blob: f164b74032f25a01067f06b2f6d8f625e5a4e8de [file] [log] [blame]
/*
* Emulation of Linux signals
*
* Copyright (c) 2003 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu.h"
#include "user-internals.h"
#include "signal-common.h"
#include "linux-user/trace.h"
/* A Sparc register window */
struct target_reg_window {
abi_ulong locals[8];
abi_ulong ins[8];
};
/* A Sparc stack frame. */
struct target_stackf {
/*
* Since qemu does not reference fp or callers_pc directly,
* it's simpler to treat fp and callers_pc as elements of ins[],
* and then bundle locals[] and ins[] into reg_window.
*/
struct target_reg_window win;
/*
* Similarly, bundle structptr and xxargs into xargs[].
* This portion of the struct is part of the function call abi,
* and belongs to the callee for spilling argument registers.
*/
abi_ulong xargs[8];
};
struct target_siginfo_fpu {
#ifdef TARGET_SPARC64
uint64_t si_double_regs[32];
uint64_t si_fsr;
uint64_t si_gsr;
uint64_t si_fprs;
#else
/* It is more convenient for qemu to move doubles, not singles. */
uint64_t si_double_regs[16];
uint32_t si_fsr;
uint32_t si_fpqdepth;
struct {
uint32_t insn_addr;
uint32_t insn;
} si_fpqueue [16];
#endif
};
#ifdef TARGET_ARCH_HAS_SETUP_FRAME
struct target_signal_frame {
struct target_stackf ss;
struct target_pt_regs regs;
uint32_t si_mask;
abi_ulong fpu_save;
uint32_t insns[2] QEMU_ALIGNED(8);
abi_ulong extramask[TARGET_NSIG_WORDS - 1];
abi_ulong extra_size; /* Should be 0 */
abi_ulong rwin_save;
};
#endif
struct target_rt_signal_frame {
struct target_stackf ss;
target_siginfo_t info;
struct target_pt_regs regs;
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
abi_ulong fpu_save;
target_stack_t stack;
target_sigset_t mask;
#else
target_sigset_t mask;
abi_ulong fpu_save;
uint32_t insns[2];
target_stack_t stack;
abi_ulong extra_size; /* Should be 0 */
#endif
abi_ulong rwin_save;
};
static abi_ulong get_sigframe(struct target_sigaction *sa,
CPUSPARCState *env,
size_t framesize)
{
abi_ulong sp = get_sp_from_cpustate(env);
/*
* If we are on the alternate signal stack and would overflow it, don't.
* Return an always-bogus address instead so we will die with SIGSEGV.
*/
if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
return -1;
}
/* This is the X/Open sanctioned signal stack switching. */
sp = target_sigsp(sp, sa) - framesize;
/*
* Always align the stack frame. This handles two cases. First,
* sigaltstack need not be mindful of platform specific stack
* alignment. Second, if we took this signal because the stack
* is not aligned properly, we'd like to take the signal cleanly
* and report that.
*/
sp &= ~15UL;
return sp;
}
static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
{
int i;
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
__put_user(sparc64_tstate(env), &regs->tstate);
/* TODO: magic should contain PT_REG_MAGIC + %tt. */
__put_user(0, &regs->magic);
#else
__put_user(cpu_get_psr(env), &regs->psr);
#endif
__put_user(env->pc, &regs->pc);
__put_user(env->npc, &regs->npc);
__put_user(env->y, &regs->y);
for (i = 0; i < 8; i++) {
__put_user(env->gregs[i], &regs->u_regs[i]);
}
for (i = 0; i < 8; i++) {
__put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
}
}
static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
{
int i;
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
/* User can only change condition codes and %asi in %tstate. */
uint64_t tstate;
__get_user(tstate, &regs->tstate);
cpu_put_ccr(env, tstate >> 32);
env->asi = extract64(tstate, 24, 8);
#else
/*
* User can only change condition codes and FPU enabling in %psr.
* But don't bother with FPU enabling, since a real kernel would
* just re-enable the FPU upon the next fpu trap.
