blob: 20f0f41f99a5505bb464a8755e6baacc5e24859b [file] [log] [blame]
/*
* FUSE: Filesystem in Userspace
* Copyright (C) 2001-2007 Miklos Szeredi <miklos@szeredi.hu>
*
* This program can be distributed under the terms of the GNU GPLv2.
* See the file COPYING.
*/
/*
*
* This file system mirrors the existing file system hierarchy of the
* system, starting at the root file system. This is implemented by
* just "passing through" all requests to the corresponding user-space
* libc functions. In contrast to passthrough.c and passthrough_fh.c,
* this implementation uses the low-level API. Its performance should
* be the least bad among the three, but many operations are not
* implemented. In particular, it is not possible to remove files (or
* directories) because the code necessary to defer actual removal
* until the file is not opened anymore would make the example much
* more complicated.
*
* When writeback caching is enabled (-o writeback mount option), it
* is only possible to write to files for which the mounting user has
* read permissions. This is because the writeback cache requires the
* kernel to be able to issue read requests for all files (which the
* passthrough filesystem cannot satisfy if it can't read the file in
* the underlying filesystem).
*
* Compile with:
*
* gcc -Wall passthrough_ll.c `pkg-config fuse3 --cflags --libs` -o
* passthrough_ll
*
* ## Source code ##
* \include passthrough_ll.c
*/
#include "qemu/osdep.h"
#include "qemu/timer.h"
#include "qemu-version.h"
#include "qemu/help-texts.h"
#include "fuse_virtio.h"
#include "fuse_log.h"
#include "fuse_lowlevel.h"
#include "standard-headers/linux/fuse.h"
#include <cap-ng.h>
#include <dirent.h>
#include <pthread.h>
#include <sys/file.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <sys/xattr.h>
#include <syslog.h>
#include <grp.h>
#include "qemu/cutils.h"
#include "passthrough_helpers.h"
#include "passthrough_seccomp.h"
/* Keep track of inode posix locks for each owner. */
struct lo_inode_plock {
uint64_t lock_owner;
int fd; /* fd for OFD locks */
};
struct lo_map_elem {
union {
struct lo_inode *inode;
struct lo_dirp *dirp;
int fd;
ssize_t freelist;
};
bool in_use;
};
/* Maps FUSE fh or ino values to internal objects */
struct lo_map {
struct lo_map_elem *elems;
size_t nelems;
ssize_t freelist;
};
struct lo_key {
ino_t ino;
dev_t dev;
uint64_t mnt_id;
};
struct lo_inode {
int fd;
/*
* Atomic reference count for this object. The nlookup field holds a
* reference and release it when nlookup reaches 0.
*/
gint refcount;
struct lo_key key;
/*
* This counter keeps the inode alive during the FUSE session.
* Incremented when the FUSE inode number is sent in a reply
* (FUSE_LOOKUP, FUSE_READDIRPLUS, etc). Decremented when an inode is
* released by a FUSE_FORGET request.
*
* Note that this value is untrusted because the client can manipulate
* it arbitrarily using FUSE_FORGET requests.
*
* Protected by lo->mutex.
*/
uint64_t nlookup;
fuse_ino_t fuse_ino;
pthread_mutex_t plock_mutex;
GHashTable *posix_locks; /* protected by lo_inode->plock_mutex */
mode_t filetype;
};
struct lo_cred {
uid_t euid;
gid_t egid;
mode_t umask;
};
enum {
CACHE_NONE,
CACHE_AUTO,
CACHE_ALWAYS,
};
enum {
SANDBOX_NAMESPACE,
SANDBOX_CHROOT,
};
typedef struct xattr_map_entry {
char *key;
char *prepend;
unsigned int flags;
} XattrMapEntry;
struct lo_data {
pthread_mutex_t mutex;
int sandbox;
int debug;
int writeback;
int flock;
int posix_lock;
int xattr;
char *xattrmap;
char *xattr_security_capability;
char *source;
char *modcaps;
double timeout;
int cache;
int timeout_set;
int readdirplus_set;
int readdirplus_clear;
int allow_direct_io;
int announce_submounts;
bool use_statx;
struct lo_inode root;
GHashTable *inodes; /* protected by lo->mutex */
struct lo_map ino_map; /* protected by lo->mutex */
struct lo_map dirp_map; /* protected by lo->mutex */
struct lo_map fd_map; /* protected by lo->mutex */
XattrMapEntry *xattr_map_list;
size_t xattr_map_nentries;
/* An O_PATH file descriptor to /proc/self/fd/ */
int proc_self_fd;
/* An O_PATH file descriptor to /proc/self/task/ */
int proc_self_task;
int user_killpriv_v2, killpriv_v2;
/* If set, virtiofsd is responsible for setting umask during creation */
bool change_umask;
int user_posix_acl, posix_acl;
/* Keeps track if /proc/<pid>/attr/fscreate should be used or not */
bool use_fscreate;
int user_security_label;
};
static const struct fuse_opt lo_opts[] = {
{ "sandbox=namespace",
offsetof(struct lo_data, sandbox),
SANDBOX_NAMESPACE },
{ "sandbox=chroot",
offsetof(struct lo_data, sandbox),
SANDBOX_CHROOT },
{ "writeback", offsetof(struct lo_data, writeback), 1 },
{ "no_writeback", offsetof(struct lo_data, writeback), 0 },
{ "source=%s", offsetof(struct lo_data, source), 0 },
{ "flock", offsetof(struct lo_data, flock), 1 },
{ "no_flock", offsetof(struct lo_data, flock), 0 },
{ "posix_lock", offsetof(struct lo_data, posix_lock), 1 },
{ "no_posix_lock", offsetof(struct lo_data, posix_lock), 0 },
{ "xattr", offsetof(struct lo_data, xattr), 1 },
{ "no_xattr", offsetof(struct lo_data, xattr), 0 },
{ "xattrmap=%s", offsetof(struct lo_data, xattrmap), 0 },
{ "modcaps=%s", offsetof(struct lo_data, modcaps), 0 },
{ "timeout=%lf", offsetof(struct lo_data, timeout), 0 },
{ "timeout=", offsetof(struct lo_data, timeout_set), 1 },
{ "cache=none", offsetof(struct lo_data, cache), CACHE_NONE },
{ "cache=auto", offsetof(struct lo_data, cache), CACHE_AUTO },
{ "cache=always", offsetof(struct lo_data, cache), CACHE_ALWAYS },
{ "readdirplus", offsetof(struct lo_data, readdirplus_set), 1 },
{ "no_readdirplus", offsetof(struct lo_data, readdirplus_clear), 1 },
{ "allow_direct_io", offsetof(struct lo_data, allow_direct_io), 1 },
{ "no_allow_direct_io", offsetof(struct lo_data, allow_direct_io), 0 },
{ "announce_submounts", offsetof(struct lo_data, announce_submounts), 1 },
{ "killpriv_v2", offsetof(struct lo_data, user_killpriv_v2), 1 },
{ "no_killpriv_v2", offsetof(struct lo_data, user_killpriv_v2), 0 },
{ "posix_acl", offsetof(struct lo_data, user_posix_acl), 1 },
{ "no_posix_acl", offsetof(struct lo_data, user_posix_acl), 0 },
{ "security_label", offsetof(struct lo_data, user_security_label), 1 },
{ "no_security_label", offsetof(struct lo_data, user_security_label), 0 },
FUSE_OPT_END
};
static bool use_syslog = false;
static int current_log_level;
static void unref_inode_lolocked(struct lo_data *lo, struct lo_inode *inode,
uint64_t n);
static struct {
pthread_mutex_t mutex;
void *saved;
} cap;
/* That we loaded cap-ng in the current thread from the saved */
static __thread bool cap_loaded = 0;
static struct lo_inode *lo_find(struct lo_data *lo, struct stat *st,
uint64_t mnt_id);
static int xattr_map_client(const struct lo_data *lo, const char *client_name,
char **out_name);
#define FCHDIR_NOFAIL(fd) do { \
int fchdir_res = fchdir(fd); \
assert(fchdir_res == 0); \
} while (0)
static bool is_dot_or_dotdot(const char *name)
{
return name[0] == '.' &&
(name[1] == '\0' || (name[1] == '.' && name[2] == '\0'));
}
/* Is `path` a single path component that is not "." or ".."? */
static bool is_safe_path_component(const char *path)
{
if (strchr(path, '/')) {
return false;
}
return !is_dot_or_dotdot(path);
}
static bool is_empty(const char *name)
{
return name[0] == '\0';
}
static struct lo_data *lo_data(fuse_req_t req)
{
return (struct lo_data *)fuse_req_userdata(req);
}
/*
* Tries to figure out if /proc/<pid>/attr/fscreate is usable or not. With
* selinux=0, read from fscreate returns -EINVAL.
*
* TODO: Link with libselinux and use is_selinux_enabled() instead down
* the line. It probably will be more reliable indicator.
*/
static bool is_fscreate_usable(struct lo_data *lo)
{
char procname[64];
int fscreate_fd;
size_t bytes_read;
sprintf(procname, "%ld/attr/fscreate", syscall(SYS_gettid));
fscreate_fd = openat(lo->proc_self_task, procname, O_RDWR);
if (fscreate_fd == -1) {
return false;
}
bytes_read = read(fscreate_fd, procname, 64);
close(fscreate_fd);
if (bytes_read == -1) {
return false;
}
return true;
}
/* Helpers to set/reset fscreate */
static int open_set_proc_fscreate(struct lo_data *lo, const void *ctx,
size_t ctxlen, int *fd)
{
char procname[64];
int fscreate_fd, err = 0;
size_t written;
sprintf(procname, "%ld/attr/fscreate", syscall(SYS_gettid));
fscreate_fd = openat(lo->proc_self_task, procname, O_WRONLY);
err = fscreate_fd == -1 ? errno : 0;
if (err) {
return err;
}
written = write(fscreate_fd, ctx, ctxlen);
err = written == -1 ? errno : 0;
if (err) {
goto out;
}
*fd = fscreate_fd;
return 0;
out:
close(fscreate_fd);
return err;
}
static void close_reset_proc_fscreate(int fd)
{
if ((write(fd, NULL, 0)) == -1) {
fuse_log(FUSE_LOG_WARNING, "Failed to reset fscreate. err=%d\n", errno);
}
close(fd);
return;
}
/*
* Load capng's state from our saved state if the current thread
* hadn't previously been loaded.
* returns 0 on success
*/
static int load_capng(void)
{
if (!cap_loaded) {
pthread_mutex_lock(&cap.mutex);
capng_restore_state(&cap.saved);
/*
* restore_state free's the saved copy
* so make another.
*/
cap.saved = capng_save_state();
if (!cap.saved) {
pthread_mutex_unlock(&cap.mutex);
fuse_log(FUSE_LOG_ERR, "capng_save_state (thread)\n");
return -EINVAL;
}
pthread_mutex_unlock(&cap.mutex);
/*
* We want to use the loaded state for our pid,
* not the original
*/
capng_setpid(syscall(SYS_gettid));
cap_loaded = true;
}
return 0;
}
/*
* Helpers for dropping and regaining effective capabilities. Returns 0
* on success, error otherwise
*/
static int drop_effective_cap(const char *cap_name, bool *cap_dropped)
{
int cap, ret;
cap = capng_name_to_capability(cap_name);
if (cap < 0) {
ret = errno;
fuse_log(FUSE_LOG_ERR, "capng_name_to_capability(%s) failed:%s\n",
cap_name, strerror(errno));
goto out;
}
if (load_capng()) {
ret = errno;
fuse_log(FUSE_LOG_ERR, "load_capng() failed\n");
goto out;
}
/* We dont have this capability in effective set already. */
if (!capng_have_capability(CAPNG_EFFECTIVE, cap)) {
ret = 0;
goto out;
}
if (capng_update(CAPNG_DROP, CAPNG_EFFECTIVE, cap)) {
ret = errno;
fuse_log(FUSE_LOG_ERR, "capng_update(DROP,) failed\n");
goto out;
}
if (capng_apply(CAPNG_SELECT_CAPS)) {
ret = errno;
fuse_log(FUSE_LOG_ERR, "drop:capng_apply() failed\n");
goto out;
}
ret = 0;
if (cap_dropped) {
*cap_dropped = true;
}
out:
return ret;
}
static int gain_effective_cap(const char *cap_name)
{
int cap;
int ret = 0;
cap = capng_name_to_capability(cap_name);
if (cap < 0) {
ret = errno;
fuse_log(FUSE_LOG_ERR, "capng_name_to_capability(%s) failed:%s\n",
cap_name, strerror(errno));
goto out;
}
if (load_capng()) {
ret = errno;
fuse_log(FUSE_LOG_ERR, "load_capng() failed\n");
goto out;
}
if (capng_update(CAPNG_ADD, CAPNG_EFFECTIVE, cap)) {
ret = errno;
fuse_log(FUSE_LOG_ERR, "capng_update(ADD,) failed\n");
goto out;
}
if (capng_apply(CAPNG_SELECT_CAPS)) {
ret = errno;
fuse_log(FUSE_LOG_ERR, "gain:capng_apply() failed\n");
goto out;
}
ret = 0;
out:
return ret;
}
/*
* The host kernel normally drops security.capability xattr's on
* any write, however if we're remapping xattr names we need to drop
* whatever the clients security.capability is actually stored as.
*/
static int drop_security_capability(const struct lo_data *lo, int fd)
{
if (!lo->xattr_security_capability) {
/* We didn't remap the name, let the host kernel do it */
return 0;
}
if (!fremovexattr(fd, lo->xattr_security_capability)) {
/* All good */
return 0;
}
switch (errno) {
case ENODATA:
/* Attribute didn't exist, that's fine */
return 0;
case ENOTSUP:
/* FS didn't support attribute anyway, also fine */
return 0;
default:
/* Hmm other error */
return errno;
}
}
static void lo_map_init(struct lo_map *map)
{
map->elems = NULL;
map->nelems = 0;
map->freelist = -1;
}
static void lo_map_destroy(struct lo_map *map)
{
g_free(map->elems);
}
static int lo_map_grow(struct lo_map *map, size_t new_nelems)
{
struct lo_map_elem *new_elems;
size_t i;
if (new_nelems <= map->nelems) {
return 1;
}
new_elems = g_try_realloc_n(map->elems, new_nelems, sizeof(map->elems[0]));
if (!new_elems) {
return 0;
}
for (i = map->nelems; i < new_nelems; i++) {
new_elems[i].freelist = i + 1;
new_elems[i].in_use = false;
}
new_elems[new_nelems - 1].freelist = -1;
map->elems = new_elems;
map->freelist = map->nelems;
map->nelems = new_nelems;
return 1;
}
static struct lo_map_elem *lo_map_alloc_elem(struct lo_map *map)
{
struct lo_map_elem *elem;
if (map->freelist == -1 && !lo_map_grow(map, map->nelems + 256)) {
return NULL;
}
elem = &map->elems[map->freelist];
map->freelist = elem->freelist;
elem->in_use = true;
return elem;
}
static struct lo_map_elem *lo_map_reserve(struct lo_map *map, size_t key)
{
ssize_t *prev;
if (!lo_map_grow(map, key + 1)) {
return NULL;
}
for (prev = &map->freelist; *prev != -1;
prev = &map->elems[*prev].freelist) {
if (*prev == key) {
struct lo_map_elem *elem = &map->elems[key];
*prev = elem->freelist;
elem->in_use = true;
return elem;
}
}
return NULL;
}
static struct lo_map_elem *lo_map_get(struct lo_map *map, size_t key)
{
if (key >= map->nelems) {
return NULL;
}
if (!map->elems[key].in_use) {
return NULL;
}
return &map->elems[key];
}
static void lo_map_remove(struct lo_map *map, size_t key)
{
struct lo_map_elem *elem;
if (key >= map->nelems) {
return;
}
elem = &map->elems[key];
if (!elem->in_use) {
return;
}
elem->in_use = false;
elem->freelist = map->freelist;
map->freelist = key;
}
/* Assumes lo->mutex is held */
static ssize_t lo_add_fd_mapping(struct lo_data *lo, int fd)
{
struct lo_map_elem *elem;
elem = lo_map_alloc_elem(&lo->fd_map);
if (!elem) {
return -1;
}
elem->fd = fd;
return elem - lo->fd_map.elems;
}
/* Assumes lo->mutex is held */
static ssize_t lo_add_dirp_mapping(fuse_req_t req, struct lo_dirp *dirp)
{
struct lo_map_elem *elem;
elem = lo_map_alloc_elem(&lo_data(req)->dirp_map);
if (!elem) {
return -1;
}
elem->dirp = dirp;
return elem - lo_data(req)->dirp_map.elems;
}
/* Assumes lo->mutex is held */
static ssize_t lo_add_inode_mapping(fuse_req_t req, struct lo_inode *inode)
{
struct lo_map_elem *elem;
elem = lo_map_alloc_elem(&lo_data(req)->ino_map);
if (!elem) {
return -1;
}
elem->inode = inode;
return elem - lo_data(req)->ino_map.elems;
}
static void lo_inode_put(struct lo_data *lo, struct lo_inode **inodep)
{
struct lo_inode *inode = *inodep;
if (!inode) {
return;
}
*inodep = NULL;
if (g_atomic_int_dec_and_test(&inode->refcount)) {
close(inode->fd);
free(inode);
}
}
/* Caller must release refcount using lo_inode_put() */
static struct lo_inode *lo_inode(fuse_req_t req, fuse_ino_t ino)
{
struct lo_data *lo = lo_data(req);
struct lo_map_elem *elem;
pthread_mutex_lock(&lo->mutex);
elem = lo_map_get(&lo->ino_map, ino);
if (elem) {
g_atomic_int_inc(&elem->inode->refcount);
}
pthread_mutex_unlock(&lo->mutex);
if (!elem) {
return NULL;
}
return elem->inode;
}
/*
* TODO Remove this helper and force callers to hold an inode refcount until
* they are done with the fd. This will be done in a later patch to make
* review easier.
