability. Of course we can't do it here
* because this is too early and the HW accelerator isn't initialzed
* yet. Postpone this to machine init (see default_caps_with_cpu()).
*/
smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
}
DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_12_class_options(mc);
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
}
DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
/*
* pseries-2.11
*/
static void spapr_machine_2_11_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_12_class_options(mc);
smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
}
DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
/*
* pseries-2.10
*/
static void spapr_machine_2_10_class_options(MachineClass *mc)
{
spapr_machine_2_11_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
}
DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
/*
* pseries-2.9
*/
static void spapr_machine_2_9_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
};
spapr_machine_2_10_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
smc->pre_2_10_has_unused_icps = true;
smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
}
DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
/*
* pseries-2.8
*/
static void spapr_machine_2_8_class_options(MachineClass *mc)
{
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
};
spapr_machine_2_9_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
mc->numa_mem_align_shift = 23;
}
DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
/*
* pseries-2.7
*/
static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
uint64_t *buid, hwaddr *pio,
hwaddr *mmio32, hwaddr *mmio64,
unsigned n_dma, uint32_t *liobns,
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
{
/* Legacy PHB placement for pseries-2.7 and earlier machine types */
const uint64_t base_buid = 0x800000020000000ULL;
const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
const hwaddr pio_offset = 0x80000000; /* 2 GiB */
const uint32_t max_index = 255;
const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
uint64_t ram_top = MACHINE(spapr)->ram_size;
hwaddr phb0_base, phb_base;
int i;
/* Do we have device memory? */
if (MACHINE(spapr)->maxram_size > ram_top) {
/* Can't just use maxram_size, because there may be an
* alignment gap between normal and device memory regions
*/
ram_top = MACHINE(spapr)->device_memory->base +
memory_region_size(&MACHINE(spapr)->device_memory->mr);
}
phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
if (index > max_index) {
error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
max_index);
return false;
}
*buid = base_buid + index;
for (i = 0; i < n_dma; ++i) {
liobns[i] = SPAPR_PCI_LIOBN(index, i);
}
phb_base = phb0_base + index * phb_spacing;
*pio = phb_base + pio_offset;
*mmio32 = phb_base + mmio_offset;
/*
* We don't set the 64-bit MMIO window, relying on the PHB's
* fallback behaviour of automatically splitting a large "32-bit"
* window into contiguous 32-bit and 64-bit windows
*/
*nv2gpa = 0;
*nv2atsd = 0;
return true;
}
static void spapr_machine_2_7_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
{ TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
};
spapr_machine_2_8_class_options(mc);
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
mc->default_machine_opts = "modern-hotplug-events=off";
compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
smc->phb_placement = phb_placement_2_7;
}
DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
/*
* pseries-2.6
*/
static void spapr_machine_2_6_class_options(MachineClass *mc)
{
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
};
spapr_machine_2_7_class_options(mc);
mc->has_hotpluggable_cpus = false;
compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
/*
* pseries-2.5
*/
static void spapr_machine_2_5_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ "spapr-vlan", "use-rx-buffer-pools", "off" },
};
spapr_machine_2_6_class_options(mc);
smc->use_ohci_by_default = true;
compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
/*
* pseries-2.4
*/
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_5_class_options(mc);
smc->dr_lmb_enabled = false;
compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
}
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
/*
* pseries-2.3
*/
static void spapr_machine_2_3_class_options(MachineClass *mc)
{
static GlobalProperty compat[] = {
{ "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
};
spapr_machine_2_4_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
/*
* pseries-2.2
*/
static void spapr_machine_2_2_class_options(MachineClass *mc)
{
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
};
spapr_machine_2_3_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
}
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
/*
* pseries-2.1
*/
static void spapr_machine_2_1_class_options(MachineClass *mc)
{
spapr_machine_2_2_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
}
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
static void spapr_machine_register_types(void)
{
type_register_static(&spapr_machine_info);
}
type_init(spapr_machine_register_types)