blob: 5221381cc8520130592724e9a9f8fbb807142deb [file] [log] [blame]
/*
* ARM gdb server stub: AArch64 specific functions.
*
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "internals.h"
#include "gdbstub/helpers.h"
#include "gdbstub/commands.h"
#include "tcg/mte_helper.h"
#if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX)
#include <sys/prctl.h>
#include "mte_user_helper.h"
#endif
int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (n < 31) {
/* Core integer register. */
return gdb_get_reg64(mem_buf, env->xregs[n]);
}
switch (n) {
case 31:
return gdb_get_reg64(mem_buf, env->xregs[31]);
case 32:
return gdb_get_reg64(mem_buf, env->pc);
case 33:
return gdb_get_reg32(mem_buf, pstate_read(env));
}
/* Unknown register. */
return 0;
}
int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tmp;
tmp = ldq_p(mem_buf);
if (n < 31) {
/* Core integer register. */
env->xregs[n] = tmp;
return 8;
}
switch (n) {
case 31:
env->xregs[31] = tmp;
return 8;
case 32:
env->pc = tmp;
return 8;
case 33:
/* CPSR */
pstate_write(env, tmp);
return 4;
}
/* Unknown register. */
return 0;
}
int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (reg) {
case 0 ... 31:
{
/* 128 bit FP register - quads are in LE order */
uint64_t *q = aa64_vfp_qreg(env, reg);
return gdb_get_reg128(buf, q[1], q[0]);
}
case 32:
/* FPSR */
return gdb_get_reg32(buf, vfp_get_fpsr(env));
case 33:
/* FPCR */
return gdb_get_reg32(buf, vfp_get_fpcr(env));
default:
return 0;
}
}
int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (reg) {
case 0 ... 31:
/* 128 bit FP register */
{
uint64_t *q = aa64_vfp_qreg(env, reg);
q[0] = ldq_le_p(buf);
q[1] = ldq_le_p(buf + 8);
return 16;
}
case 32:
/* FPSR */
vfp_set_fpsr(env, ldl_p(buf));
return 4;
case 33:
/* FPCR */
vfp_set_fpcr(env, ldl_p(buf));
return 4;
default:
return 0;
}
}
int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (reg) {
/* The first 32 registers are the zregs */
case 0 ... 31:
{
int vq, len = 0;
for (vq = 0; vq < cpu->sve_max_vq; vq++) {
len += gdb_get_reg128(buf,
env->vfp.zregs[reg].d[vq * 2 + 1],
env->vfp.zregs[reg].d[vq * 2]);
}
return len;
}
case 32:
return gdb_get_reg32(buf, vfp_get_fpsr(env));
case 33:
return gdb_get_reg32(buf, vfp_get_fpcr(env));
/* then 16 predicates and the ffr */
case 34 ... 50:
{
int preg = reg - 34;
int vq, len = 0;
for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
}
return len;
}
case 51:
{
/*
* We report in Vector Granules (VG) which is 64bit in a Z reg
* while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
*/
int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
return gdb_get_reg64(buf, vq * 2);
}
default:
/* gdbstub asked for something out our range */
qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
break;
}
return 0;
}
int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* The first 32 registers are the zregs */
switch (reg) {
/* The first 32 registers are the zregs */
case 0 ... 31:
{
int vq, len = 0;
uint64_t *p = (uint64_t *) buf;
for (vq = 0; vq < cpu->sve_max_vq; vq++) {
env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
env->vfp.zregs[reg].d[vq * 2] = *p++;
len += 16;
}
return len;
}
case 32:
vfp_set_fpsr(env, *(uint32_t *)buf);
return 4;
case 33:
vfp_set_fpcr(env, *(uint32_t *)buf);
return 4;
case 34 ... 50:
{
int preg = reg - 34;
int vq, len = 0;
uint64_t *p = (uint64_t *) buf;
for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
env->vfp.pregs[preg].p[vq / 4] = *p++;
len += 8;
}
return len;
}
case 51:
/* cannot set vg via gdbstub */
return 0;
default:
/* gdbstub asked for something out our range */
break;
}
return 0;
}
int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (reg) {
case 0: /* pauth_dmask */
case 1: /* pauth_cmask */
case 2: /* pauth_dmask_high */
case 3: /* pauth_cmask_high */
/*
* Note that older versions of this feature only contained
* pauth_{d,c}mask, for use with Linux user processes, and
* thus exclusively in the low half of the address space.
*
* To support system mode, and to debug kernels, two new regs
* were added to cover the high half of the address space.
* For the purpose of pauth_ptr_mask, we can use any well-formed
* address within the address space half -- here, 0 and -1.