*/
static int lo_fd(fuse_req_t req, fuse_ino_t ino)
{
struct lo_inode *inode = lo_inode(req, ino);
int fd;
if (!inode) {
return -1;
}
fd = inode->fd;
lo_inode_put(lo_data(req), &inode);
return fd;
}
/*
* Open a file descriptor for an inode. Returns -EBADF if the inode is not a
* regular file or a directory.
*
* Use this helper function instead of raw openat(2) to prevent security issues
* when a malicious client opens special files such as block device nodes.
* Symlink inodes are also rejected since symlinks must already have been
* traversed on the client side.
*/
static int lo_inode_open(struct lo_data *lo, struct lo_inode *inode,
int open_flags)
{
g_autofree char *fd_str = g_strdup_printf("%d", inode->fd);
int fd;
if (!S_ISREG(inode->filetype) && !S_ISDIR(inode->filetype)) {
return -EBADF;
}
/*
* The file is a symlink so O_NOFOLLOW must be ignored. We checked earlier
* that the inode is not a special file but if an external process races
* with us then symlinks are traversed here. It is not possible to escape
* the shared directory since it is mounted as "/" though.
*/
fd = openat(lo->proc_self_fd, fd_str, open_flags & ~O_NOFOLLOW);
if (fd < 0) {
return -errno;
}
return fd;
}
static void lo_init(void *userdata, struct fuse_conn_info *conn)
{
struct lo_data *lo = (struct lo_data *)userdata;
if (conn->capable & FUSE_CAP_EXPORT_SUPPORT) {
conn->want |= FUSE_CAP_EXPORT_SUPPORT;
}
if (lo->writeback && conn->capable & FUSE_CAP_WRITEBACK_CACHE) {
fuse_log(FUSE_LOG_DEBUG, "lo_init: activating writeback\n");
conn->want |= FUSE_CAP_WRITEBACK_CACHE;
}
if (conn->capable & FUSE_CAP_FLOCK_LOCKS) {
if (lo->flock) {
fuse_log(FUSE_LOG_DEBUG, "lo_init: activating flock locks\n");
conn->want |= FUSE_CAP_FLOCK_LOCKS;
} else {
fuse_log(FUSE_LOG_DEBUG, "lo_init: disabling flock locks\n");
conn->want &= ~FUSE_CAP_FLOCK_LOCKS;
}
}
if (conn->capable & FUSE_CAP_POSIX_LOCKS) {
if (lo->posix_lock) {
fuse_log(FUSE_LOG_DEBUG, "lo_init: activating posix locks\n");
conn->want |= FUSE_CAP_POSIX_LOCKS;
} else {
fuse_log(FUSE_LOG_DEBUG, "lo_init: disabling posix locks\n");
conn->want &= ~FUSE_CAP_POSIX_LOCKS;
}
}
if ((lo->cache == CACHE_NONE && !lo->readdirplus_set) ||
lo->readdirplus_clear) {
fuse_log(FUSE_LOG_DEBUG, "lo_init: disabling readdirplus\n");
conn->want &= ~FUSE_CAP_READDIRPLUS;
}
if (!(conn->capable & FUSE_CAP_SUBMOUNTS) && lo->announce_submounts) {
fuse_log(FUSE_LOG_WARNING, "lo_init: Cannot announce submounts, client "
"does not support it\n");
lo->announce_submounts = false;
}
if (lo->user_killpriv_v2 == 1) {
/*
* User explicitly asked for this option. Enable it unconditionally.
* If connection does not have this capability, it should fail
* in fuse_lowlevel.c
*/
fuse_log(FUSE_LOG_DEBUG, "lo_init: enabling killpriv_v2\n");
conn->want |= FUSE_CAP_HANDLE_KILLPRIV_V2;
lo->killpriv_v2 = 1;
} else {
/*
* Either user specified to disable killpriv_v2, or did not
* specify anything. Disable killpriv_v2 in both the cases.
*/
fuse_log(FUSE_LOG_DEBUG, "lo_init: disabling killpriv_v2\n");
conn->want &= ~FUSE_CAP_HANDLE_KILLPRIV_V2;
lo->killpriv_v2 = 0;
}
if (lo->user_posix_acl == 1) {
/*
* User explicitly asked for this option. Enable it unconditionally.
* If connection does not have this capability, print error message
* now. It will fail later in fuse_lowlevel.c
*/
if (!(conn->capable & FUSE_CAP_POSIX_ACL) ||
!(conn->capable & FUSE_CAP_DONT_MASK) ||
!(conn->capable & FUSE_CAP_SETXATTR_EXT)) {
fuse_log(FUSE_LOG_ERR, "lo_init: Can not enable posix acl."
" kernel does not support FUSE_POSIX_ACL, FUSE_DONT_MASK"
" or FUSE_SETXATTR_EXT capability.\n");
} else {
fuse_log(FUSE_LOG_DEBUG, "lo_init: enabling posix acl\n");
}
conn->want |= FUSE_CAP_POSIX_ACL | FUSE_CAP_DONT_MASK |
FUSE_CAP_SETXATTR_EXT;
lo->change_umask = true;
lo->posix_acl = true;
} else {
/* User either did not specify anything or wants it disabled */
fuse_log(FUSE_LOG_DEBUG, "lo_init: disabling posix_acl\n");
conn->want &= ~FUSE_CAP_POSIX_ACL;
}
if (lo->user_security_label == 1) {
if (!(conn->capable & FUSE_CAP_SECURITY_CTX)) {
fuse_log(FUSE_LOG_ERR, "lo_init: Can not enable security label."
" kernel does not support FUSE_SECURITY_CTX capability.\n");
}
conn->want |= FUSE_CAP_SECURITY_CTX;
} else {
fuse_log(FUSE_LOG_DEBUG, "lo_init: disabling security label\n");
conn->want &= ~FUSE_CAP_SECURITY_CTX;
}
}
static void lo_getattr(fuse_req_t req, fuse_ino_t ino,
struct fuse_file_info *fi)
{
int res;
struct stat buf;
struct lo_data *lo = lo_data(req);
(void)fi;
res =
fstatat(lo_fd(req, ino), "", &buf, AT_EMPTY_PATH | AT_SYMLINK_NOFOLLOW);
if (res == -1) {
return (void)fuse_reply_err(req, errno);
}
fuse_reply_attr(req, &buf, lo->timeout);
}
static int lo_fi_fd(fuse_req_t req, struct fuse_file_info *fi)
{
struct lo_data *lo = lo_data(req);
struct lo_map_elem *elem;
pthread_mutex_lock(&lo->mutex);
elem = lo_map_get(&lo->fd_map, fi->fh);
pthread_mutex_unlock(&lo->mutex);
if (!elem) {
return -1;
}
return elem->fd;
}
static void lo_setattr(fuse_req_t req, fuse_ino_t ino, struct stat *attr,
int valid, struct fuse_file_info *fi)
{
int saverr;
char procname[64];
struct lo_data *lo = lo_data(req);
struct lo_inode *inode;
int ifd;
int res;
int fd = -1;
inode = lo_inode(req, ino);
if (!inode) {
fuse_reply_err(req, EBADF);
return;
}
ifd = inode->fd;
/* If fi->fh is invalid we'll report EBADF later */
if (fi) {
fd = lo_fi_fd(req, fi);
}
if (valid & FUSE_SET_ATTR_MODE) {
if (fi) {
res = fchmod(fd, attr->st_mode);
} else {
sprintf(procname, "%i", ifd);
res = fchmodat(lo->proc_self_fd, procname, attr->st_mode, 0);
}
if (res == -1) {
saverr = errno;
goto out_err;
}
}
if (valid & (FUSE_SET_ATTR_UID | FUSE_SET_ATTR_GID)) {
uid_t uid = (valid & FUSE_SET_ATTR_UID) ? attr->st_uid : (uid_t)-1;
gid_t gid = (valid & FUSE_SET_ATTR_GID) ? attr->st_gid : (gid_t)-1;
saverr = drop_security_capability(lo, ifd);
if (saverr) {
goto out_err;
}
res = fchownat(ifd, "", uid, gid, AT_EMPTY_PATH | AT_SYMLINK_NOFOLLOW);
if (res == -1) {
saverr = errno;
goto out_err;
}
}
if (valid & FUSE_SET_ATTR_SIZE) {
int truncfd;
bool kill_suidgid;
bool cap_fsetid_dropped = false;
kill_suidgid = lo->killpriv_v2 && (valid & FUSE_SET_ATTR_KILL_SUIDGID);
if (fi) {
truncfd = fd;
} else {
truncfd = lo_inode_open(lo, inode, O_RDWR);
if (truncfd < 0) {
saverr = -truncfd;
goto out_err;
}
}
saverr = drop_security_capability(lo, truncfd);
if (saverr) {
if (!fi) {
close(truncfd);
}
goto out_err;
}
if (kill_suidgid) {
res = drop_effective_cap("FSETID", &cap_fsetid_dropped);
if (res != 0) {
saverr = res;
if (!fi) {
close(truncfd);
}
goto out_err;
}
}
res = ftruncate(truncfd, attr->st_size);
saverr = res == -1 ? errno : 0;
if (cap_fsetid_dropped) {
if (gain_effective_cap("FSETID")) {
fuse_log(FUSE_LOG_ERR, "Failed to gain CAP_FSETID\n");
}
}
if (!fi) {
close(truncfd);
}
if (res == -1) {
goto out_err;
}
}
if (valid & (FUSE_SET_ATTR_ATIME | FUSE_SET_ATTR_MTIME)) {
struct timespec tv[2];
tv[0].tv_sec = 0;
tv[1].tv_sec = 0;
tv[0].tv_nsec = UTIME_OMIT;
tv[1].tv_nsec = UTIME_OMIT;
if (valid & FUSE_SET_ATTR_ATIME_NOW) {
tv[0].tv_nsec = UTIME_NOW;
} else if (valid & FUSE_SET_ATTR_ATIME) {
tv[0] = attr->st_atim;
}
if (valid & FUSE_SET_ATTR_MTIME_NOW) {
tv[1].tv_nsec = UTIME_NOW;
} else if (valid & FUSE_SET_ATTR_MTIME) {
tv[1] = attr->st_mtim;
}
if (fi) {
res = futimens(fd, tv);
} else {
sprintf(procname, "%i", inode->fd);
res = utimensat(lo->proc_self_fd, procname, tv, 0);
}
if (res == -1) {
saverr = errno;
goto out_err;
}
}
lo_inode_put(lo, &inode);
return lo_getattr(req, ino, fi);
out_err:
lo_inode_put(lo, &inode);
fuse_reply_err(req, saverr);
}
static struct lo_inode *lo_find(struct lo_data *lo, struct stat *st,
uint64_t mnt_id)
{
struct lo_inode *p;
struct lo_key key = {
.ino = st->st_ino,
.dev = st->st_dev,
.mnt_id = mnt_id,
};
pthread_mutex_lock(&lo->mutex);
p = g_hash_table_lookup(lo->inodes, &key);
if (p) {
assert(p->nlookup > 0);
p->nlookup++;
g_atomic_int_inc(&p->refcount);
}
pthread_mutex_unlock(&lo->mutex);
return p;
}
/* value_destroy_func for posix_locks GHashTable */
static void posix_locks_value_destroy(gpointer data)
{
struct lo_inode_plock *plock = data;
/*
* We had used open() for locks and had only one fd. So
* closing this fd should release all OFD locks.
*/
close(plock->fd);
free(plock);
}
static int do_statx(struct lo_data *lo, int dirfd, const char *pathname,
struct stat *statbuf, int flags, uint64_t *mnt_id)
{
int res;
#if defined(CONFIG_STATX) && defined(CONFIG_STATX_MNT_ID)
if (lo->use_statx) {
struct statx statxbuf;
res = statx(dirfd, pathname, flags, STATX_BASIC_STATS | STATX_MNT_ID,
&statxbuf);
if (!res) {
memset(statbuf, 0, sizeof(*statbuf));
statbuf->st_dev = makedev(statxbuf.stx_dev_major,
statxbuf.stx_dev_minor);
statbuf->st_ino = statxbuf.stx_ino;
statbuf->st_mode = statxbuf.stx_mode;
statbuf->st_nlink = statxbuf.stx_nlink;
statbuf->st_uid = statxbuf.stx_uid;
statbuf->st_gid = statxbuf.stx_gid;
statbuf->st_rdev = makedev(statxbuf.stx_rdev_major,
statxbuf.stx_rdev_minor);
statbuf->st_size = statxbuf.stx_size;
statbuf->st_blksize = statxbuf.stx_blksize;
statbuf->st_blocks = statxbuf.stx_blocks;
statbuf->st_atim.tv_sec = statxbuf.stx_atime.tv_sec;
statbuf->st_atim.tv_nsec = statxbuf.stx_atime.tv_nsec;
statbuf->st_mtim.tv_sec = statxbuf.stx_mtime.tv_sec;
statbuf->st_mtim.tv_nsec = statxbuf.stx_mtime.tv_nsec;
statbuf->st_ctim.tv_sec = statxbuf.stx_ctime.tv_sec;
statbuf->st_ctim.tv_nsec = statxbuf.stx_ctime.tv_nsec;
if (statxbuf.stx_mask & STATX_MNT_ID) {
*mnt_id = statxbuf.stx_mnt_id;
} else {
*mnt_id = 0;
}
return 0;
} else if (errno != ENOSYS) {
return -1;
}
lo->use_statx = false;
/* fallback */
}
#endif
res = fstatat(dirfd, pathname, statbuf, flags);
if (res == -1) {
return -1;
}
*mnt_id = 0;
return 0;
}
/*
* Increments nlookup on the inode on success. unref_inode_lolocked() must be
* called eventually to decrement nlookup again. If inodep is non-NULL, the
* inode pointer is stored and the caller must call lo_inode_put().
