| /* |
| * Generic vector operation expansion |
| * |
| * Copyright (c) 2018 Linaro |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "tcg/tcg.h" |
| #include "tcg/tcg-op.h" |
| #include "tcg/tcg-op-gvec.h" |
| #include "qemu/main-loop.h" |
| #include "tcg/tcg-gvec-desc.h" |
| |
| #define MAX_UNROLL 4 |
| |
| #ifdef CONFIG_DEBUG_TCG |
| static const TCGOpcode vecop_list_empty[1] = { 0 }; |
| #else |
| #define vecop_list_empty NULL |
| #endif |
| |
| |
| /* Verify vector size and alignment rules. OFS should be the OR of all |
| of the operand offsets so that we can check them all at once. */ |
| static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs) |
| { |
| uint32_t max_align; |
| |
| switch (oprsz) { |
| case 8: |
| case 16: |
| case 32: |
| tcg_debug_assert(oprsz <= maxsz); |
| break; |
| default: |
| tcg_debug_assert(oprsz == maxsz); |
| break; |
| } |
| tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS)); |
| |
| max_align = maxsz >= 16 ? 15 : 7; |
| tcg_debug_assert((maxsz & max_align) == 0); |
| tcg_debug_assert((ofs & max_align) == 0); |
| } |
| |
| /* Verify vector overlap rules for two operands. */ |
| static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s) |
| { |
| tcg_debug_assert(d == a || d + s <= a || a + s <= d); |
| } |
| |
| /* Verify vector overlap rules for three operands. */ |
| static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s) |
| { |
| check_overlap_2(d, a, s); |
| check_overlap_2(d, b, s); |
| check_overlap_2(a, b, s); |
| } |
| |
| /* Verify vector overlap rules for four operands. */ |
| static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b, |
| uint32_t c, uint32_t s) |
| { |
| check_overlap_2(d, a, s); |
| check_overlap_2(d, b, s); |
| check_overlap_2(d, c, s); |
| check_overlap_2(a, b, s); |
| check_overlap_2(a, c, s); |
| check_overlap_2(b, c, s); |
| } |
| |
| /* Create a descriptor from components. */ |
| uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data) |
| { |
| uint32_t desc = 0; |
| |
| check_size_align(oprsz, maxsz, 0); |
| tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS)); |
| |
| oprsz = (oprsz / 8) - 1; |
| maxsz = (maxsz / 8) - 1; |
| |
| /* |
| * We have just asserted in check_size_align that either |
| * oprsz is {8,16,32} or matches maxsz. Encode the final |
| * case with '2', as that would otherwise map to 24. |
| */ |
| if (oprsz == maxsz) { |
| oprsz = 2; |
| } |
| |
| desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz); |
| desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz); |
| desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data); |
| |
| return desc; |
| } |
| |
| /* Generate a call to a gvec-style helper with two vector operands. */ |
| void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t maxsz, int32_t data, |
| gen_helper_gvec_2 *fn) |
| { |
| TCGv_ptr a0, a1; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| |
| fn(a0, a1, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| } |
| |
| /* Generate a call to a gvec-style helper with two vector operands |
| and one scalar operand. */ |
| void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c, |
| uint32_t oprsz, uint32_t maxsz, int32_t data, |
| gen_helper_gvec_2i *fn) |
| { |
| TCGv_ptr a0, a1; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| |
| fn(a0, a1, c, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| } |
| |
| /* Generate a call to a gvec-style helper with three vector operands. */ |
| void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t oprsz, uint32_t maxsz, int32_t data, |
| gen_helper_gvec_3 *fn) |
| { |
| TCGv_ptr a0, a1, a2; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| a2 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| tcg_gen_addi_ptr(a2, cpu_env, bofs); |
| |
| fn(a0, a1, a2, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| tcg_temp_free_ptr(a2); |
| } |
| |
| /* Generate a call to a gvec-style helper with four vector operands. */ |
| void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t cofs, uint32_t oprsz, uint32_t maxsz, |
| int32_t data, gen_helper_gvec_4 *fn) |
| { |
| TCGv_ptr a0, a1, a2, a3; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| a2 = tcg_temp_new_ptr(); |
| a3 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| tcg_gen_addi_ptr(a2, cpu_env, bofs); |
| tcg_gen_addi_ptr(a3, cpu_env, cofs); |
| |
| fn(a0, a1, a2, a3, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| tcg_temp_free_ptr(a2); |
| tcg_temp_free_ptr(a3); |
| } |
| |
| /* Generate a call to a gvec-style helper with five vector operands. */ |
| void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t cofs, uint32_t xofs, uint32_t oprsz, |
| uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn) |
| { |
| TCGv_ptr a0, a1, a2, a3, a4; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| a2 = tcg_temp_new_ptr(); |
| a3 = tcg_temp_new_ptr(); |
| a4 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| tcg_gen_addi_ptr(a2, cpu_env, bofs); |
| tcg_gen_addi_ptr(a3, cpu_env, cofs); |
| tcg_gen_addi_ptr(a4, cpu_env, xofs); |
| |
| fn(a0, a1, a2, a3, a4, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| tcg_temp_free_ptr(a2); |
| tcg_temp_free_ptr(a3); |
| tcg_temp_free_ptr(a4); |
| } |
| |
| /* Generate a call to a gvec-style helper with three vector operands |
| and an extra pointer operand. */ |
| void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs, |
| TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz, |
| int32_t data, gen_helper_gvec_2_ptr *fn) |
| { |
| TCGv_ptr a0, a1; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| |
| fn(a0, a1, ptr, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| } |
| |
| /* Generate a call to a gvec-style helper with three vector operands |
| and an extra pointer operand. */ |
| void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz, |
| int32_t data, gen_helper_gvec_3_ptr *fn) |
| { |
| TCGv_ptr a0, a1, a2; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| a2 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| tcg_gen_addi_ptr(a2, cpu_env, bofs); |
| |
| fn(a0, a1, a2, ptr, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| tcg_temp_free_ptr(a2); |
| } |
| |
| /* Generate a call to a gvec-style helper with four vector operands |
| and an extra pointer operand. */ |
| void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz, |
| uint32_t maxsz, int32_t data, |
| gen_helper_gvec_4_ptr *fn) |
| { |
| TCGv_ptr a0, a1, a2, a3; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| a2 = tcg_temp_new_ptr(); |
| a3 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| tcg_gen_addi_ptr(a2, cpu_env, bofs); |
| tcg_gen_addi_ptr(a3, cpu_env, cofs); |
| |
| fn(a0, a1, a2, a3, ptr, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| tcg_temp_free_ptr(a2); |
| tcg_temp_free_ptr(a3); |
| } |
| |
| /* Generate a call to a gvec-style helper with five vector operands |
| and an extra pointer operand. */ |
| void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t cofs, uint32_t eofs, TCGv_ptr ptr, |
| uint32_t oprsz, uint32_t maxsz, int32_t data, |
| gen_helper_gvec_5_ptr *fn) |
| { |
| TCGv_ptr a0, a1, a2, a3, a4; |
| TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); |
| |
| a0 = tcg_temp_new_ptr(); |
| a1 = tcg_temp_new_ptr(); |
| a2 = tcg_temp_new_ptr(); |
| a3 = tcg_temp_new_ptr(); |
| a4 = tcg_temp_new_ptr(); |
| |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| tcg_gen_addi_ptr(a2, cpu_env, bofs); |
| tcg_gen_addi_ptr(a3, cpu_env, cofs); |
| tcg_gen_addi_ptr(a4, cpu_env, eofs); |
| |
| fn(a0, a1, a2, a3, a4, ptr, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| tcg_temp_free_ptr(a2); |
| tcg_temp_free_ptr(a3); |
| tcg_temp_free_ptr(a4); |
| } |
| |
| /* Return true if we want to implement something of OPRSZ bytes |
| in units of LNSZ. This limits the expansion of inline code. */ |
| static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz) |
| { |
| uint32_t q, r; |
| |
| if (oprsz < lnsz) { |
| return false; |
| } |
| |
| q = oprsz / lnsz; |
| r = oprsz % lnsz; |
| tcg_debug_assert((r & 7) == 0); |
| |
| if (lnsz < 16) { |
| /* For sizes below 16, accept no remainder. */ |
| if (r != 0) { |
| return false; |
| } |
| } else { |
| /* |
| * Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| * In addition, expand_clr needs to handle a multiple of 8. |
| * Thus we can handle the tail with one more operation per |
| * diminishing power of 2. |
| */ |
| q += ctpop32(r); |
| } |
| |
| return q <= MAX_UNROLL; |
| } |
| |
| static void expand_clr(uint32_t dofs, uint32_t maxsz); |
| |
| /* Duplicate C as per VECE. */ |
| uint64_t (dup_const)(unsigned vece, uint64_t c) |
| { |
| switch (vece) { |
| case MO_8: |
| return 0x0101010101010101ull * (uint8_t)c; |
| case MO_16: |
| return 0x0001000100010001ull * (uint16_t)c; |
| case MO_32: |
| return 0x0000000100000001ull * (uint32_t)c; |
| case MO_64: |
| return c; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Duplicate IN into OUT as per VECE. */ |
| void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in) |
| { |
| switch (vece) { |
| case MO_8: |
| tcg_gen_ext8u_i32(out, in); |
| tcg_gen_muli_i32(out, out, 0x01010101); |
| break; |
| case MO_16: |
| tcg_gen_deposit_i32(out, in, in, 16, 16); |
| break; |
| case MO_32: |
| tcg_gen_mov_i32(out, in); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in) |
| { |
| switch (vece) { |
| case MO_8: |
| tcg_gen_ext8u_i64(out, in); |
| tcg_gen_muli_i64(out, out, 0x0101010101010101ull); |
| break; |
| case MO_16: |
| tcg_gen_ext16u_i64(out, in); |
| tcg_gen_muli_i64(out, out, 0x0001000100010001ull); |
| break; |
| case MO_32: |
| tcg_gen_deposit_i64(out, in, in, 32, 32); |
| break; |
| case MO_64: |
| tcg_gen_mov_i64(out, in); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Select a supported vector type for implementing an operation on SIZE |
| * bytes. If OP is 0, assume that the real operation to be performed is |
| * required by all backends. Otherwise, make sure than OP can be performed |
| * on elements of size VECE in the selected type. Do not select V64 if |
| * PREFER_I64 is true. Return 0 if no vector type is selected. |
| */ |
| static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece, |
| uint32_t size, bool prefer_i64) |
| { |
| /* |
| * Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| * It is hard to imagine a case in which v256 is supported |
| * but v128 is not, but check anyway. |
| * In addition, expand_clr needs to handle a multiple of 8. |
| */ |
| if (TCG_TARGET_HAS_v256 && |
| check_size_impl(size, 32) && |
| tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) && |
| (!(size & 16) || |
| (TCG_TARGET_HAS_v128 && |
| tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) && |
| (!(size & 8) || |
| (TCG_TARGET_HAS_v64 && |
| tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) { |
| return TCG_TYPE_V256; |
| } |
| if (TCG_TARGET_HAS_v128 && |
| check_size_impl(size, 16) && |
| tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) && |
| (!(size & 8) || |
| (TCG_TARGET_HAS_v64 && |
| tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) { |
| return TCG_TYPE_V128; |
| } |
| if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8) |
| && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) { |
