|  | /* | 
|  | * Virtio MEM device | 
|  | * | 
|  | * Copyright (C) 2020 Red Hat, Inc. | 
|  | * | 
|  | * Authors: | 
|  | *  David Hildenbrand <david@redhat.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2. | 
|  | * See the COPYING file in the top-level directory. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/iov.h" | 
|  | #include "qemu/cutils.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "qemu/units.h" | 
|  | #include "sysemu/numa.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "sysemu/reset.h" | 
|  | #include "sysemu/runstate.h" | 
|  | #include "hw/virtio/virtio.h" | 
|  | #include "hw/virtio/virtio-bus.h" | 
|  | #include "hw/virtio/virtio-mem.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qapi/visitor.h" | 
|  | #include "exec/ram_addr.h" | 
|  | #include "migration/misc.h" | 
|  | #include "hw/boards.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include CONFIG_DEVICES | 
|  | #include "trace.h" | 
|  |  | 
|  | static const VMStateDescription vmstate_virtio_mem_device_early; | 
|  |  | 
|  | /* | 
|  | * We only had legacy x86 guests that did not support | 
|  | * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests. | 
|  | */ | 
|  | #if defined(TARGET_X86_64) || defined(TARGET_I386) | 
|  | #define VIRTIO_MEM_HAS_LEGACY_GUESTS | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking | 
|  | * bitmap small. | 
|  | */ | 
|  | #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB)) | 
|  |  | 
|  | static uint32_t virtio_mem_default_thp_size(void) | 
|  | { | 
|  | uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; | 
|  |  | 
|  | #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__) | 
|  | default_thp_size = 2 * MiB; | 
|  | #elif defined(__aarch64__) | 
|  | if (qemu_real_host_page_size() == 4 * KiB) { | 
|  | default_thp_size = 2 * MiB; | 
|  | } else if (qemu_real_host_page_size() == 16 * KiB) { | 
|  | default_thp_size = 32 * MiB; | 
|  | } else if (qemu_real_host_page_size() == 64 * KiB) { | 
|  | default_thp_size = 512 * MiB; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return default_thp_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The minimum memslot size depends on this setting ("sane default"), the | 
|  | * device block size, and the memory backend page size. The last (or single) | 
|  | * memslot might be smaller than this constant. | 
|  | */ | 
|  | #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB) | 
|  |  | 
|  | /* | 
|  | * We want to have a reasonable default block size such that | 
|  | * 1. We avoid splitting THPs when unplugging memory, which degrades | 
|  | *    performance. | 
|  | * 2. We avoid placing THPs for plugged blocks that also cover unplugged | 
|  | *    blocks. | 
|  | * | 
|  | * The actual THP size might differ between Linux kernels, so we try to probe | 
|  | * it. In the future (if we ever run into issues regarding 2.), we might want | 
|  | * to disable THP in case we fail to properly probe the THP size, or if the | 
|  | * block size is configured smaller than the THP size. | 
|  | */ | 
|  | static uint32_t thp_size; | 
|  |  | 
|  | #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size" | 
|  | static uint32_t virtio_mem_thp_size(void) | 
|  | { | 
|  | gchar *content = NULL; | 
|  | const char *endptr; | 
|  | uint64_t tmp; | 
|  |  | 
|  | if (thp_size) { | 
|  | return thp_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to probe the actual THP size, fallback to (sane but eventually | 
|  | * incorrect) default sizes. | 
|  | */ | 
|  | if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) && | 
|  | !qemu_strtou64(content, &endptr, 0, &tmp) && | 
|  | (!endptr || *endptr == '\n')) { | 
|  | /* Sanity-check the value and fallback to something reasonable. */ | 
|  | if (!tmp || !is_power_of_2(tmp)) { | 
|  | warn_report("Read unsupported THP size: %" PRIx64, tmp); | 
|  | } else { | 
|  | thp_size = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!thp_size) { | 
|  | thp_size = virtio_mem_default_thp_size(); | 
|  | warn_report("Could not detect THP size, falling back to %" PRIx64 | 
|  | "  MiB.", thp_size / MiB); | 
|  | } | 
|  |  | 
|  | g_free(content); | 
|  | return thp_size; | 
|  | } | 
|  |  | 
|  | static uint64_t virtio_mem_default_block_size(RAMBlock *rb) | 
|  | { | 
|  | const uint64_t page_size = qemu_ram_pagesize(rb); | 
|  |  | 
|  | /* We can have hugetlbfs with a page size smaller than the THP size. */ | 