*/
static int lo_do_lookup(fuse_req_t req, fuse_ino_t parent, const char *name,
struct fuse_entry_param *e,
struct lo_inode **inodep)
{
int newfd;
int res;
int saverr;
uint64_t mnt_id;
struct lo_data *lo = lo_data(req);
struct lo_inode *inode = NULL;
struct lo_inode *dir = lo_inode(req, parent);
if (inodep) {
*inodep = NULL; /* in case there is an error */
}
/*
* name_to_handle_at() and open_by_handle_at() can reach here with fuse
* mount point in guest, but we don't have its inode info in the
* ino_map.
*/
if (!dir) {
return ENOENT;
}
memset(e, 0, sizeof(*e));
e->attr_timeout = lo->timeout;
e->entry_timeout = lo->timeout;
/* Do not allow escaping root directory */
if (dir == &lo->root && strcmp(name, "..") == 0) {
name = ".";
}
newfd = openat(dir->fd, name, O_PATH | O_NOFOLLOW);
if (newfd == -1) {
goto out_err;
}
res = do_statx(lo, newfd, "", &e->attr, AT_EMPTY_PATH | AT_SYMLINK_NOFOLLOW,
&mnt_id);
if (res == -1) {
goto out_err;
}
if (S_ISDIR(e->attr.st_mode) && lo->announce_submounts &&
(e->attr.st_dev != dir->key.dev || mnt_id != dir->key.mnt_id)) {
e->attr_flags |= FUSE_ATTR_SUBMOUNT;
}
inode = lo_find(lo, &e->attr, mnt_id);
if (inode) {
close(newfd);
} else {
inode = calloc(1, sizeof(struct lo_inode));
if (!inode) {
goto out_err;
}
/* cache only filetype */
inode->filetype = (e->attr.st_mode & S_IFMT);
/*
* One for the caller and one for nlookup (released in
* unref_inode_lolocked())
*/
g_atomic_int_set(&inode->refcount, 2);
inode->nlookup = 1;
inode->fd = newfd;
inode->key.ino = e->attr.st_ino;
inode->key.dev = e->attr.st_dev;
inode->key.mnt_id = mnt_id;
if (lo->posix_lock) {
pthread_mutex_init(&inode->plock_mutex, NULL);
inode->posix_locks = g_hash_table_new_full(
g_direct_hash, g_direct_equal, NULL, posix_locks_value_destroy);
}
pthread_mutex_lock(&lo->mutex);
inode->fuse_ino = lo_add_inode_mapping(req, inode);
g_hash_table_insert(lo->inodes, &inode->key, inode);
pthread_mutex_unlock(&lo->mutex);
}
e->ino = inode->fuse_ino;
/* Transfer ownership of inode pointer to caller or drop it */
if (inodep) {
*inodep = inode;
} else {
lo_inode_put(lo, &inode);
}
lo_inode_put(lo, &dir);
fuse_log(FUSE_LOG_DEBUG, " %lli/%s -> %lli\n", (unsigned long long)parent,
name, (unsigned long long)e->ino);
return 0;
out_err:
saverr = errno;
if (newfd != -1) {
close(newfd);
}
lo_inode_put(lo, &inode);
lo_inode_put(lo, &dir);
return saverr;
}
static void lo_lookup(fuse_req_t req, fuse_ino_t parent, const char *name)
{
struct fuse_entry_param e;
int err;
fuse_log(FUSE_LOG_DEBUG, "lo_lookup(parent=%" PRIu64 ", name=%s)\n", parent,
name);
if (is_empty(name)) {
fuse_reply_err(req, ENOENT);
return;
}
/*
* Don't use is_safe_path_component(), allow "." and ".." for NFS export
* support.
*/
if (strchr(name, '/')) {
fuse_reply_err(req, EINVAL);
return;
}
err = lo_do_lookup(req, parent, name, &e, NULL);
if (err) {
fuse_reply_err(req, err);
} else {
fuse_reply_entry(req, &e);
}
}
/*
* On some archs, setres*id is limited to 2^16 but they
* provide setres*id32 variants that allow 2^32.
* Others just let setres*id do 2^32 anyway.
*/
#ifdef SYS_setresgid32
#define OURSYS_setresgid SYS_setresgid32
#else
#define OURSYS_setresgid SYS_setresgid
#endif
#ifdef SYS_setresuid32
#define OURSYS_setresuid SYS_setresuid32
#else
#define OURSYS_setresuid SYS_setresuid
#endif
static void drop_supplementary_groups(void)
{
int ret;
ret = getgroups(0, NULL);
if (ret == -1) {
fuse_log(FUSE_LOG_ERR, "getgroups() failed with error=%d:%s\n",
errno, strerror(errno));
exit(1);
}
if (!ret) {
return;
}
/* Drop all supplementary groups. We should not need it */
ret = setgroups(0, NULL);
if (ret == -1) {
fuse_log(FUSE_LOG_ERR, "setgroups() failed with error=%d:%s\n",
errno, strerror(errno));
exit(1);
}
}
/*
* Change to uid/gid of caller so that file is created with
* ownership of caller.
* TODO: What about selinux context?
*/
static int lo_change_cred(fuse_req_t req, struct lo_cred *old,
bool change_umask)
{
int res;
old->euid = geteuid();
old->egid = getegid();
res = syscall(OURSYS_setresgid, -1, fuse_req_ctx(req)->gid, -1);
if (res == -1) {
return errno;
}
res = syscall(OURSYS_setresuid, -1, fuse_req_ctx(req)->uid, -1);
if (res == -1) {
int errno_save = errno;
syscall(OURSYS_setresgid, -1, old->egid, -1);
return errno_save;
}
if (change_umask) {
old->umask = umask(req->ctx.umask);
}
return 0;
}
/* Regain Privileges */
static void lo_restore_cred(struct lo_cred *old, bool restore_umask)
{
int res;
res = syscall(OURSYS_setresuid, -1, old->euid, -1);
if (res == -1) {
fuse_log(FUSE_LOG_ERR, "seteuid(%u): %m\n", old->euid);
exit(1);
}
res = syscall(OURSYS_setresgid, -1, old->egid, -1);
if (res == -1) {
fuse_log(FUSE_LOG_ERR, "setegid(%u): %m\n", old->egid);
exit(1);
}
if (restore_umask)
umask(old->umask);
}
/*
* A helper to change cred and drop capability. Returns 0 on success and
* errno on error
*/
static int lo_drop_cap_change_cred(fuse_req_t req, struct lo_cred *old,
bool change_umask, const char *cap_name,
bool *cap_dropped)
{
int ret;
bool __cap_dropped;
assert(cap_name);
ret = drop_effective_cap(cap_name, &__cap_dropped);
if (ret) {
return ret;
}
ret = lo_change_cred(req, old, change_umask);
if (ret) {
if (__cap_dropped) {
if (gain_effective_cap(cap_name)) {
fuse_log(FUSE_LOG_ERR, "Failed to gain CAP_%s\n", cap_name);
}
}
}
if (cap_dropped) {
*cap_dropped = __cap_dropped;
}
return ret;
}
static void lo_restore_cred_gain_cap(struct lo_cred *old, bool restore_umask,
const char *cap_name)
{
assert(cap_name);
lo_restore_cred(old, restore_umask);
if (gain_effective_cap(cap_name)) {
fuse_log(FUSE_LOG_ERR, "Failed to gain CAP_%s\n", cap_name);
}
}
static int do_mknod_symlink_secctx(fuse_req_t req, struct lo_inode *dir,
const char *name, const char *secctx_name)
{
int path_fd, err;
char procname[64];
struct lo_data *lo = lo_data(req);
if (!req->secctx.ctxlen) {
return 0;
}
/* Open newly created element with O_PATH */
path_fd = openat(dir->fd, name, O_PATH | O_NOFOLLOW);
err = path_fd == -1 ? errno : 0;
if (err) {
return err;
}
sprintf(procname, "%i", path_fd);
FCHDIR_NOFAIL(lo->proc_self_fd);
/* Set security context. This is not atomic w.r.t file creation */
err = setxattr(procname, secctx_name, req->secctx.ctx, req->secctx.ctxlen,
0);
if (err) {
err = errno;
}
FCHDIR_NOFAIL(lo->root.fd);
close(path_fd);
return err;
}
static int do_mknod_symlink(fuse_req_t req, struct lo_inode *dir,
const char *name, mode_t mode, dev_t rdev,
const char *link)
{
int err, fscreate_fd = -1;
const char *secctx_name = req->secctx.name;
struct lo_cred old = {};
struct lo_data *lo = lo_data(req);
char *mapped_name = NULL;
bool secctx_enabled = req->secctx.ctxlen;
bool do_fscreate = false;
if (secctx_enabled && lo->xattrmap) {
err = xattr_map_client(lo, req->secctx.name, &mapped_name);
if (err < 0) {
return -err;
}
secctx_name = mapped_name;
}
/*
* If security xattr has not been remapped and selinux is enabled on
* host, set fscreate and no need to do a setxattr() after file creation
*/
if (secctx_enabled && !mapped_name && lo->use_fscreate) {
do_fscreate = true;
err = open_set_proc_fscreate(lo, req->secctx.ctx, req->secctx.ctxlen,
&fscreate_fd);
if (err) {
goto out;
}
}
err = lo_change_cred(req, &old, lo->change_umask && !S_ISLNK(mode));
if (err) {
goto out;
}
err = mknod_wrapper(dir->fd, name, link, mode, rdev);
err = err == -1 ? errno : 0;
lo_restore_cred(&old, lo->change_umask && !S_ISLNK(mode));
if (err) {
goto out;
}
if (!do_fscreate) {
err = do_mknod_symlink_secctx(req, dir, name, secctx_name);
if (err) {
unlinkat(dir->fd, name, S_ISDIR(mode) ? AT_REMOVEDIR : 0);
}
}
out:
if (fscreate_fd != -1) {
close_reset_proc_fscreate(fscreate_fd);
}
g_free(mapped_name);
return err;
}
static void lo_mknod_symlink(fuse_req_t req, fuse_ino_t parent,
const char *name, mode_t mode, dev_t rdev,
const char *link)
{
int saverr;
struct lo_data *lo = lo_data(req);
struct lo_inode *dir;
struct fuse_entry_param e;
if (is_empty(name)) {
fuse_reply_err(req, ENOENT);
return;
}
if (!is_safe_path_component(name)) {
fuse_reply_err(req, EINVAL);
return;
}
dir = lo_inode(req, parent);
if (!dir) {
fuse_reply_err(req, EBADF);
return;
}
saverr = do_mknod_symlink(req, dir, name, mode, rdev, link);
if (saverr) {
goto out;
}
saverr = lo_do_lookup(req, parent, name, &e, NULL);
if (saverr) {
goto out;
}
fuse_log(FUSE_LOG_DEBUG, " %lli/%s -> %lli\n", (unsigned long long)parent,
name, (unsigned long long)e.ino);
fuse_reply_entry(req, &e);
lo_inode_put(lo, &dir);
return;
out:
lo_inode_put(lo, &dir);
fuse_reply_err(req, saverr);
}
static void lo_mknod(fuse_req_t req, fuse_ino_t parent, const char *name,
mode_t mode, dev_t rdev)
{
lo_mknod_symlink(req, parent, name, mode, rdev, NULL);
}
static void lo_mkdir(fuse_req_t req, fuse_ino_t parent, const char *name,
mode_t mode)
{
lo_mknod_symlink(req, parent, name, S_IFDIR | mode, 0, NULL);
}
static void lo_symlink(fuse_req_t req, const char *link, fuse_ino_t parent,
const char *name)
{
lo_mknod_symlink(req, parent, name, S_IFLNK, 0, link);
}
static void lo_link(fuse_req_t req, fuse_ino_t ino, fuse_ino_t parent,
const char *name)
{
int res;
struct lo_data *lo = lo_data(req);
struct lo_inode *parent_inode;
struct lo_inode *inode;
struct fuse_entry_param e;
char procname[64];
int saverr;
if (is_empty(name)) {
fuse_reply_err(req, ENOENT);
return;
}
if (!is_safe_path_component(name)) {
fuse_reply_err(req, EINVAL);
return;
}
parent_inode = lo_inode(req, parent);
inode = lo_inode(req, ino);
if (!parent_inode || !inode) {
errno = EBADF;
goto out_err;
}
memset(&e, 0, sizeof(struct fuse_entry_param));
e.attr_timeout = lo->timeout;
e.entry_timeout = lo->timeout;
sprintf(procname, "%i", inode->fd);
res = linkat(lo->proc_self_fd, procname, parent_inode->fd, name,
AT_SYMLINK_FOLLOW);
if (res == -1) {
goto out_err;
}
res = fstatat(inode->fd, "", &e.attr, AT_EMPTY_PATH | AT_SYMLINK_NOFOLLOW);
if (res == -1) {
goto out_err;
}
pthread_mutex_lock(&lo->mutex);
inode->nlookup++;
pthread_mutex_unlock(&lo->mutex);
e.ino = inode->fuse_ino;
fuse_log(FUSE_LOG_DEBUG, " %lli/%s -> %lli\n", (unsigned long long)parent,
name, (unsigned long long)e.ino);
fuse_reply_entry(req, &e);
lo_inode_put(lo, &parent_inode);
lo_inode_put(lo, &inode);
return;
out_err:
saverr = errno;
lo_inode_put(lo, &parent_inode);
lo_inode_put(lo, &inode);
fuse_reply_err(req, saverr);
}
/* Increments nlookup and caller must release refcount using lo_inode_put() */
static struct lo_inode *lookup_name(fuse_req_t req, fuse_ino_t parent,
const char *name)
{
int res;
uint64_t mnt_id;
struct stat attr;
struct lo_data *lo = lo_data(req);
struct lo_inode *dir = lo_inode(req, parent);
if (!dir) {
return NULL;
}
res = do_statx(lo, dir->fd, name, &attr, AT_SYMLINK_NOFOLLOW, &mnt_id);
lo_inode_put(lo, &dir);
if (res == -1) {
return NULL;
}
return lo_find(lo, &attr, mnt_id);
}
static void lo_rmdir(fuse_req_t req, fuse_ino_t parent, const char *name)
{
int res;
struct lo_inode *inode;
struct lo_data *lo = lo_data(req);
if (is_empty(name)) {
fuse_reply_err(req, ENOENT);
return;
}
if (!is_safe_path_component(name)) {
fuse_reply_err(req, EINVAL);
return;
}
inode = lookup_name(req, parent, name);
if (!inode) {
fuse_reply_err(req, EIO);
return;
}
res = unlinkat(lo_fd(req, parent), name, AT_REMOVEDIR);
fuse_reply_err(req, res == -1 ? errno : 0);
unref_inode_lolocked(lo, inode, 1);
lo_inode_put(lo, &inode);
}
static void lo_rename(fuse_req_t req, fuse_ino_t parent, const char *name,
fuse_ino_t newparent, const char *newname,
unsigned int flags)
{
int res;
struct lo_inode *parent_inode;
struct lo_inode *newparent_inode;
struct lo_inode *oldinode = NULL;
struct lo_inode *newinode = NULL;
struct lo_data *lo = lo_data(req);
if (is_empty(name) || is_empty(newname)) {
fuse_reply_err(req, ENOENT);
return;
}
if (!is_safe_path_component(name) || !is_safe_path_component(newname)) {
fuse_reply_err(req, EINVAL);
return;
}
parent_inode = lo_inode(req, parent);
newparent_inode = lo_inode(req, newparent);
if (!parent_inode || !newparent_inode) {
fuse_reply_err(req, EBADF);
goto out;
}
oldinode = lookup_name(req, parent, name);
newinode = lookup_name(req, newparent, newname);
if (!oldinode) {
fuse_reply_err(req, EIO);
goto out;
}
if (flags) {
#ifndef SYS_renameat2
fuse_reply_err(req, EINVAL);
#else
res = syscall(SYS_renameat2, parent_inode->fd, name,
newparent_inode->fd, newname, flags);
if (res == -1 && errno == ENOSYS) {
fuse_reply_err(req, EINVAL);
} else {
fuse_reply_err(req, res == -1 ? errno : 0);
}
#endif
goto out;
}
res = renameat(parent_inode->fd, name, newparent_inode->fd, newname);
fuse_reply_err(req, res == -1 ? errno : 0);
out:
unref_inode_lolocked(lo, oldinode, 1);
unref_inode_lolocked(lo, newinode, 1);
lo_inode_put(lo, &oldinode);
