| /* |
| * Semihosting support for systems modeled on the Arm "Angel" |
| * semihosting syscalls design. This includes Arm and RISC-V processors |
| * |
| * Copyright (c) 2005, 2007 CodeSourcery. |
| * Copyright (c) 2019 Linaro |
| * Written by Paul Brook. |
| * |
| * Copyright © 2020 by Keith Packard <keithp@keithp.com> |
| * Adapted for systems other than ARM, including RISC-V, by Keith Packard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * ARM Semihosting is documented in: |
| * Semihosting for AArch32 and AArch64 Release 2.0 |
| * https://github.com/ARM-software/abi-aa/blob/main/semihosting/semihosting.rst |
| * |
| * RISC-V Semihosting is documented in: |
| * RISC-V Semihosting |
| * https://github.com/riscv/riscv-semihosting-spec/blob/main/riscv-semihosting-spec.adoc |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/timer.h" |
| #include "exec/gdbstub.h" |
| #include "semihosting/semihost.h" |
| #include "semihosting/console.h" |
| #include "semihosting/common-semi.h" |
| #include "semihosting/guestfd.h" |
| #include "semihosting/syscalls.h" |
| |
| #ifdef CONFIG_USER_ONLY |
| #include "qemu.h" |
| |
| #define COMMON_SEMI_HEAP_SIZE (128 * 1024 * 1024) |
| #else |
| #include "qemu/cutils.h" |
| #include "hw/loader.h" |
| #include "hw/boards.h" |
| #endif |
| |
| #define TARGET_SYS_OPEN 0x01 |
| #define TARGET_SYS_CLOSE 0x02 |
| #define TARGET_SYS_WRITEC 0x03 |
| #define TARGET_SYS_WRITE0 0x04 |
| #define TARGET_SYS_WRITE 0x05 |
| #define TARGET_SYS_READ 0x06 |
| #define TARGET_SYS_READC 0x07 |
| #define TARGET_SYS_ISERROR 0x08 |
| #define TARGET_SYS_ISTTY 0x09 |
| #define TARGET_SYS_SEEK 0x0a |
| #define TARGET_SYS_FLEN 0x0c |
| #define TARGET_SYS_TMPNAM 0x0d |
| #define TARGET_SYS_REMOVE 0x0e |
| #define TARGET_SYS_RENAME 0x0f |
| #define TARGET_SYS_CLOCK 0x10 |
| #define TARGET_SYS_TIME 0x11 |
| #define TARGET_SYS_SYSTEM 0x12 |
| #define TARGET_SYS_ERRNO 0x13 |
| #define TARGET_SYS_GET_CMDLINE 0x15 |
| #define TARGET_SYS_HEAPINFO 0x16 |
| #define TARGET_SYS_EXIT 0x18 |
| #define TARGET_SYS_SYNCCACHE 0x19 |
| #define TARGET_SYS_EXIT_EXTENDED 0x20 |
| #define TARGET_SYS_ELAPSED 0x30 |
| #define TARGET_SYS_TICKFREQ 0x31 |
| |
| /* ADP_Stopped_ApplicationExit is used for exit(0), |
| * anything else is implemented as exit(1) */ |
| #define ADP_Stopped_ApplicationExit (0x20026) |
| |
| #ifndef O_BINARY |
| #define O_BINARY 0 |
| #endif |
| |
| static int gdb_open_modeflags[12] = { |
| GDB_O_RDONLY, |
| GDB_O_RDONLY, |
| GDB_O_RDWR, |
| GDB_O_RDWR, |
| GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC, |
| GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC, |
| GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC, |
| GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC, |
| GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND, |
| GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND, |
| GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND, |
| GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND, |
| }; |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| /** |
| * common_semi_find_bases: find information about ram and heap base |
| * |
| * This function attempts to provide meaningful numbers for RAM and |
| * HEAP base addresses. The rambase is simply the lowest addressable |
| * RAM position. For the heapbase we ask the loader to scan the |
| * address space and the largest available gap by querying the "ROM" |
| * regions. |
| * |
| * Returns: a structure with the numbers we need. |
