blob: 8629f0dcde9142fa81f435fc9584c8732c0ff806 [file] [log] [blame]
/*
* qemu bsd user mode definition
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef QEMU_H
#define QEMU_H
#include "cpu.h"
#include "qemu/units.h"
#include "exec/cpu_ldst.h"
#include "exec/exec-all.h"
#include "exec/user/abitypes.h"
extern char **environ;
#include "exec/user/thunk.h"
#include "target_arch.h"
#include "syscall_defs.h"
#include "target_syscall.h"
#include "target_os_vmparam.h"
#include "target_os_signal.h"
#include "target.h"
#include "exec/gdbstub.h"
#include "qemu/clang-tsa.h"
#include "qemu-os.h"
/*
* TODO: Remove these and rely only on qemu_real_host_page_size().
*/
extern uintptr_t qemu_host_page_size;
extern intptr_t qemu_host_page_mask;
#define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
/*
* This struct is used to hold certain information about the image. Basically,
* it replicates in user space what would be certain task_struct fields in the
* kernel
*/
struct image_info {
abi_ulong load_bias;
abi_ulong load_addr;
abi_ulong start_code;
abi_ulong end_code;
abi_ulong start_data;
abi_ulong end_data;
abi_ulong brk;
abi_ulong rss;
abi_ulong start_stack;
abi_ulong entry;
abi_ulong code_offset;
abi_ulong data_offset;
abi_ulong arg_start;
abi_ulong arg_end;
uint32_t elf_flags;
};
struct emulated_sigtable {
int pending; /* true if signal is pending */
target_siginfo_t info;
};
/*
* NOTE: we force a big alignment so that the stack stored after is aligned too
*/
typedef struct TaskState {
pid_t ts_tid; /* tid (or pid) of this task */
struct TaskState *next;
struct bsd_binprm *bprm;
struct image_info *info;
struct emulated_sigtable sync_signal;
/*
* TODO: Since we block all signals while returning to the main CPU
* loop, this needn't be an array
*/
struct emulated_sigtable sigtab[TARGET_NSIG];
/*
* Nonzero if process_pending_signals() needs to do something (either
* handle a pending signal or unblock signals).
* This flag is written from a signal handler so should be accessed via
* the qatomic_read() and qatomic_set() functions. (It is not accessed
* from multiple threads.)
*/
int signal_pending;
/* True if we're leaving a sigsuspend and sigsuspend_mask is valid. */
bool in_sigsuspend;
/*
* This thread's signal mask, as requested by the guest program.
* The actual signal mask of this thread may differ:
* + we don't let SIGSEGV and SIGBUS be blocked while running guest code
* + sometimes we block all signals to avoid races
*/
sigset_t signal_mask;
/*
* The signal mask imposed by a guest sigsuspend syscall, if we are
* currently in the middle of such a syscall
*/
sigset_t sigsuspend_mask;
/* This thread's sigaltstack, if it has one */
struct target_sigaltstack sigaltstack_used;
} __attribute__((aligned(16))) TaskState;
static inline TaskState *get_task_state(CPUState *cs)
{
return cs->opaque;
}
void stop_all_tasks(void);
extern const char *interp_prefix;
extern const char *qemu_uname_release;
/*
* TARGET_ARG_MAX defines the number of bytes allocated for arguments
* and envelope for the new program. 256k should suffice for a reasonable
* maximum env+arg in 32-bit environments, bump it up to 512k for !ILP32
* platforms.
*/
#if TARGET_ABI_BITS > 32
#define TARGET_ARG_MAX (512 * KiB)
#else
#define TARGET_ARG_MAX (256 * KiB)
#endif
#define MAX_ARG_PAGES (TARGET_ARG_MAX / TARGET_PAGE_SIZE)
/*
* This structure is used to hold the arguments that are
* used when loading binaries.