lo_inode_put(lo, &newinode);
lo_inode_put(lo, &parent_inode);
lo_inode_put(lo, &newparent_inode);
}
static void lo_unlink(fuse_req_t req, fuse_ino_t parent, const char *name)
{
int res;
struct lo_inode *inode;
struct lo_data *lo = lo_data(req);
if (is_empty(name)) {
fuse_reply_err(req, ENOENT);
return;
}
if (!is_safe_path_component(name)) {
fuse_reply_err(req, EINVAL);
return;
}
inode = lookup_name(req, parent, name);
if (!inode) {
fuse_reply_err(req, EIO);
return;
}
res = unlinkat(lo_fd(req, parent), name, 0);
fuse_reply_err(req, res == -1 ? errno : 0);
unref_inode_lolocked(lo, inode, 1);
lo_inode_put(lo, &inode);
}
/* To be called with lo->mutex held */
static void unref_inode(struct lo_data *lo, struct lo_inode *inode, uint64_t n)
{
if (!inode) {
return;
}
assert(inode->nlookup >= n);
inode->nlookup -= n;
if (!inode->nlookup) {
lo_map_remove(&lo->ino_map, inode->fuse_ino);
g_hash_table_remove(lo->inodes, &inode->key);
if (lo->posix_lock) {
if (g_hash_table_size(inode->posix_locks)) {
fuse_log(FUSE_LOG_WARNING, "Hash table is not empty\n");
}
g_hash_table_destroy(inode->posix_locks);
pthread_mutex_destroy(&inode->plock_mutex);
}
/* Drop our refcount from lo_do_lookup() */
lo_inode_put(lo, &inode);
}
}
static void unref_inode_lolocked(struct lo_data *lo, struct lo_inode *inode,
uint64_t n)
{
if (!inode) {
return;
}
pthread_mutex_lock(&lo->mutex);
unref_inode(lo, inode, n);
pthread_mutex_unlock(&lo->mutex);
}
static void lo_forget_one(fuse_req_t req, fuse_ino_t ino, uint64_t nlookup)
{
struct lo_data *lo = lo_data(req);
struct lo_inode *inode;
inode = lo_inode(req, ino);
if (!inode) {
return;
}
fuse_log(FUSE_LOG_DEBUG, " forget %lli %lli -%lli\n",
(unsigned long long)ino, (unsigned long long)inode->nlookup,
(unsigned long long)nlookup);
unref_inode_lolocked(lo, inode, nlookup);
lo_inode_put(lo, &inode);
}
static void lo_forget(fuse_req_t req, fuse_ino_t ino, uint64_t nlookup)
{
lo_forget_one(req, ino, nlookup);
fuse_reply_none(req);
}
static void lo_forget_multi(fuse_req_t req, size_t count,
struct fuse_forget_data *forgets)
{
int i;
for (i = 0; i < count; i++) {
lo_forget_one(req, forgets[i].ino, forgets[i].nlookup);
}
fuse_reply_none(req);
}
static void lo_readlink(fuse_req_t req, fuse_ino_t ino)
{
char buf[PATH_MAX + 1];
int res;
res = readlinkat(lo_fd(req, ino), "", buf, sizeof(buf));
if (res == -1) {
return (void)fuse_reply_err(req, errno);
}
if (res == sizeof(buf)) {
return (void)fuse_reply_err(req, ENAMETOOLONG);
}
buf[res] = '\0';
fuse_reply_readlink(req, buf);
}
struct lo_dirp {
gint refcount;
DIR *dp;
struct dirent *entry;
off_t offset;
};
static void lo_dirp_put(struct lo_dirp **dp)
{
struct lo_dirp *d = *dp;
if (!d) {
return;
}
*dp = NULL;
if (g_atomic_int_dec_and_test(&d->refcount)) {
closedir(d->dp);
free(d);
}
}
/* Call lo_dirp_put() on the return value when no longer needed */
static struct lo_dirp *lo_dirp(fuse_req_t req, struct fuse_file_info *fi)
{
struct lo_data *lo = lo_data(req);
struct lo_map_elem *elem;
pthread_mutex_lock(&lo->mutex);
elem = lo_map_get(&lo->dirp_map, fi->fh);
if (elem) {
g_atomic_int_inc(&elem->dirp->refcount);
}
pthread_mutex_unlock(&lo->mutex);
if (!elem) {
return NULL;
}
return elem->dirp;
}
static void lo_opendir(fuse_req_t req, fuse_ino_t ino,
struct fuse_file_info *fi)
{
int error = ENOMEM;
struct lo_data *lo = lo_data(req);
struct lo_dirp *d;
int fd;
ssize_t fh;
d = calloc(1, sizeof(struct lo_dirp));
if (d == NULL) {
goto out_err;
}
fd = openat(lo_fd(req, ino), ".", O_RDONLY);
if (fd == -1) {
goto out_errno;
}
d->dp = fdopendir(fd);
if (d->dp == NULL) {
goto out_errno;
}
d->offset = 0;
d->entry = NULL;
g_atomic_int_set(&d->refcount, 1); /* paired with lo_releasedir() */
pthread_mutex_lock(&lo->mutex);
fh = lo_add_dirp_mapping(req, d);
pthread_mutex_unlock(&lo->mutex);
if (fh == -1) {
goto out_err;
}
fi->fh = fh;
if (lo->cache == CACHE_ALWAYS) {
fi->cache_readdir = 1;
}
fuse_reply_open(req, fi);
return;
out_errno:
error = errno;
out_err:
if (d) {
if (d->dp) {
closedir(d->dp);
} else if (fd != -1) {
close(fd);
}
free(d);
}
fuse_reply_err(req, error);
}
static void lo_do_readdir(fuse_req_t req, fuse_ino_t ino, size_t size,
off_t offset, struct fuse_file_info *fi, int plus)
{
struct lo_data *lo = lo_data(req);
struct lo_dirp *d = NULL;
struct lo_inode *dinode;
g_autofree char *buf = NULL;
char *p;
size_t rem = size;
int err = EBADF;
dinode = lo_inode(req, ino);
if (!dinode) {
goto error;
}
d = lo_dirp(req, fi);
if (!d) {
goto error;
}
err = ENOMEM;
buf = g_try_malloc0(size);
if (!buf) {
goto error;
}
p = buf;
if (offset != d->offset) {
seekdir(d->dp, offset);
d->entry = NULL;
d->offset = offset;
}
while (1) {
size_t entsize;
off_t nextoff;
const char *name;
if (!d->entry) {
errno = 0;
d->entry = readdir(d->dp);
if (!d->entry) {
if (errno) { /* Error */
err = errno;
goto error;
} else { /* End of stream */
break;
}
}
}
nextoff = d->entry->d_off;
name = d->entry->d_name;
fuse_ino_t entry_ino = 0;
struct fuse_entry_param e = (struct fuse_entry_param){
.attr.st_ino = d->entry->d_ino,
.attr.st_mode = d->entry->d_type << 12,
};
/* Hide root's parent directory */
if (dinode == &lo->root && strcmp(name, "..") == 0) {
e.attr.st_ino = lo->root.key.ino;
e.attr.st_mode = DT_DIR << 12;
}
if (plus) {
if (!is_dot_or_dotdot(name)) {
err = lo_do_lookup(req, ino, name, &e, NULL);
if (err) {
goto error;
}
entry_ino = e.ino;
}
entsize = fuse_add_direntry_plus(req, p, rem, name, &e, nextoff);
} else {
entsize = fuse_add_direntry(req, p, rem, name, &e.attr, nextoff);
}
if (entsize > rem) {
if (entry_ino != 0) {
lo_forget_one(req, entry_ino, 1);
}
break;
}
p += entsize;
rem -= entsize;
d->entry = NULL;
d->offset = nextoff;
}
err = 0;
error:
lo_dirp_put(&d);
lo_inode_put(lo, &dinode);
/*
* If there's an error, we can only signal it if we haven't stored
* any entries yet - otherwise we'd end up with wrong lookup
* counts for the entries that are already in the buffer. So we
* return what we've collected until that point.
*/
if (err && rem == size) {
fuse_reply_err(req, err);
} else {
fuse_reply_buf(req, buf, size - rem);
}
}
static void lo_readdir(fuse_req_t req, fuse_ino_t ino, size_t size,
off_t offset, struct fuse_file_info *fi)
{
lo_do_readdir(req, ino, size, offset, fi, 0);
}
static void lo_readdirplus(fuse_req_t req, fuse_ino_t ino, size_t size,
off_t offset, struct fuse_file_info *fi)
{
lo_do_readdir(req, ino, size, offset, fi, 1);
}
static void lo_releasedir(fuse_req_t req, fuse_ino_t ino,
struct fuse_file_info *fi)
{
struct lo_data *lo = lo_data(req);
struct lo_map_elem *elem;
struct lo_dirp *d;
(void)ino;
pthread_mutex_lock(&lo->mutex);
elem = lo_map_get(&lo->dirp_map, fi->fh);
if (!elem) {
pthread_mutex_unlock(&lo->mutex);
fuse_reply_err(req, EBADF);
return;
}
d = elem->dirp;
lo_map_remove(&lo->dirp_map, fi->fh);
pthread_mutex_unlock(&lo->mutex);
lo_dirp_put(&d); /* paired with lo_opendir() */
fuse_reply_err(req, 0);
}
static void update_open_flags(int writeback, int allow_direct_io,
struct fuse_file_info *fi)
{
/*
* With writeback cache, kernel may send read requests even
* when userspace opened write-only
*/
if (writeback && (fi->flags & O_ACCMODE) == O_WRONLY) {
fi->flags &= ~O_ACCMODE;
fi->flags |= O_RDWR;
}
/*
* With writeback cache, O_APPEND is handled by the kernel.
* This breaks atomicity (since the file may change in the
* underlying filesystem, so that the kernel's idea of the
* end of the file isn't accurate anymore). In this example,
* we just accept that. A more rigorous filesystem may want
* to return an error here
*/
if (writeback && (fi->flags & O_APPEND)) {
fi->flags &= ~O_APPEND;
}
/*
* O_DIRECT in guest should not necessarily mean bypassing page
* cache on host as well. Therefore, we discard it by default
* ('-o no_allow_direct_io'). If somebody needs that behavior,
* the '-o allow_direct_io' option should be set.
*/
if (!allow_direct_io) {
fi->flags &= ~O_DIRECT;
}
}
/*
* Open a regular file, set up an fd mapping, and fill out the struct
* fuse_file_info for it. If existing_fd is not negative, use that fd instead
* opening a new one. Takes ownership of existing_fd.
*
* Returns 0 on success or a positive errno.
*/
static int lo_do_open(struct lo_data *lo, struct lo_inode *inode,
int existing_fd, struct fuse_file_info *fi)
{
ssize_t fh;
int fd = existing_fd;
int err;
bool cap_fsetid_dropped = false;
bool kill_suidgid = lo->killpriv_v2 && fi->kill_priv;
update_open_flags(lo->writeback, lo->allow_direct_io, fi);
if (fd < 0) {
if (kill_suidgid) {
err = drop_effective_cap("FSETID", &cap_fsetid_dropped);
if (err) {
return err;
}
}
fd = lo_inode_open(lo, inode, fi->flags);
if (cap_fsetid_dropped) {
if (gain_effective_cap("FSETID")) {
fuse_log(FUSE_LOG_ERR, "Failed to gain CAP_FSETID\n");
}
}
if (fd < 0) {
return -fd;
}
if (fi->flags & (O_TRUNC)) {
int err = drop_security_capability(lo, fd);
if (err) {
close(fd);
return err;
}
}
}
pthread_mutex_lock(&lo->mutex);
fh = lo_add_fd_mapping(lo, fd);
pthread_mutex_unlock(&lo->mutex);
if (fh == -1) {
close(fd);
return ENOMEM;
}
fi->fh = fh;
if (lo->cache == CACHE_NONE) {
fi->direct_io = 1;
} else if (lo->cache == CACHE_ALWAYS) {
fi->keep_cache = 1;
}
return 0;
}
static int do_create_nosecctx(fuse_req_t req, struct lo_inode *parent_inode,
const char *name, mode_t mode,
struct fuse_file_info *fi, int *open_fd,
bool tmpfile)
{
int err, fd;
struct lo_cred old = {};
struct lo_data *lo = lo_data(req);
int flags;
if (tmpfile) {
flags = fi->flags | O_TMPFILE;
/*
* Don't use O_EXCL as we want to link file later. Also reset O_CREAT
* otherwise openat() returns -EINVAL.
*/
flags &= ~(O_CREAT | O_EXCL);
/* O_TMPFILE needs either O_RDWR or O_WRONLY */
if ((flags & O_ACCMODE) == O_RDONLY) {
flags |= O_RDWR;
}
} else {
flags = fi->flags | O_CREAT | O_EXCL;
}
err = lo_change_cred(req, &old, lo->change_umask);
if (err) {
return err;
}
/* Try to create a new file but don't open existing files */
fd = openat(parent_inode->fd, name, flags, mode);
err = fd == -1 ? errno : 0;
lo_restore_cred(&old, lo->change_umask);
if (!err) {
*open_fd = fd;
}
return err;
}
static int do_create_secctx_fscreate(fuse_req_t req,
struct lo_inode *parent_inode,
const char *name, mode_t mode,
struct fuse_file_info *fi, int *open_fd)
{
int err = 0, fd = -1, fscreate_fd = -1;
struct lo_data *lo = lo_data(req);
err = open_set_proc_fscreate(lo, req->secctx.ctx, req->secctx.ctxlen,
&fscreate_fd);
if (err) {
return err;
}
err = do_create_nosecctx(req, parent_inode, name, mode, fi, &fd, false);
close_reset_proc_fscreate(fscreate_fd);
if (!err) {
*open_fd = fd;
}
return err;
}
static int do_create_secctx_tmpfile(fuse_req_t req,
struct lo_inode *parent_inode,
const char *name, mode_t mode,
struct fuse_file_info *fi,
const char *secctx_name, int *open_fd)
{
int err, fd = -1;
struct lo_data *lo = lo_data(req);
char procname[64];
err = do_create_nosecctx(req, parent_inode, ".", mode, fi, &fd, true);
if (err) {
return err;
}
err = fsetxattr(fd, secctx_name, req->secctx.ctx, req->secctx.ctxlen, 0);
if (err) {
err = errno;
goto out;
}
/* Security context set on file. Link it in place */
sprintf(procname, "%d", fd);
FCHDIR_NOFAIL(lo->proc_self_fd);
err = linkat(AT_FDCWD, procname, parent_inode->fd, name,
AT_SYMLINK_FOLLOW);
err = err == -1 ? errno : 0;
FCHDIR_NOFAIL(lo->root.fd);
out:
if (!err) {
*open_fd = fd;
} else if (fd != -1) {
close(fd);
}
return err;
}
static int do_create_secctx_noatomic(fuse_req_t req,
struct lo_inode *parent_inode,
const char *name, mode_t mode,
struct fuse_file_info *fi,
const char *secctx_name, int *open_fd)
{
int err = 0, fd = -1;
err = do_create_nosecctx(req, parent_inode, name, mode, fi, &fd, false);
if (err) {
goto out;
}
/* Set security context. This is not atomic w.r.t file creation */
err = fsetxattr(fd, secctx_name, req->secctx.ctx, req->secctx.ctxlen, 0);
err = err == -1 ? errno : 0;
out:
if (!err) {
*open_fd = fd;
} else {
if (fd != -1) {
close(fd);
unlinkat(parent_inode->fd, name, 0);
}
}
return err;
}
static int do_lo_create(fuse_req_t req, struct lo_inode *parent_inode,
const char *name, mode_t mode,
struct fuse_file_info *fi, int *open_fd)
{
struct lo_data *lo = lo_data(req);
char *mapped_name = NULL;
int err;
const char *ctxname = req->secctx.name;
bool secctx_enabled = req->secctx.ctxlen;
if (secctx_enabled && lo->xattrmap) {
err = xattr_map_client(lo, req->secctx.name, &mapped_name);
if (err < 0) {
return -err;
}
ctxname = mapped_name;
}
if (secctx_enabled) {
/*
* If security.selinux has not been remapped and selinux is enabled,
* use fscreate to set context before file creation. If not, use
* tmpfile method for regular files. Otherwise fallback to
* non-atomic method of file creation and xattr setting.