| */ |
| |
| typedef struct LayoutInfo { |
| target_ulong rambase; |
| size_t ramsize; |
| hwaddr heapbase; |
| hwaddr heaplimit; |
| } LayoutInfo; |
| |
| static bool find_ram_cb(Int128 start, Int128 len, const MemoryRegion *mr, |
| hwaddr offset_in_region, void *opaque) |
| { |
| LayoutInfo *info = (LayoutInfo *) opaque; |
| uint64_t size = int128_get64(len); |
| |
| if (!mr->ram || mr->readonly) { |
| return false; |
| } |
| |
| if (size > info->ramsize) { |
| info->rambase = int128_get64(start); |
| info->ramsize = size; |
| } |
| |
| /* search exhaustively for largest RAM */ |
| return false; |
| } |
| |
| static LayoutInfo common_semi_find_bases(CPUState *cs) |
| { |
| FlatView *fv; |
| LayoutInfo info = { 0, 0, 0, 0 }; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| fv = address_space_to_flatview(cs->as); |
| flatview_for_each_range(fv, find_ram_cb, &info); |
| |
| /* |
| * If we have found the RAM lets iterate through the ROM blobs to |
| * work out the best place for the remainder of RAM and split it |
| * equally between stack and heap. |
| */ |
| if (info.rambase || info.ramsize > 0) { |
| RomGap gap = rom_find_largest_gap_between(info.rambase, info.ramsize); |
| info.heapbase = gap.base; |
| info.heaplimit = gap.base + gap.size; |
| } |
| |
| return info; |
| } |
| |
| #endif |
| |
| #include "common-semi-target.h" |
| |
| /* |
| * Read the input value from the argument block; fail the semihosting |
| * call if the memory read fails. Eventually we could use a generic |
| * CPUState helper function here. |
| * Note that GET_ARG() handles memory access errors by jumping to |
| * do_fault, so must be used as the first thing done in handling a |
| * semihosting call, to avoid accidentally leaking allocated resources. |
| * SET_ARG(), since it unavoidably happens late, instead returns an |
| * error indication (0 on success, non-0 for error) which the caller |
| * should check. |
| */ |
| |
| #define GET_ARG(n) do { \ |
| if (is_64bit_semihosting(env)) { \ |
| if (get_user_u64(arg ## n, args + (n) * 8)) { \ |
| goto do_fault; \ |
| } \ |
| } else { \ |
| if (get_user_u32(arg ## n, args + (n) * 4)) { \ |
| goto do_fault; \ |
| } \ |
| } \ |
| } while (0) |
| |
| #define SET_ARG(n, val) \ |
| (is_64bit_semihosting(env) ? \ |
| put_user_u64(val, args + (n) * 8) : \ |
| put_user_u32(val, args + (n) * 4)) |
| |
| |
| /* |
| * The semihosting API has no concept of its errno being thread-safe, |
| * as the API design predates SMP CPUs and was intended as a simple |
| * real-hardware set of debug functionality. For QEMU, we make the |
| * errno be per-thread in linux-user mode; in softmmu it is a simple |
| * global, and we assume that the guest takes care of avoiding any races. |
| */ |
| #ifndef CONFIG_USER_ONLY |
| static target_ulong syscall_err; |
| |
| #include "semihosting/softmmu-uaccess.h" |
| #endif |
| |
| static inline uint32_t get_swi_errno(CPUState *cs) |
| { |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = cs->opaque; |
| |
| return ts->swi_errno; |
| #else |
| return syscall_err; |
| #endif |
| } |
| |
| static void common_semi_cb(CPUState *cs, uint64_t ret, int err) |
| { |
| if (err) { |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = cs->opaque; |
| ts->swi_errno = err; |
| #else |
| syscall_err = err; |
| #endif |
| } |
| common_semi_set_ret(cs, ret); |
| } |
| |
| /* |
| * Use 0xdeadbeef as the return value when there isn't a defined |
| * return value for the call. |
