| /* |
| * QEMU Plugin API |
| * |
| * This provides the API that is available to the plugins to interact |
| * with QEMU. We have to be careful not to expose internal details of |
| * how QEMU works so we abstract out things like translation and |
| * instructions to anonymous data types: |
| * |
| * qemu_plugin_tb |
| * qemu_plugin_insn |
| * |
| * Which can then be passed back into the API to do additional things. |
| * As such all the public functions in here are exported in |
| * qemu-plugin.h. |
| * |
| * The general life-cycle of a plugin is: |
| * |
| * - plugin is loaded, public qemu_plugin_install called |
| * - the install func registers callbacks for events |
| * - usually an atexit_cb is registered to dump info at the end |
| * - when a registered event occurs the plugin is called |
| * - some events pass additional info |
| * - during translation the plugin can decide to instrument any |
| * instruction |
| * - when QEMU exits all the registered atexit callbacks are called |
| * |
| * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> |
| * Copyright (C) 2019, Linaro |
| * |
| * License: GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| * SPDX-License-Identifier: GPL-2.0-or-later |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/plugin.h" |
| #include "qemu/log.h" |
| #include "tcg/tcg.h" |
| #include "exec/exec-all.h" |
| #include "exec/ram_addr.h" |
| #include "disas/disas.h" |
| #include "plugin.h" |
| #ifndef CONFIG_USER_ONLY |
| #include "qemu/plugin-memory.h" |
| #include "hw/boards.h" |
| #else |
| #include "qemu.h" |
| #ifdef CONFIG_LINUX |
| #include "loader.h" |
| #endif |
| #endif |
| |
| /* Uninstall and Reset handlers */ |
| |
| void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) |
| { |
| plugin_reset_uninstall(id, cb, false); |
| } |
| |
| void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) |
| { |
| plugin_reset_uninstall(id, cb, true); |
| } |
| |
| /* |
| * Plugin Register Functions |
| * |
| * This allows the plugin to register callbacks for various events |
| * during the translation. |
| */ |
| |
| void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_simple_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); |
| } |
| |
| void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_simple_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); |
| } |
| |
| void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, |
| qemu_plugin_vcpu_udata_cb_t cb, |
| enum qemu_plugin_cb_flags flags, |
| void *udata) |
| { |
| if (!tb->mem_only) { |
| plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR], |
| cb, flags, udata); |
| } |
| } |
| |
| void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb, |
| enum qemu_plugin_op op, |
| void *ptr, uint64_t imm) |
| { |
| if (!tb->mem_only) { |
| plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm); |
| } |
| } |
| |
| void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, |
| qemu_plugin_vcpu_udata_cb_t cb, |
| enum qemu_plugin_cb_flags flags, |
| void *udata) |
| { |
| if (!insn->mem_only) { |
| plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], |
| cb, flags, udata); |
| } |
| } |
| |
| void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn, |
| enum qemu_plugin_op op, |
| void *ptr, uint64_t imm) |
| { |
| if (!insn->mem_only) { |
| plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], |
| 0, op, ptr, imm); |
| } |
| } |
| |
| |
| /* |
| * We always plant memory instrumentation because they don't finalise until |
| * after the operation has complete. |
| */ |
| void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, |
| qemu_plugin_vcpu_mem_cb_t cb, |
| enum qemu_plugin_cb_flags flags, |
| enum qemu_plugin_mem_rw rw, |
| void *udata) |
| { |
| plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], |
| cb, flags, rw, udata); |
| } |
| |
| void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn, |
| enum qemu_plugin_mem_rw rw, |
| enum qemu_plugin_op op, void *ptr, |
| uint64_t imm) |
| { |
| plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE], |
| rw, op, ptr, imm); |
| } |
| |
| void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_tb_trans_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); |
| } |
| |
| void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_syscall_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); |
| } |
| |
| void |
| qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, |
| qemu_plugin_vcpu_syscall_ret_cb_t cb) |
| { |
| plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); |
| } |
| |
| /* |
| * Plugin Queries |
| * |
| * These are queries that the plugin can make to gauge information |
| * from our opaque data types. We do not want to leak internal details |
| * here just information useful to the plugin. |
| */ |
| |
| /* |
| * Translation block information: |
| * |
| * A plugin can query the virtual address of the start of the block |
| * and the number of instructions in it. It can also get access to |
| * each translated instruction. |
| */ |
| |
| size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) |
| { |
| return tb->n; |
| } |
| |
| uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) |
| { |
| return tb->vaddr; |
| } |
| |
| struct qemu_plugin_insn * |
| qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) |
| { |
| struct qemu_plugin_insn *insn; |
| if (unlikely(idx >= tb->n)) { |
| return NULL; |
| } |
| insn = g_ptr_array_index(tb->insns, idx); |
| insn->mem_only = tb->mem_only; |
| return insn; |
| } |