*/
if (!mapped_name && lo->use_fscreate) {
err = do_create_secctx_fscreate(req, parent_inode, name, mode, fi,
open_fd);
goto out;
} else if (S_ISREG(mode)) {
err = do_create_secctx_tmpfile(req, parent_inode, name, mode, fi,
ctxname, open_fd);
/*
* If filesystem does not support O_TMPFILE, fallback to non-atomic
* method.
*/
if (!err || err != EOPNOTSUPP) {
goto out;
}
}
err = do_create_secctx_noatomic(req, parent_inode, name, mode, fi,
ctxname, open_fd);
} else {
err = do_create_nosecctx(req, parent_inode, name, mode, fi, open_fd,
false);
}
out:
g_free(mapped_name);
return err;
}
static void lo_create(fuse_req_t req, fuse_ino_t parent, const char *name,
mode_t mode, struct fuse_file_info *fi)
{
int fd = -1;
struct lo_data *lo = lo_data(req);
struct lo_inode *parent_inode;
struct lo_inode *inode = NULL;
struct fuse_entry_param e;
int err;
fuse_log(FUSE_LOG_DEBUG, "lo_create(parent=%" PRIu64 ", name=%s)"
" kill_priv=%d\n", parent, name, fi->kill_priv);
if (!is_safe_path_component(name)) {
fuse_reply_err(req, EINVAL);
return;
}
parent_inode = lo_inode(req, parent);
if (!parent_inode) {
fuse_reply_err(req, EBADF);
return;
}
update_open_flags(lo->writeback, lo->allow_direct_io, fi);
err = do_lo_create(req, parent_inode, name, mode, fi, &fd);
/* Ignore the error if file exists and O_EXCL was not given */
if (err && (err != EEXIST || (fi->flags & O_EXCL))) {
goto out;
}
err = lo_do_lookup(req, parent, name, &e, &inode);
if (err) {
goto out;
}
err = lo_do_open(lo, inode, fd, fi);
fd = -1; /* lo_do_open() takes ownership of fd */
if (err) {
/* Undo lo_do_lookup() nlookup ref */
unref_inode_lolocked(lo, inode, 1);
}
out:
lo_inode_put(lo, &inode);
lo_inode_put(lo, &parent_inode);
if (err) {
if (fd >= 0) {
close(fd);
}
fuse_reply_err(req, err);
} else {
fuse_reply_create(req, &e, fi);
}
}
/* Should be called with inode->plock_mutex held */
static struct lo_inode_plock *lookup_create_plock_ctx(struct lo_data *lo,
struct lo_inode *inode,
uint64_t lock_owner,
pid_t pid, int *err)
{
struct lo_inode_plock *plock;
int fd;
plock =
g_hash_table_lookup(inode->posix_locks, GUINT_TO_POINTER(lock_owner));
if (plock) {
return plock;
}
plock = malloc(sizeof(struct lo_inode_plock));
if (!plock) {
*err = ENOMEM;
return NULL;
}
/* Open another instance of file which can be used for ofd locks. */
/* TODO: What if file is not writable? */
fd = lo_inode_open(lo, inode, O_RDWR);
if (fd < 0) {
*err = -fd;
free(plock);
return NULL;
}
plock->lock_owner = lock_owner;
plock->fd = fd;
g_hash_table_insert(inode->posix_locks, GUINT_TO_POINTER(plock->lock_owner),
plock);
return plock;
}
static void lo_getlk(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi,
struct flock *lock)
{
struct lo_data *lo = lo_data(req);
struct lo_inode *inode;
struct lo_inode_plock *plock;
int ret, saverr = 0;
fuse_log(FUSE_LOG_DEBUG,
"lo_getlk(ino=%" PRIu64 ", flags=%d)"
" owner=0x%" PRIx64 ", l_type=%d l_start=0x%" PRIx64
" l_len=0x%" PRIx64 "\n",
ino, fi->flags, fi->lock_owner, lock->l_type,
(uint64_t)lock->l_start, (uint64_t)lock->l_len);
if (!lo->posix_lock) {
fuse_reply_err(req, ENOSYS);
return;
}
inode = lo_inode(req, ino);
if (!inode) {
fuse_reply_err(req, EBADF);
return;
}
pthread_mutex_lock(&inode->plock_mutex);
plock =
lookup_create_plock_ctx(lo, inode, fi->lock_owner, lock->l_pid, &ret);
if (!plock) {
saverr = ret;
goto out;
}
ret = fcntl(plock->fd, F_OFD_GETLK, lock);
if (ret == -1) {
saverr = errno;
}
out:
pthread_mutex_unlock(&inode->plock_mutex);
lo_inode_put(lo, &inode);
if (saverr) {
fuse_reply_err(req, saverr);
} else {
fuse_reply_lock(req, lock);
}
}
static void lo_setlk(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi,
struct flock *lock, int sleep)
{
struct lo_data *lo = lo_data(req);
struct lo_inode *inode;
struct lo_inode_plock *plock;
int ret, saverr = 0;
fuse_log(FUSE_LOG_DEBUG,
"lo_setlk(ino=%" PRIu64 ", flags=%d)"
" cmd=%d pid=%d owner=0x%" PRIx64 " sleep=%d l_whence=%d"
" l_start=0x%" PRIx64 " l_len=0x%" PRIx64 "\n",
ino, fi->flags, lock->l_type, lock->l_pid, fi->lock_owner, sleep,
lock->l_whence, (uint64_t)lock->l_start, (uint64_t)lock->l_len);
if (!lo->posix_lock) {
fuse_reply_err(req, ENOSYS);
return;
}
if (sleep) {
fuse_reply_err(req, EOPNOTSUPP);
return;
}
inode = lo_inode(req, ino);
if (!inode) {
fuse_reply_err(req, EBADF);
return;
}
pthread_mutex_lock(&inode->plock_mutex);
plock =
lookup_create_plock_ctx(lo, inode, fi->lock_owner, lock->l_pid, &ret);
if (!plock) {
saverr = ret;
goto out;
}
/* TODO: Is it alright to modify flock? */
lock->l_pid = 0;
ret = fcntl(plock->fd, F_OFD_SETLK, lock);
if (ret == -1) {
saverr = errno;
}
out:
pthread_mutex_unlock(&inode->plock_mutex);
lo_inode_put(lo, &inode);
fuse_reply_err(req, saverr);
}
static void lo_fsyncdir(fuse_req_t req, fuse_ino_t ino, int datasync,
struct fuse_file_info *fi)
{
int res;
struct lo_dirp *d;
int fd;
(void)ino;
d = lo_dirp(req, fi);
if (!d) {
fuse_reply_err(req, EBADF);
return;
}
fd = dirfd(d->dp);
if (datasync) {
res = fdatasync(fd);
} else {
res = fsync(fd);
}
lo_dirp_put(&d);
fuse_reply_err(req, res == -1 ? errno : 0);
}
static void lo_open(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi)
{
struct lo_data *lo = lo_data(req);
struct lo_inode *inode = lo_inode(req, ino);
int err;
fuse_log(FUSE_LOG_DEBUG, "lo_open(ino=%" PRIu64 ", flags=%d, kill_priv=%d)"
"\n", ino, fi->flags, fi->kill_priv);
if (!inode) {
fuse_reply_err(req, EBADF);
return;
}
err = lo_do_open(lo, inode, -1, fi);
lo_inode_put(lo, &inode);
if (err) {
fuse_reply_err(req, err);
} else {
fuse_reply_open(req, fi);
}
}
static void lo_release(fuse_req_t req, fuse_ino_t ino,
struct fuse_file_info *fi)
{
struct lo_data *lo = lo_data(req);
struct lo_map_elem *elem;
int fd = -1;
(void)ino;
pthread_mutex_lock(&lo->mutex);
elem = lo_map_get(&lo->fd_map, fi->fh);
if (elem) {
fd = elem->fd;
elem = NULL;
lo_map_remove(&lo->fd_map, fi->fh);
}
pthread_mutex_unlock(&lo->mutex);
close(fd);
fuse_reply_err(req, 0);
}
static void lo_flush(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi)
{
int res;
(void)ino;
struct lo_inode *inode;
struct lo_data *lo = lo_data(req);
inode = lo_inode(req, ino);
if (!inode) {
fuse_reply_err(req, EBADF);
return;
}
if (!S_ISREG(inode->filetype)) {
lo_inode_put(lo, &inode);
fuse_reply_err(req, EBADF);
return;
}
/* An fd is going away. Cleanup associated posix locks */
if (lo->posix_lock) {
pthread_mutex_lock(&inode->plock_mutex);
g_hash_table_remove(inode->posix_locks,
GUINT_TO_POINTER(fi->lock_owner));
pthread_mutex_unlock(&inode->plock_mutex);
}
res = close(dup(lo_fi_fd(req, fi)));
lo_inode_put(lo, &inode);
fuse_reply_err(req, res == -1 ? errno : 0);
}
static void lo_fsync(fuse_req_t req, fuse_ino_t ino, int datasync,
struct fuse_file_info *fi)
{
struct lo_inode *inode = lo_inode(req, ino);
struct lo_data *lo = lo_data(req);
int res;
int fd;
fuse_log(FUSE_LOG_DEBUG, "lo_fsync(ino=%" PRIu64 ", fi=0x%p)\n", ino,
(void *)fi);
if (!inode) {
fuse_reply_err(req, EBADF);
return;
}
if (!fi) {
fd = lo_inode_open(lo, inode, O_RDWR);
if (fd < 0) {
res = -fd;
goto out;
}
} else {
fd = lo_fi_fd(req, fi);
}
if (datasync) {
res = fdatasync(fd) == -1 ? errno : 0;
} else {
res = fsync(fd) == -1 ? errno : 0;
}
if (!fi) {
close(fd);
}
out:
lo_inode_put(lo, &inode);
fuse_reply_err(req, res);
}
static void lo_read(fuse_req_t req, fuse_ino_t ino, size_t size, off_t offset,
struct fuse_file_info *fi)
{
struct fuse_bufvec buf = FUSE_BUFVEC_INIT(size);
fuse_log(FUSE_LOG_DEBUG,
"lo_read(ino=%" PRIu64 ", size=%zd, "
"off=%lu)\n",
ino, size, (unsigned long)offset);
buf.buf[0].flags = FUSE_BUF_IS_FD | FUSE_BUF_FD_SEEK;
buf.buf[0].fd = lo_fi_fd(req, fi);
buf.buf[0].pos = offset;
fuse_reply_data(req, &buf);
}
static void lo_write_buf(fuse_req_t req, fuse_ino_t ino,
struct fuse_bufvec *in_buf, off_t off,
struct fuse_file_info *fi)
{
(void)ino;
ssize_t res;
struct fuse_bufvec out_buf = FUSE_BUFVEC_INIT(fuse_buf_size(in_buf));
bool cap_fsetid_dropped = false;
out_buf.buf[0].flags = FUSE_BUF_IS_FD | FUSE_BUF_FD_SEEK;
out_buf.buf[0].fd = lo_fi_fd(req, fi);
out_buf.buf[0].pos = off;
fuse_log(FUSE_LOG_DEBUG,
"lo_write_buf(ino=%" PRIu64 ", size=%zd, off=%lu kill_priv=%d)\n",
ino, out_buf.buf[0].size, (unsigned long)off, fi->kill_priv);
res = drop_security_capability(lo_data(req), out_buf.buf[0].fd);
if (res) {
fuse_reply_err(req, res);
return;
}
/*
* If kill_priv is set, drop CAP_FSETID which should lead to kernel
* clearing setuid/setgid on file. Note, for WRITE, we need to do
* this even if killpriv_v2 is not enabled. fuse direct write path
* relies on this.
*/
if (fi->kill_priv) {
res = drop_effective_cap("FSETID", &cap_fsetid_dropped);
if (res != 0) {
fuse_reply_err(req, res);
return;
}
}
res = fuse_buf_copy(&out_buf, in_buf);
if (res < 0) {
fuse_reply_err(req, -res);
} else {
fuse_reply_write(req, (size_t)res);
}
if (cap_fsetid_dropped) {
res = gain_effective_cap("FSETID");
if (res) {
fuse_log(FUSE_LOG_ERR, "Failed to gain CAP_FSETID\n");
}
}
}
static void lo_statfs(fuse_req_t req, fuse_ino_t ino)
{
int res;
struct statvfs stbuf;
res = fstatvfs(lo_fd(req, ino), &stbuf);
if (res == -1) {
fuse_reply_err(req, errno);
} else {
fuse_reply_statfs(req, &stbuf);
}
}
static void lo_fallocate(fuse_req_t req, fuse_ino_t ino, int mode, off_t offset,
off_t length, struct fuse_file_info *fi)
{
int err = EOPNOTSUPP;
(void)ino;
#ifdef CONFIG_FALLOCATE
err = fallocate(lo_fi_fd(req, fi), mode, offset, length);
if (err < 0) {
err = errno;
}
#elif defined(CONFIG_POSIX_FALLOCATE)
if (mode) {
fuse_reply_err(req, EOPNOTSUPP);
return;
}
err = posix_fallocate(lo_fi_fd(req, fi), offset, length);
#endif
fuse_reply_err(req, err);
}
static void lo_flock(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi,
int op)
{
int res;
(void)ino;
if (!(op & LOCK_NB)) {
/*
* Blocking flock can deadlock as there is only one thread
* serving the queue.
*/
fuse_reply_err(req, EOPNOTSUPP);
return;
}
res = flock(lo_fi_fd(req, fi), op);
fuse_reply_err(req, res == -1 ? errno : 0);
}
/* types */
/*
* Exit; process attribute unmodified if matched.
* An empty key applies to all.
*/
#define XATTR_MAP_FLAG_OK (1 << 0)
/*
* The attribute is unwanted;
* EPERM on write, hidden on read.
*/
#define XATTR_MAP_FLAG_BAD (1 << 1)
/*
* For attr that start with 'key' prepend 'prepend'
* 'key' may be empty to prepend for all attrs
* key is defined from set/remove point of view.
* Automatically reversed on read
*/
#define XATTR_MAP_FLAG_PREFIX (1 << 2)
/*
* The attribute is unsupported;
* ENOTSUP on write, hidden on read.