| */ |
| static void common_semi_dead_cb(CPUState *cs, uint64_t ret, int err) |
| { |
| common_semi_set_ret(cs, 0xdeadbeef); |
| } |
| |
| /* |
| * SYS_READ and SYS_WRITE always return the number of bytes not read/written. |
| * There is no error condition, other than returning the original length. |
| */ |
| static void common_semi_rw_cb(CPUState *cs, uint64_t ret, int err) |
| { |
| /* Recover the original length from the third argument. */ |
| CPUArchState *env G_GNUC_UNUSED = cs->env_ptr; |
| target_ulong args = common_semi_arg(cs, 1); |
| target_ulong arg2; |
| GET_ARG(2); |
| |
| if (err) { |
| do_fault: |
| ret = 0; /* error: no bytes transmitted */ |
| } |
| common_semi_set_ret(cs, arg2 - ret); |
| } |
| |
| /* |
| * Convert from Posix ret+errno to Arm SYS_ISTTY return values. |
| * With gdbstub, err is only ever set for protocol errors to EIO. |
| */ |
| static void common_semi_istty_cb(CPUState *cs, uint64_t ret, int err) |
| { |
| if (err) { |
| ret = (err == ENOTTY ? 0 : -1); |
| } |
| common_semi_cb(cs, ret, err); |
| } |
| |
| /* |
| * SYS_SEEK returns 0 on success, not the resulting offset. |
| */ |
| static void common_semi_seek_cb(CPUState *cs, uint64_t ret, int err) |
| { |
| if (!err) { |
| ret = 0; |
| } |
| common_semi_cb(cs, ret, err); |
| } |
| |
| /* |
| * Return an address in target memory of 64 bytes where the remote |
| * gdb should write its stat struct. (The format of this structure |
| * is defined by GDB's remote protocol and is not target-specific.) |
| * We put this on the guest's stack just below SP. |
| */ |
| static target_ulong common_semi_flen_buf(CPUState *cs) |
| { |
| target_ulong sp = common_semi_stack_bottom(cs); |
| return sp - 64; |
| } |
| |
| static void |
| common_semi_flen_fstat_cb(CPUState *cs, uint64_t ret, int err) |
| { |
| if (!err) { |
| /* The size is always stored in big-endian order, extract the value. */ |
| uint64_t size; |
| if (cpu_memory_rw_debug(cs, common_semi_flen_buf(cs) + |
| offsetof(struct gdb_stat, gdb_st_size), |
| &size, 8, 0)) { |
| ret = -1, err = EFAULT; |
| } else { |
| size = be64_to_cpu(size); |
| if (ret != size) { |
| ret = -1, err = EOVERFLOW; |
| } |
| } |
| } |
| common_semi_cb(cs, ret, err); |
| } |
| |
| static void |
| common_semi_readc_cb(CPUState *cs, uint64_t ret, int err) |
| { |
| if (!err) { |
| CPUArchState *env G_GNUC_UNUSED = cs->env_ptr; |
| uint8_t ch; |
| |
| if (get_user_u8(ch, common_semi_stack_bottom(cs) - 1)) { |
| ret = -1, err = EFAULT; |
| } else { |
| ret = ch; |
| } |
| } |
| common_semi_cb(cs, ret, err); |
| } |
| |
| #define SHFB_MAGIC_0 0x53 |
| #define SHFB_MAGIC_1 0x48 |
| #define SHFB_MAGIC_2 0x46 |
| #define SHFB_MAGIC_3 0x42 |
| |
| /* Feature bits reportable in feature byte 0 */ |
| #define SH_EXT_EXIT_EXTENDED (1 << 0) |
| #define SH_EXT_STDOUT_STDERR (1 << 1) |
| |
| static const uint8_t featurefile_data[] = { |
| SHFB_MAGIC_0, |
| SHFB_MAGIC_1, |
| SHFB_MAGIC_2, |
| SHFB_MAGIC_3, |
| SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */ |
| }; |
| |
| /* |
| * Do a semihosting call. |
| * |
| * The specification always says that the "return register" either |
| * returns a specific value or is corrupted, so we don't need to |
| * report to our caller whether we are returning a value or trying to |
| * leave the register unchanged. |
| */ |
| void do_common_semihosting(CPUState *cs) |
| { |
| CPUArchState *env = cs->env_ptr; |
| target_ulong args; |
| target_ulong arg0, arg1, arg2, arg3; |