*/
{
bool is_data = !(reg & 1);
bool is_high = reg & 2;
ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env);
ARMVAParameters param;
param = aa64_va_parameters(env, -is_high, mmu_idx, is_data, false);
return gdb_get_reg64(buf, pauth_ptr_mask(param));
}
default:
return 0;
}
}
int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg)
{
/* All pseudo registers are read-only. */
return 0;
}
static void output_vector_union_type(GDBFeatureBuilder *builder, int reg_width,
const char *name)
{
struct TypeSize {
const char *gdb_type;
short size;
char sz, suffix;
};
static const struct TypeSize vec_lanes[] = {
/* quads */
{ "uint128", 128, 'q', 'u' },
{ "int128", 128, 'q', 's' },
/* 64 bit */
{ "ieee_double", 64, 'd', 'f' },
{ "uint64", 64, 'd', 'u' },
{ "int64", 64, 'd', 's' },
/* 32 bit */
{ "ieee_single", 32, 's', 'f' },
{ "uint32", 32, 's', 'u' },
{ "int32", 32, 's', 's' },
/* 16 bit */
{ "ieee_half", 16, 'h', 'f' },
{ "uint16", 16, 'h', 'u' },
{ "int16", 16, 'h', 's' },
/* bytes */
{ "uint8", 8, 'b', 'u' },
{ "int8", 8, 'b', 's' },
};
static const char suf[] = { 'b', 'h', 's', 'd', 'q' };
int i, j;
/* First define types and totals in a whole VL */
for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
gdb_feature_builder_append_tag(
builder, "<vector id=\"%s%c%c\" type=\"%s\" count=\"%d\"/>",
name, vec_lanes[i].sz, vec_lanes[i].suffix,
vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size);
}
/*
* Now define a union for each size group containing unsigned and
* signed and potentially float versions of each size from 128 to
* 8 bits.
*/
for (i = 0; i < ARRAY_SIZE(suf); i++) {
int bits = 8 << i;
gdb_feature_builder_append_tag(builder, "<union id=\"%sn%c\">",
name, suf[i]);
for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
if (vec_lanes[j].size == bits) {
gdb_feature_builder_append_tag(
builder, "<field name=\"%c\" type=\"%s%c%c\"/>",
vec_lanes[j].suffix, name,
vec_lanes[j].sz, vec_lanes[j].suffix);
}
}
gdb_feature_builder_append_tag(builder, "</union>");
}
/* And now the final union of unions */
gdb_feature_builder_append_tag(builder, "<union id=\"%s\">", name);
for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) {
gdb_feature_builder_append_tag(builder,
"<field name=\"%c\" type=\"%sn%c\"/>",
suf[i], name, suf[i]);
}
gdb_feature_builder_append_tag(builder, "</union>");
}
GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cs, int base_reg)
{
ARMCPU *cpu = ARM_CPU(cs);
int reg_width = cpu->sve_max_vq * 128;
int pred_width = cpu->sve_max_vq * 16;
GDBFeatureBuilder builder;
char *name;
int reg = 0;
int i;
gdb_feature_builder_init(&builder, &cpu->dyn_svereg_feature.desc,
"org.gnu.gdb.aarch64.sve", "sve-registers.xml",
base_reg);
/* Create the vector union type. */
output_vector_union_type(&builder, reg_width, "svev");
/* Create the predicate vector type. */
gdb_feature_builder_append_tag(
&builder, "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
pred_width / 8);
/* Define the vector registers. */
for (i = 0; i < 32; i++) {
name = g_strdup_printf("z%d", i);
gdb_feature_builder_append_reg(&builder, name, reg_width, reg++,
"svev", NULL);
}
/* fpscr & status registers */
gdb_feature_builder_append_reg(&builder, "fpsr", 32, reg++,
"int", "float");
gdb_feature_builder_append_reg(&builder, "fpcr", 32, reg++,
"int", "float");
/* Define the predicate registers. */
for (i = 0; i < 16; i++) {
name = g_strdup_printf("p%d", i);
gdb_feature_builder_append_reg(&builder, name, pred_width, reg++,
"svep", NULL);
}
gdb_feature_builder_append_reg(&builder, "ffr", pred_width, reg++,
"svep", "vector");
/* Define the vector length pseudo-register. */
gdb_feature_builder_append_reg(&builder, "vg", 64, reg++, "int", NULL);
gdb_feature_builder_end(&builder);
return &cpu->dyn_svereg_feature.desc;
}
#ifdef CONFIG_USER_ONLY
int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tcf0;
assert(reg == 0);
tcf0 = extract64(env->cp15.sctlr_el[1], 38, 2);
return gdb_get_reg64(buf, tcf0);
}
int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg)
{
#if defined(CONFIG_LINUX)
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint8_t tcf;
assert(reg == 0);
tcf = *buf << PR_MTE_TCF_SHIFT;
if (!tcf) {
return 0;
}
/*
* 'tag_ctl' register is actually a "pseudo-register" provided by GDB to
* expose options regarding the type of MTE fault that can be controlled at
* runtime.