*/
#define XATTR_MAP_FLAG_UNSUPPORTED (1 << 3)
/* scopes */
/* Apply rule to get/set/remove */
#define XATTR_MAP_FLAG_CLIENT (1 << 16)
/* Apply rule to list */
#define XATTR_MAP_FLAG_SERVER (1 << 17)
/* Apply rule to all */
#define XATTR_MAP_FLAG_ALL (XATTR_MAP_FLAG_SERVER | XATTR_MAP_FLAG_CLIENT)
static void add_xattrmap_entry(struct lo_data *lo,
const XattrMapEntry *new_entry)
{
XattrMapEntry *res = g_realloc_n(lo->xattr_map_list,
lo->xattr_map_nentries + 1,
sizeof(XattrMapEntry));
res[lo->xattr_map_nentries++] = *new_entry;
lo->xattr_map_list = res;
}
static void free_xattrmap(struct lo_data *lo)
{
XattrMapEntry *map = lo->xattr_map_list;
size_t i;
if (!map) {
return;
}
for (i = 0; i < lo->xattr_map_nentries; i++) {
g_free(map[i].key);
g_free(map[i].prepend);
};
g_free(map);
lo->xattr_map_list = NULL;
lo->xattr_map_nentries = -1;
}
/*
* Handle the 'map' type, which is sugar for a set of commands
* for the common case of prefixing a subset or everything,
* and allowing anything not prefixed through.
* It must be the last entry in the stream, although there
* can be other entries before it.
* The form is:
* :map:key:prefix:
*
* key maybe empty in which case all entries are prefixed.
*/
static void parse_xattrmap_map(struct lo_data *lo,
const char *rule, char sep)
{
const char *tmp;
char *key;
char *prefix;
XattrMapEntry tmp_entry;
if (*rule != sep) {
fuse_log(FUSE_LOG_ERR,
"%s: Expecting '%c' after 'map' keyword, found '%c'\n",
__func__, sep, *rule);
exit(1);
}
rule++;
/* At start of 'key' field */
tmp = strchr(rule, sep);
if (!tmp) {
fuse_log(FUSE_LOG_ERR,
"%s: Missing '%c' at end of key field in map rule\n",
__func__, sep);
exit(1);
}
key = g_strndup(rule, tmp - rule);
rule = tmp + 1;
/* At start of prefix field */
tmp = strchr(rule, sep);
if (!tmp) {
fuse_log(FUSE_LOG_ERR,
"%s: Missing '%c' at end of prefix field in map rule\n",
__func__, sep);
exit(1);
}
prefix = g_strndup(rule, tmp - rule);
rule = tmp + 1;
/*
* This should be the end of the string, we don't allow
* any more commands after 'map'.
*/
if (*rule) {
fuse_log(FUSE_LOG_ERR,
"%s: Expecting end of command after map, found '%c'\n",
__func__, *rule);
exit(1);
}
/* 1st: Prefix matches/everything */
tmp_entry.flags = XATTR_MAP_FLAG_PREFIX | XATTR_MAP_FLAG_ALL;
tmp_entry.key = g_strdup(key);
tmp_entry.prepend = g_strdup(prefix);
add_xattrmap_entry(lo, &tmp_entry);
if (!*key) {
/* Prefix all case */
/* 2nd: Hide any non-prefixed entries on the host */
tmp_entry.flags = XATTR_MAP_FLAG_BAD | XATTR_MAP_FLAG_ALL;
tmp_entry.key = g_strdup("");
tmp_entry.prepend = g_strdup("");
add_xattrmap_entry(lo, &tmp_entry);
} else {
/* Prefix matching case */
/* 2nd: Hide non-prefixed but matching entries on the host */
tmp_entry.flags = XATTR_MAP_FLAG_BAD | XATTR_MAP_FLAG_SERVER;
tmp_entry.key = g_strdup(""); /* Not used */
tmp_entry.prepend = g_strdup(key);
add_xattrmap_entry(lo, &tmp_entry);
/* 3rd: Stop the client accessing prefixed attributes directly */
tmp_entry.flags = XATTR_MAP_FLAG_BAD | XATTR_MAP_FLAG_CLIENT;
tmp_entry.key = g_strdup(prefix);
tmp_entry.prepend = g_strdup(""); /* Not used */
add_xattrmap_entry(lo, &tmp_entry);
/* 4th: Everything else is OK */
tmp_entry.flags = XATTR_MAP_FLAG_OK | XATTR_MAP_FLAG_ALL;
tmp_entry.key = g_strdup("");
tmp_entry.prepend = g_strdup("");
add_xattrmap_entry(lo, &tmp_entry);
}
g_free(key);
g_free(prefix);
}
static void parse_xattrmap(struct lo_data *lo)
{
const char *map = lo->xattrmap;
const char *tmp;
int ret;
lo->xattr_map_nentries = 0;
while (*map) {
XattrMapEntry tmp_entry;
char sep;
if (isspace(*map)) {
map++;
continue;
}
/* The separator is the first non-space of the rule */
sep = *map++;
if (!sep) {
break;
}
tmp_entry.flags = 0;
/* Start of 'type' */
if (strstart(map, "prefix", &map)) {
tmp_entry.flags |= XATTR_MAP_FLAG_PREFIX;
} else if (strstart(map, "ok", &map)) {
tmp_entry.flags |= XATTR_MAP_FLAG_OK;
} else if (strstart(map, "bad", &map)) {
tmp_entry.flags |= XATTR_MAP_FLAG_BAD;
} else if (strstart(map, "unsupported", &map)) {
tmp_entry.flags |= XATTR_MAP_FLAG_UNSUPPORTED;
} else if (strstart(map, "map", &map)) {
/*
* map is sugar that adds a number of rules, and must be
* the last entry.
*/
parse_xattrmap_map(lo, map, sep);
break;
} else {
fuse_log(FUSE_LOG_ERR,
"%s: Unexpected type;"
"Expecting 'prefix', 'ok', 'bad', 'unsupported' or 'map'"
" in rule %zu\n", __func__, lo->xattr_map_nentries);
exit(1);
}
if (*map++ != sep) {
fuse_log(FUSE_LOG_ERR,
"%s: Missing '%c' at end of type field of rule %zu\n",
__func__, sep, lo->xattr_map_nentries);
exit(1);
}
/* Start of 'scope' */
if (strstart(map, "client", &map)) {
tmp_entry.flags |= XATTR_MAP_FLAG_CLIENT;
} else if (strstart(map, "server", &map)) {
tmp_entry.flags |= XATTR_MAP_FLAG_SERVER;
} else if (strstart(map, "all", &map)) {
tmp_entry.flags |= XATTR_MAP_FLAG_ALL;
} else {
fuse_log(FUSE_LOG_ERR,
"%s: Unexpected scope;"
" Expecting 'client', 'server', or 'all', in rule %zu\n",
__func__, lo->xattr_map_nentries);
exit(1);
}
if (*map++ != sep) {
fuse_log(FUSE_LOG_ERR,
"%s: Expecting '%c' found '%c'"
" after scope in rule %zu\n",
__func__, sep, *map, lo->xattr_map_nentries);
exit(1);
}
/* At start of 'key' field */
tmp = strchr(map, sep);
if (!tmp) {
fuse_log(FUSE_LOG_ERR,
"%s: Missing '%c' at end of key field of rule %zu",
__func__, sep, lo->xattr_map_nentries);
exit(1);
}
tmp_entry.key = g_strndup(map, tmp - map);
map = tmp + 1;
/* At start of 'prepend' field */
tmp = strchr(map, sep);
if (!tmp) {
fuse_log(FUSE_LOG_ERR,
"%s: Missing '%c' at end of prepend field of rule %zu",
__func__, sep, lo->xattr_map_nentries);
exit(1);
}
tmp_entry.prepend = g_strndup(map, tmp - map);
map = tmp + 1;
add_xattrmap_entry(lo, &tmp_entry);
/* End of rule - go around again for another rule */
}
if (!lo->xattr_map_nentries) {
fuse_log(FUSE_LOG_ERR, "Empty xattr map\n");
exit(1);
}
ret = xattr_map_client(lo, "security.capability",
&lo->xattr_security_capability);
if (ret) {
fuse_log(FUSE_LOG_ERR, "Failed to map security.capability: %s\n",
strerror(ret));
exit(1);
}
if (!lo->xattr_security_capability ||
!strcmp(lo->xattr_security_capability, "security.capability")) {
/* 1-1 mapping, don't need to do anything */
free(lo->xattr_security_capability);
lo->xattr_security_capability = NULL;
}
}
/*
* For use with getxattr/setxattr/removexattr, where the client
* gives us a name and we may need to choose a different one.
* Allocates a buffer for the result placing it in *out_name.
* If there's no change then *out_name is not set.
* Returns 0 on success
* Can return -EPERM to indicate we block a given attribute
* (in which case out_name is not allocated)
* Can return -ENOMEM to indicate out_name couldn't be allocated.
*/
static int xattr_map_client(const struct lo_data *lo, const char *client_name,
char **out_name)
{
size_t i;
for (i = 0; i < lo->xattr_map_nentries; i++) {
const XattrMapEntry *cur_entry = lo->xattr_map_list + i;
if ((cur_entry->flags & XATTR_MAP_FLAG_CLIENT) &&
(strstart(client_name, cur_entry->key, NULL))) {
if (cur_entry->flags & XATTR_MAP_FLAG_BAD) {
return -EPERM;
}
if (cur_entry->flags & XATTR_MAP_FLAG_UNSUPPORTED) {
return -ENOTSUP;
}
if (cur_entry->flags & XATTR_MAP_FLAG_OK) {
/* Unmodified name */
return 0;
}
if (cur_entry->flags & XATTR_MAP_FLAG_PREFIX) {
*out_name = g_try_malloc(strlen(client_name) +
strlen(cur_entry->prepend) + 1);
if (!*out_name) {
return -ENOMEM;
}
sprintf(*out_name, "%s%s", cur_entry->prepend, client_name);
return 0;
}
}
}
return -EPERM;
}
/*
* For use with listxattr where the server fs gives us a name and we may need
* to sanitize this for the client.
* Returns a pointer to the result in *out_name
* This is always the original string or the current string with some prefix
* removed; no reallocation is done.
* Returns 0 on success
* Can return -ENODATA to indicate the name should be dropped from the list.
*/
static int xattr_map_server(const struct lo_data *lo, const char *server_name,
const char **out_name)
{
size_t i;
const char *end;
for (i = 0; i < lo->xattr_map_nentries; i++) {
const XattrMapEntry *cur_entry = lo->xattr_map_list + i;
if ((cur_entry->flags & XATTR_MAP_FLAG_SERVER) &&
(strstart(server_name, cur_entry->prepend, &end))) {
if (cur_entry->flags & XATTR_MAP_FLAG_BAD ||
cur_entry->flags & XATTR_MAP_FLAG_UNSUPPORTED) {
return -ENODATA;
}
if (cur_entry->flags & XATTR_MAP_FLAG_OK) {
*out_name = server_name;
return 0;
}
if (cur_entry->flags & XATTR_MAP_FLAG_PREFIX) {
/* Remove prefix */
*out_name = end;
return 0;
}
}
}
return -ENODATA;
}
static bool block_xattr(struct lo_data *lo, const char *name)
{
/*
* If user explicitly enabled posix_acl or did not provide any option,
* do not block acl. Otherwise block system.posix_acl_access and
* system.posix_acl_default xattrs.
*/
if (lo->user_posix_acl) {
return false;
}
if (!strcmp(name, "system.posix_acl_access") ||
!strcmp(name, "system.posix_acl_default"))
return true;
return false;
}
/*
* Returns number of bytes in xattr_list after filtering on success. This
* could be zero as well if nothing is left after filtering.
*
* Returns negative error code on failure.
* xattr_list is modified in place.
*/
static int remove_blocked_xattrs(struct lo_data *lo, char *xattr_list,
unsigned in_size)
{
size_t out_index, in_index;
/*
* As of now we only filter out acl xattrs. If acls are enabled or
* they have not been explicitly disabled, there is nothing to
* filter.
*/
if (lo->user_posix_acl) {
return in_size;
}
out_index = 0;
in_index = 0;
while (in_index < in_size) {
char *in_ptr = xattr_list + in_index;
/* Length of current attribute name */
size_t in_len = strlen(xattr_list + in_index) + 1;
if (!block_xattr(lo, in_ptr)) {
if (in_index != out_index) {
memmove(xattr_list + out_index, xattr_list + in_index, in_len);
}
out_index += in_len;
}
in_index += in_len;
}
return out_index;
}
static void lo_getxattr(fuse_req_t req, fuse_ino_t ino, const char *in_name,
size_t size)
{
struct lo_data *lo = lo_data(req);
g_autofree char *value = NULL;
char procname[64];
const char *name;
char *mapped_name;
struct lo_inode *inode;
ssize_t ret;
int saverr;
int fd = -1;
if (block_xattr(lo, in_name)) {
fuse_reply_err(req, EOPNOTSUPP);
return;
}
mapped_name = NULL;
name = in_name;
if (lo->xattrmap) {
ret = xattr_map_client(lo, in_name, &mapped_name);
if (ret < 0) {
if (ret == -EPERM) {
ret = -ENODATA;
}
fuse_reply_err(req, -ret);
return;
}
if (mapped_name) {
name = mapped_name;
}
}
inode = lo_inode(req, ino);
if (!inode) {
fuse_reply_err(req, EBADF);
g_free(mapped_name);
return;
}
saverr = ENOSYS;
if (!lo_data(req)->xattr) {
goto out;
}
fuse_log(FUSE_LOG_DEBUG, "lo_getxattr(ino=%" PRIu64 ", name=%s size=%zd)\n",
ino, name, size);
if (size) {
value = g_try_malloc(size);
if (!value) {
goto out_err;
}
}
sprintf(procname, "%i", inode->fd);
/*
* It is not safe to open() non-regular/non-dir files in file server
* unless O_PATH is used, so use that method for regular files/dir
* only (as it seems giving less performance overhead).
* Otherwise, call fchdir() to avoid open().
*/
if (S_ISREG(inode->filetype) || S_ISDIR(inode->filetype)) {
fd = openat(lo->proc_self_fd, procname, O_RDONLY);
if (fd < 0) {
goto out_err;
}
ret = fgetxattr(fd, name, value, size);
saverr = ret == -1 ? errno : 0;
} else {
/* fchdir should not fail here */
FCHDIR_NOFAIL(lo->proc_self_fd);
ret = getxattr(procname, name, value, size);
saverr = ret == -1 ? errno : 0;
FCHDIR_NOFAIL(lo->root.fd);
}
if (ret == -1) {
goto out;
}
if (size) {
saverr = 0;
if (ret == 0) {
goto out;
}
fuse_reply_buf(req, value, ret);
} else {
fuse_reply_xattr(req, ret);
}
out_free:
if (fd >= 0) {
close(fd);
}
lo_inode_put(lo, &inode);
return;
out_err:
saverr = errno;
out:
fuse_reply_err(req, saverr);
g_free(mapped_name);
goto out_free;
}
static void lo_listxattr(fuse_req_t req, fuse_ino_t ino, size_t size)
{
struct lo_data *lo = lo_data(req);
g_autofree char *value = NULL;
char procname[64];
struct lo_inode *inode;
ssize_t ret;
int saverr;
int fd = -1;
inode = lo_inode(req, ino);
if (!inode) {
fuse_reply_err(req, EBADF);
return;
}
saverr = ENOSYS;
if (!lo_data(req)->xattr) {
goto out;
}
fuse_log(FUSE_LOG_DEBUG, "lo_listxattr(ino=%" PRIu64 ", size=%zd)\n", ino,
size);
if (size) {
value = g_try_malloc(size);
if (!value) {
goto out_err;
}
}
sprintf(procname, "%i", inode->fd);
if (S_ISREG(inode->filetype) || S_ISDIR(inode->filetype)) {
fd = openat(lo->proc_self_fd, procname, O_RDONLY);
if (fd < 0) {
goto out_err;
}
ret = flistxattr(fd, value, size);
saverr = ret == -1 ? errno : 0;
} else {
/* fchdir should not fail here */
FCHDIR_NOFAIL(lo->proc_self_fd);
ret = listxattr(procname, value, size);
saverr = ret == -1 ? errno : 0;
FCHDIR_NOFAIL(lo->root.fd);
}
if (ret == -1) {
goto out;
}
if (size) {
saverr = 0;
if (ret == 0) {
goto out;
}
if (lo->xattr_map_list) {
/*
* Map the names back, some attributes might be dropped,
* some shortened, but not increased, so we shouldn't
* run out of room.