| target_ulong ul_ret; |
| char * s; |
| int nr; |
| uint32_t ret; |
| int64_t elapsed; |
| |
| nr = common_semi_arg(cs, 0) & 0xffffffffU; |
| args = common_semi_arg(cs, 1); |
| |
| switch (nr) { |
| case TARGET_SYS_OPEN: |
| { |
| int ret, err = 0; |
| int hostfd; |
| |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| s = lock_user_string(arg0); |
| if (!s) { |
| goto do_fault; |
| } |
| if (arg1 >= 12) { |
| unlock_user(s, arg0, 0); |
| common_semi_cb(cs, -1, EINVAL); |
| break; |
| } |
| |
| if (strcmp(s, ":tt") == 0) { |
| /* |
| * We implement SH_EXT_STDOUT_STDERR, so: |
| * open for read == stdin |
| * open for write == stdout |
| * open for append == stderr |
| */ |
| if (arg1 < 4) { |
| hostfd = STDIN_FILENO; |
| } else if (arg1 < 8) { |
| hostfd = STDOUT_FILENO; |
| } else { |
| hostfd = STDERR_FILENO; |
| } |
| ret = alloc_guestfd(); |
| associate_guestfd(ret, hostfd); |
| } else if (strcmp(s, ":semihosting-features") == 0) { |
| /* We must fail opens for modes other than 0 ('r') or 1 ('rb') */ |
| if (arg1 != 0 && arg1 != 1) { |
| ret = -1; |
| err = EACCES; |
| } else { |
| ret = alloc_guestfd(); |
| staticfile_guestfd(ret, featurefile_data, |
| sizeof(featurefile_data)); |
| } |
| } else { |
| unlock_user(s, arg0, 0); |
| semihost_sys_open(cs, common_semi_cb, arg0, arg2 + 1, |
| gdb_open_modeflags[arg1], 0644); |
| break; |
| } |
| unlock_user(s, arg0, 0); |
| common_semi_cb(cs, ret, err); |
| break; |
| } |
| |
| case TARGET_SYS_CLOSE: |
| GET_ARG(0); |
| semihost_sys_close(cs, common_semi_cb, arg0); |
| break; |
| |
| case TARGET_SYS_WRITEC: |
| /* |
| * FIXME: the byte to be written is in a target_ulong slot, |
| * which means this is wrong for a big-endian guest. |
| */ |
| semihost_sys_write_gf(cs, common_semi_dead_cb, |
| &console_out_gf, args, 1); |
| break; |
| |
| case TARGET_SYS_WRITE0: |
| { |
| ssize_t len = target_strlen(args); |
| if (len < 0) { |
| common_semi_dead_cb(cs, -1, EFAULT); |
| } else { |
| semihost_sys_write_gf(cs, common_semi_dead_cb, |
| &console_out_gf, args, len); |
| } |
| } |
| break; |
| |
| case TARGET_SYS_WRITE: |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| semihost_sys_write(cs, common_semi_rw_cb, arg0, arg1, arg2); |
| break; |
| |
| case TARGET_SYS_READ: |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| semihost_sys_read(cs, common_semi_rw_cb, arg0, arg1, arg2); |
| break; |
| |
| case TARGET_SYS_READC: |
| semihost_sys_read_gf(cs, common_semi_readc_cb, &console_in_gf, |
| common_semi_stack_bottom(cs) - 1, 1); |
| break; |
| |
| case TARGET_SYS_ISERROR: |
| GET_ARG(0); |
| common_semi_set_ret(cs, (target_long)arg0 < 0); |
| break; |
| |
| case TARGET_SYS_ISTTY: |
| GET_ARG(0); |
| semihost_sys_isatty(cs, common_semi_istty_cb, arg0); |
| break; |
| |
| case TARGET_SYS_SEEK: |
| GET_ARG(0); |
| GET_ARG(1); |
| semihost_sys_lseek(cs, common_semi_seek_cb, arg0, arg1, GDB_SEEK_SET); |
| break; |
| |
| case TARGET_SYS_FLEN: |
| GET_ARG(0); |
| semihost_sys_flen(cs, common_semi_flen_fstat_cb, common_semi_cb, |
| arg0, common_semi_flen_buf(cs)); |
| break; |
| |
| case TARGET_SYS_TMPNAM: |
| { |
| int len; |
| char *p; |
| |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| len = asprintf(&s, "%s/qemu-%x%02x", g_get_tmp_dir(), |
| getpid(), (int)arg1 & 0xff); |
| if (len < 0) { |
| common_semi_set_ret(cs, -1); |
| break; |
| } |
| |
| /* Allow for trailing NUL */ |
| len++; |
| /* Make sure there's enough space in the buffer */ |
| if (len > arg2) { |
