| static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr) |
| { |
| bswap16s(&ehdr->e_type); /* Object file type */ |
| bswap16s(&ehdr->e_machine); /* Architecture */ |
| bswap32s(&ehdr->e_version); /* Object file version */ |
| bswapSZs(&ehdr->e_entry); /* Entry point virtual address */ |
| bswapSZs(&ehdr->e_phoff); /* Program header table file offset */ |
| bswapSZs(&ehdr->e_shoff); /* Section header table file offset */ |
| bswap32s(&ehdr->e_flags); /* Processor-specific flags */ |
| bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ |
| bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ |
| bswap16s(&ehdr->e_phnum); /* Program header table entry count */ |
| bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ |
| bswap16s(&ehdr->e_shnum); /* Section header table entry count */ |
| bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ |
| } |
| |
| static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr) |
| { |
| bswap32s(&phdr->p_type); /* Segment type */ |
| bswapSZs(&phdr->p_offset); /* Segment file offset */ |
| bswapSZs(&phdr->p_vaddr); /* Segment virtual address */ |
| bswapSZs(&phdr->p_paddr); /* Segment physical address */ |
| bswapSZs(&phdr->p_filesz); /* Segment size in file */ |
| bswapSZs(&phdr->p_memsz); /* Segment size in memory */ |
| bswap32s(&phdr->p_flags); /* Segment flags */ |
| bswapSZs(&phdr->p_align); /* Segment alignment */ |
| } |
| |
| static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr) |
| { |
| bswap32s(&shdr->sh_name); |
| bswap32s(&shdr->sh_type); |
| bswapSZs(&shdr->sh_flags); |
| bswapSZs(&shdr->sh_addr); |
| bswapSZs(&shdr->sh_offset); |
| bswapSZs(&shdr->sh_size); |
| bswap32s(&shdr->sh_link); |
| bswap32s(&shdr->sh_info); |
| bswapSZs(&shdr->sh_addralign); |
| bswapSZs(&shdr->sh_entsize); |
| } |
| |
| static void glue(bswap_sym, SZ)(struct elf_sym *sym) |
| { |
| bswap32s(&sym->st_name); |
| bswapSZs(&sym->st_value); |
| bswapSZs(&sym->st_size); |
| bswap16s(&sym->st_shndx); |
| } |
| |
| static void glue(bswap_rela, SZ)(struct elf_rela *rela) |
| { |
| bswapSZs(&rela->r_offset); |
| bswapSZs(&rela->r_info); |
| bswapSZs((elf_word *)&rela->r_addend); |
| } |
| |
| static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table, |
| int n, int type) |
| { |
| int i; |
| for(i=0;i<n;i++) { |
| if (shdr_table[i].sh_type == type) |
| return shdr_table + i; |
| } |
| return NULL; |
| } |
| |
| static int glue(symfind, SZ)(const void *s0, const void *s1) |
| { |
| hwaddr addr = *(hwaddr *)s0; |
| struct elf_sym *sym = (struct elf_sym *)s1; |
| int result = 0; |
| if (addr < sym->st_value) { |
| result = -1; |
| } else if (addr >= sym->st_value + sym->st_size) { |
| result = 1; |
| } |
| return result; |
| } |
| |
| static const char *glue(lookup_symbol, SZ)(struct syminfo *s, |
| hwaddr orig_addr) |
| { |
| struct elf_sym *syms = glue(s->disas_symtab.elf, SZ); |
| struct elf_sym *sym; |
| |
| sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), |
| glue(symfind, SZ)); |
| if (sym != NULL) { |
| return s->disas_strtab + sym->st_name; |
| } |
| |
| return ""; |
| } |
| |
| static int glue(symcmp, SZ)(const void *s0, const void *s1) |
| { |
| struct elf_sym *sym0 = (struct elf_sym *)s0; |
| struct elf_sym *sym1 = (struct elf_sym *)s1; |
| return (sym0->st_value < sym1->st_value) |
| ? -1 |
| : ((sym0->st_value > sym1->st_value) ? 1 : 0); |
| } |
| |
| static void glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab, |
| int clear_lsb, symbol_fn_t sym_cb) |
| { |