*/
struct bsd_binprm {
char buf[128];
void *page[MAX_ARG_PAGES];
abi_ulong p;
abi_ulong stringp;
int fd;
int e_uid, e_gid;
int argc, envc;
char **argv;
char **envp;
char *filename; /* (Given) Name of binary */
char *fullpath; /* Full path of binary */
int (*core_dump)(int, CPUArchState *);
};
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
abi_ulong stringp);
int loader_exec(const char *filename, char **argv, char **envp,
struct target_pt_regs *regs, struct image_info *infop,
struct bsd_binprm *bprm);
int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
struct image_info *info);
int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs,
struct image_info *info);
int is_target_elf_binary(int fd);
abi_long memcpy_to_target(abi_ulong dest, const void *src,
unsigned long len);
void target_set_brk(abi_ulong new_brk);
abi_long do_brk(abi_ulong new_brk);
void syscall_init(void);
abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6, abi_long arg7,
abi_long arg8);
abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6);
abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6);
void gemu_log(const char *fmt, ...) G_GNUC_PRINTF(1, 2);
extern __thread CPUState *thread_cpu;
void cpu_loop(CPUArchState *env);
char *target_strerror(int err);
int get_osversion(void);
void fork_start(void);
void fork_end(pid_t pid);
#include "qemu/log.h"
/* strace.c */
struct syscallname {
int nr;
const char *name;
const char *format;
void (*call)(const struct syscallname *,
abi_long, abi_long, abi_long,
abi_long, abi_long, abi_long);
void (*result)(const struct syscallname *, abi_long);
};
void
print_freebsd_syscall(int num,
abi_long arg1, abi_long arg2, abi_long arg3,
abi_long arg4, abi_long arg5, abi_long arg6);
void print_freebsd_syscall_ret(int num, abi_long ret);
void
print_netbsd_syscall(int num,
abi_long arg1, abi_long arg2, abi_long arg3,
abi_long arg4, abi_long arg5, abi_long arg6);
void print_netbsd_syscall_ret(int num, abi_long ret);
void
print_openbsd_syscall(int num,
abi_long arg1, abi_long arg2, abi_long arg3,
abi_long arg4, abi_long arg5, abi_long arg6);
void print_openbsd_syscall_ret(int num, abi_long ret);
/**
* print_taken_signal:
* @target_signum: target signal being taken
* @tinfo: target_siginfo_t which will be passed to the guest for the signal
*
* Print strace output indicating that this signal is being taken by the guest,
* in a format similar to:
* --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
*/
void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
extern int do_strace;
/* mmap.c */
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
int flags, int fd, off_t offset);
int target_munmap(abi_ulong start, abi_ulong len);
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
abi_ulong new_size, unsigned long flags,
abi_ulong new_addr);
int target_msync(abi_ulong start, abi_ulong len, int flags);
extern abi_ulong mmap_next_start;
abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size);
void mmap_reserve(abi_ulong start, abi_ulong size);
void TSA_NO_TSA mmap_fork_start(void);
void TSA_NO_TSA mmap_fork_end(int child);
/* main.c */
extern char qemu_proc_pathname[];
extern unsigned long target_maxtsiz;
extern unsigned long target_dfldsiz;
extern unsigned long target_maxdsiz;
extern unsigned long target_dflssiz;
extern unsigned long target_maxssiz;
extern unsigned long target_sgrowsiz;
/* os-syscall.c */
abi_long get_errno(abi_long ret);
bool is_error(abi_long ret);
int host_to_target_errno(int err);
/* os-proc.c */
abi_long freebsd_exec_common(abi_ulong path_or_fd, abi_ulong guest_argp,
abi_ulong guest_envp, int do_fexec);
abi_long do_freebsd_procctl(void *cpu_env, int idtype, abi_ulong arg2,
abi_ulong arg3, abi_ulong arg4, abi_ulong arg5, abi_ulong arg6);
/* os-sys.c */
abi_long do_freebsd_sysctl(CPUArchState *env, abi_ulong namep, int32_t namelen,
abi_ulong oldp, abi_ulong oldlenp, abi_ulong newp, abi_ulong newlen);
abi_long do_freebsd_sysctlbyname(CPUArchState *env, abi_ulong namep,
int32_t namelen, abi_ulong oldp, abi_ulong oldlenp, abi_ulong newp,
abi_ulong newlen);
abi_long do_freebsd_sysarch(void *cpu_env, abi_long arg1, abi_long arg2);
/* user access */
#define VERIFY_READ PAGE_READ
#define VERIFY_WRITE (PAGE_READ | PAGE_WRITE)
static inline bool access_ok(int type, abi_ulong addr, abi_ulong size)
{
return page_check_range((target_ulong)addr, size, type);
}
/*
* NOTE __get_user and __put_user use host pointers and don't check access.
*
* These are usually used to access struct data members once the struct has been
* locked - usually with lock_user_struct().
*/
/*
* Tricky points:
* - Use __builtin_choose_expr to avoid type promotion from ?:,
* - Invalid sizes result in a compile time error stemming from
* the fact that abort has no parameters.
* - It's easier to use the endian-specific unaligned load/store
* functions than host-endian unaligned load/store plus tswapN.