*/
uint32_t psr;
__get_user(psr, &regs->psr);
cpu_put_psr_icc(env, psr);
#endif
/* Note that pc and npc are handled in the caller. */
__get_user(env->y, &regs->y);
for (i = 0; i < 8; i++) {
__get_user(env->gregs[i], &regs->u_regs[i]);
}
for (i = 0; i < 8; i++) {
__get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
}
}
static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
{
int i;
for (i = 0; i < 8; i++) {
__put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
}
for (i = 0; i < 8; i++) {
__put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
}
}
static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
{
int i;
#ifdef TARGET_SPARC64
for (i = 0; i < 32; ++i) {
__put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
}
__put_user(cpu_get_fsr(env), &fpu->si_fsr);
__put_user(env->gsr, &fpu->si_gsr);
__put_user(env->fprs, &fpu->si_fprs);
#else
for (i = 0; i < 16; ++i) {
__put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
}
__put_user(cpu_get_fsr(env), &fpu->si_fsr);
__put_user(0, &fpu->si_fpqdepth);
#endif
}
static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
{
target_ulong fsr;
int i;
#ifdef TARGET_SPARC64
uint64_t fprs;
__get_user(fprs, &fpu->si_fprs);
/* In case the user mucks about with FPRS, restore as directed. */
if (fprs & FPRS_DL) {
for (i = 0; i < 16; ++i) {
__get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
}
}
if (fprs & FPRS_DU) {
for (i = 16; i < 32; ++i) {
__get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
}
}
__get_user(env->gsr, &fpu->si_gsr);
env->fprs |= fprs;
#else
for (i = 0; i < 16; ++i) {
__get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
}
#endif
__get_user(fsr, &fpu->si_fsr);
cpu_put_fsr(env, fsr);
}
#ifdef TARGET_ARCH_HAS_SETUP_FRAME
static void install_sigtramp(uint32_t *tramp, int syscall)
{
__put_user(0x82102000u + syscall, &tramp[0]); /* mov syscall, %g1 */
__put_user(0x91d02010u, &tramp[1]); /* t 0x10 */
}
void setup_frame(int sig, struct target_sigaction *ka,
target_sigset_t *set, CPUSPARCState *env)
{
abi_ulong sf_addr;
struct target_signal_frame *sf;
size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
int i;
sf_addr = get_sigframe(ka, env, sf_size);
trace_user_setup_frame(env, sf_addr);
sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
if (!sf) {
force_sigsegv(sig);
return;
}
/* 2. Save the current process state */
save_pt_regs(&sf->regs, env);
__put_user(0, &sf->extra_size);
save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
__put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
__put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */
__put_user(set->sig[0], &sf->si_mask);
for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
__put_user(set->sig[i + 1], &sf->extramask[i]);
}
save_reg_win(&sf->ss.win, env);
/* 3. signal handler back-trampoline and parameters */
env->regwptr[WREG_SP] = sf_addr;
env->regwptr[WREG_O0] = sig;
env->regwptr[WREG_O1] = sf_addr +
offsetof(struct target_signal_frame, regs);
env->regwptr[WREG_O2] = sf_addr +
offsetof(struct target_signal_frame, regs);
/* 4. signal handler */
env->pc = ka->_sa_handler;
env->npc = env->pc + 4;
/* 5. return to kernel instructions */
if (ka->ka_restorer) {
env->regwptr[WREG_O7] = ka->ka_restorer;
} else {
/* Not used, but retain for ABI compatibility. */
install_sigtramp(sf->insns, TARGET_NR_sigreturn);
env->regwptr[WREG_O7] = default_sigreturn;
}
unlock_user(sf, sf_addr, sf_size);
}
#endif /* TARGET_ARCH_HAS_SETUP_FRAME */
void setup_rt_frame(int sig, struct target_sigaction *ka,
target_siginfo_t *info,
target_sigset_t *set, CPUSPARCState *env)
{
abi_ulong sf_addr;
struct target_rt_signal_frame *sf;
size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
sf_addr = get_sigframe(ka, env, sf_size);
trace_user_setup_rt_frame(env, sf_addr);
sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
if (!sf) {
force_sigsegv(sig);
return;
}
/* 2. Save the current process state */