| struct elf_shdr *symtab, *strtab; |
| g_autofree struct elf_shdr *shdr_table = NULL; |
| g_autofree struct elf_sym *syms = NULL; |
| g_autofree char *str = NULL; |
| struct syminfo *s; |
| int nsyms, i; |
| |
| shdr_table = load_at(fd, ehdr->e_shoff, |
| sizeof(struct elf_shdr) * ehdr->e_shnum); |
| if (!shdr_table) { |
| return; |
| } |
| |
| if (must_swab) { |
| for (i = 0; i < ehdr->e_shnum; i++) { |
| glue(bswap_shdr, SZ)(shdr_table + i); |
| } |
| } |
| |
| symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB); |
| if (!symtab) { |
| return; |
| } |
| syms = load_at(fd, symtab->sh_offset, symtab->sh_size); |
| if (!syms) { |
| return; |
| } |
| |
| nsyms = symtab->sh_size / sizeof(struct elf_sym); |
| |
| /* String table */ |
| if (symtab->sh_link >= ehdr->e_shnum) { |
| return; |
| } |
| strtab = &shdr_table[symtab->sh_link]; |
| |
| str = load_at(fd, strtab->sh_offset, strtab->sh_size); |
| if (!str) { |
| return; |
| } |
| |
| i = 0; |
| while (i < nsyms) { |
| if (must_swab) { |
| glue(bswap_sym, SZ)(&syms[i]); |
| } |
| if (sym_cb) { |
| sym_cb(str + syms[i].st_name, syms[i].st_info, |
| syms[i].st_value, syms[i].st_size); |
| } |
| /* We are only interested in function symbols. |
| Throw everything else away. */ |
| if (syms[i].st_shndx == SHN_UNDEF || |
| syms[i].st_shndx >= SHN_LORESERVE || |
| ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { |
| nsyms--; |
| if (i < nsyms) { |
| syms[i] = syms[nsyms]; |
| } |
| continue; |
| } |
| if (clear_lsb) { |
| /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
| syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1; |
| } |
| i++; |
| } |
| |
| /* check we have symbols left */ |
| if (nsyms == 0) { |
| return; |
| } |
| |
| syms = g_realloc(syms, nsyms * sizeof(*syms)); |
| qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ)); |
| for (i = 0; i < nsyms - 1; i++) { |
| if (syms[i].st_size == 0) { |
| syms[i].st_size = syms[i + 1].st_value - syms[i].st_value; |
| } |
| } |
| |
| /* Commit */ |
| s = g_malloc0(sizeof(*s)); |
| s->lookup_symbol = glue(lookup_symbol, SZ); |
| glue(s->disas_symtab.elf, SZ) = g_steal_pointer(&syms); |
| s->disas_num_syms = nsyms; |
| s->disas_strtab = g_steal_pointer(&str); |
| s->next = syminfos; |
| syminfos = s; |
| } |
| |
| static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab, |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque, uint8_t *data, |
| struct elf_phdr *ph, int elf_machine) |
| { |
| struct elf_shdr *reltab, *shdr_table = NULL; |
| struct elf_rela *rels = NULL; |
| int nrels, i, ret = -1; |
| elf_word wordval; |
| void *addr; |
| |
| shdr_table = load_at(fd, ehdr->e_shoff, |
| sizeof(struct elf_shdr) * ehdr->e_shnum); |
| if (!shdr_table) { |
| return -1; |
| } |
| if (must_swab) { |
| for (i = 0; i < ehdr->e_shnum; i++) { |
| glue(bswap_shdr, SZ)(&shdr_table[i]); |
| } |
| } |
| |
| reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA); |
| if (!reltab) { |
| goto fail; |
| } |
| rels = load_at(fd, reltab->sh_offset, reltab->sh_size); |
| if (!rels) { |
| goto fail; |
| } |
| nrels = reltab->sh_size / sizeof(struct elf_rela); |
| |
| for (i = 0; i < nrels; i++) { |
| if (must_swab) { |
| glue(bswap_rela, SZ)(&rels[i]); |
| } |
| if (rels[i].r_offset < ph->p_vaddr || |
| rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) { |
| continue; |
| } |
| addr = &data[rels[i].r_offset - ph->p_vaddr]; |
| switch (elf_machine) { |
| case EM_S390: |
| switch (rels[i].r_info) { |
| case R_390_RELATIVE: |