*/
size_t out_index, in_index;
out_index = 0;
in_index = 0;
while (in_index < ret) {
const char *map_out;
char *in_ptr = value + in_index;
/* Length of current attribute name */
size_t in_len = strlen(value + in_index) + 1;
int mapret = xattr_map_server(lo, in_ptr, &map_out);
if (mapret != -ENODATA && mapret != 0) {
/* Shouldn't happen */
saverr = -mapret;
goto out;
}
if (mapret == 0) {
/* Either unchanged, or truncated */
size_t out_len;
if (map_out != in_ptr) {
/* +1 copies the NIL */
out_len = strlen(map_out) + 1;
} else {
/* No change */
out_len = in_len;
}
/*
* Move result along, may still be needed for an unchanged
* entry if a previous entry was changed.
*/
memmove(value + out_index, map_out, out_len);
out_index += out_len;
}
in_index += in_len;
}
ret = out_index;
if (ret == 0) {
goto out;
}
}
ret = remove_blocked_xattrs(lo, value, ret);
if (ret <= 0) {
saverr = -ret;
goto out;
}
fuse_reply_buf(req, value, ret);
} else {
/*
* xattrmap only ever shortens the result,
* so we don't need to do anything clever with the
* allocation length here.
*/
fuse_reply_xattr(req, ret);
}
out_free:
if (fd >= 0) {
close(fd);
}
lo_inode_put(lo, &inode);
return;
out_err:
saverr = errno;
out:
fuse_reply_err(req, saverr);
goto out_free;
}
static void lo_setxattr(fuse_req_t req, fuse_ino_t ino, const char *in_name,
const char *value, size_t size, int flags,
uint32_t extra_flags)
{
char procname[64];
const char *name;
char *mapped_name;
struct lo_data *lo = lo_data(req);
struct lo_inode *inode;
ssize_t ret;
int saverr;
int fd = -1;
bool switched_creds = false;
bool cap_fsetid_dropped = false;
struct lo_cred old = {};
if (block_xattr(lo, in_name)) {
fuse_reply_err(req, EOPNOTSUPP);
return;
}
mapped_name = NULL;
name = in_name;
if (lo->xattrmap) {
ret = xattr_map_client(lo, in_name, &mapped_name);
if (ret < 0) {
fuse_reply_err(req, -ret);
return;
}
if (mapped_name) {
name = mapped_name;
}
}
inode = lo_inode(req, ino);
if (!inode) {
fuse_reply_err(req, EBADF);
g_free(mapped_name);
return;
}
saverr = ENOSYS;
if (!lo_data(req)->xattr) {
goto out;
}
fuse_log(FUSE_LOG_DEBUG, "lo_setxattr(ino=%" PRIu64
", name=%s value=%s size=%zd)\n", ino, name, value, size);
sprintf(procname, "%i", inode->fd);
/*
* If we are setting posix access acl and if SGID needs to be
* cleared, then switch to caller's gid and drop CAP_FSETID
* and that should make sure host kernel clears SGID.
*
* This probably will not work when we support idmapped mounts.
* In that case we will need to find a non-root gid and switch
* to it. (Instead of gid in request). Fix it when we support
* idmapped mounts.
*/
if (lo->posix_acl && !strcmp(name, "system.posix_acl_access")
&& (extra_flags & FUSE_SETXATTR_ACL_KILL_SGID)) {
ret = lo_drop_cap_change_cred(req, &old, false, "FSETID",
&cap_fsetid_dropped);
if (ret) {
saverr = ret;
goto out;
}
switched_creds = true;
}
if (S_ISREG(inode->filetype) || S_ISDIR(inode->filetype)) {
fd = openat(lo->proc_self_fd, procname, O_RDONLY);
if (fd < 0) {
saverr = errno;
goto out;
}
ret = fsetxattr(fd, name, value, size, flags);
saverr = ret == -1 ? errno : 0;
} else {
/* fchdir should not fail here */
FCHDIR_NOFAIL(lo->proc_self_fd);
ret = setxattr(procname, name, value, size, flags);
saverr = ret == -1 ? errno : 0;
FCHDIR_NOFAIL(lo->root.fd);
}
if (switched_creds) {
if (cap_fsetid_dropped)
lo_restore_cred_gain_cap(&old, false, "FSETID");
else
lo_restore_cred(&old, false);
}
out:
if (fd >= 0) {
close(fd);
}
lo_inode_put(lo, &inode);
g_free(mapped_name);
fuse_reply_err(req, saverr);
}
static void lo_removexattr(fuse_req_t req, fuse_ino_t ino, const char *in_name)
{
char procname[64];
const char *name;
char *mapped_name;
struct lo_data *lo = lo_data(req);
struct lo_inode *inode;
ssize_t ret;
int saverr;
int fd = -1;
if (block_xattr(lo, in_name)) {
fuse_reply_err(req, EOPNOTSUPP);
return;
}
mapped_name = NULL;
name = in_name;
if (lo->xattrmap) {
ret = xattr_map_client(lo, in_name, &mapped_name);
if (ret < 0) {
fuse_reply_err(req, -ret);
return;
}
if (mapped_name) {
name = mapped_name;
}
}
inode = lo_inode(req, ino);
if (!inode) {
fuse_reply_err(req, EBADF);
g_free(mapped_name);
return;
}
saverr = ENOSYS;
if (!lo_data(req)->xattr) {
goto out;
}
fuse_log(FUSE_LOG_DEBUG, "lo_removexattr(ino=%" PRIu64 ", name=%s)\n", ino,
name);
sprintf(procname, "%i", inode->fd);
if (S_ISREG(inode->filetype) || S_ISDIR(inode->filetype)) {
fd = openat(lo->proc_self_fd, procname, O_RDONLY);
if (fd < 0) {
saverr = errno;
goto out;
}
ret = fremovexattr(fd, name);
saverr = ret == -1 ? errno : 0;
} else {
/* fchdir should not fail here */
FCHDIR_NOFAIL(lo->proc_self_fd);
ret = removexattr(procname, name);
saverr = ret == -1 ? errno : 0;
FCHDIR_NOFAIL(lo->root.fd);
}
out:
if (fd >= 0) {
close(fd);
}
lo_inode_put(lo, &inode);
g_free(mapped_name);
fuse_reply_err(req, saverr);
}
#ifdef HAVE_COPY_FILE_RANGE
static void lo_copy_file_range(fuse_req_t req, fuse_ino_t ino_in, off_t off_in,
struct fuse_file_info *fi_in, fuse_ino_t ino_out,
off_t off_out, struct fuse_file_info *fi_out,
size_t len, int flags)
{
int in_fd, out_fd;
ssize_t res;
in_fd = lo_fi_fd(req, fi_in);
out_fd = lo_fi_fd(req, fi_out);
fuse_log(FUSE_LOG_DEBUG,
"lo_copy_file_range(ino=%" PRIu64 "/fd=%d, "
"off=%ju, ino=%" PRIu64 "/fd=%d, "
"off=%ju, size=%zd, flags=0x%x)\n",
ino_in, in_fd, (intmax_t)off_in,
ino_out, out_fd, (intmax_t)off_out, len, flags);
res = copy_file_range(in_fd, &off_in, out_fd, &off_out, len, flags);
if (res < 0) {
fuse_reply_err(req, errno);
} else {
fuse_reply_write(req, res);
}
}
#endif
static void lo_lseek(fuse_req_t req, fuse_ino_t ino, off_t off, int whence,
struct fuse_file_info *fi)
{
off_t res;
(void)ino;
res = lseek(lo_fi_fd(req, fi), off, whence);
if (res != -1) {
fuse_reply_lseek(req, res);
} else {
fuse_reply_err(req, errno);
}
}
static int lo_do_syncfs(struct lo_data *lo, struct lo_inode *inode)
{
int fd, ret = 0;
fuse_log(FUSE_LOG_DEBUG, "lo_do_syncfs(ino=%" PRIu64 ")\n",
inode->fuse_ino);
fd = lo_inode_open(lo, inode, O_RDONLY);
if (fd < 0) {
return -fd;
}
if (syncfs(fd) < 0) {
ret = errno;
}
close(fd);
return ret;
}
static void lo_syncfs(fuse_req_t req, fuse_ino_t ino)
{
struct lo_data *lo = lo_data(req);
struct lo_inode *inode = lo_inode(req, ino);
int err;
if (!inode) {
fuse_reply_err(req, EBADF);
return;
}
err = lo_do_syncfs(lo, inode);
lo_inode_put(lo, &inode);
/*
* If submounts aren't announced, the client only sends a request to
* sync the root inode. TODO: Track submounts internally and iterate
* over them as well.
*/
fuse_reply_err(req, err);
}
static void lo_destroy(void *userdata)
{
struct lo_data *lo = (struct lo_data *)userdata;
pthread_mutex_lock(&lo->mutex);
while (true) {
GHashTableIter iter;
gpointer key, value;
g_hash_table_iter_init(&iter, lo->inodes);
if (!g_hash_table_iter_next(&iter, &key, &value)) {
break;
}
struct lo_inode *inode = value;
unref_inode(lo, inode, inode->nlookup);
}
pthread_mutex_unlock(&lo->mutex);
}
static struct fuse_lowlevel_ops lo_oper = {
.init = lo_init,
.lookup = lo_lookup,
.mkdir = lo_mkdir,
.mknod = lo_mknod,
.symlink = lo_symlink,
.link = lo_link,
.unlink = lo_unlink,
.rmdir = lo_rmdir,
.rename = lo_rename,
.forget = lo_forget,
.forget_multi = lo_forget_multi,
.getattr = lo_getattr,
.setattr = lo_setattr,
.readlink = lo_readlink,
.opendir = lo_opendir,
.readdir = lo_readdir,
.readdirplus = lo_readdirplus,
.releasedir = lo_releasedir,
.fsyncdir = lo_fsyncdir,
.create = lo_create,
.getlk = lo_getlk,
.setlk = lo_setlk,
.open = lo_open,
.release = lo_release,
.flush = lo_flush,
.fsync = lo_fsync,
.read = lo_read,
.write_buf = lo_write_buf,
.statfs = lo_statfs,
.fallocate = lo_fallocate,
.flock = lo_flock,
.getxattr = lo_getxattr,
.listxattr = lo_listxattr,
.setxattr = lo_setxattr,
.removexattr = lo_removexattr,
#ifdef HAVE_COPY_FILE_RANGE
.copy_file_range = lo_copy_file_range,
#endif
.lseek = lo_lseek,
.syncfs = lo_syncfs,
.destroy = lo_destroy,
};
/* Print vhost-user.json backend program capabilities */
static void print_capabilities(void)
{
printf("{\n");
printf(" \"type\": \"fs\"\n");
printf("}\n");
}
/*
* Drop all Linux capabilities because the wait parent process only needs to
* sit in waitpid(2) and terminate.
*/
static void setup_wait_parent_capabilities(void)
{
capng_setpid(syscall(SYS_gettid));
capng_clear(CAPNG_SELECT_BOTH);
capng_apply(CAPNG_SELECT_BOTH);
}
/*
* Move to a new mount, net, and pid namespaces to isolate this process.
*/
static void setup_namespaces(struct lo_data *lo, struct fuse_session *se)
{
pid_t child;
/*
* Create a new pid namespace for *child* processes. We'll have to
* fork in order to enter the new pid namespace. A new mount namespace
* is also needed so that we can remount /proc for the new pid
* namespace.
*
* Our UNIX domain sockets have been created. Now we can move to
* an empty network namespace to prevent TCP/IP and other network
* activity in case this process is compromised.
*/
if (unshare(CLONE_NEWPID | CLONE_NEWNS | CLONE_NEWNET) != 0) {
fuse_log(FUSE_LOG_ERR, "unshare(CLONE_NEWPID | CLONE_NEWNS): %m\n");
exit(1);
}
child = fork();
if (child < 0) {
fuse_log(FUSE_LOG_ERR, "fork() failed: %m\n");
exit(1);
}
if (child > 0) {
pid_t waited;
int wstatus;
setup_wait_parent_capabilities();
/* The parent waits for the child */
do {
waited = waitpid(child, &wstatus, 0);
} while (waited < 0 && errno == EINTR && !se->exited);
/* We were terminated by a signal, see fuse_signals.c */
if (se->exited) {
exit(0);
}
if (WIFEXITED(wstatus)) {
exit(WEXITSTATUS(wstatus));
}
exit(1);
}
/* Send us SIGTERM when the parent thread terminates, see prctl(2) */
prctl(PR_SET_PDEATHSIG, SIGTERM);
/*
* If the mounts have shared propagation then we want to opt out so our
* mount changes don't affect the parent mount namespace.
*/
if (mount(NULL, "/", NULL, MS_REC | MS_SLAVE, NULL) < 0) {
fuse_log(FUSE_LOG_ERR, "mount(/, MS_REC|MS_SLAVE): %m\n");
exit(1);
}
/* The child must remount /proc to use the new pid namespace */
if (mount("proc", "/proc", "proc",
MS_NODEV | MS_NOEXEC | MS_NOSUID | MS_RELATIME, NULL) < 0) {
fuse_log(FUSE_LOG_ERR, "mount(/proc): %m\n");
exit(1);
}
/* Get the /proc/self/task descriptor */
lo->proc_self_task = open("/proc/self/task/", O_PATH);
if (lo->proc_self_task == -1) {
fuse_log(FUSE_LOG_ERR, "open(/proc/self/task, O_PATH): %m\n");
exit(1);
}
lo->use_fscreate = is_fscreate_usable(lo);
/*
* We only need /proc/self/fd. Prevent ".." from accessing parent
* directories of /proc/self/fd by bind-mounting it over /proc. Since / was
* previously remounted with MS_REC | MS_SLAVE this mount change only
* affects our process.
*/
if (mount("/proc/self/fd", "/proc", NULL, MS_BIND, NULL) < 0) {
fuse_log(FUSE_LOG_ERR, "mount(/proc/self/fd, MS_BIND): %m\n");
exit(1);
}
/* Get the /proc (actually /proc/self/fd, see above) file descriptor */
lo->proc_self_fd = open("/proc", O_PATH);
if (lo->proc_self_fd == -1) {
fuse_log(FUSE_LOG_ERR, "open(/proc, O_PATH): %m\n");
exit(1);
}
}
/*
* Capture the capability state, we'll need to restore this for individual
* threads later; see load_capng.
*/
static void setup_capng(void)
{
/* Note this accesses /proc so has to happen before the sandbox */
if (capng_get_caps_process()) {
fuse_log(FUSE_LOG_ERR, "capng_get_caps_process\n");
exit(1);
}
pthread_mutex_init(&cap.mutex, NULL);
pthread_mutex_lock(&cap.mutex);
cap.saved = capng_save_state();
if (!cap.saved) {
fuse_log(FUSE_LOG_ERR, "capng_save_state\n");
exit(1);
}
pthread_mutex_unlock(&cap.mutex);
}
static void cleanup_capng(void)
{
free(cap.saved);
cap.saved = NULL;
pthread_mutex_destroy(&cap.mutex);
}
/*
* Make the source directory our root so symlinks cannot escape and no other
* files are accessible. Assumes unshare(CLONE_NEWNS) was already called.