| free(s); |
| common_semi_set_ret(cs, -1); |
| break; |
| } |
| p = lock_user(VERIFY_WRITE, arg0, len, 0); |
| if (!p) { |
| free(s); |
| goto do_fault; |
| } |
| memcpy(p, s, len); |
| unlock_user(p, arg0, len); |
| free(s); |
| common_semi_set_ret(cs, 0); |
| break; |
| } |
| |
| case TARGET_SYS_REMOVE: |
| GET_ARG(0); |
| GET_ARG(1); |
| semihost_sys_remove(cs, common_semi_cb, arg0, arg1 + 1); |
| break; |
| |
| case TARGET_SYS_RENAME: |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| GET_ARG(3); |
| semihost_sys_rename(cs, common_semi_cb, arg0, arg1 + 1, arg2, arg3 + 1); |
| break; |
| |
| case TARGET_SYS_CLOCK: |
| common_semi_set_ret(cs, clock() / (CLOCKS_PER_SEC / 100)); |
| break; |
| |
| case TARGET_SYS_TIME: |
| ul_ret = time(NULL); |
| common_semi_cb(cs, ul_ret, ul_ret == -1 ? errno : 0); |
| break; |
| |
| case TARGET_SYS_SYSTEM: |
| GET_ARG(0); |
| GET_ARG(1); |
| semihost_sys_system(cs, common_semi_cb, arg0, arg1 + 1); |
| break; |
| |
| case TARGET_SYS_ERRNO: |
| common_semi_set_ret(cs, get_swi_errno(cs)); |
| break; |
| |
| case TARGET_SYS_GET_CMDLINE: |
| { |
| /* Build a command-line from the original argv. |
| * |
| * The inputs are: |
| * * arg0, pointer to a buffer of at least the size |
| * specified in arg1. |
| * * arg1, size of the buffer pointed to by arg0 in |
| * bytes. |
| * |
| * The outputs are: |
| * * arg0, pointer to null-terminated string of the |
| * command line. |
| * * arg1, length of the string pointed to by arg0. |
| */ |
| |
| char *output_buffer; |
| size_t input_size; |
| size_t output_size; |
| int status = 0; |
| #if !defined(CONFIG_USER_ONLY) |
| const char *cmdline; |
| #else |
| TaskState *ts = cs->opaque; |
| #endif |
| GET_ARG(0); |
| GET_ARG(1); |
| input_size = arg1; |
| /* Compute the size of the output string. */ |
| #if !defined(CONFIG_USER_ONLY) |
| cmdline = semihosting_get_cmdline(); |
| if (cmdline == NULL) { |
| cmdline = ""; /* Default to an empty line. */ |
| } |
| output_size = strlen(cmdline) + 1; /* Count terminating 0. */ |
| #else |
| unsigned int i; |
| |
| output_size = ts->info->env_strings - ts->info->arg_strings; |
| if (!output_size) { |
| /* |
| * We special-case the "empty command line" case (argc==0). |
| * Just provide the terminating 0. |
| */ |
| output_size = 1; |
| } |
| #endif |
| |
| if (output_size > input_size) { |
| /* Not enough space to store command-line arguments. */ |
| common_semi_cb(cs, -1, E2BIG); |
| break; |
| } |
| |
| /* Adjust the command-line length. */ |
| if (SET_ARG(1, output_size - 1)) { |
| /* Couldn't write back to argument block */ |
| goto do_fault; |
| } |
| |
| /* Lock the buffer on the ARM side. */ |
| output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0); |
| if (!output_buffer) { |
| goto do_fault; |
| } |
| |
| /* Copy the command-line arguments. */ |
| #if !defined(CONFIG_USER_ONLY) |
| pstrcpy(output_buffer, output_size, cmdline); |
| #else |
| if (output_size == 1) { |
| /* Empty command-line. */ |
| output_buffer[0] = '\0'; |
| goto out; |
| } |
| |
| if (copy_from_user(output_buffer, ts->info->arg_strings, |
| output_size)) { |
| unlock_user(output_buffer, arg0, 0); |
| goto do_fault; |
| } |
| |
| /* Separate arguments by white spaces. */ |
| for (i = 0; i < output_size - 1; i++) { |
| if (output_buffer[i] == 0) { |
| output_buffer[i] = ' '; |
| } |
| } |
| out: |
| #endif |
| /* Unlock the buffer on the ARM side. */ |
| unlock_user(output_buffer, arg0, output_size); |