|  | if (page_size == qemu_real_host_page_size()) { | 
|  | return MAX(page_size, virtio_mem_thp_size()); | 
|  | } | 
|  | return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) | 
|  | static bool virtio_mem_has_shared_zeropage(RAMBlock *rb) | 
|  | { | 
|  | /* | 
|  | * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE | 
|  | * anonymous RAM. In any other case, reading unplugged *can* populate a | 
|  | * fresh page, consuming actual memory. | 
|  | */ | 
|  | return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 && | 
|  | qemu_ram_pagesize(rb) == qemu_real_host_page_size(); | 
|  | } | 
|  | #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ | 
|  |  | 
|  | /* | 
|  | * Size the usable region bigger than the requested size if possible. Esp. | 
|  | * Linux guests will only add (aligned) memory blocks in case they fully | 
|  | * fit into the usable region, but plug+online only a subset of the pages. | 
|  | * The memory block size corresponds mostly to the section size. | 
|  | * | 
|  | * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and | 
|  | * a section size of 512MB on arm64 (as long as the start address is properly | 
|  | * aligned, similar to ordinary DIMMs). | 
|  | * | 
|  | * We can change this at any time and maybe even make it configurable if | 
|  | * necessary (as the section size can change). But it's more likely that the | 
|  | * section size will rather get smaller and not bigger over time. | 
|  | */ | 
|  | #if defined(TARGET_X86_64) || defined(TARGET_I386) | 
|  | #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB)) | 
|  | #elif defined(TARGET_ARM) | 
|  | #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB)) | 
|  | #else | 
|  | #error VIRTIO_MEM_USABLE_EXTENT not defined | 
|  | #endif | 
|  |  | 
|  | static bool virtio_mem_is_busy(void) | 
|  | { | 
|  | /* | 
|  | * Postcopy cannot handle concurrent discards and we don't want to migrate | 
|  | * pages on-demand with stale content when plugging new blocks. | 
|  | * | 
|  | * For precopy, we don't want unplugged blocks in our migration stream, and | 
|  | * when plugging new blocks, the page content might differ between source | 
|  | * and destination (observable by the guest when not initializing pages | 
|  | * after plugging them) until we're running on the destination (as we didn't | 
|  | * migrate these blocks when they were unplugged). | 
|  | */ | 
|  | return migration_in_incoming_postcopy() || !migration_is_idle(); | 
|  | } | 
|  |  | 
|  | typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg, | 
|  | uint64_t offset, uint64_t size); | 
|  |  | 
|  | static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg, | 
|  | virtio_mem_range_cb cb) | 
|  | { | 
|  | unsigned long first_zero_bit, last_zero_bit; | 
|  | uint64_t offset, size; | 
|  | int ret = 0; | 
|  |  | 
|  | first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size); | 
|  | while (first_zero_bit < vmem->bitmap_size) { | 
|  | offset = first_zero_bit * vmem->block_size; | 
|  | last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, | 
|  | first_zero_bit + 1) - 1; | 
|  | size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size; | 
|  |  | 
|  | ret = cb(vmem, arg, offset, size); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  | first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, | 
|  | last_zero_bit + 2); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg, | 
|  | virtio_mem_range_cb cb) | 
|  | { | 
|  | unsigned long first_bit, last_bit; | 
|  | uint64_t offset, size; | 
|  | int ret = 0; | 
|  |  | 
|  | first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size); | 
|  | while (first_bit < vmem->bitmap_size) { | 
|  | offset = first_bit * vmem->block_size; | 
|  | last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, | 
|  | first_bit + 1) - 1; | 
|  | size = (last_bit - first_bit + 1) * vmem->block_size; | 
|  |  | 
|  | ret = cb(vmem, arg, offset, size); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  | first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, | 
|  | last_bit + 2); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adjust the memory section to cover the intersection with the given range. | 
|  | * | 
|  | * Returns false if the intersection is empty, otherwise returns true. | 
|  | */ | 
|  | static bool virtio_mem_intersect_memory_section(MemoryRegionSection *s, | 
|  | uint64_t offset, uint64_t size) | 
|  | { | 