*/
arm_set_mte_tcf0(env, tcf);
return 1;
#else
return 0;
#endif
}
static void handle_q_memtag(GArray *params, void *user_ctx)
{
ARMCPU *cpu = ARM_CPU(user_ctx);
CPUARMState *env = &cpu->env;
uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
int type = gdb_get_cmd_param(params, 2)->val_ul;
uint8_t *tags;
uint8_t addr_tag;
g_autoptr(GString) str_buf = g_string_new(NULL);
/*
* GDB does not query multiple tags for a memory range on remote targets, so
* that's not supported either by gdbstub.
*/
if (len != 1) {
gdb_put_packet("E02");
}
/* GDB never queries a tag different from an allocation tag (type 1). */
if (type != 1) {
gdb_put_packet("E03");
}
/* Note that tags are packed here (2 tags packed in one byte). */
tags = allocation_tag_mem_probe(env, 0, addr, MMU_DATA_LOAD, 8 /* 64-bit */,
MMU_DATA_LOAD, true, 0);
if (!tags) {
/* Address is not in a tagged region. */
gdb_put_packet("E04");
return;
}
/* Unpack tag from byte. */
addr_tag = load_tag1(addr, tags);
g_string_printf(str_buf, "m%.2x", addr_tag);
gdb_put_packet(str_buf->str);
}
static void handle_q_isaddresstagged(GArray *params, void *user_ctx)
{
ARMCPU *cpu = ARM_CPU(user_ctx);
CPUARMState *env = &cpu->env;
uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
uint8_t *tags;
const char *reply;
tags = allocation_tag_mem_probe(env, 0, addr, MMU_DATA_LOAD, 8 /* 64-bit */,
MMU_DATA_LOAD, true, 0);
reply = tags ? "01" : "00";
gdb_put_packet(reply);
}
static void handle_Q_memtag(GArray *params, void *user_ctx)
{
ARMCPU *cpu = ARM_CPU(user_ctx);
CPUARMState *env = &cpu->env;
uint64_t start_addr = gdb_get_cmd_param(params, 0)->val_ull;
uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
int type = gdb_get_cmd_param(params, 2)->val_ul;
char const *new_tags_str = gdb_get_cmd_param(params, 3)->data;
uint64_t end_addr;
int num_new_tags;
uint8_t *tags;
g_autoptr(GByteArray) new_tags = g_byte_array_new();
/*
* Only the allocation tag (i.e. type 1) can be set at the stub side.
*/
if (type != 1) {
gdb_put_packet("E02");
return;
}
end_addr = start_addr + (len - 1); /* 'len' is always >= 1 */
/* Check if request's memory range does not cross page boundaries. */
if ((start_addr ^ end_addr) & TARGET_PAGE_MASK) {
gdb_put_packet("E03");
return;
}
/*
* Get all tags in the page starting from the tag of the start address.
* Note that there are two tags packed into a single byte here.
*/
tags = allocation_tag_mem_probe(env, 0, start_addr, MMU_DATA_STORE,
8 /* 64-bit */, MMU_DATA_STORE, true, 0);
if (!tags) {
/* Address is not in a tagged region. */
gdb_put_packet("E04");
return;
}
/* Convert tags provided by GDB, 2 hex digits per tag. */
num_new_tags = strlen(new_tags_str) / 2;
gdb_hextomem(new_tags, new_tags_str, num_new_tags);
uint64_t address = start_addr;
int new_tag_index = 0;
while (address <= end_addr) {
uint8_t new_tag;
int packed_index;
/*
* Find packed tag index from unpacked tag index. There are two tags
* in one packed index (one tag per nibble).
*/
packed_index = new_tag_index / 2;
new_tag = new_tags->data[new_tag_index % num_new_tags];
store_tag1(address, tags + packed_index, new_tag);
address += TAG_GRANULE;
new_tag_index++;
}
gdb_put_packet("OK");
}
enum Command {
qMemTags,
qIsAddressTagged,
QMemTags,
NUM_CMDS
};
static const GdbCmdParseEntry cmd_handler_table[NUM_CMDS] = {
[qMemTags] = {
.handler = handle_q_memtag,
.cmd_startswith = true,
.cmd = "MemTags:",
.schema = "L,l:l0",
.need_cpu_context = true
},
[qIsAddressTagged] = {
.handler = handle_q_isaddresstagged,
.cmd_startswith = true,
.cmd = "IsAddressTagged:",
.schema = "L0",
.need_cpu_context = true
},
[QMemTags] = {
.handler = handle_Q_memtag,
.cmd_startswith = true,
.cmd = "MemTags:",
.schema = "L,l:l:s0",
.need_cpu_context = true
},
};
#endif /* CONFIG_USER_ONLY */
void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *qsupported,
GPtrArray *qtable, GPtrArray *stable)
{
#ifdef CONFIG_USER_ONLY
/* MTE */
if (cpu_isar_feature(aa64_mte, cpu)) {
g_string_append(qsupported, ";memory-tagging+");
g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qMemTags]);
g_ptr_array_add(qtable, (gpointer) &cmd_handler_table[qIsAddressTagged]);
g_ptr_array_add(stable, (gpointer) &cmd_handler_table[QMemTags]);
}
#endif
}