| return TCG_TYPE_V64; |
| } |
| return 0; |
| } |
| |
| static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz, |
| uint32_t maxsz, TCGv_vec t_vec) |
| { |
| uint32_t i = 0; |
| |
| tcg_debug_assert(oprsz >= 8); |
| |
| /* |
| * This may be expand_clr for the tail of an operation, e.g. |
| * oprsz == 8 && maxsz == 64. The first 8 bytes of this store |
| * are misaligned wrt the maximum vector size, so do that first. |
| */ |
| if (dofs & 8) { |
| tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64); |
| i += 8; |
| } |
| |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* |
| * Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| for (; i + 32 <= oprsz; i += 32) { |
| tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256); |
| } |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| for (; i + 16 <= oprsz; i += 16) { |
| tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128); |
| } |
| break; |
| case TCG_TYPE_V64: |
| for (; i < oprsz; i += 8) { |
| tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C. |
| * Only one of IN_32 or IN_64 may be set; |
| * IN_C is used if IN_32 and IN_64 are unset. |
| */ |
| static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz, |
| uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64, |
| uint64_t in_c) |
| { |
| TCGType type; |
| TCGv_i64 t_64; |
| TCGv_i32 t_32, t_desc; |
| TCGv_ptr t_ptr; |
| uint32_t i; |
| |
| assert(vece <= (in_32 ? MO_32 : MO_64)); |
| assert(in_32 == NULL || in_64 == NULL); |
| |
| /* If we're storing 0, expand oprsz to maxsz. */ |
| if (in_32 == NULL && in_64 == NULL) { |
| in_c = dup_const(vece, in_c); |
| if (in_c == 0) { |
| oprsz = maxsz; |
| vece = MO_8; |
| } else if (in_c == dup_const(MO_8, in_c)) { |
| vece = MO_8; |
| } |
| } |
| |
| /* Implement inline with a vector type, if possible. |
| * Prefer integer when 64-bit host and no variable dup. |
| */ |
| type = choose_vector_type(NULL, vece, oprsz, |
| (TCG_TARGET_REG_BITS == 64 && in_32 == NULL |
| && (in_64 == NULL || vece == MO_64))); |
| if (type != 0) { |
| TCGv_vec t_vec = tcg_temp_new_vec(type); |
| |
| if (in_32) { |
| tcg_gen_dup_i32_vec(vece, t_vec, in_32); |
| } else if (in_64) { |
| tcg_gen_dup_i64_vec(vece, t_vec, in_64); |
| } else { |
| tcg_gen_dupi_vec(vece, t_vec, in_c); |
| } |
| do_dup_store(type, dofs, oprsz, maxsz, t_vec); |
| tcg_temp_free_vec(t_vec); |
| return; |
| } |
| |
| /* Otherwise, inline with an integer type, unless "large". */ |
| if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) { |
| t_64 = NULL; |
| t_32 = NULL; |
| |
| if (in_32) { |
| /* We are given a 32-bit variable input. For a 64-bit host, |
| use a 64-bit operation unless the 32-bit operation would |
| be simple enough. */ |
| if (TCG_TARGET_REG_BITS == 64 |
| && (vece != MO_32 || !check_size_impl(oprsz, 4))) { |
| t_64 = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(t_64, in_32); |
| tcg_gen_dup_i64(vece, t_64, t_64); |
| } else { |
| t_32 = tcg_temp_new_i32(); |
| tcg_gen_dup_i32(vece, t_32, in_32); |
| } |
| } else if (in_64) { |
| /* We are given a 64-bit variable input. */ |
| t_64 = tcg_temp_new_i64(); |
| tcg_gen_dup_i64(vece, t_64, in_64); |
| } else { |
| /* We are given a constant input. */ |
| /* For 64-bit hosts, use 64-bit constants for "simple" constants |
| or when we'd need too many 32-bit stores, or when a 64-bit |
| constant is really required. */ |
| if (vece == MO_64 |
| || (TCG_TARGET_REG_BITS == 64 |
| && (in_c == 0 || in_c == -1 |
| || !check_size_impl(oprsz, 4)))) { |
| t_64 = tcg_constant_i64(in_c); |
| } else { |
| t_32 = tcg_constant_i32(in_c); |
| } |
| } |
| |
| /* Implement inline if we picked an implementation size above. */ |
| if (t_32) { |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_st_i32(t_32, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i32(t_32); |
| goto done; |
| } |
| if (t_64) { |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_st_i64(t_64, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i64(t_64); |
| goto done; |
| } |
| } |
| |
| /* Otherwise implement out of line. */ |
| t_ptr = tcg_temp_new_ptr(); |
| tcg_gen_addi_ptr(t_ptr, cpu_env, dofs); |
| |
| /* |
| * This may be expand_clr for the tail of an operation, e.g. |
| * oprsz == 8 && maxsz == 64. The size of the clear is misaligned |
| * wrt simd_desc and will assert. Simply pass all replicated byte |
| * stores through to memset. |
| */ |
| if (oprsz == maxsz && vece == MO_8) { |
| TCGv_ptr t_size = tcg_const_ptr(oprsz); |
| TCGv_i32 t_val; |
| |
| if (in_32) { |
| t_val = in_32; |
| } else if (in_64) { |
| t_val = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t_val, in_64); |
| } else { |
| t_val = tcg_constant_i32(in_c); |
| } |
| gen_helper_memset(t_ptr, t_ptr, t_val, t_size); |
| |
| if (in_64) { |
| tcg_temp_free_i32(t_val); |
| } |
| tcg_temp_free_ptr(t_size); |
| tcg_temp_free_ptr(t_ptr); |
| return; |
| } |
| |
| t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0)); |
| |
| if (vece == MO_64) { |
| if (in_64) { |
| gen_helper_gvec_dup64(t_ptr, t_desc, in_64); |
| } else { |
| t_64 = tcg_constant_i64(in_c); |
| gen_helper_gvec_dup64(t_ptr, t_desc, t_64); |
| } |
| } else { |
| typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32); |
| static dup_fn * const fns[3] = { |
| gen_helper_gvec_dup8, |
| gen_helper_gvec_dup16, |
| gen_helper_gvec_dup32 |
| }; |
| |
| if (in_32) { |
| fns[vece](t_ptr, t_desc, in_32); |
| } else if (in_64) { |
| t_32 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t_32, in_64); |
| fns[vece](t_ptr, t_desc, t_32); |
| tcg_temp_free_i32(t_32); |
| } else { |
| if (vece == MO_8) { |
| in_c &= 0xff; |
| } else if (vece == MO_16) { |
| in_c &= 0xffff; |
| } |
| t_32 = tcg_constant_i32(in_c); |
| fns[vece](t_ptr, t_desc, t_32); |
| } |
| } |
| |
| tcg_temp_free_ptr(t_ptr); |
| return; |
| |
| done: |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* Likewise, but with zero. */ |
| static void expand_clr(uint32_t dofs, uint32_t maxsz) |
| { |
| do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0); |
| } |
| |
| /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */ |
| static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, |
| bool load_dest, void (*fni)(TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_ld_i32(t0, cpu_env, aofs + i); |
| if (load_dest) { |
| tcg_gen_ld_i32(t1, cpu_env, dofs + i); |
| } |
| fni(t1, t0); |
| tcg_gen_st_i32(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i32(t0); |
| tcg_temp_free_i32(t1); |
| } |
| |
| static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, |
| int32_t c, bool load_dest, |
| void (*fni)(TCGv_i32, TCGv_i32, int32_t)) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_ld_i32(t0, cpu_env, aofs + i); |
| if (load_dest) { |
| tcg_gen_ld_i32(t1, cpu_env, dofs + i); |
| } |
| fni(t1, t0, c); |
| tcg_gen_st_i32(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i32(t0); |
| tcg_temp_free_i32(t1); |
| } |
| |
| static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, |
| TCGv_i32 c, bool scalar_first, |
| void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_ld_i32(t0, cpu_env, aofs + i); |
| if (scalar_first) { |
| fni(t1, c, t0); |
| } else { |
| fni(t1, t0, c); |
| } |
| tcg_gen_st_i32(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i32(t0); |
| tcg_temp_free_i32(t1); |
| } |
| |
| /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ |
| static void expand_3_i32(uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, bool load_dest, |
| void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_ld_i32(t0, cpu_env, aofs + i); |
| tcg_gen_ld_i32(t1, cpu_env, bofs + i); |
| if (load_dest) { |
| tcg_gen_ld_i32(t2, cpu_env, dofs + i); |
| } |
| fni(t2, t0, t1); |
| tcg_gen_st_i32(t2, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i32(t2); |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t0); |
| } |
| |
| static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t oprsz, int32_t c, bool load_dest, |
| void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t)) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_ld_i32(t0, cpu_env, aofs + i); |
| tcg_gen_ld_i32(t1, cpu_env, bofs + i); |
| if (load_dest) { |
| tcg_gen_ld_i32(t2, cpu_env, dofs + i); |
| } |
| fni(t2, t0, t1, c); |
| tcg_gen_st_i32(t2, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i32(t0); |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t2); |
| } |
| |
| /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ |
| static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t cofs, uint32_t oprsz, bool write_aofs, |
| void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32)) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| TCGv_i32 t3 = tcg_temp_new_i32(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_ld_i32(t1, cpu_env, aofs + i); |
| tcg_gen_ld_i32(t2, cpu_env, bofs + i); |
| tcg_gen_ld_i32(t3, cpu_env, cofs + i); |
| fni(t0, t1, t2, t3); |
| tcg_gen_st_i32(t0, cpu_env, dofs + i); |
| if (write_aofs) { |
| tcg_gen_st_i32(t1, cpu_env, aofs + i); |
| } |
| } |
| tcg_temp_free_i32(t3); |
| tcg_temp_free_i32(t2); |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t0); |
| } |
| |
| static void expand_4i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t cofs, uint32_t oprsz, int32_t c, |
| void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32, |
| int32_t)) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| TCGv_i32 t3 = tcg_temp_new_i32(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_ld_i32(t1, cpu_env, aofs + i); |
| tcg_gen_ld_i32(t2, cpu_env, bofs + i); |
| tcg_gen_ld_i32(t3, cpu_env, cofs + i); |
| fni(t0, t1, t2, t3, c); |
| tcg_gen_st_i32(t0, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i32(t3); |
| tcg_temp_free_i32(t2); |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t0); |
| } |
| |
| /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */ |
| static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, |
| bool load_dest, void (*fni)(TCGv_i64, TCGv_i64)) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_ld_i64(t0, cpu_env, aofs + i); |
| if (load_dest) { |
| tcg_gen_ld_i64(t1, cpu_env, dofs + i); |
| } |
| fni(t1, t0); |
| tcg_gen_st_i64(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i64(t0); |
| tcg_temp_free_i64(t1); |
| } |
| |
| static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, |
| int64_t c, bool load_dest, |
| void (*fni)(TCGv_i64, TCGv_i64, int64_t)) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_ld_i64(t0, cpu_env, aofs + i); |
| if (load_dest) { |
| tcg_gen_ld_i64(t1, cpu_env, dofs + i); |
| } |
| fni(t1, t0, c); |
| tcg_gen_st_i64(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i64(t0); |
| tcg_temp_free_i64(t1); |
| } |
| |
| static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, |
| TCGv_i64 c, bool scalar_first, |
| void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64)) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_ld_i64(t0, cpu_env, aofs + i); |
| if (scalar_first) { |
| fni(t1, c, t0); |
| } else { |
| fni(t1, t0, c); |
| } |
| tcg_gen_st_i64(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i64(t0); |
| tcg_temp_free_i64(t1); |
| } |
| |
| /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */ |
| static void expand_3_i64(uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, bool load_dest, |
| void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64)) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_ld_i64(t0, cpu_env, aofs + i); |
| tcg_gen_ld_i64(t1, cpu_env, bofs + i); |
| if (load_dest) { |
| tcg_gen_ld_i64(t2, cpu_env, dofs + i); |
| } |
| fni(t2, t0, t1); |
| tcg_gen_st_i64(t2, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i64(t2); |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t0); |
| } |
| |
| static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t oprsz, int64_t c, bool load_dest, |
| void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t)) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_ld_i64(t0, cpu_env, aofs + i); |
| tcg_gen_ld_i64(t1, cpu_env, bofs + i); |
| if (load_dest) { |
| tcg_gen_ld_i64(t2, cpu_env, dofs + i); |
| } |
| fni(t2, t0, t1, c); |
| tcg_gen_st_i64(t2, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i64(t0); |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t2); |
| } |
| |
| /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */ |
| static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t cofs, uint32_t oprsz, bool write_aofs, |
| void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| TCGv_i64 t3 = tcg_temp_new_i64(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_ld_i64(t1, cpu_env, aofs + i); |
| tcg_gen_ld_i64(t2, cpu_env, bofs + i); |
| tcg_gen_ld_i64(t3, cpu_env, cofs + i); |
| fni(t0, t1, t2, t3); |
| tcg_gen_st_i64(t0, cpu_env, dofs + i); |
| if (write_aofs) { |
| tcg_gen_st_i64(t1, cpu_env, aofs + i); |
| } |
| } |
| tcg_temp_free_i64(t3); |
| tcg_temp_free_i64(t2); |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t0); |
| } |
| |
| static void expand_4i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t cofs, uint32_t oprsz, int64_t c, |
| void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, |
| int64_t)) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| TCGv_i64 t3 = tcg_temp_new_i64(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_ld_i64(t1, cpu_env, aofs + i); |
| tcg_gen_ld_i64(t2, cpu_env, bofs + i); |
| tcg_gen_ld_i64(t3, cpu_env, cofs + i); |
| fni(t0, t1, t2, t3, c); |
| tcg_gen_st_i64(t0, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i64(t3); |
| tcg_temp_free_i64(t2); |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t0); |
| } |
| |
| /* Expand OPSZ bytes worth of two-operand operations using host vectors. */ |
| static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t tysz, TCGType type, |
| bool load_dest, |
| void (*fni)(unsigned, TCGv_vec, TCGv_vec)) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| TCGv_vec t1 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t0, cpu_env, aofs + i); |
| if (load_dest) { |
| tcg_gen_ld_vec(t1, cpu_env, dofs + i); |
| } |
| fni(vece, t1, t0); |
| tcg_gen_st_vec(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(t0); |
| tcg_temp_free_vec(t1); |
| } |
| |
| /* Expand OPSZ bytes worth of two-vector operands and an immediate operand |
| using host vectors. */ |
| static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t tysz, TCGType type, |
| int64_t c, bool load_dest, |
| void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t)) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| TCGv_vec t1 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t0, cpu_env, aofs + i); |
| if (load_dest) { |
| tcg_gen_ld_vec(t1, cpu_env, dofs + i); |
| } |
| fni(vece, t1, t0, c); |
| tcg_gen_st_vec(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(t0); |
| tcg_temp_free_vec(t1); |
| } |
| |
| static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t tysz, TCGType type, |
| TCGv_vec c, bool scalar_first, |
| void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec)) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| TCGv_vec t1 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t0, cpu_env, aofs + i); |
| if (scalar_first) { |
| fni(vece, t1, c, t0); |
| } else { |
| fni(vece, t1, t0, c); |
| } |
| tcg_gen_st_vec(t1, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(t0); |
| tcg_temp_free_vec(t1); |
| } |
| |
| /* Expand OPSZ bytes worth of three-operand operations using host vectors. */ |
| static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, |
| uint32_t tysz, TCGType type, bool load_dest, |
| void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec)) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| TCGv_vec t1 = tcg_temp_new_vec(type); |
| TCGv_vec t2 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t0, cpu_env, aofs + i); |
| tcg_gen_ld_vec(t1, cpu_env, bofs + i); |
| if (load_dest) { |
| tcg_gen_ld_vec(t2, cpu_env, dofs + i); |
| } |
| fni(vece, t2, t0, t1); |
| tcg_gen_st_vec(t2, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(t2); |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t0); |
| } |
| |
| /* |
| * Expand OPSZ bytes worth of three-vector operands and an immediate operand |
| * using host vectors. |
| */ |
| static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t tysz, |
| TCGType type, int64_t c, bool load_dest, |
| void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec, |
| int64_t)) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| TCGv_vec t1 = tcg_temp_new_vec(type); |
| TCGv_vec t2 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t0, cpu_env, aofs + i); |
| tcg_gen_ld_vec(t1, cpu_env, bofs + i); |
| if (load_dest) { |
| tcg_gen_ld_vec(t2, cpu_env, dofs + i); |
| } |
| fni(vece, t2, t0, t1, c); |
| tcg_gen_st_vec(t2, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(t0); |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t2); |
| } |
| |
| /* Expand OPSZ bytes worth of four-operand operations using host vectors. */ |
| static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t cofs, uint32_t oprsz, |
| uint32_t tysz, TCGType type, bool write_aofs, |
| void (*fni)(unsigned, TCGv_vec, TCGv_vec, |
| TCGv_vec, TCGv_vec)) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| TCGv_vec t1 = tcg_temp_new_vec(type); |
| TCGv_vec t2 = tcg_temp_new_vec(type); |
| TCGv_vec t3 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t1, cpu_env, aofs + i); |
| tcg_gen_ld_vec(t2, cpu_env, bofs + i); |
| tcg_gen_ld_vec(t3, cpu_env, cofs + i); |
| fni(vece, t0, t1, t2, t3); |
| tcg_gen_st_vec(t0, cpu_env, dofs + i); |
| if (write_aofs) { |
| tcg_gen_st_vec(t1, cpu_env, aofs + i); |
| } |
| } |
| tcg_temp_free_vec(t3); |
| tcg_temp_free_vec(t2); |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t0); |
| } |
| |
| /* |
| * Expand OPSZ bytes worth of four-vector operands and an immediate operand |
| * using host vectors. |
| */ |
| static void expand_4i_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t cofs, uint32_t oprsz, |
| uint32_t tysz, TCGType type, int64_t c, |
| void (*fni)(unsigned, TCGv_vec, TCGv_vec, |
| TCGv_vec, TCGv_vec, int64_t)) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| TCGv_vec t1 = tcg_temp_new_vec(type); |
| TCGv_vec t2 = tcg_temp_new_vec(type); |
| TCGv_vec t3 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t1, cpu_env, aofs + i); |
| tcg_gen_ld_vec(t2, cpu_env, bofs + i); |
| tcg_gen_ld_vec(t3, cpu_env, cofs + i); |
| fni(vece, t0, t1, t2, t3, c); |
| tcg_gen_st_vec(t0, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(t3); |
| tcg_temp_free_vec(t2); |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t0); |
| } |
| |
| /* Expand a vector two-operand operation. */ |
| void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g) |
| { |
| const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); |
| TCGType type; |
| uint32_t some; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs); |
| check_overlap_2(dofs, aofs, maxsz); |
| |
| type = 0; |
| if (g->fniv) { |
| type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); |
| } |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, |
| g->load_dest, g->fniv); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, |
| g->load_dest, g->fniv); |
| break; |
| case TCG_TYPE_V64: |
| expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, |
| g->load_dest, g->fniv); |
| break; |
| |
| case 0: |
| if (g->fni8 && check_size_impl(oprsz, 8)) { |
| expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8); |
| } else if (g->fni4 && check_size_impl(oprsz, 4)) { |
| expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4); |
| } else { |
| assert(g->fno != NULL); |
| tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno); |
| oprsz = maxsz; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_swap_vecop_list(hold_list); |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* Expand a vector operation with two vectors and an immediate. */ |
| void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz, |
| uint32_t maxsz, int64_t c, const GVecGen2i *g) |
| { |
| const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); |
| TCGType type; |
| uint32_t some; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs); |
| check_overlap_2(dofs, aofs, maxsz); |
| |
| type = 0; |
| if (g->fniv) { |
| type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); |
| } |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, |
| c, g->load_dest, g->fniv); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, |
| c, g->load_dest, g->fniv); |
| break; |
| case TCG_TYPE_V64: |
| expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, |
| c, g->load_dest, g->fniv); |
| break; |
| |
| case 0: |
| if (g->fni8 && check_size_impl(oprsz, 8)) { |
| expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8); |
| } else if (g->fni4 && check_size_impl(oprsz, 4)) { |
| expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4); |
| } else { |
| if (g->fno) { |
| tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno); |
| } else { |
| TCGv_i64 tcg_c = tcg_constant_i64(c); |
| tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz, |
| maxsz, c, g->fnoi); |
| } |
| oprsz = maxsz; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_swap_vecop_list(hold_list); |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* Expand a vector operation with two vectors and a scalar. */ |
| void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz, |
| uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g) |
| { |
| TCGType type; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs); |
| check_overlap_2(dofs, aofs, maxsz); |
| |
| type = 0; |
| if (g->fniv) { |
| type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); |
| } |
| if (type != 0) { |
| const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); |
| TCGv_vec t_vec = tcg_temp_new_vec(type); |
| uint32_t some; |
| |
| tcg_gen_dup_i64_vec(g->vece, t_vec, c); |
| |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, |
| t_vec, g->scalar_first, g->fniv); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| |
| case TCG_TYPE_V128: |
| expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, |
| t_vec, g->scalar_first, g->fniv); |
| break; |
| |
| case TCG_TYPE_V64: |
| expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, |
| t_vec, g->scalar_first, g->fniv); |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_temp_free_vec(t_vec); |
| tcg_swap_vecop_list(hold_list); |
| } else if (g->fni8 && check_size_impl(oprsz, 8)) { |