*/
static void setup_mounts(const char *source)
{
int oldroot;
int newroot;
if (mount(source, source, NULL, MS_BIND | MS_REC, NULL) < 0) {
fuse_log(FUSE_LOG_ERR, "mount(%s, %s, MS_BIND): %m\n", source, source);
exit(1);
}
/* This magic is based on lxc's lxc_pivot_root() */
oldroot = open("/", O_DIRECTORY | O_RDONLY | O_CLOEXEC);
if (oldroot < 0) {
fuse_log(FUSE_LOG_ERR, "open(/): %m\n");
exit(1);
}
newroot = open(source, O_DIRECTORY | O_RDONLY | O_CLOEXEC);
if (newroot < 0) {
fuse_log(FUSE_LOG_ERR, "open(%s): %m\n", source);
exit(1);
}
if (fchdir(newroot) < 0) {
fuse_log(FUSE_LOG_ERR, "fchdir(newroot): %m\n");
exit(1);
}
if (syscall(__NR_pivot_root, ".", ".") < 0) {
fuse_log(FUSE_LOG_ERR, "pivot_root(., .): %m\n");
exit(1);
}
if (fchdir(oldroot) < 0) {
fuse_log(FUSE_LOG_ERR, "fchdir(oldroot): %m\n");
exit(1);
}
if (mount("", ".", "", MS_SLAVE | MS_REC, NULL) < 0) {
fuse_log(FUSE_LOG_ERR, "mount(., MS_SLAVE | MS_REC): %m\n");
exit(1);
}
if (umount2(".", MNT_DETACH) < 0) {
fuse_log(FUSE_LOG_ERR, "umount2(., MNT_DETACH): %m\n");
exit(1);
}
if (fchdir(newroot) < 0) {
fuse_log(FUSE_LOG_ERR, "fchdir(newroot): %m\n");
exit(1);
}
close(newroot);
close(oldroot);
}
/*
* Only keep capabilities in allowlist that are needed for file system operation
* The (possibly NULL) modcaps_in string passed in is free'd before exit.
*/
static void setup_capabilities(char *modcaps_in)
{
char *modcaps = modcaps_in;
pthread_mutex_lock(&cap.mutex);
capng_restore_state(&cap.saved);
/*
* Add to allowlist file system-related capabilities that are needed for a
* file server to act like root. Drop everything else like networking and
* sysadmin capabilities.
*
* Exclusions:
* 1. CAP_LINUX_IMMUTABLE is not included because it's only used via ioctl
* and we don't support that.
* 2. CAP_MAC_OVERRIDE is not included because it only seems to be
* used by the Smack LSM. Omit it until there is demand for it.
*/
capng_setpid(syscall(SYS_gettid));
capng_clear(CAPNG_SELECT_BOTH);
if (capng_updatev(CAPNG_ADD, CAPNG_PERMITTED | CAPNG_EFFECTIVE,
CAP_CHOWN,
CAP_DAC_OVERRIDE,
CAP_FOWNER,
CAP_FSETID,
CAP_SETGID,
CAP_SETUID,
CAP_MKNOD,
CAP_SETFCAP,
-1)) {
fuse_log(FUSE_LOG_ERR, "%s: capng_updatev failed\n", __func__);
exit(1);
}
/*
* The modcaps option is a colon separated list of caps,
* each preceded by either + or -.
*/
while (modcaps) {
capng_act_t action;
int cap;
char *next = strchr(modcaps, ':');
if (next) {
*next = '\0';
next++;
}
switch (modcaps[0]) {
case '+':
action = CAPNG_ADD;
break;
case '-':
action = CAPNG_DROP;
break;
default:
fuse_log(FUSE_LOG_ERR,
"%s: Expecting '+'/'-' in modcaps but found '%c'\n",
__func__, modcaps[0]);
exit(1);
}
cap = capng_name_to_capability(modcaps + 1);
if (cap < 0) {
fuse_log(FUSE_LOG_ERR, "%s: Unknown capability '%s'\n", __func__,
modcaps);
exit(1);
}
if (capng_update(action, CAPNG_PERMITTED | CAPNG_EFFECTIVE, cap)) {
fuse_log(FUSE_LOG_ERR, "%s: capng_update failed for '%s'\n",
__func__, modcaps);
exit(1);
}
modcaps = next;
}
g_free(modcaps_in);
if (capng_apply(CAPNG_SELECT_BOTH)) {
fuse_log(FUSE_LOG_ERR, "%s: capng_apply failed\n", __func__);
exit(1);
}
cap.saved = capng_save_state();
if (!cap.saved) {
fuse_log(FUSE_LOG_ERR, "%s: capng_save_state failed\n", __func__);
exit(1);
}
pthread_mutex_unlock(&cap.mutex);
}
/*
* Use chroot as a weaker sandbox for environments where the process is
* launched without CAP_SYS_ADMIN.
*/
static void setup_chroot(struct lo_data *lo)
{
lo->proc_self_fd = open("/proc/self/fd", O_PATH);
if (lo->proc_self_fd == -1) {
fuse_log(FUSE_LOG_ERR, "open(\"/proc/self/fd\", O_PATH): %m\n");
exit(1);
}
lo->proc_self_task = open("/proc/self/task", O_PATH);
if (lo->proc_self_fd == -1) {
fuse_log(FUSE_LOG_ERR, "open(\"/proc/self/task\", O_PATH): %m\n");
exit(1);
}
lo->use_fscreate = is_fscreate_usable(lo);
/*
* Make the shared directory the file system root so that FUSE_OPEN
* (lo_open()) cannot escape the shared directory by opening a symlink.
*
* The chroot(2) syscall is later disabled by seccomp and the
* CAP_SYS_CHROOT capability is dropped so that tampering with the chroot
* is not possible.
*
* However, it's still possible to escape the chroot via lo->proc_self_fd
* but that requires first gaining control of the process.
*/
if (chroot(lo->source) != 0) {
fuse_log(FUSE_LOG_ERR, "chroot(\"%s\"): %m\n", lo->source);
exit(1);
}
/* Move into the chroot */
if (chdir("/") != 0) {
fuse_log(FUSE_LOG_ERR, "chdir(\"/\"): %m\n");
exit(1);
}
}
/*
* Lock down this process to prevent access to other processes or files outside
* source directory. This reduces the impact of arbitrary code execution bugs.
*/
static void setup_sandbox(struct lo_data *lo, struct fuse_session *se,
bool enable_syslog)
{
if (lo->sandbox == SANDBOX_NAMESPACE) {
setup_namespaces(lo, se);
setup_mounts(lo->source);
} else {
setup_chroot(lo);
}
setup_seccomp(enable_syslog);
setup_capabilities(g_strdup(lo->modcaps));
}
/* Set the maximum number of open file descriptors */
static void setup_nofile_rlimit(unsigned long rlimit_nofile)
{
struct rlimit rlim = {
.rlim_cur = rlimit_nofile,
.rlim_max = rlimit_nofile,
};
if (rlimit_nofile == 0) {
return; /* nothing to do */
}
if (setrlimit(RLIMIT_NOFILE, &rlim) < 0) {
/* Ignore SELinux denials */
if (errno == EPERM) {
return;
}
fuse_log(FUSE_LOG_ERR, "setrlimit(RLIMIT_NOFILE): %m\n");
exit(1);
}
}
static void log_func(enum fuse_log_level level, const char *fmt, va_list ap)
{
g_autofree char *localfmt = NULL;
char buf[64];
if (current_log_level < level) {
return;
}
if (current_log_level == FUSE_LOG_DEBUG) {
if (use_syslog) {
/* no timestamp needed */
localfmt = g_strdup_printf("[ID: %08ld] %s", syscall(__NR_gettid),
fmt);
} else {
g_autoptr(GDateTime) now = g_date_time_new_now_utc();
g_autofree char *nowstr = g_date_time_format(now,
"%Y-%m-%d %H:%M:%S.%%06d%z");
snprintf(buf, 64, nowstr, g_date_time_get_microsecond(now));
localfmt = g_strdup_printf("[%s] [ID: %08ld] %s",
buf, syscall(__NR_gettid), fmt);
}
fmt = localfmt;
}
if (use_syslog) {
int priority = LOG_ERR;
switch (level) {
case FUSE_LOG_EMERG:
priority = LOG_EMERG;
break;
case FUSE_LOG_ALERT:
priority = LOG_ALERT;
break;
case FUSE_LOG_CRIT:
priority = LOG_CRIT;
break;
case FUSE_LOG_ERR:
priority = LOG_ERR;
break;
case FUSE_LOG_WARNING:
priority = LOG_WARNING;
break;
case FUSE_LOG_NOTICE:
priority = LOG_NOTICE;
break;
case FUSE_LOG_INFO:
priority = LOG_INFO;
break;
case FUSE_LOG_DEBUG:
priority = LOG_DEBUG;
break;
}
vsyslog(priority, fmt, ap);
} else {
vfprintf(stderr, fmt, ap);
}
}
static void setup_root(struct lo_data *lo, struct lo_inode *root)
{
int fd, res;
struct stat stat;
uint64_t mnt_id;
fd = open("/", O_PATH);
if (fd == -1) {
fuse_log(FUSE_LOG_ERR, "open(%s, O_PATH): %m\n", lo->source);
exit(1);
}
res = do_statx(lo, fd, "", &stat, AT_EMPTY_PATH | AT_SYMLINK_NOFOLLOW,
&mnt_id);
if (res == -1) {
fuse_log(FUSE_LOG_ERR, "fstatat(%s): %m\n", lo->source);
exit(1);
}
root->filetype = S_IFDIR;
root->fd = fd;
root->key.ino = stat.st_ino;
root->key.dev = stat.st_dev;
root->key.mnt_id = mnt_id;
root->nlookup = 2;
g_atomic_int_set(&root->refcount, 2);
if (lo->posix_lock) {
pthread_mutex_init(&root->plock_mutex, NULL);
root->posix_locks = g_hash_table_new_full(
g_direct_hash, g_direct_equal, NULL, posix_locks_value_destroy);
}
}
static guint lo_key_hash(gconstpointer key)
{
const struct lo_key *lkey = key;
return (guint)lkey->ino + (guint)lkey->dev + (guint)lkey->mnt_id;
}
static gboolean lo_key_equal(gconstpointer a, gconstpointer b)
{
const struct lo_key *la = a;
const struct lo_key *lb = b;
return la->ino == lb->ino && la->dev == lb->dev && la->mnt_id == lb->mnt_id;
}
static void fuse_lo_data_cleanup(struct lo_data *lo)
{
if (lo->inodes) {
g_hash_table_destroy(lo->inodes);
}
if (lo->root.posix_locks) {
g_hash_table_destroy(lo->root.posix_locks);
}
lo_map_destroy(&lo->fd_map);
lo_map_destroy(&lo->dirp_map);
lo_map_destroy(&lo->ino_map);
if (lo->proc_self_fd >= 0) {
close(lo->proc_self_fd);
}
if (lo->proc_self_task >= 0) {
close(lo->proc_self_task);
}
if (lo->root.fd >= 0) {
close(lo->root.fd);
}
free(lo->xattrmap);
free_xattrmap(lo);
free(lo->xattr_security_capability);
free(lo->source);
}
static void qemu_version(void)
{
printf("virtiofsd version " QEMU_FULL_VERSION "\n" QEMU_COPYRIGHT "\n");
}
int main(int argc, char *argv[])
{
struct fuse_args args = FUSE_ARGS_INIT(argc, argv);
struct fuse_session *se;
struct fuse_cmdline_opts opts;
struct lo_data lo = {
.sandbox = SANDBOX_NAMESPACE,
.debug = 0,
.writeback = 0,
.posix_lock = 0,
.allow_direct_io = 0,
.proc_self_fd = -1,
.proc_self_task = -1,
.user_killpriv_v2 = -1,
.user_posix_acl = -1,
.user_security_label = -1,
};
struct lo_map_elem *root_elem;
struct lo_map_elem *reserve_elem;
int ret = -1;
/* Initialize time conversion information for localtime_r(). */
tzset();
/* Don't mask creation mode, kernel already did that */
umask(0);
qemu_init_exec_dir(argv[0]);
drop_supplementary_groups();
pthread_mutex_init(&lo.mutex, NULL);
lo.inodes = g_hash_table_new(lo_key_hash, lo_key_equal);
lo.root.fd = -1;
lo.root.fuse_ino = FUSE_ROOT_ID;
lo.cache = CACHE_AUTO;
/*
* Set up the ino map like this:
* [0] Reserved (will not be used)
* [1] Root inode
*/
lo_map_init(&lo.ino_map);
reserve_elem = lo_map_reserve(&lo.ino_map, 0);
if (!reserve_elem) {
fuse_log(FUSE_LOG_ERR, "failed to alloc reserve_elem.\n");
goto err_out1;
}
reserve_elem->in_use = false;
root_elem = lo_map_reserve(&lo.ino_map, lo.root.fuse_ino);
if (!root_elem) {
fuse_log(FUSE_LOG_ERR, "failed to alloc root_elem.\n");
goto err_out1;
}
root_elem->inode = &lo.root;
lo_map_init(&lo.dirp_map);
lo_map_init(&lo.fd_map);
if (fuse_parse_cmdline(&args, &opts) != 0) {
goto err_out1;
}
fuse_set_log_func(log_func);
use_syslog = opts.syslog;
if (use_syslog) {
openlog("virtiofsd", LOG_PID, LOG_DAEMON);
}
if (opts.show_help) {
printf("usage: %s [options]\n\n", argv[0]);
fuse_cmdline_help();
printf(" -o source=PATH shared directory tree\n");
fuse_lowlevel_help();
ret = 0;
goto err_out1;
} else if (opts.show_version) {
qemu_version();
fuse_lowlevel_version();
ret = 0;
goto err_out1;
} else if (opts.print_capabilities) {
print_capabilities();
ret = 0;
goto err_out1;
}
if (fuse_opt_parse(&args, &lo, lo_opts, NULL) == -1) {
goto err_out1;
}
if (opts.log_level != 0) {
current_log_level = opts.log_level;
} else {
/* default log level is INFO */
current_log_level = FUSE_LOG_INFO;
}
lo.debug = opts.debug;
if (lo.debug) {
current_log_level = FUSE_LOG_DEBUG;
}
if (lo.source) {
struct stat stat;
int res;
res = lstat(lo.source, &stat);
if (res == -1) {
fuse_log(FUSE_LOG_ERR, "failed to stat source (\"%s\"): %m\n",
lo.source);
exit(1);
}
if (!S_ISDIR(stat.st_mode)) {
fuse_log(FUSE_LOG_ERR, "source is not a directory\n");
exit(1);
}
} else {
lo.source = strdup("/");
if (!lo.source) {
fuse_log(FUSE_LOG_ERR, "failed to strdup source\n");
goto err_out1;
}
}
if (lo.xattrmap) {
lo.xattr = 1;
parse_xattrmap(&lo);
}
if (!lo.timeout_set) {
switch (lo.cache) {
case CACHE_NONE:
lo.timeout = 0.0;
break;
case CACHE_AUTO:
lo.timeout = 1.0;
break;
case CACHE_ALWAYS:
lo.timeout = 86400.0;
break;
}
} else if (lo.timeout < 0) {
fuse_log(FUSE_LOG_ERR, "timeout is negative (%lf)\n", lo.timeout);
exit(1);
}
if (lo.user_posix_acl == 1 && !lo.xattr) {
fuse_log(FUSE_LOG_ERR, "Can't enable posix ACLs. xattrs are disabled."
"\n");
exit(1);
}
lo.use_statx = true;
se = fuse_session_new(&args, &lo_oper, sizeof(lo_oper), &lo);
if (se == NULL) {
goto err_out1;
}
if (fuse_set_signal_handlers(se) != 0) {
goto err_out2;
}
if (fuse_session_mount(se) != 0) {
goto err_out3;
}
fuse_daemonize(opts.foreground);
setup_nofile_rlimit(opts.rlimit_nofile);
/* Must be before sandbox since it wants /proc */
setup_capng();
setup_sandbox(&lo, se, opts.syslog);
setup_root(&lo, &lo.root);
/* Block until ctrl+c or fusermount -u */
ret = virtio_loop(se);
fuse_session_unmount(se);
cleanup_capng();
err_out3:
fuse_remove_signal_handlers(se);
err_out2:
fuse_session_destroy(se);
err_out1:
fuse_opt_free_args(&args);
fuse_lo_data_cleanup(&lo);
return ret ? 1 : 0;
}