save_reg_win(&sf->ss.win, env);
save_pt_regs(&sf->regs, env);
save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
__put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
__put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */
sf->info = *info;
tswap_sigset(&sf->mask, set);
target_save_altstack(&sf->stack, env);
#ifdef TARGET_ABI32
__put_user(0, &sf->extra_size);
#endif
/* 3. signal handler back-trampoline and parameters */
env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS;
env->regwptr[WREG_O0] = sig;
env->regwptr[WREG_O1] =
sf_addr + offsetof(struct target_rt_signal_frame, info);
#ifdef TARGET_ABI32
env->regwptr[WREG_O2] =
sf_addr + offsetof(struct target_rt_signal_frame, regs);
#else
env->regwptr[WREG_O2] = env->regwptr[WREG_O1];
#endif
/* 4. signal handler */
env->pc = ka->_sa_handler;
env->npc = env->pc + 4;
/* 5. return to kernel instructions */
#ifdef TARGET_ABI32
if (ka->ka_restorer) {
env->regwptr[WREG_O7] = ka->ka_restorer;
} else {
/* Not used, but retain for ABI compatibility. */
install_sigtramp(sf->insns, TARGET_NR_rt_sigreturn);
env->regwptr[WREG_O7] = default_rt_sigreturn;
}
#else
env->regwptr[WREG_O7] = ka->ka_restorer;
#endif
unlock_user(sf, sf_addr, sf_size);
}
long do_sigreturn(CPUSPARCState *env)
{
#ifdef TARGET_ARCH_HAS_SETUP_FRAME
abi_ulong sf_addr;
struct target_signal_frame *sf = NULL;
abi_ulong pc, npc, ptr;
target_sigset_t set;
sigset_t host_set;
int i;
sf_addr = env->regwptr[WREG_SP];
trace_user_do_sigreturn(env, sf_addr);
/* 1. Make sure we are not getting garbage from the user */
if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
goto segv_and_exit;
}
/* Make sure stack pointer is aligned. */
__get_user(ptr, &sf->regs.u_regs[14]);
if (ptr & 7) {
goto segv_and_exit;
}
/* Make sure instruction pointers are aligned. */
__get_user(pc, &sf->regs.pc);
__get_user(npc, &sf->regs.npc);
if ((pc | npc) & 3) {
goto segv_and_exit;
}
/* 2. Restore the state */
restore_pt_regs(&sf->regs, env);
env->pc = pc;
env->npc = npc;
__get_user(ptr, &sf->fpu_save);
if (ptr) {
struct target_siginfo_fpu *fpu;
if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
goto segv_and_exit;
}
restore_fpu(fpu, env);
unlock_user_struct(fpu, ptr, 0);
}
__get_user(ptr, &sf->rwin_save);
if (ptr) {
goto segv_and_exit; /* TODO: restore_rwin */
}
__get_user(set.sig[0], &sf->si_mask);
for (i = 1; i < TARGET_NSIG_WORDS; i++) {
__get_user(set.sig[i], &sf->extramask[i - 1]);
}
target_to_host_sigset_internal(&host_set, &set);
set_sigmask(&host_set);
unlock_user_struct(sf, sf_addr, 0);
return -QEMU_ESIGRETURN;
segv_and_exit:
unlock_user_struct(sf, sf_addr, 0);
force_sig(TARGET_SIGSEGV);
return -QEMU_ESIGRETURN;
#else
return -TARGET_ENOSYS;
#endif
}
long do_rt_sigreturn(CPUSPARCState *env)
{
abi_ulong sf_addr, tpc, tnpc, ptr;
struct target_rt_signal_frame *sf = NULL;
sigset_t set;
sf_addr = get_sp_from_cpustate(env);
trace_user_do_rt_sigreturn(env, sf_addr);
/* 1. Make sure we are not getting garbage from the user */
if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
goto segv_and_exit;
}
/* Validate SP alignment. */
__get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]);
if ((ptr + TARGET_STACK_BIAS) & 7) {
goto segv_and_exit;
}
/* Validate PC and NPC alignment. */
__get_user(tpc, &sf->regs.pc);
__get_user(tnpc, &sf->regs.npc);
if ((tpc | tnpc) & 3) {
goto segv_and_exit;
}
/* 2. Restore the state */
restore_pt_regs(&sf->regs, env);
__get_user(ptr, &sf->fpu_save);
if (ptr) {
struct target_siginfo_fpu *fpu;
if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
goto segv_and_exit;
}
restore_fpu(fpu, env);
unlock_user_struct(fpu, ptr, 0);
}
__get_user(ptr, &sf->rwin_save);
if (ptr) {
goto segv_and_exit; /* TODO: restore_rwin_state */
}
target_restore_altstack(&sf->stack, env);
target_to_host_sigset(&set, &sf->mask);
set_sigmask(&set);
env->pc = tpc;
env->npc = tnpc;
unlock_user_struct(sf, sf_addr, 0);