| TCGv_i64 t64 = tcg_temp_new_i64(); |
| |
| tcg_gen_dup_i64(g->vece, t64, c); |
| expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8); |
| tcg_temp_free_i64(t64); |
| } else if (g->fni4 && check_size_impl(oprsz, 4)) { |
| TCGv_i32 t32 = tcg_temp_new_i32(); |
| |
| tcg_gen_extrl_i64_i32(t32, c); |
| tcg_gen_dup_i32(g->vece, t32, t32); |
| expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4); |
| tcg_temp_free_i32(t32); |
| } else { |
| tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno); |
| return; |
| } |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* Expand a vector three-operand operation. */ |
| void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g) |
| { |
| const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); |
| TCGType type; |
| uint32_t some; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs | bofs); |
| check_overlap_3(dofs, aofs, bofs, maxsz); |
| |
| type = 0; |
| if (g->fniv) { |
| type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); |
| } |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, |
| g->load_dest, g->fniv); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| bofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, |
| g->load_dest, g->fniv); |
| break; |
| case TCG_TYPE_V64: |
| expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, |
| g->load_dest, g->fniv); |
| break; |
| |
| case 0: |
| if (g->fni8 && check_size_impl(oprsz, 8)) { |
| expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8); |
| } else if (g->fni4 && check_size_impl(oprsz, 4)) { |
| expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4); |
| } else { |
| assert(g->fno != NULL); |
| tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, |
| maxsz, g->data, g->fno); |
| oprsz = maxsz; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_swap_vecop_list(hold_list); |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* Expand a vector operation with three vectors and an immediate. */ |
| void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t oprsz, uint32_t maxsz, int64_t c, |
| const GVecGen3i *g) |
| { |
| const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); |
| TCGType type; |
| uint32_t some; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs | bofs); |
| check_overlap_3(dofs, aofs, bofs, maxsz); |
| |
| type = 0; |
| if (g->fniv) { |
| type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); |
| } |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* |
| * Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, |
| c, g->load_dest, g->fniv); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| bofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, |
| c, g->load_dest, g->fniv); |
| break; |
| case TCG_TYPE_V64: |
| expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, |
| c, g->load_dest, g->fniv); |
| break; |
| |
| case 0: |
| if (g->fni8 && check_size_impl(oprsz, 8)) { |
| expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8); |
| } else if (g->fni4 && check_size_impl(oprsz, 4)) { |
| expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4); |
| } else { |
| assert(g->fno != NULL); |
| tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno); |
| oprsz = maxsz; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_swap_vecop_list(hold_list); |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* Expand a vector four-operand operation. */ |
| void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, |
| uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g) |
| { |
| const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); |
| TCGType type; |
| uint32_t some; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs); |
| check_overlap_4(dofs, aofs, bofs, cofs, maxsz); |
| |
| type = 0; |
| if (g->fniv) { |
| type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); |
| } |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some, |
| 32, TCG_TYPE_V256, g->write_aofs, g->fniv); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| bofs += some; |
| cofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, |
| 16, TCG_TYPE_V128, g->write_aofs, g->fniv); |
| break; |
| case TCG_TYPE_V64: |
| expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, |
| 8, TCG_TYPE_V64, g->write_aofs, g->fniv); |
| break; |
| |
| case 0: |
| if (g->fni8 && check_size_impl(oprsz, 8)) { |
| expand_4_i64(dofs, aofs, bofs, cofs, oprsz, |
| g->write_aofs, g->fni8); |
| } else if (g->fni4 && check_size_impl(oprsz, 4)) { |
| expand_4_i32(dofs, aofs, bofs, cofs, oprsz, |
| g->write_aofs, g->fni4); |
| } else { |
| assert(g->fno != NULL); |
| tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs, |
| oprsz, maxsz, g->data, g->fno); |
| oprsz = maxsz; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_swap_vecop_list(hold_list); |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* Expand a vector four-operand operation. */ |
| void tcg_gen_gvec_4i(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, |
| uint32_t oprsz, uint32_t maxsz, int64_t c, |
| const GVecGen4i *g) |
| { |
| const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); |
| TCGType type; |
| uint32_t some; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs); |
| check_overlap_4(dofs, aofs, bofs, cofs, maxsz); |
| |
| type = 0; |
| if (g->fniv) { |
| type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); |
| } |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* |
| * Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, some, |
| 32, TCG_TYPE_V256, c, g->fniv); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| bofs += some; |
| cofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, |
| 16, TCG_TYPE_V128, c, g->fniv); |
| break; |
| case TCG_TYPE_V64: |
| expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, |
| 8, TCG_TYPE_V64, c, g->fniv); |
| break; |
| |
| case 0: |
| if (g->fni8 && check_size_impl(oprsz, 8)) { |
| expand_4i_i64(dofs, aofs, bofs, cofs, oprsz, c, g->fni8); |
| } else if (g->fni4 && check_size_impl(oprsz, 4)) { |
| expand_4i_i32(dofs, aofs, bofs, cofs, oprsz, c, g->fni4); |
| } else { |
| assert(g->fno != NULL); |
| tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs, |
| oprsz, maxsz, c, g->fno); |
| oprsz = maxsz; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_swap_vecop_list(hold_list); |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| /* |
| * Expand specific vector operations. |
| */ |
| |
| static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b) |
| { |
| tcg_gen_mov_vec(a, b); |
| } |
| |
| void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2 g = { |
| .fni8 = tcg_gen_mov_i64, |
| .fniv = vec_mov2, |
| .fno = gen_helper_gvec_mov, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| if (dofs != aofs) { |
| tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g); |
| } else { |
| check_size_align(oprsz, maxsz, dofs); |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| } |
| |
| void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz, |
| uint32_t maxsz, TCGv_i32 in) |
| { |
| check_size_align(oprsz, maxsz, dofs); |
| tcg_debug_assert(vece <= MO_32); |
| do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0); |
| } |
| |
| void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz, |
| uint32_t maxsz, TCGv_i64 in) |
| { |
| check_size_align(oprsz, maxsz, dofs); |
| tcg_debug_assert(vece <= MO_64); |
| do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0); |
| } |
| |
| void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t maxsz) |
| { |
| check_size_align(oprsz, maxsz, dofs); |
| if (vece <= MO_64) { |
| TCGType type = choose_vector_type(NULL, vece, oprsz, 0); |
| if (type != 0) { |
| TCGv_vec t_vec = tcg_temp_new_vec(type); |
| tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs); |
| do_dup_store(type, dofs, oprsz, maxsz, t_vec); |
| tcg_temp_free_vec(t_vec); |
| } else if (vece <= MO_32) { |
| TCGv_i32 in = tcg_temp_new_i32(); |
| switch (vece) { |
| case MO_8: |
| tcg_gen_ld8u_i32(in, cpu_env, aofs); |
| break; |
| case MO_16: |
| tcg_gen_ld16u_i32(in, cpu_env, aofs); |
| break; |
| default: |
| tcg_gen_ld_i32(in, cpu_env, aofs); |
| break; |
| } |
| do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0); |
| tcg_temp_free_i32(in); |
| } else { |
| TCGv_i64 in = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(in, cpu_env, aofs); |
| do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0); |
| tcg_temp_free_i64(in); |
| } |
| } else if (vece == 4) { |
| /* 128-bit duplicate. */ |
| int i; |
| |
| tcg_debug_assert(oprsz >= 16); |
| if (TCG_TARGET_HAS_v128) { |
| TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128); |
| |
| tcg_gen_ld_vec(in, cpu_env, aofs); |
| for (i = (aofs == dofs) * 16; i < oprsz; i += 16) { |
| tcg_gen_st_vec(in, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(in); |
| } else { |
| TCGv_i64 in0 = tcg_temp_new_i64(); |
| TCGv_i64 in1 = tcg_temp_new_i64(); |
| |
| tcg_gen_ld_i64(in0, cpu_env, aofs); |
| tcg_gen_ld_i64(in1, cpu_env, aofs + 8); |
| for (i = (aofs == dofs) * 16; i < oprsz; i += 16) { |
| tcg_gen_st_i64(in0, cpu_env, dofs + i); |
| tcg_gen_st_i64(in1, cpu_env, dofs + i + 8); |
| } |
| tcg_temp_free_i64(in0); |
| tcg_temp_free_i64(in1); |
| } |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } else if (vece == 5) { |
| /* 256-bit duplicate. */ |
| int i; |
| |
| tcg_debug_assert(oprsz >= 32); |
| tcg_debug_assert(oprsz % 32 == 0); |
| if (TCG_TARGET_HAS_v256) { |
| TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256); |
| |
| tcg_gen_ld_vec(in, cpu_env, aofs); |
| for (i = (aofs == dofs) * 32; i < oprsz; i += 32) { |
| tcg_gen_st_vec(in, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(in); |
| } else if (TCG_TARGET_HAS_v128) { |
| TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128); |
| TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128); |
| |
| tcg_gen_ld_vec(in0, cpu_env, aofs); |
| tcg_gen_ld_vec(in1, cpu_env, aofs + 16); |
| for (i = (aofs == dofs) * 32; i < oprsz; i += 32) { |
| tcg_gen_st_vec(in0, cpu_env, dofs + i); |
| tcg_gen_st_vec(in1, cpu_env, dofs + i + 16); |
| } |
| tcg_temp_free_vec(in0); |
| tcg_temp_free_vec(in1); |
| } else { |
| TCGv_i64 in[4]; |
| int j; |
| |
| for (j = 0; j < 4; ++j) { |
| in[j] = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(in[j], cpu_env, aofs + j * 8); |
| } |
| for (i = (aofs == dofs) * 32; i < oprsz; i += 32) { |
| for (j = 0; j < 4; ++j) { |
| tcg_gen_st_i64(in[j], cpu_env, dofs + i + j * 8); |
| } |
| } |
| for (j = 0; j < 4; ++j) { |
| tcg_temp_free_i64(in[j]); |
| } |
| } |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } else { |
| g_assert_not_reached(); |
| } |
| } |
| |
| void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz, |
| uint32_t maxsz, uint64_t x) |
| { |
| check_size_align(oprsz, maxsz, dofs); |
| do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x); |
| } |
| |
| void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2 g = { |
| .fni8 = tcg_gen_not_i64, |
| .fniv = tcg_gen_not_vec, |
| .fno = gen_helper_gvec_not, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g); |
| } |
| |
| /* Perform a vector addition using normal addition and a mask. The mask |
| should be the sign bit of each lane. This 6-operation form is more |