| |
| /* |
| * Instruction information |
| * |
| * These queries allow the plugin to retrieve information about each |
| * instruction being translated. |
| */ |
| |
| const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn) |
| { |
| return insn->data->data; |
| } |
| |
| size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) |
| { |
| return insn->data->len; |
| } |
| |
| uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) |
| { |
| return insn->vaddr; |
| } |
| |
| void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) |
| { |
| return insn->haddr; |
| } |
| |
| char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) |
| { |
| CPUState *cpu = current_cpu; |
| return plugin_disas(cpu, insn->vaddr, insn->data->len); |
| } |
| |
| const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) |
| { |
| const char *sym = lookup_symbol(insn->vaddr); |
| return sym[0] != 0 ? sym : NULL; |
| } |
| |
| /* |
| * The memory queries allow the plugin to query information about a |
| * memory access. |
| */ |
| |
| unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) |
| { |
| MemOp op = get_memop(info); |
| return op & MO_SIZE; |
| } |
| |
| bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) |
| { |
| MemOp op = get_memop(info); |
| return op & MO_SIGN; |
| } |
| |
| bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) |
| { |
| MemOp op = get_memop(info); |
| return (op & MO_BSWAP) == MO_BE; |
| } |
| |
| bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) |
| { |
| return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; |
| } |
| |
| /* |
| * Virtual Memory queries |
| */ |
| |
| #ifdef CONFIG_SOFTMMU |
| static __thread struct qemu_plugin_hwaddr hwaddr_info; |
| #endif |
| |
| struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, |
| uint64_t vaddr) |
| { |
| #ifdef CONFIG_SOFTMMU |
| CPUState *cpu = current_cpu; |
| unsigned int mmu_idx = get_mmuidx(info); |
| enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); |
| hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; |
| |
| assert(mmu_idx < NB_MMU_MODES); |
| |
| if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, |
| hwaddr_info.is_store, &hwaddr_info)) { |
| error_report("invalid use of qemu_plugin_get_hwaddr"); |
| return NULL; |
| } |
| |
| return &hwaddr_info; |
| #else |
| return NULL; |
| #endif |
| } |
| |
| bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) |
| { |
| #ifdef CONFIG_SOFTMMU |
| return haddr->is_io; |
| #else |
| return false; |
| #endif |
| } |
| |
| uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) |
| { |
| #ifdef CONFIG_SOFTMMU |
| if (haddr) { |
| if (!haddr->is_io) { |
| RAMBlock *block; |
| ram_addr_t offset; |
| void *hostaddr = haddr->v.ram.hostaddr; |
| |
| block = qemu_ram_block_from_host(hostaddr, false, &offset); |
| if (!block) { |
| error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr); |
| abort(); |
| } |
| |
| return block->offset + offset + block->mr->addr; |
| } else { |
| MemoryRegionSection *mrs = haddr->v.io.section; |
| return mrs->offset_within_address_space + haddr->v.io.offset; |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) |
| { |
| #ifdef CONFIG_SOFTMMU |
| if (h && h->is_io) { |
| MemoryRegionSection *mrs = h->v.io.section; |
| if (!mrs->mr->name) { |
| unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr; |
| g_autofree char *temp = g_strdup_printf("anon%08lx", maddr); |
| return g_intern_string(temp); |
| } else { |
| return g_intern_string(mrs->mr->name); |
| } |
| } else { |
| return g_intern_static_string("RAM"); |
| } |
| #else |
| return g_intern_static_string("Invalid"); |
| #endif |
| } |
| |
| /* |
| * Queries to the number and potential maximum number of vCPUs there |
| * will be. This helps the plugin dimension per-vcpu arrays. |
| */ |
| |
| #ifndef CONFIG_USER_ONLY |
| static MachineState * get_ms(void) |
| { |
| return MACHINE(qdev_get_machine()); |
| } |
| #endif |
| |
| int qemu_plugin_n_vcpus(void) |
| { |
| #ifdef CONFIG_USER_ONLY |
| return -1; |
| #else |
| return get_ms()->smp.cpus; |
| #endif |
| } |
| |
| int qemu_plugin_n_max_vcpus(void) |
| { |
| #ifdef CONFIG_USER_ONLY |
| return -1; |
| #else |
| return get_ms()->smp.max_cpus; |
| #endif |
| } |
| |
| /* |
| * Plugin output |
| */ |
| void qemu_plugin_outs(const char *string) |
| { |
| qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); |
| } |
| |
| bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) |
| { |
| return name && value && qapi_bool_parse(name, value, ret, NULL); |
| } |
| |
| /* |
| * Binary path, start and end locations |
| */ |
| const char *qemu_plugin_path_to_binary(void) |
| { |
| char *path = NULL; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = (TaskState *) current_cpu->opaque; |
| path = g_strdup(ts->bprm->filename); |
| #endif |
| return path; |
| } |
| |
| uint64_t qemu_plugin_start_code(void) |
| { |
| uint64_t start = 0; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = (TaskState *) current_cpu->opaque; |
| start = ts->info->start_code; |
| #endif |
| return start; |
| } |
| |
| uint64_t qemu_plugin_end_code(void) |
| { |
| uint64_t end = 0; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = (TaskState *) current_cpu->opaque; |
| end = ts->info->end_code; |
| #endif |
| return end; |
| } |
| |
| uint64_t qemu_plugin_entry_code(void) |
| { |
| uint64_t entry = 0; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = (TaskState *) current_cpu->opaque; |
| entry = ts->info->entry; |
| #endif |
| return entry; |
| } |