return -QEMU_ESIGRETURN;
segv_and_exit:
unlock_user_struct(sf, sf_addr, 0);
force_sig(TARGET_SIGSEGV);
return -QEMU_ESIGRETURN;
}
#ifdef TARGET_ABI32
void setup_sigtramp(abi_ulong sigtramp_page)
{
uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0);
assert(tramp != NULL);
default_sigreturn = sigtramp_page;
install_sigtramp(tramp, TARGET_NR_sigreturn);
default_rt_sigreturn = sigtramp_page + 8;
install_sigtramp(tramp + 2, TARGET_NR_rt_sigreturn);
unlock_user(tramp, sigtramp_page, 2 * 8);
}
#endif
#ifdef TARGET_SPARC64
#define SPARC_MC_TSTATE 0
#define SPARC_MC_PC 1
#define SPARC_MC_NPC 2
#define SPARC_MC_Y 3
#define SPARC_MC_G1 4
#define SPARC_MC_G2 5
#define SPARC_MC_G3 6
#define SPARC_MC_G4 7
#define SPARC_MC_G5 8
#define SPARC_MC_G6 9
#define SPARC_MC_G7 10
#define SPARC_MC_O0 11
#define SPARC_MC_O1 12
#define SPARC_MC_O2 13
#define SPARC_MC_O3 14
#define SPARC_MC_O4 15
#define SPARC_MC_O5 16
#define SPARC_MC_O6 17
#define SPARC_MC_O7 18
#define SPARC_MC_NGREG 19
typedef abi_ulong target_mc_greg_t;
typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
struct target_mc_fq {
abi_ulong mcfq_addr;
uint32_t mcfq_insn;
};
/*
* Note the manual 16-alignment; the kernel gets this because it
* includes a "long double qregs[16]" in the mcpu_fregs union,
* which we can't do.
*/
struct target_mc_fpu {
union {
uint32_t sregs[32];
uint64_t dregs[32];
//uint128_t qregs[16];
} mcfpu_fregs;
abi_ulong mcfpu_fsr;
abi_ulong mcfpu_fprs;
abi_ulong mcfpu_gsr;
abi_ulong mcfpu_fq;
unsigned char mcfpu_qcnt;
unsigned char mcfpu_qentsz;
unsigned char mcfpu_enab;
} __attribute__((aligned(16)));
typedef struct target_mc_fpu target_mc_fpu_t;
typedef struct {
target_mc_gregset_t mc_gregs;
target_mc_greg_t mc_fp;
target_mc_greg_t mc_i7;
target_mc_fpu_t mc_fpregs;
} target_mcontext_t;
struct target_ucontext {
abi_ulong tuc_link;
abi_ulong tuc_flags;
target_sigset_t tuc_sigmask;
target_mcontext_t tuc_mcontext;
};
/* {set, get}context() needed for 64-bit SparcLinux userland. */
void sparc64_set_context(CPUSPARCState *env)
{
abi_ulong ucp_addr;
struct target_ucontext *ucp;
target_mc_gregset_t *grp;
target_mc_fpu_t *fpup;
target_ulong pc, npc, tstate;
unsigned int i;
unsigned char fenab;
ucp_addr = env->regwptr[WREG_O0];
if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
goto do_sigsegv;
}
grp = &ucp->tuc_mcontext.mc_gregs;
__get_user(pc, &((*grp)[SPARC_MC_PC]));
__get_user(npc, &((*grp)[SPARC_MC_NPC]));
if ((pc | npc) & 3) {
goto do_sigsegv;
}
if (env->regwptr[WREG_O1]) {
target_sigset_t target_set;
sigset_t set;
if (TARGET_NSIG_WORDS == 1) {
__get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
} else {
abi_ulong *src, *dst;
src = ucp->tuc_sigmask.sig;
dst = target_set.sig;
for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
__get_user(*dst, src);
}
}
target_to_host_sigset_internal(&set, &target_set);
set_sigmask(&set);
}
env->pc = pc;
env->npc = npc;
__get_user(env->y, &((*grp)[SPARC_MC_Y]));
__get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
/* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
env->asi = (tstate >> 24) & 0xff;
cpu_put_ccr(env, (tstate >> 32) & 0xff);
__get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
__get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
__get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
__get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
__get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
__get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
/* Skip g7 as that's the thread register in userspace */
/*
* Note that unlike the kernel, we didn't need to mess with the
* guest register window state to save it into a pt_regs to run
* the kernel. So for us the guest's O regs are still in WREG_O*
* (unlike the kernel which has put them in UREG_I* in a pt_regs)
* and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
* need to be written back to userspace memory.