| efficient than separate additions when there are 4 or more lanes in |
| the 64-bit operation. */ |
| static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m) |
| { |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| TCGv_i64 t3 = tcg_temp_new_i64(); |
| |
| tcg_gen_andc_i64(t1, a, m); |
| tcg_gen_andc_i64(t2, b, m); |
| tcg_gen_xor_i64(t3, a, b); |
| tcg_gen_add_i64(d, t1, t2); |
| tcg_gen_and_i64(t3, t3, m); |
| tcg_gen_xor_i64(d, d, t3); |
| |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t2); |
| tcg_temp_free_i64(t3); |
| } |
| |
| void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80)); |
| gen_addv_mask(d, a, b, m); |
| } |
| |
| void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80)); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| TCGv_i32 t3 = tcg_temp_new_i32(); |
| |
| tcg_gen_andc_i32(t1, a, m); |
| tcg_gen_andc_i32(t2, b, m); |
| tcg_gen_xor_i32(t3, a, b); |
| tcg_gen_add_i32(d, t1, t2); |
| tcg_gen_and_i32(t3, t3, m); |
| tcg_gen_xor_i32(d, d, t3); |
| |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t2); |
| tcg_temp_free_i32(t3); |
| } |
| |
| void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000)); |
| gen_addv_mask(d, a, b, m); |
| } |
| |
| void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_i32(t1, a, ~0xffff); |
| tcg_gen_add_i32(t2, a, b); |
| tcg_gen_add_i32(t1, t1, b); |
| tcg_gen_deposit_i32(d, t1, t2, 0, 16); |
| |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t2); |
| } |
| |
| void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| |
| tcg_gen_andi_i64(t1, a, ~0xffffffffull); |
| tcg_gen_add_i64(t2, a, b); |
| tcg_gen_add_i64(t1, t1, b); |
| tcg_gen_deposit_i64(d, t1, t2, 0, 32); |
| |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t2); |
| } |
| |
| static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 }; |
| |
| void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g[4] = { |
| { .fni8 = tcg_gen_vec_add8_i64, |
| .fniv = tcg_gen_add_vec, |
| .fno = gen_helper_gvec_add8, |
| .opt_opc = vecop_list_add, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_add16_i64, |
| .fniv = tcg_gen_add_vec, |
| .fno = gen_helper_gvec_add16, |
| .opt_opc = vecop_list_add, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_add_i32, |
| .fniv = tcg_gen_add_vec, |
| .fno = gen_helper_gvec_add32, |
| .opt_opc = vecop_list_add, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_add_i64, |
| .fniv = tcg_gen_add_vec, |
| .fno = gen_helper_gvec_add64, |
| .opt_opc = vecop_list_add, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2s g[4] = { |
| { .fni8 = tcg_gen_vec_add8_i64, |
| .fniv = tcg_gen_add_vec, |
| .fno = gen_helper_gvec_adds8, |
| .opt_opc = vecop_list_add, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_add16_i64, |
| .fniv = tcg_gen_add_vec, |
| .fno = gen_helper_gvec_adds16, |
| .opt_opc = vecop_list_add, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_add_i32, |
| .fniv = tcg_gen_add_vec, |
| .fno = gen_helper_gvec_adds32, |
| .opt_opc = vecop_list_add, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_add_i64, |
| .fniv = tcg_gen_add_vec, |
| .fno = gen_helper_gvec_adds64, |
| .opt_opc = vecop_list_add, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t c, uint32_t oprsz, uint32_t maxsz) |
| { |
| TCGv_i64 tmp = tcg_constant_i64(c); |
| tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz); |
| } |
| |
| static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 }; |
| |
| void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2s g[4] = { |
| { .fni8 = tcg_gen_vec_sub8_i64, |
| .fniv = tcg_gen_sub_vec, |
| .fno = gen_helper_gvec_subs8, |
| .opt_opc = vecop_list_sub, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_sub16_i64, |
| .fniv = tcg_gen_sub_vec, |
| .fno = gen_helper_gvec_subs16, |
| .opt_opc = vecop_list_sub, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_sub_i32, |
| .fniv = tcg_gen_sub_vec, |
| .fno = gen_helper_gvec_subs32, |
| .opt_opc = vecop_list_sub, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_sub_i64, |
| .fniv = tcg_gen_sub_vec, |
| .fno = gen_helper_gvec_subs64, |
| .opt_opc = vecop_list_sub, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); |
| } |
| |
| /* Perform a vector subtraction using normal subtraction and a mask. |
| Compare gen_addv_mask above. */ |
| static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m) |
| { |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| TCGv_i64 t3 = tcg_temp_new_i64(); |
| |
| tcg_gen_or_i64(t1, a, m); |
| tcg_gen_andc_i64(t2, b, m); |
| tcg_gen_eqv_i64(t3, a, b); |
| tcg_gen_sub_i64(d, t1, t2); |
| tcg_gen_and_i64(t3, t3, m); |
| tcg_gen_xor_i64(d, d, t3); |
| |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t2); |
| tcg_temp_free_i64(t3); |
| } |
| |
| void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80)); |
| gen_subv_mask(d, a, b, m); |
| } |
| |
| void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80)); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| TCGv_i32 t3 = tcg_temp_new_i32(); |
| |
| tcg_gen_or_i32(t1, a, m); |
| tcg_gen_andc_i32(t2, b, m); |
| tcg_gen_eqv_i32(t3, a, b); |
| tcg_gen_sub_i32(d, t1, t2); |
| tcg_gen_and_i32(t3, t3, m); |
| tcg_gen_xor_i32(d, d, t3); |
| |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t2); |
| tcg_temp_free_i32(t3); |
| } |
| |
| void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000)); |
| gen_subv_mask(d, a, b, m); |
| } |
| |
| void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_i32(t1, b, ~0xffff); |
| tcg_gen_sub_i32(t2, a, b); |
| tcg_gen_sub_i32(t1, a, t1); |
| tcg_gen_deposit_i32(d, t1, t2, 0, 16); |
| |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t2); |
| } |
| |
| void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| |
| tcg_gen_andi_i64(t1, b, ~0xffffffffull); |
| tcg_gen_sub_i64(t2, a, b); |
| tcg_gen_sub_i64(t1, a, t1); |
| tcg_gen_deposit_i64(d, t1, t2, 0, 32); |
| |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t2); |
| } |
| |
| void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g[4] = { |
| { .fni8 = tcg_gen_vec_sub8_i64, |
| .fniv = tcg_gen_sub_vec, |
| .fno = gen_helper_gvec_sub8, |
| .opt_opc = vecop_list_sub, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_sub16_i64, |
| .fniv = tcg_gen_sub_vec, |
| .fno = gen_helper_gvec_sub16, |
| .opt_opc = vecop_list_sub, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_sub_i32, |
| .fniv = tcg_gen_sub_vec, |
| .fno = gen_helper_gvec_sub32, |
| .opt_opc = vecop_list_sub, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_sub_i64, |
| .fniv = tcg_gen_sub_vec, |
| .fno = gen_helper_gvec_sub64, |
| .opt_opc = vecop_list_sub, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 }; |
| |
| void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_mul_vec, |
| .fno = gen_helper_gvec_mul8, |
| .opt_opc = vecop_list_mul, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_mul_vec, |
| .fno = gen_helper_gvec_mul16, |
| .opt_opc = vecop_list_mul, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_mul_i32, |
| .fniv = tcg_gen_mul_vec, |
| .fno = gen_helper_gvec_mul32, |
| .opt_opc = vecop_list_mul, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_mul_i64, |
| .fniv = tcg_gen_mul_vec, |
| .fno = gen_helper_gvec_mul64, |
| .opt_opc = vecop_list_mul, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2s g[4] = { |
| { .fniv = tcg_gen_mul_vec, |
| .fno = gen_helper_gvec_muls8, |
| .opt_opc = vecop_list_mul, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_mul_vec, |
| .fno = gen_helper_gvec_muls16, |
| .opt_opc = vecop_list_mul, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_mul_i32, |
| .fniv = tcg_gen_mul_vec, |
| .fno = gen_helper_gvec_muls32, |
| .opt_opc = vecop_list_mul, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_mul_i64, |
| .fniv = tcg_gen_mul_vec, |
| .fno = gen_helper_gvec_muls64, |
| .opt_opc = vecop_list_mul, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t c, uint32_t oprsz, uint32_t maxsz) |
| { |
| TCGv_i64 tmp = tcg_constant_i64(c); |
| tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz); |
| } |
| |
| void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_ssadd_vec, |
| .fno = gen_helper_gvec_ssadd8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_ssadd_vec, |
| .fno = gen_helper_gvec_ssadd16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fniv = tcg_gen_ssadd_vec, |
| .fno = gen_helper_gvec_ssadd32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fniv = tcg_gen_ssadd_vec, |
| .fno = gen_helper_gvec_ssadd64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_sssub_vec, |
| .fno = gen_helper_gvec_sssub8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_sssub_vec, |
| .fno = gen_helper_gvec_sssub16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fniv = tcg_gen_sssub_vec, |
| .fno = gen_helper_gvec_sssub32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fniv = tcg_gen_sssub_vec, |
| .fno = gen_helper_gvec_sssub64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 }, |
| }; |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 max = tcg_constant_i32(-1); |
| tcg_gen_add_i32(d, a, b); |
| tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d); |
| } |
| |
| static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 max = tcg_constant_i64(-1); |
| tcg_gen_add_i64(d, a, b); |
| tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d); |
| } |
| |
| void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_usadd_vec, |
| .fno = gen_helper_gvec_usadd8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_usadd_vec, |
| .fno = gen_helper_gvec_usadd16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_usadd_i32, |
| .fniv = tcg_gen_usadd_vec, |
| .fno = gen_helper_gvec_usadd32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_usadd_i64, |
| .fniv = tcg_gen_usadd_vec, |
| .fno = gen_helper_gvec_usadd64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 } |
| }; |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 min = tcg_constant_i32(0); |
| tcg_gen_sub_i32(d, a, b); |
| tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d); |
| } |
| |
| static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 min = tcg_constant_i64(0); |
| tcg_gen_sub_i64(d, a, b); |
| tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d); |
| } |
| |
| void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_ussub_vec, |
| .fno = gen_helper_gvec_ussub8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_ussub_vec, |
| .fno = gen_helper_gvec_ussub16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_ussub_i32, |
| .fniv = tcg_gen_ussub_vec, |
| .fno = gen_helper_gvec_ussub32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_ussub_i64, |
| .fniv = tcg_gen_ussub_vec, |
| .fno = gen_helper_gvec_ussub64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 } |
| }; |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_smin_vec, |
| .fno = gen_helper_gvec_smin8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_smin_vec, |
| .fno = gen_helper_gvec_smin16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_smin_i32, |
| .fniv = tcg_gen_smin_vec, |
| .fno = gen_helper_gvec_smin32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_smin_i64, |
| .fniv = tcg_gen_smin_vec, |
| .fno = gen_helper_gvec_smin64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 } |