|  | uint64_t start = MAX(s->offset_within_region, offset); | 
|  | uint64_t end = MIN(s->offset_within_region + int128_get64(s->size), | 
|  | offset + size); | 
|  |  | 
|  | if (end <= start) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | s->offset_within_address_space += start - s->offset_within_region; | 
|  | s->offset_within_region = start; | 
|  | s->size = int128_make64(end - start); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg); | 
|  |  | 
|  | static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem, | 
|  | MemoryRegionSection *s, | 
|  | void *arg, | 
|  | virtio_mem_section_cb cb) | 
|  | { | 
|  | unsigned long first_bit, last_bit; | 
|  | uint64_t offset, size; | 
|  | int ret = 0; | 
|  |  | 
|  | first_bit = s->offset_within_region / vmem->block_size; | 
|  | first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit); | 
|  | while (first_bit < vmem->bitmap_size) { | 
|  | MemoryRegionSection tmp = *s; | 
|  |  | 
|  | offset = first_bit * vmem->block_size; | 
|  | last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, | 
|  | first_bit + 1) - 1; | 
|  | size = (last_bit - first_bit + 1) * vmem->block_size; | 
|  |  | 
|  | if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { | 
|  | break; | 
|  | } | 
|  | ret = cb(&tmp, arg); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  | first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, | 
|  | last_bit + 2); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem, | 
|  | MemoryRegionSection *s, | 
|  | void *arg, | 
|  | virtio_mem_section_cb cb) | 
|  | { | 
|  | unsigned long first_bit, last_bit; | 
|  | uint64_t offset, size; | 
|  | int ret = 0; | 
|  |  | 
|  | first_bit = s->offset_within_region / vmem->block_size; | 
|  | first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit); | 
|  | while (first_bit < vmem->bitmap_size) { | 
|  | MemoryRegionSection tmp = *s; | 
|  |  | 
|  | offset = first_bit * vmem->block_size; | 
|  | last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, | 
|  | first_bit + 1) - 1; | 
|  | size = (last_bit - first_bit + 1) * vmem->block_size; | 
|  |  | 
|  | if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { | 
|  | break; | 
|  | } | 
|  | ret = cb(&tmp, arg); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  | first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, | 
|  | last_bit + 2); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg) | 
|  | { | 
|  | RamDiscardListener *rdl = arg; | 
|  |  | 
|  | return rdl->notify_populate(rdl, s); | 
|  | } | 
|  |  | 
|  | static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg) | 
|  | { | 
|  | RamDiscardListener *rdl = arg; | 
|  |  | 
|  | rdl->notify_discard(rdl, s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset, | 
|  | uint64_t size) | 
|  | { | 
|  | RamDiscardListener *rdl; | 
|  |  | 
|  | QLIST_FOREACH(rdl, &vmem->rdl_list, next) { | 
|  | MemoryRegionSection tmp = *rdl->section; | 
|  |  | 
|  | if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { | 
|  | continue; | 
|  | } | 
|  | rdl->notify_discard(rdl, &tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset, | 
|  | uint64_t size) | 
|  | { | 
|  | RamDiscardListener *rdl, *rdl2; | 
|  | int ret = 0; | 
|  |  | 
|  | QLIST_FOREACH(rdl, &vmem->rdl_list, next) { | 
|  | MemoryRegionSection tmp = *rdl->section; | 
|  |  | 
|  | if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { | 
|  | continue; | 
|  | } | 
|  | ret = rdl->notify_populate(rdl, &tmp); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | /* Notify all already-notified listeners. */ | 
|  | QLIST_FOREACH(rdl2, &vmem->rdl_list, next) { | 
|  | MemoryRegionSection tmp = *rdl2->section; | 
|  |  | 
|  | if (rdl2 == rdl) { | 
|  | break; | 
|  | } | 
|  | if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { | 
|  | continue; | 
|  | } | 
|  | rdl2->notify_discard(rdl2, &tmp); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem) | 
|  | { | 
|  | RamDiscardListener *rdl; | 
|  |  | 
|  | if (!vmem->size) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | QLIST_FOREACH(rdl, &vmem->rdl_list, next) { | 
|  | if (rdl->double_discard_supported) { | 
|  | rdl->notify_discard(rdl, rdl->section); | 
|  | } else { | 
|  | virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, | 
|  | virtio_mem_notify_discard_cb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem, | 
|  | uint64_t start_gpa, uint64_t size) | 
|  | { | 
|  | const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; | 