| common_semi_cb(cs, status, 0); |
| } |
| break; |
| |
| case TARGET_SYS_HEAPINFO: |
| { |
| target_ulong retvals[4]; |
| int i; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = cs->opaque; |
| target_ulong limit; |
| #else |
| LayoutInfo info = common_semi_find_bases(cs); |
| #endif |
| |
| GET_ARG(0); |
| |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * Some C libraries assume the heap immediately follows .bss, so |
| * allocate it using sbrk. |
| */ |
| if (!ts->heap_limit) { |
| abi_ulong ret; |
| |
| ts->heap_base = do_brk(0); |
| limit = ts->heap_base + COMMON_SEMI_HEAP_SIZE; |
| /* Try a big heap, and reduce the size if that fails. */ |
| for (;;) { |
| ret = do_brk(limit); |
| if (ret >= limit) { |
| break; |
| } |
| limit = (ts->heap_base >> 1) + (limit >> 1); |
| } |
| ts->heap_limit = limit; |
| } |
| |
| retvals[0] = ts->heap_base; |
| retvals[1] = ts->heap_limit; |
| retvals[2] = ts->stack_base; |
| retvals[3] = 0; /* Stack limit. */ |
| #else |
| retvals[0] = info.heapbase; /* Heap Base */ |
| retvals[1] = info.heaplimit; /* Heap Limit */ |
| retvals[2] = info.heaplimit; /* Stack base */ |
| retvals[3] = info.heapbase; /* Stack limit. */ |
| #endif |
| |
| for (i = 0; i < ARRAY_SIZE(retvals); i++) { |
| bool fail; |
| |
| if (is_64bit_semihosting(env)) { |
| fail = put_user_u64(retvals[i], arg0 + i * 8); |
| } else { |
| fail = put_user_u32(retvals[i], arg0 + i * 4); |
| } |
| |
| if (fail) { |
| /* Couldn't write back to argument block */ |
| goto do_fault; |
| } |
| } |
| common_semi_set_ret(cs, 0); |
| } |
| break; |
| |
| case TARGET_SYS_EXIT: |
| case TARGET_SYS_EXIT_EXTENDED: |
| if (common_semi_sys_exit_extended(cs, nr)) { |
| /* |
| * The A64 version of SYS_EXIT takes a parameter block, |
| * so the application-exit type can return a subcode which |
| * is the exit status code from the application. |
| * SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function |
| * which allows A32/T32 guests to also provide a status code. |
| */ |
| GET_ARG(0); |
| GET_ARG(1); |
| |
| if (arg0 == ADP_Stopped_ApplicationExit) { |
| ret = arg1; |
| } else { |
| ret = 1; |
| } |
| } else { |
| /* |
| * The A32/T32 version of SYS_EXIT specifies only |
| * Stopped_ApplicationExit as normal exit, but does not |
| * allow the guest to specify the exit status code. |
| * Everything else is considered an error. |
| */ |
| ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1; |
| } |
| gdb_exit(ret); |
| exit(ret); |
| |
| case TARGET_SYS_ELAPSED: |
| elapsed = get_clock() - clock_start; |
| if (sizeof(target_ulong) == 8) { |
| if (SET_ARG(0, elapsed)) { |
| goto do_fault; |
| } |
| } else { |
| if (SET_ARG(0, (uint32_t) elapsed) || |
| SET_ARG(1, (uint32_t) (elapsed >> 32))) { |
| goto do_fault; |
| } |
| } |
| common_semi_set_ret(cs, 0); |
| break; |
| |
| case TARGET_SYS_TICKFREQ: |
| /* qemu always uses nsec */ |
| common_semi_set_ret(cs, 1000000000); |
| break; |
| |
| case TARGET_SYS_SYNCCACHE: |
| /* |
| * Clean the D-cache and invalidate the I-cache for the specified |
| * virtual address range. This is a nop for us since we don't |
| * implement caches. This is only present on A64. |
| */ |
| if (common_semi_has_synccache(env)) { |
| common_semi_set_ret(cs, 0); |
| break; |
| } |
| /* fall through */ |
| default: |
| fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr); |
| cpu_dump_state(cs, stderr, 0); |
| abort(); |
| |
| do_fault: |
| common_semi_cb(cs, -1, EFAULT); |
| break; |
| } |
| } |