| }; |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_umin_vec, |
| .fno = gen_helper_gvec_umin8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_umin_vec, |
| .fno = gen_helper_gvec_umin16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_umin_i32, |
| .fniv = tcg_gen_umin_vec, |
| .fno = gen_helper_gvec_umin32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_umin_i64, |
| .fniv = tcg_gen_umin_vec, |
| .fno = gen_helper_gvec_umin64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 } |
| }; |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_smax_vec, |
| .fno = gen_helper_gvec_smax8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_smax_vec, |
| .fno = gen_helper_gvec_smax16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_smax_i32, |
| .fniv = tcg_gen_smax_vec, |
| .fno = gen_helper_gvec_smax32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_smax_i64, |
| .fniv = tcg_gen_smax_vec, |
| .fno = gen_helper_gvec_smax64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 } |
| }; |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_umax_vec, |
| .fno = gen_helper_gvec_umax8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_umax_vec, |
| .fno = gen_helper_gvec_umax16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_umax_i32, |
| .fniv = tcg_gen_umax_vec, |
| .fno = gen_helper_gvec_umax32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_umax_i64, |
| .fniv = tcg_gen_umax_vec, |
| .fno = gen_helper_gvec_umax64, |
| .opt_opc = vecop_list, |
| .vece = MO_64 } |
| }; |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| /* Perform a vector negation using normal negation and a mask. |
| Compare gen_subv_mask above. */ |
| static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m) |
| { |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| TCGv_i64 t3 = tcg_temp_new_i64(); |
| |
| tcg_gen_andc_i64(t3, m, b); |
| tcg_gen_andc_i64(t2, b, m); |
| tcg_gen_sub_i64(d, m, t2); |
| tcg_gen_xor_i64(d, d, t3); |
| |
| tcg_temp_free_i64(t2); |
| tcg_temp_free_i64(t3); |
| } |
| |
| void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b) |
| { |
| TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80)); |
| gen_negv_mask(d, b, m); |
| } |
| |
| void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b) |
| { |
| TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000)); |
| gen_negv_mask(d, b, m); |
| } |
| |
| void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b) |
| { |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| |
| tcg_gen_andi_i64(t1, b, ~0xffffffffull); |
| tcg_gen_neg_i64(t2, b); |
| tcg_gen_neg_i64(t1, t1); |
| tcg_gen_deposit_i64(d, t1, t2, 0, 32); |
| |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t2); |
| } |
| |
| void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 }; |
| static const GVecGen2 g[4] = { |
| { .fni8 = tcg_gen_vec_neg8_i64, |
| .fniv = tcg_gen_neg_vec, |
| .fno = gen_helper_gvec_neg8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_neg16_i64, |
| .fniv = tcg_gen_neg_vec, |
| .fno = gen_helper_gvec_neg16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_neg_i32, |
| .fniv = tcg_gen_neg_vec, |
| .fno = gen_helper_gvec_neg32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_neg_i64, |
| .fniv = tcg_gen_neg_vec, |
| .fno = gen_helper_gvec_neg64, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| int nbit = 8 << vece; |
| |
| /* Create -1 for each negative element. */ |
| tcg_gen_shri_i64(t, b, nbit - 1); |
| tcg_gen_andi_i64(t, t, dup_const(vece, 1)); |
| tcg_gen_muli_i64(t, t, (1 << nbit) - 1); |
| |
| /* |
| * Invert (via xor -1) and add one. |
| * Because of the ordering the msb is cleared, |
| * so we never have carry into the next element. |
| */ |
| tcg_gen_xor_i64(d, b, t); |
| tcg_gen_andi_i64(t, t, dup_const(vece, 1)); |
| tcg_gen_add_i64(d, d, t); |
| |
| tcg_temp_free_i64(t); |
| } |
| |
| static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b) |
| { |
| gen_absv_mask(d, b, MO_8); |
| } |
| |
| static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b) |
| { |
| gen_absv_mask(d, b, MO_16); |
| } |
| |
| void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 }; |
| static const GVecGen2 g[4] = { |
| { .fni8 = tcg_gen_vec_abs8_i64, |
| .fniv = tcg_gen_abs_vec, |
| .fno = gen_helper_gvec_abs8, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_abs16_i64, |
| .fniv = tcg_gen_abs_vec, |
| .fno = gen_helper_gvec_abs16, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_abs_i32, |
| .fniv = tcg_gen_abs_vec, |
| .fno = gen_helper_gvec_abs32, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_abs_i64, |
| .fniv = tcg_gen_abs_vec, |
| .fno = gen_helper_gvec_abs64, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g = { |
| .fni8 = tcg_gen_and_i64, |
| .fniv = tcg_gen_and_vec, |
| .fno = gen_helper_gvec_and, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| |
| if (aofs == bofs) { |
| tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); |
| } |
| } |
| |
| void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g = { |
| .fni8 = tcg_gen_or_i64, |
| .fniv = tcg_gen_or_vec, |
| .fno = gen_helper_gvec_or, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| |
| if (aofs == bofs) { |
| tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); |
| } |
| } |
| |
| void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g = { |
| .fni8 = tcg_gen_xor_i64, |
| .fniv = tcg_gen_xor_vec, |
| .fno = gen_helper_gvec_xor, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| |
| if (aofs == bofs) { |
| tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0); |
| } else { |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); |
| } |
| } |
| |
| void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g = { |
| .fni8 = tcg_gen_andc_i64, |
| .fniv = tcg_gen_andc_vec, |
| .fno = gen_helper_gvec_andc, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| |
| if (aofs == bofs) { |
| tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0); |
| } else { |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); |
| } |
| } |
| |
| void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g = { |
| .fni8 = tcg_gen_orc_i64, |
| .fniv = tcg_gen_orc_vec, |
| .fno = gen_helper_gvec_orc, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| |
| if (aofs == bofs) { |
| tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1); |
| } else { |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); |
| } |
| } |
| |
| void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g = { |
| .fni8 = tcg_gen_nand_i64, |
| .fniv = tcg_gen_nand_vec, |
| .fno = gen_helper_gvec_nand, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| |
| if (aofs == bofs) { |
| tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); |
| } |
| } |
| |
| void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g = { |
| .fni8 = tcg_gen_nor_i64, |
| .fniv = tcg_gen_nor_vec, |
| .fno = gen_helper_gvec_nor, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| |
| if (aofs == bofs) { |
| tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); |
| } |
| } |
| |
| void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen3 g = { |
| .fni8 = tcg_gen_eqv_i64, |
| .fniv = tcg_gen_eqv_vec, |
| .fno = gen_helper_gvec_eqv, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| }; |
| |
| if (aofs == bofs) { |
| tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1); |
| } else { |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); |
| } |
| } |
| |
| static const GVecGen2s gop_ands = { |
| .fni8 = tcg_gen_and_i64, |
| .fniv = tcg_gen_and_vec, |
| .fno = gen_helper_gvec_ands, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 |
| }; |
| |
| void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) |
| { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_dup_i64(vece, tmp, c); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t c, uint32_t oprsz, uint32_t maxsz) |
| { |
| TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c)); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands); |
| } |
| |
| static const GVecGen2s gop_xors = { |
| .fni8 = tcg_gen_xor_i64, |
| .fniv = tcg_gen_xor_vec, |
| .fno = gen_helper_gvec_xors, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 |
| }; |
| |
| void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) |
| { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_dup_i64(vece, tmp, c); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t c, uint32_t oprsz, uint32_t maxsz) |
| { |
| TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c)); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors); |
| } |
| |
| static const GVecGen2s gop_ors = { |
| .fni8 = tcg_gen_or_i64, |
| .fniv = tcg_gen_or_vec, |
| .fno = gen_helper_gvec_ors, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 |
| }; |
| |
| void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) |
| { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_dup_i64(vece, tmp, c); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t c, uint32_t oprsz, uint32_t maxsz) |
| { |
| TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c)); |
| tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors); |
| } |
| |
| void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff << c); |
| tcg_gen_shli_i64(d, a, c); |
| tcg_gen_andi_i64(d, d, mask); |
| } |
| |
| void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff << c); |
| tcg_gen_shli_i64(d, a, c); |
| tcg_gen_andi_i64(d, d, mask); |
| } |
| |
| void tcg_gen_vec_shl8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) |
| { |
| uint32_t mask = dup_const(MO_8, 0xff << c); |
| tcg_gen_shli_i32(d, a, c); |
| tcg_gen_andi_i32(d, d, mask); |
| } |
| |
| void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) |
| { |
| uint32_t mask = dup_const(MO_16, 0xffff << c); |
| tcg_gen_shli_i32(d, a, c); |
| tcg_gen_andi_i32(d, d, mask); |
| } |
| |
| void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; |
| static const GVecGen2i g[4] = { |
| { .fni8 = tcg_gen_vec_shl8i_i64, |
| .fniv = tcg_gen_shli_vec, |
| .fno = gen_helper_gvec_shl8i, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_shl16i_i64, |
| .fniv = tcg_gen_shli_vec, |
| .fno = gen_helper_gvec_shl16i, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_shli_i32, |
| .fniv = tcg_gen_shli_vec, |
| .fno = gen_helper_gvec_shl32i, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_shli_i64, |
| .fniv = tcg_gen_shli_vec, |
| .fno = gen_helper_gvec_shl64i, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_debug_assert(shift >= 0 && shift < (8 << vece)); |
| if (shift == 0) { |
| tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); |
| } |
| } |
| |
| void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff >> c); |
| tcg_gen_shri_i64(d, a, c); |
| tcg_gen_andi_i64(d, d, mask); |
| } |
| |
| void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff >> c); |
| tcg_gen_shri_i64(d, a, c); |
| tcg_gen_andi_i64(d, d, mask); |
| } |
| |
| void tcg_gen_vec_shr8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) |
| { |
| uint32_t mask = dup_const(MO_8, 0xff >> c); |
| tcg_gen_shri_i32(d, a, c); |
| tcg_gen_andi_i32(d, d, mask); |
| } |
| |
| void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) |
| { |
| uint32_t mask = dup_const(MO_16, 0xffff >> c); |