| wordval = *(elf_word *)addr; |
| if (must_swab) { |
| bswapSZs(&wordval); |
| } |
| wordval = translate_fn(translate_opaque, wordval); |
| if (must_swab) { |
| bswapSZs(&wordval); |
| } |
| *(elf_word *)addr = wordval; |
| break; |
| default: |
| fprintf(stderr, "Unsupported relocation type %i!\n", |
| (int)rels[i].r_info); |
| } |
| } |
| } |
| |
| ret = 0; |
| fail: |
| g_free(rels); |
| g_free(shdr_table); |
| return ret; |
| } |
| |
| /* |
| * Given 'nhdr', a pointer to a range of ELF Notes, search through them |
| * for a note matching type 'elf_note_type' and return a pointer to |
| * the matching ELF note. |
| */ |
| static struct elf_note *glue(get_elf_note_type, SZ)(struct elf_note *nhdr, |
| elf_word note_size, |
| elf_word phdr_align, |
| elf_word elf_note_type) |
| { |
| elf_word nhdr_size = sizeof(struct elf_note); |
| elf_word elf_note_entry_offset = 0; |
| elf_word note_type; |
| elf_word nhdr_namesz; |
| elf_word nhdr_descsz; |
| |
| if (nhdr == NULL) { |
| return NULL; |
| } |
| |
| note_type = nhdr->n_type; |
| while (note_type != elf_note_type) { |
| nhdr_namesz = nhdr->n_namesz; |
| nhdr_descsz = nhdr->n_descsz; |
| |
| elf_note_entry_offset = nhdr_size + |
| QEMU_ALIGN_UP(nhdr_namesz, phdr_align) + |
| QEMU_ALIGN_UP(nhdr_descsz, phdr_align); |
| |
| /* |
| * If the offset calculated in this iteration exceeds the |
| * supplied size, we are done and no matching note was found. |
| */ |
| if (elf_note_entry_offset > note_size) { |
| return NULL; |
| } |
| |
| /* skip to the next ELF Note entry */ |
| nhdr = (void *)nhdr + elf_note_entry_offset; |
| note_type = nhdr->n_type; |
| } |
| |
| return nhdr; |
| } |
| |
| static ssize_t glue(load_elf, SZ)(const char *name, int fd, |
| uint64_t (*elf_note_fn)(void *, void *, bool), |
| uint64_t (*translate_fn)(void *, uint64_t), |
| void *translate_opaque, |
| int must_swab, uint64_t *pentry, |
| uint64_t *lowaddr, uint64_t *highaddr, |
| uint32_t *pflags, int elf_machine, |
| int clear_lsb, int data_swab, |
| AddressSpace *as, bool load_rom, |
| symbol_fn_t sym_cb) |
| { |
| struct elfhdr ehdr; |
| struct elf_phdr *phdr = NULL, *ph; |
| int size, i; |
| ssize_t total_size; |
| elf_word mem_size, file_size, data_offset; |
| uint64_t addr, low = (uint64_t)-1, high = 0; |
| GMappedFile *mapped_file = NULL; |
| uint8_t *data = NULL; |
| ssize_t ret = ELF_LOAD_FAILED; |
| |
| if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr)) |
| goto fail; |
| if (must_swab) { |
| glue(bswap_ehdr, SZ)(&ehdr); |
| } |
| |
| if (elf_machine <= EM_NONE) { |
| /* The caller didn't specify an ARCH, we can figure it out */ |
| elf_machine = ehdr.e_machine; |
| } |
| |
| switch (elf_machine) { |
| case EM_PPC64: |
| if (ehdr.e_machine != EM_PPC64) { |
| if (ehdr.e_machine != EM_PPC) { |
| ret = ELF_LOAD_WRONG_ARCH; |
| goto fail; |
| } |
| } |
| break; |
| case EM_X86_64: |
| if (ehdr.e_machine != EM_X86_64) { |
| if (ehdr.e_machine != EM_386) { |
| ret = ELF_LOAD_WRONG_ARCH; |
| goto fail; |
| } |
| } |
| break; |
| case EM_MICROBLAZE: |
| if (ehdr.e_machine != EM_MICROBLAZE) { |
| if (ehdr.e_machine != EM_MICROBLAZE_OLD) { |
| ret = ELF_LOAD_WRONG_ARCH; |
| goto fail; |
| } |
| } |
| break; |
| case EM_MIPS: |
| case EM_NANOMIPS: |
| if ((ehdr.e_machine != EM_MIPS) && |
| (ehdr.e_machine != EM_NANOMIPS)) { |
| ret = ELF_LOAD_WRONG_ARCH; |
| goto fail; |
| } |
| break; |
| default: |
| if (elf_machine != ehdr.e_machine) { |
| ret = ELF_LOAD_WRONG_ARCH; |
| goto fail; |
| } |
| } |
| |
| if (pflags) { |