*/
__get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
__get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
__get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
__get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
__get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
__get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
__get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
__get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
__get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
__get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
fpup = &ucp->tuc_mcontext.mc_fpregs;
__get_user(fenab, &(fpup->mcfpu_enab));
if (fenab) {
abi_ulong fprs;
abi_ulong fsr;
/*
* We use the FPRS from the guest only in deciding whether
* to restore the upper, lower, or both banks of the FPU regs.
* The kernel here writes the FPU register data into the
* process's current_thread_info state and unconditionally
* clears FPRS and TSTATE_PEF: this disables the FPU so that the
* next FPU-disabled trap will copy the data out of
* current_thread_info and into the real FPU registers.
* QEMU doesn't need to handle lazy-FPU-state-restoring like that,
* so we always load the data directly into the FPU registers
* and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
* Note that because we (and the kernel) always write zeroes for
* the fenab and fprs in sparc64_get_context() none of this code
* will execute unless the guest manually constructed or changed
* the context structure.
*/
__get_user(fprs, &(fpup->mcfpu_fprs));
if (fprs & FPRS_DL) {
for (i = 0; i < 16; i++) {
__get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
}
}
if (fprs & FPRS_DU) {
for (i = 16; i < 32; i++) {
__get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
}
}
__get_user(fsr, &(fpup->mcfpu_fsr));
cpu_put_fsr(env, fsr);
__get_user(env->gsr, &(fpup->mcfpu_gsr));
}
unlock_user_struct(ucp, ucp_addr, 0);
return;
do_sigsegv:
unlock_user_struct(ucp, ucp_addr, 0);
force_sig(TARGET_SIGSEGV);
}
void sparc64_get_context(CPUSPARCState *env)
{
abi_ulong ucp_addr;
struct target_ucontext *ucp;
target_mc_gregset_t *grp;
target_mcontext_t *mcp;
int err;
unsigned int i;
target_sigset_t target_set;
sigset_t set;
ucp_addr = env->regwptr[WREG_O0];
if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
goto do_sigsegv;
}
memset(ucp, 0, sizeof(*ucp));
mcp = &ucp->tuc_mcontext;
grp = &mcp->mc_gregs;
/* Skip over the trap instruction, first. */
env->pc = env->npc;
env->npc += 4;
/* If we're only reading the signal mask then do_sigprocmask()
* is guaranteed not to fail, which is important because we don't
* have any way to signal a failure or restart this operation since
* this is not a normal syscall.
*/
err = do_sigprocmask(0, NULL, &set);
assert(err == 0);
host_to_target_sigset_internal(&target_set, &set);
if (TARGET_NSIG_WORDS == 1) {
__put_user(target_set.sig[0],
(abi_ulong *)&ucp->tuc_sigmask);
} else {
abi_ulong *src, *dst;
src = target_set.sig;
dst = ucp->tuc_sigmask.sig;
for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
__put_user(*src, dst);
}
}
__put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
__put_user(env->pc, &((*grp)[SPARC_MC_PC]));
__put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
__put_user(env->y, &((*grp)[SPARC_MC_Y]));
__put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
__put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
__put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
__put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
__put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
__put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
__put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
/*
* Note that unlike the kernel, we didn't need to mess with the
* guest register window state to save it into a pt_regs to run
* the kernel. So for us the guest's O regs are still in WREG_O*
* (unlike the kernel which has put them in UREG_I* in a pt_regs)
* and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
* need to be fished out of userspace memory.
*/
__put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
__put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
__put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
__put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
__put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
__put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
__put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
__put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
__put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
__put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
/*
* We don't write out the FPU state. This matches the kernel's
* implementation (which has the code for doing this but
* hidden behind an "if (fenab)" where fenab is always 0).
*/
unlock_user_struct(ucp, ucp_addr, 1);
return;
do_sigsegv:
unlock_user_struct(ucp, ucp_addr, 1);
force_sig(TARGET_SIGSEGV);
}
#endif /* TARGET_SPARC64 */