| tcg_gen_shri_i32(d, a, c); |
| tcg_gen_andi_i32(d, d, mask); |
| } |
| |
| void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 }; |
| static const GVecGen2i g[4] = { |
| { .fni8 = tcg_gen_vec_shr8i_i64, |
| .fniv = tcg_gen_shri_vec, |
| .fno = gen_helper_gvec_shr8i, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_shr16i_i64, |
| .fniv = tcg_gen_shri_vec, |
| .fno = gen_helper_gvec_shr16i, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_shri_i32, |
| .fniv = tcg_gen_shri_vec, |
| .fno = gen_helper_gvec_shr32i, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_shri_i64, |
| .fniv = tcg_gen_shri_vec, |
| .fno = gen_helper_gvec_shr64i, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_debug_assert(shift >= 0 && shift < (8 << vece)); |
| if (shift == 0) { |
| tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); |
| } |
| } |
| |
| void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) |
| { |
| uint64_t s_mask = dup_const(MO_8, 0x80 >> c); |
| uint64_t c_mask = dup_const(MO_8, 0xff >> c); |
| TCGv_i64 s = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(d, a, c); |
| tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */ |
| tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */ |
| tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */ |
| tcg_gen_or_i64(d, d, s); /* include sign extension */ |
| tcg_temp_free_i64(s); |
| } |
| |
| void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) |
| { |
| uint64_t s_mask = dup_const(MO_16, 0x8000 >> c); |
| uint64_t c_mask = dup_const(MO_16, 0xffff >> c); |
| TCGv_i64 s = tcg_temp_new_i64(); |
| |
| tcg_gen_shri_i64(d, a, c); |
| tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */ |
| tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */ |
| tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */ |
| tcg_gen_or_i64(d, d, s); /* include sign extension */ |
| tcg_temp_free_i64(s); |
| } |
| |
| void tcg_gen_vec_sar8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) |
| { |
| uint32_t s_mask = dup_const(MO_8, 0x80 >> c); |
| uint32_t c_mask = dup_const(MO_8, 0xff >> c); |
| TCGv_i32 s = tcg_temp_new_i32(); |
| |
| tcg_gen_shri_i32(d, a, c); |
| tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */ |
| tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */ |
| tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */ |
| tcg_gen_or_i32(d, d, s); /* include sign extension */ |
| tcg_temp_free_i32(s); |
| } |
| |
| void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) |
| { |
| uint32_t s_mask = dup_const(MO_16, 0x8000 >> c); |
| uint32_t c_mask = dup_const(MO_16, 0xffff >> c); |
| TCGv_i32 s = tcg_temp_new_i32(); |
| |
| tcg_gen_shri_i32(d, a, c); |
| tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */ |
| tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */ |
| tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */ |
| tcg_gen_or_i32(d, d, s); /* include sign extension */ |
| tcg_temp_free_i32(s); |
| } |
| |
| void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 }; |
| static const GVecGen2i g[4] = { |
| { .fni8 = tcg_gen_vec_sar8i_i64, |
| .fniv = tcg_gen_sari_vec, |
| .fno = gen_helper_gvec_sar8i, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_sar16i_i64, |
| .fniv = tcg_gen_sari_vec, |
| .fno = gen_helper_gvec_sar16i, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_sari_i32, |
| .fniv = tcg_gen_sari_vec, |
| .fno = gen_helper_gvec_sar32i, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_sari_i64, |
| .fniv = tcg_gen_sari_vec, |
| .fno = gen_helper_gvec_sar64i, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_debug_assert(shift >= 0 && shift < (8 << vece)); |
| if (shift == 0) { |
| tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); |
| } |
| } |
| |
| void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) |
| { |
| uint64_t mask = dup_const(MO_8, 0xff << c); |
| |
| tcg_gen_shli_i64(d, a, c); |
| tcg_gen_shri_i64(a, a, 8 - c); |
| tcg_gen_andi_i64(d, d, mask); |
| tcg_gen_andi_i64(a, a, ~mask); |
| tcg_gen_or_i64(d, d, a); |
| } |
| |
| void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) |
| { |
| uint64_t mask = dup_const(MO_16, 0xffff << c); |
| |
| tcg_gen_shli_i64(d, a, c); |
| tcg_gen_shri_i64(a, a, 16 - c); |
| tcg_gen_andi_i64(d, d, mask); |
| tcg_gen_andi_i64(a, a, ~mask); |
| tcg_gen_or_i64(d, d, a); |
| } |
| |
| void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; |
| static const GVecGen2i g[4] = { |
| { .fni8 = tcg_gen_vec_rotl8i_i64, |
| .fniv = tcg_gen_rotli_vec, |
| .fno = gen_helper_gvec_rotl8i, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fni8 = tcg_gen_vec_rotl16i_i64, |
| .fniv = tcg_gen_rotli_vec, |
| .fno = gen_helper_gvec_rotl16i, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_rotli_i32, |
| .fniv = tcg_gen_rotli_vec, |
| .fno = gen_helper_gvec_rotl32i, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_rotli_i64, |
| .fniv = tcg_gen_rotli_vec, |
| .fno = gen_helper_gvec_rotl64i, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_debug_assert(shift >= 0 && shift < (8 << vece)); |
| if (shift == 0) { |
| tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); |
| } else { |
| tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); |
| } |
| } |
| |
| void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs, |
| int64_t shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| tcg_debug_assert(vece <= MO_64); |
| tcg_debug_assert(shift >= 0 && shift < (8 << vece)); |
| tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1), |
| oprsz, maxsz); |
| } |
| |
| /* |
| * Specialized generation vector shifts by a non-constant scalar. |
| */ |
| |
| typedef struct { |
| void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32); |
| void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64); |
| void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32); |
| void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec); |
| gen_helper_gvec_2 *fno[4]; |
| TCGOpcode s_list[2]; |
| TCGOpcode v_list[2]; |
| } GVecGen2sh; |
| |
| static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t oprsz, uint32_t tysz, TCGType type, |
| TCGv_i32 shift, |
| void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32)) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t0, cpu_env, aofs + i); |
| fni(vece, t0, t0, shift); |
| tcg_gen_st_vec(t0, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(t0); |
| } |
| |
| static void |
| do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift, |
| uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g) |
| { |
| TCGType type; |
| uint32_t some; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs); |
| check_overlap_2(dofs, aofs, maxsz); |
| |
| /* If the backend has a scalar expansion, great. */ |
| type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64); |
| if (type) { |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL); |
| switch (type) { |
| case TCG_TYPE_V256: |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_2sh_vec(vece, dofs, aofs, some, 32, |
| TCG_TYPE_V256, shift, g->fniv_s); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_2sh_vec(vece, dofs, aofs, oprsz, 16, |
| TCG_TYPE_V128, shift, g->fniv_s); |
| break; |
| case TCG_TYPE_V64: |
| expand_2sh_vec(vece, dofs, aofs, oprsz, 8, |
| TCG_TYPE_V64, shift, g->fniv_s); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_swap_vecop_list(hold_list); |
| goto clear_tail; |
| } |
| |
| /* If the backend supports variable vector shifts, also cool. */ |
| type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64); |
| if (type) { |
| const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL); |
| TCGv_vec v_shift = tcg_temp_new_vec(type); |
| |
| if (vece == MO_64) { |
| TCGv_i64 sh64 = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(sh64, shift); |
| tcg_gen_dup_i64_vec(MO_64, v_shift, sh64); |
| tcg_temp_free_i64(sh64); |
| } else { |
| tcg_gen_dup_i32_vec(vece, v_shift, shift); |
| } |
| |
| switch (type) { |
| case TCG_TYPE_V256: |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256, |
| v_shift, false, g->fniv_v); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, |
| v_shift, false, g->fniv_v); |
| break; |
| case TCG_TYPE_V64: |
| expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, |
| v_shift, false, g->fniv_v); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_temp_free_vec(v_shift); |
| tcg_swap_vecop_list(hold_list); |
| goto clear_tail; |
| } |
| |
| /* Otherwise fall back to integral... */ |
| if (vece == MO_32 && check_size_impl(oprsz, 4)) { |
| expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4); |
| } else if (vece == MO_64 && check_size_impl(oprsz, 8)) { |
| TCGv_i64 sh64 = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(sh64, shift); |
| expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8); |
| tcg_temp_free_i64(sh64); |
| } else { |
| TCGv_ptr a0 = tcg_temp_new_ptr(); |
| TCGv_ptr a1 = tcg_temp_new_ptr(); |
| TCGv_i32 desc = tcg_temp_new_i32(); |
| |
| tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT); |
| tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0)); |
| tcg_gen_addi_ptr(a0, cpu_env, dofs); |
| tcg_gen_addi_ptr(a1, cpu_env, aofs); |
| |
| g->fno[vece](a0, a1, desc); |
| |
| tcg_temp_free_ptr(a0); |
| tcg_temp_free_ptr(a1); |
| tcg_temp_free_i32(desc); |
| return; |
| } |
| |
| clear_tail: |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2sh g = { |
| .fni4 = tcg_gen_shl_i32, |
| .fni8 = tcg_gen_shl_i64, |
| .fniv_s = tcg_gen_shls_vec, |
| .fniv_v = tcg_gen_shlv_vec, |
| .fno = { |
| gen_helper_gvec_shl8i, |
| gen_helper_gvec_shl16i, |
| gen_helper_gvec_shl32i, |
| gen_helper_gvec_shl64i, |
| }, |
| .s_list = { INDEX_op_shls_vec, 0 }, |
| .v_list = { INDEX_op_shlv_vec, 0 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); |
| } |
| |
| void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2sh g = { |
| .fni4 = tcg_gen_shr_i32, |
| .fni8 = tcg_gen_shr_i64, |
| .fniv_s = tcg_gen_shrs_vec, |
| .fniv_v = tcg_gen_shrv_vec, |
| .fno = { |
| gen_helper_gvec_shr8i, |
| gen_helper_gvec_shr16i, |
| gen_helper_gvec_shr32i, |
| gen_helper_gvec_shr64i, |
| }, |
| .s_list = { INDEX_op_shrs_vec, 0 }, |
| .v_list = { INDEX_op_shrv_vec, 0 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); |
| } |
| |
| void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2sh g = { |
| .fni4 = tcg_gen_sar_i32, |
| .fni8 = tcg_gen_sar_i64, |
| .fniv_s = tcg_gen_sars_vec, |
| .fniv_v = tcg_gen_sarv_vec, |
| .fno = { |
| gen_helper_gvec_sar8i, |
| gen_helper_gvec_sar16i, |
| gen_helper_gvec_sar32i, |
| gen_helper_gvec_sar64i, |
| }, |
| .s_list = { INDEX_op_sars_vec, 0 }, |
| .v_list = { INDEX_op_sarv_vec, 0 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); |
| } |
| |
| void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs, |
| TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen2sh g = { |
| .fni4 = tcg_gen_rotl_i32, |
| .fni8 = tcg_gen_rotl_i64, |
| .fniv_s = tcg_gen_rotls_vec, |
| .fniv_v = tcg_gen_rotlv_vec, |
| .fno = { |
| gen_helper_gvec_rotl8i, |
| gen_helper_gvec_rotl16i, |
| gen_helper_gvec_rotl32i, |
| gen_helper_gvec_rotl64i, |
| }, |
| .s_list = { INDEX_op_rotls_vec, 0 }, |
| .v_list = { INDEX_op_rotlv_vec, 0 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); |