| *pflags = (elf_word)ehdr.e_flags; |
| } |
| if (pentry) |
| *pentry = (uint64_t)(elf_sword)ehdr.e_entry; |
| |
| glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb, sym_cb); |
| |
| size = ehdr.e_phnum * sizeof(phdr[0]); |
| if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) { |
| goto fail; |
| } |
| phdr = g_malloc0(size); |
| if (!phdr) |
| goto fail; |
| if (read(fd, phdr, size) != size) |
| goto fail; |
| if (must_swab) { |
| for(i = 0; i < ehdr.e_phnum; i++) { |
| ph = &phdr[i]; |
| glue(bswap_phdr, SZ)(ph); |
| } |
| } |
| |
| /* |
| * Since we want to be able to modify the mapped buffer, we set the |
| * 'writable' parameter to 'true'. Modifications to the buffer are not |
| * written back to the file. |
| */ |
| mapped_file = g_mapped_file_new_from_fd(fd, true, NULL); |
| if (!mapped_file) { |
| goto fail; |
| } |
| |
| total_size = 0; |
| for(i = 0; i < ehdr.e_phnum; i++) { |
| ph = &phdr[i]; |
| if (ph->p_type == PT_LOAD) { |
| mem_size = ph->p_memsz; /* Size of the ROM */ |
| file_size = ph->p_filesz; /* Size of the allocated data */ |
| data_offset = ph->p_offset; /* Offset where the data is located */ |
| |
| if (file_size > 0) { |
| if (g_mapped_file_get_length(mapped_file) < |
| file_size + data_offset) { |
| goto fail; |
| } |
| |
| data = (uint8_t *)g_mapped_file_get_contents(mapped_file); |
| data += data_offset; |
| } |
| |
| /* The ELF spec is somewhat vague about the purpose of the |
| * physical address field. One common use in the embedded world |
| * is that physical address field specifies the load address |
| * and the virtual address field specifies the execution address. |
| * Segments are packed into ROM or flash, and the relocation |
| * and zero-initialization of data is done at runtime. This |
| * means that the memsz header represents the runtime size of the |
| * segment, but the filesz represents the loadtime size. If |
| * we try to honour the memsz value for an ELF file like this |
| * we will end up with overlapping segments (which the |
| * loader.c code will later reject). |
| * We support ELF files using this scheme by by checking whether |
| * paddr + memsz for this segment would overlap with any other |
| * segment. If so, then we assume it's using this scheme and |
| * truncate the loaded segment to the filesz size. |
| * If the segment considered as being memsz size doesn't overlap |
| * then we use memsz for the segment length, to handle ELF files |
| * which assume that the loader will do the zero-initialization. |
| */ |
| if (mem_size > file_size) { |
| /* If this segment's zero-init portion overlaps another |
| * segment's data or zero-init portion, then truncate this one. |
| * Invalid ELF files where the segments overlap even when |
| * only file_size bytes are loaded will be rejected by |
| * the ROM overlap check in loader.c, so we don't try to |
| * explicitly detect those here. |
| */ |
| int j; |
| elf_word zero_start = ph->p_paddr + file_size; |
| elf_word zero_end = ph->p_paddr + mem_size; |
| |
| for (j = 0; j < ehdr.e_phnum; j++) { |
| struct elf_phdr *jph = &phdr[j]; |
| |
| if (i != j && jph->p_type == PT_LOAD) { |
| elf_word other_start = jph->p_paddr; |
| elf_word other_end = jph->p_paddr + jph->p_memsz; |
| |
| if (!(other_start >= zero_end || |
| zero_start >= other_end)) { |
| mem_size = file_size; |
| break; |
| } |
| } |
| } |
| } |
| |
| if (mem_size > SSIZE_MAX - total_size) { |
| ret = ELF_LOAD_TOO_BIG; |
| goto fail; |
| } |
| |
| /* address_offset is hack for kernel images that are |