* - The pragmas are necessary only to silence a clang false-positive
* warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
* - gcc has bugs in its _Pragma() support in some versions, eg
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
* include the warning-suppression pragmas for clang
*/
#if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
#define PRAGMA_DISABLE_PACKED_WARNING \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
#define PRAGMA_REENABLE_PACKED_WARNING \
_Pragma("GCC diagnostic pop")
#else
#define PRAGMA_DISABLE_PACKED_WARNING
#define PRAGMA_REENABLE_PACKED_WARNING
#endif
#define __put_user_e(x, hptr, e) \
do { \
PRAGMA_DISABLE_PACKED_WARNING; \
(__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
((hptr), (x)), (void)0); \
PRAGMA_REENABLE_PACKED_WARNING; \
} while (0)
#define __get_user_e(x, hptr, e) \
do { \
PRAGMA_DISABLE_PACKED_WARNING; \
((x) = (typeof(*hptr))( \
__builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
__builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
(hptr)), (void)0); \
PRAGMA_REENABLE_PACKED_WARNING; \
} while (0)
#if TARGET_BIG_ENDIAN
# define __put_user(x, hptr) __put_user_e(x, hptr, be)
# define __get_user(x, hptr) __get_user_e(x, hptr, be)
#else
# define __put_user(x, hptr) __put_user_e(x, hptr, le)
# define __get_user(x, hptr) __get_user_e(x, hptr, le)
#endif
/*
* put_user()/get_user() take a guest address and check access
*
* These are usually used to access an atomic data type, such as an int, that
* has been passed by address. These internally perform locking and unlocking
* on the data type.
*/
#define put_user(x, gaddr, target_type) \
({ \
abi_ulong __gaddr = (gaddr); \
target_type *__hptr; \
abi_long __ret = 0; \
__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \
if (__hptr) { \
__put_user((x), __hptr); \
unlock_user(__hptr, __gaddr, sizeof(target_type)); \
} else \
__ret = -TARGET_EFAULT; \
__ret; \
})
#define get_user(x, gaddr, target_type) \
({ \
abi_ulong __gaddr = (gaddr); \
target_type *__hptr; \
abi_long __ret = 0; \
__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \
if (__hptr) { \
__get_user((x), __hptr); \
unlock_user(__hptr, __gaddr, 0); \
} else { \
(x) = 0; \
__ret = -TARGET_EFAULT; \
} \
__ret; \
})
#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
#define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
#define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
#define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
#define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
/*
* copy_from_user() and copy_to_user() are usually used to copy data
* buffers between the target and host. These internally perform
* locking/unlocking of the memory.
*/
abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
/*
* Functions for accessing guest memory. The tget and tput functions
* read/write single values, byteswapping as necessary. The lock_user function
* gets a pointer to a contiguous area of guest memory, but does not perform
* any byteswapping. lock_user may return either a pointer to the guest
* memory, or a temporary buffer.
*/
/*
* Lock an area of guest memory into the host. If copy is true then the
* host area will have the same contents as the guest.
*/
static inline void *lock_user(int type, abi_ulong guest_addr, long len,
int copy)
{
if (!access_ok(type, guest_addr, len)) {
return NULL;
}
#ifdef CONFIG_DEBUG_REMAP
{
void *addr;
addr = g_malloc(len);
if (copy) {
memcpy(addr, g2h_untagged(guest_addr), len);
} else {
memset(addr, 0, len);
}
return addr;
}
#else
return g2h_untagged(guest_addr);
#endif
}
/*
* Unlock an area of guest memory. The first LEN bytes must be flushed back to
* guest memory. host_ptr = NULL is explicitly allowed and does nothing.
*/
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
long len)
{
#ifdef CONFIG_DEBUG_REMAP
if (!host_ptr) {
return;
}
if (host_ptr == g2h_untagged(guest_addr)) {
return;
}
if (len > 0) {
memcpy(g2h_untagged(guest_addr), host_ptr, len);
}
g_free(host_ptr);
#endif
}
/*
* Return the length of a string in target memory or -TARGET_EFAULT if access
* error.
*/
abi_long target_strlen(abi_ulong gaddr);
/* Like lock_user but for null terminated strings. */
static inline void *lock_user_string(abi_ulong guest_addr)
{
abi_long len;
len = target_strlen(guest_addr);
if (len < 0) {
return NULL;
}
return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
}
/* Helper macros for locking/unlocking a target struct. */
#define lock_user_struct(type, host_ptr, guest_addr, copy) \
(host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
#define unlock_user_struct(host_ptr, guest_addr, copy) \
unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
static inline uint64_t target_arg64(uint32_t word0, uint32_t word1)
{
#if TARGET_ABI_BITS == 32
#if TARGET_BIG_ENDIAN
return ((uint64_t)word0 << 32) | word1;
#else
return ((uint64_t)word1 << 32) | word0;
#endif
#else /* TARGET_ABI_BITS != 32 */
return word0;
#endif /* TARGET_ABI_BITS != 32 */
}
#include <pthread.h>
#include "user/safe-syscall.h"
#endif /* QEMU_H */