| } |
| |
| /* |
| * Expand D = A << (B % element bits) |
| * |
| * Unlike scalar shifts, where it is easy for the target front end |
| * to include the modulo as part of the expansion. If the target |
| * naturally includes the modulo as part of the operation, great! |
| * If the target has some other behaviour from out-of-range shifts, |
| * then it could not use this function anyway, and would need to |
| * do it's own expansion with custom functions. |
| */ |
| static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); |
| |
| tcg_gen_and_vec(vece, t, b, m); |
| tcg_gen_shlv_vec(vece, d, a, t); |
| tcg_temp_free_vec(t); |
| } |
| |
| static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_i32(t, b, 31); |
| tcg_gen_shl_i32(d, a, t); |
| tcg_temp_free_i32(t); |
| } |
| |
| static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_andi_i64(t, b, 63); |
| tcg_gen_shl_i64(d, a, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_shlv_mod_vec, |
| .fno = gen_helper_gvec_shl8v, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_shlv_mod_vec, |
| .fno = gen_helper_gvec_shl16v, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_shl_mod_i32, |
| .fniv = tcg_gen_shlv_mod_vec, |
| .fno = gen_helper_gvec_shl32v, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_shl_mod_i64, |
| .fniv = tcg_gen_shlv_mod_vec, |
| .fno = gen_helper_gvec_shl64v, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| /* |
| * Similarly for logical right shifts. |
| */ |
| |
| static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); |
| |
| tcg_gen_and_vec(vece, t, b, m); |
| tcg_gen_shrv_vec(vece, d, a, t); |
| tcg_temp_free_vec(t); |
| } |
| |
| static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_i32(t, b, 31); |
| tcg_gen_shr_i32(d, a, t); |
| tcg_temp_free_i32(t); |
| } |
| |
| static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_andi_i64(t, b, 63); |
| tcg_gen_shr_i64(d, a, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_shrv_mod_vec, |
| .fno = gen_helper_gvec_shr8v, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_shrv_mod_vec, |
| .fno = gen_helper_gvec_shr16v, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_shr_mod_i32, |
| .fniv = tcg_gen_shrv_mod_vec, |
| .fno = gen_helper_gvec_shr32v, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_shr_mod_i64, |
| .fniv = tcg_gen_shrv_mod_vec, |
| .fno = gen_helper_gvec_shr64v, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| /* |
| * Similarly for arithmetic right shifts. |
| */ |
| |
| static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); |
| |
| tcg_gen_and_vec(vece, t, b, m); |
| tcg_gen_sarv_vec(vece, d, a, t); |
| tcg_temp_free_vec(t); |
| } |
| |
| static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_i32(t, b, 31); |
| tcg_gen_sar_i32(d, a, t); |
| tcg_temp_free_i32(t); |
| } |
| |
| static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_andi_i64(t, b, 63); |
| tcg_gen_sar_i64(d, a, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_sarv_mod_vec, |
| .fno = gen_helper_gvec_sar8v, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_sarv_mod_vec, |
| .fno = gen_helper_gvec_sar16v, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_sar_mod_i32, |
| .fniv = tcg_gen_sarv_mod_vec, |
| .fno = gen_helper_gvec_sar32v, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_sar_mod_i64, |
| .fniv = tcg_gen_sarv_mod_vec, |
| .fno = gen_helper_gvec_sar64v, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| /* |
| * Similarly for rotates. |
| */ |
| |
| static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); |
| |
| tcg_gen_and_vec(vece, t, b, m); |
| tcg_gen_rotlv_vec(vece, d, a, t); |
| tcg_temp_free_vec(t); |
| } |
| |
| static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_i32(t, b, 31); |
| tcg_gen_rotl_i32(d, a, t); |
| tcg_temp_free_i32(t); |
| } |
| |
| static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_andi_i64(t, b, 63); |
| tcg_gen_rotl_i64(d, a, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_rotlv_mod_vec, |
| .fno = gen_helper_gvec_rotl8v, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_rotlv_mod_vec, |
| .fno = gen_helper_gvec_rotl16v, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_rotl_mod_i32, |
| .fniv = tcg_gen_rotlv_mod_vec, |
| .fno = gen_helper_gvec_rotl32v, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_rotl_mod_i64, |
| .fniv = tcg_gen_rotlv_mod_vec, |
| .fno = gen_helper_gvec_rotl64v, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d, |
| TCGv_vec a, TCGv_vec b) |
| { |
| TCGv_vec t = tcg_temp_new_vec_matching(d); |
| TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); |
| |
| tcg_gen_and_vec(vece, t, b, m); |
| tcg_gen_rotrv_vec(vece, d, a, t); |
| tcg_temp_free_vec(t); |
| } |
| |
| static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) |
| { |
| TCGv_i32 t = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_i32(t, b, 31); |
| tcg_gen_rotr_i32(d, a, t); |
| tcg_temp_free_i32(t); |
| } |
| |
| static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_andi_i64(t, b, 63); |
| tcg_gen_rotr_i64(d, a, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 }; |
| static const GVecGen3 g[4] = { |
| { .fniv = tcg_gen_rotrv_mod_vec, |
| .fno = gen_helper_gvec_rotr8v, |
| .opt_opc = vecop_list, |
| .vece = MO_8 }, |
| { .fniv = tcg_gen_rotrv_mod_vec, |
| .fno = gen_helper_gvec_rotr16v, |
| .opt_opc = vecop_list, |
| .vece = MO_16 }, |
| { .fni4 = tcg_gen_rotr_mod_i32, |
| .fniv = tcg_gen_rotrv_mod_vec, |
| .fno = gen_helper_gvec_rotr32v, |
| .opt_opc = vecop_list, |
| .vece = MO_32 }, |
| { .fni8 = tcg_gen_rotr_mod_i64, |
| .fniv = tcg_gen_rotrv_mod_vec, |
| .fno = gen_helper_gvec_rotr64v, |
| .opt_opc = vecop_list, |
| .prefer_i64 = TCG_TARGET_REG_BITS == 64, |
| .vece = MO_64 }, |
| }; |
| |
| tcg_debug_assert(vece <= MO_64); |
| tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); |
| } |
| |
| /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ |
| static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t oprsz, TCGCond cond) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 4) { |
| tcg_gen_ld_i32(t0, cpu_env, aofs + i); |
| tcg_gen_ld_i32(t1, cpu_env, bofs + i); |
| tcg_gen_setcond_i32(cond, t0, t0, t1); |
| tcg_gen_neg_i32(t0, t0); |
| tcg_gen_st_i32(t0, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t0); |
| } |
| |
| static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, |
| uint32_t oprsz, TCGCond cond) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += 8) { |
| tcg_gen_ld_i64(t0, cpu_env, aofs + i); |
| tcg_gen_ld_i64(t1, cpu_env, bofs + i); |
| tcg_gen_setcond_i64(cond, t0, t0, t1); |
| tcg_gen_neg_i64(t0, t0); |
| tcg_gen_st_i64(t0, cpu_env, dofs + i); |
| } |
| tcg_temp_free_i64(t1); |
| tcg_temp_free_i64(t0); |
| } |
| |
| static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t oprsz, uint32_t tysz, |
| TCGType type, TCGCond cond) |
| { |
| TCGv_vec t0 = tcg_temp_new_vec(type); |
| TCGv_vec t1 = tcg_temp_new_vec(type); |
| uint32_t i; |
| |
| for (i = 0; i < oprsz; i += tysz) { |
| tcg_gen_ld_vec(t0, cpu_env, aofs + i); |
| tcg_gen_ld_vec(t1, cpu_env, bofs + i); |
| tcg_gen_cmp_vec(cond, vece, t0, t0, t1); |
| tcg_gen_st_vec(t0, cpu_env, dofs + i); |
| } |
| tcg_temp_free_vec(t1); |
| tcg_temp_free_vec(t0); |
| } |
| |
| void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs, |
| uint32_t aofs, uint32_t bofs, |
| uint32_t oprsz, uint32_t maxsz) |
| { |
| static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 }; |
| static gen_helper_gvec_3 * const eq_fn[4] = { |
| gen_helper_gvec_eq8, gen_helper_gvec_eq16, |
| gen_helper_gvec_eq32, gen_helper_gvec_eq64 |
| }; |
| static gen_helper_gvec_3 * const ne_fn[4] = { |
| gen_helper_gvec_ne8, gen_helper_gvec_ne16, |
| gen_helper_gvec_ne32, gen_helper_gvec_ne64 |
| }; |
| static gen_helper_gvec_3 * const lt_fn[4] = { |
| gen_helper_gvec_lt8, gen_helper_gvec_lt16, |
| gen_helper_gvec_lt32, gen_helper_gvec_lt64 |
| }; |
| static gen_helper_gvec_3 * const le_fn[4] = { |
| gen_helper_gvec_le8, gen_helper_gvec_le16, |
| gen_helper_gvec_le32, gen_helper_gvec_le64 |
| }; |
| static gen_helper_gvec_3 * const ltu_fn[4] = { |
| gen_helper_gvec_ltu8, gen_helper_gvec_ltu16, |
| gen_helper_gvec_ltu32, gen_helper_gvec_ltu64 |
| }; |
| static gen_helper_gvec_3 * const leu_fn[4] = { |
| gen_helper_gvec_leu8, gen_helper_gvec_leu16, |
| gen_helper_gvec_leu32, gen_helper_gvec_leu64 |
| }; |
| static gen_helper_gvec_3 * const * const fns[16] = { |
| [TCG_COND_EQ] = eq_fn, |
| [TCG_COND_NE] = ne_fn, |
| [TCG_COND_LT] = lt_fn, |
| [TCG_COND_LE] = le_fn, |
| [TCG_COND_LTU] = ltu_fn, |
| [TCG_COND_LEU] = leu_fn, |
| }; |
| |
| const TCGOpcode *hold_list; |
| TCGType type; |
| uint32_t some; |
| |
| check_size_align(oprsz, maxsz, dofs | aofs | bofs); |
| check_overlap_3(dofs, aofs, bofs, maxsz); |
| |
| if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) { |
| do_dup(MO_8, dofs, oprsz, maxsz, |
| NULL, NULL, -(cond == TCG_COND_ALWAYS)); |
| return; |
| } |
| |
| /* |
| * Implement inline with a vector type, if possible. |
| * Prefer integer when 64-bit host and 64-bit comparison. |
| */ |
| hold_list = tcg_swap_vecop_list(cmp_list); |
| type = choose_vector_type(cmp_list, vece, oprsz, |
| TCG_TARGET_REG_BITS == 64 && vece == MO_64); |
| switch (type) { |
| case TCG_TYPE_V256: |
| /* Recall that ARM SVE allows vector sizes that are not a |
| * power of 2, but always a multiple of 16. The intent is |
| * that e.g. size == 80 would be expanded with 2x32 + 1x16. |
| */ |
| some = QEMU_ALIGN_DOWN(oprsz, 32); |
| expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond); |
| if (some == oprsz) { |
| break; |
| } |
| dofs += some; |
| aofs += some; |
| bofs += some; |
| oprsz -= some; |
| maxsz -= some; |
| /* fallthru */ |
| case TCG_TYPE_V128: |
| expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond); |
| break; |
| case TCG_TYPE_V64: |
| expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond); |
| break; |
| |
| case 0: |
| if (vece == MO_64 && check_size_impl(oprsz, 8)) { |
| expand_cmp_i64(dofs, aofs, bofs, oprsz, cond); |
| } else if (vece == MO_32 && check_size_impl(oprsz, 4)) { |
| expand_cmp_i32(dofs, aofs, bofs, oprsz, cond); |
| } else { |
| gen_helper_gvec_3 * const *fn = fns[cond]; |
| |
| if (fn == NULL) { |
| uint32_t tmp; |
| tmp = aofs, aofs = bofs, bofs = tmp; |
| cond = tcg_swap_cond(cond); |
| fn = fns[cond]; |
| assert(fn != NULL); |
| } |
| tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]); |
| oprsz = maxsz; |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_swap_vecop_list(hold_list); |
| |
| if (oprsz < maxsz) { |
| expand_clr(dofs + oprsz, maxsz - oprsz); |
| } |
| } |
| |
| static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c) |
| { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_and_i64(t, b, a); |
| tcg_gen_andc_i64(d, c, a); |
| tcg_gen_or_i64(d, d, t); |
| tcg_temp_free_i64(t); |
| } |
| |
| void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs, |
| uint32_t bofs, uint32_t cofs, |
| uint32_t oprsz, uint32_t maxsz) |
| { |
| static const GVecGen4 g = { |
| .fni8 = tcg_gen_bitsel_i64, |
| .fniv = tcg_gen_bitsel_vec, |
| .fno = gen_helper_gvec_bitsel, |
| }; |
| |
| tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g); |
| } |