| linked at the wrong physical address. */ |
| if (translate_fn) { |
| addr = translate_fn(translate_opaque, ph->p_paddr); |
| glue(elf_reloc, SZ)(&ehdr, fd, must_swab, translate_fn, |
| translate_opaque, data, ph, elf_machine); |
| } else { |
| addr = ph->p_paddr; |
| } |
| |
| if (data_swab) { |
| elf_word j; |
| for (j = 0; j < file_size; j += (1 << data_swab)) { |
| uint8_t *dp = data + j; |
| switch (data_swab) { |
| case (1): |
| *(uint16_t *)dp = bswap16(*(uint16_t *)dp); |
| break; |
| case (2): |
| *(uint32_t *)dp = bswap32(*(uint32_t *)dp); |
| break; |
| case (3): |
| *(uint64_t *)dp = bswap64(*(uint64_t *)dp); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| } |
| |
| /* the entry pointer in the ELF header is a virtual |
| * address, if the text segments paddr and vaddr differ |
| * we need to adjust the entry */ |
| if (pentry && !translate_fn && |
| ph->p_vaddr != ph->p_paddr && |
| ehdr.e_entry >= ph->p_vaddr && |
| ehdr.e_entry < ph->p_vaddr + ph->p_filesz && |
| ph->p_flags & PF_X) { |
| *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr; |
| } |
| |
| /* Some ELF files really do have segments of zero size; |
| * just ignore them rather than trying to create empty |
| * ROM blobs, because the zero-length blob can falsely |
| * trigger the overlapping-ROM-blobs check. |
| */ |
| if (mem_size != 0) { |
| if (load_rom) { |
| g_autofree char *label = |
| g_strdup_printf("%s ELF program header segment %d", |
| name, i); |
| |
| /* |
| * rom_add_elf_program() takes its own reference to |
| * 'mapped_file'. |
| */ |
| rom_add_elf_program(label, mapped_file, data, file_size, |
| mem_size, addr, as); |
| } else { |
| MemTxResult res; |
| |
| res = address_space_write(as ? as : &address_space_memory, |
| addr, MEMTXATTRS_UNSPECIFIED, |
| data, file_size); |
| if (res != MEMTX_OK) { |
| goto fail; |
| } |
| /* |
| * We need to zero'ify the space that is not copied |
| * from file |
| */ |
| if (file_size < mem_size) { |
| res = address_space_set(as ? as : &address_space_memory, |
| addr + file_size, 0, |
| mem_size - file_size, |
| MEMTXATTRS_UNSPECIFIED); |
| if (res != MEMTX_OK) { |
| goto fail; |
| } |
| } |
| } |
| } |
| |
| total_size += mem_size; |
| if (addr < low) |
| low = addr; |
| if ((addr + mem_size) > high) |
| high = addr + mem_size; |
| |
| data = NULL; |
| |
| } else if (ph->p_type == PT_NOTE && elf_note_fn) { |
| struct elf_note *nhdr = NULL; |
| |
| file_size = ph->p_filesz; /* Size of the range of ELF notes */ |
| data_offset = ph->p_offset; /* Offset where the notes are located */ |
| |
| if (file_size > 0) { |
| if (g_mapped_file_get_length(mapped_file) < |
| file_size + data_offset) { |
| goto fail; |
| } |
| |
| data = (uint8_t *)g_mapped_file_get_contents(mapped_file); |
| data += data_offset; |
| } |
| |
| /* |
| * Search the ELF notes to find one with a type matching the |
| * value passed in via 'translate_opaque' |
| */ |
| nhdr = (struct elf_note *)data; |
| assert(translate_opaque != NULL); |
| nhdr = glue(get_elf_note_type, SZ)(nhdr, file_size, ph->p_align, |
| *(uint64_t *)translate_opaque); |
| if (nhdr != NULL) { |
| elf_note_fn((void *)nhdr, (void *)&ph->p_align, SZ == 64); |
| } |
| data = NULL; |
| } |
| } |
| |
| if (lowaddr) |
| *lowaddr = (uint64_t)(elf_sword)low; |
| if (highaddr) |
| *highaddr = (uint64_t)(elf_sword)high; |
| ret = total_size; |
| fail: |
| if (mapped_file) { |
| g_mapped_file_unref(mapped_file); |
| } |
| g_free(phdr); |
| return ret; |
| } |