|  | const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; | 
|  | unsigned long found_bit; | 
|  |  | 
|  | /* We fake a shorter bitmap to avoid searching too far. */ | 
|  | found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit); | 
|  | return found_bit > last_bit; | 
|  | } | 
|  |  | 
|  | static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem, | 
|  | uint64_t start_gpa, uint64_t size) | 
|  | { | 
|  | const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; | 
|  | const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; | 
|  | unsigned long found_bit; | 
|  |  | 
|  | /* We fake a shorter bitmap to avoid searching too far. */ | 
|  | found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit); | 
|  | return found_bit > last_bit; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa, | 
|  | uint64_t size) | 
|  | { | 
|  | const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; | 
|  | const unsigned long nbits = size / vmem->block_size; | 
|  |  | 
|  | bitmap_set(vmem->bitmap, bit, nbits); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa, | 
|  | uint64_t size) | 
|  | { | 
|  | const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; | 
|  | const unsigned long nbits = size / vmem->block_size; | 
|  |  | 
|  | bitmap_clear(vmem->bitmap, bit, nbits); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem, | 
|  | struct virtio_mem_resp *resp) | 
|  | { | 
|  | VirtIODevice *vdev = VIRTIO_DEVICE(vmem); | 
|  | VirtQueue *vq = vmem->vq; | 
|  |  | 
|  | trace_virtio_mem_send_response(le16_to_cpu(resp->type)); | 
|  | iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp)); | 
|  |  | 
|  | virtqueue_push(vq, elem, sizeof(*resp)); | 
|  | virtio_notify(vdev, vq); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_send_response_simple(VirtIOMEM *vmem, | 
|  | VirtQueueElement *elem, | 
|  | uint16_t type) | 
|  | { | 
|  | struct virtio_mem_resp resp = { | 
|  | .type = cpu_to_le16(type), | 
|  | }; | 
|  |  | 
|  | virtio_mem_send_response(vmem, elem, &resp); | 
|  | } | 
|  |  | 
|  | static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa, | 
|  | uint64_t size) | 
|  | { | 
|  | if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) { | 
|  | return false; | 
|  | } | 
|  | if (gpa + size < gpa || !size) { | 
|  | return false; | 
|  | } | 
|  | if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) { | 
|  | return false; | 
|  | } | 
|  | if (gpa + size > vmem->addr + vmem->usable_region_size) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx) | 
|  | { | 
|  | const uint64_t memslot_offset = idx * vmem->memslot_size; | 
|  |  | 
|  | assert(vmem->memslots); | 
|  |  | 
|  | /* | 
|  | * Instead of enabling/disabling memslots, we add/remove them. This should | 
|  | * make address space updates faster, because we don't have to loop over | 
|  | * many disabled subregions. | 
|  | */ | 
|  | if (memory_region_is_mapped(&vmem->memslots[idx])) { | 
|  | return; | 
|  | } | 
|  | memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx) | 
|  | { | 
|  | assert(vmem->memslots); | 
|  |  | 
|  | if (!memory_region_is_mapped(&vmem->memslots[idx])) { | 
|  | return; | 
|  | } | 
|  | memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem, | 
|  | uint64_t offset, uint64_t size) | 
|  | { | 
|  | const unsigned int start_idx = offset / vmem->memslot_size; | 
|  | const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / | 
|  | vmem->memslot_size; | 
|  | unsigned int idx; | 
|  |  | 
|  | assert(vmem->dynamic_memslots); | 
|  |  | 
|  | /* Activate all involved memslots in a single transaction. */ | 
|  | memory_region_transaction_begin(); | 
|  | for (idx = start_idx; idx < end_idx; idx++) { | 
|  | virtio_mem_activate_memslot(vmem, idx); | 
|  | } | 
|  | memory_region_transaction_commit(); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem, | 
|  | uint64_t offset, | 
|  | uint64_t size) | 
|  | { | 
|  | const uint64_t region_size = memory_region_size(&vmem->memdev->mr); | 
|  | const unsigned int start_idx = offset / vmem->memslot_size; | 
|  | const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / | 
|  | vmem->memslot_size; | 
|  | unsigned int idx; | 
|  |  | 
|  | assert(vmem->dynamic_memslots); | 
|  |  | 
|  | /* Deactivate all memslots with unplugged blocks in a single transaction. */ | 
|  | memory_region_transaction_begin(); | 
|  | for (idx = start_idx; idx < end_idx; idx++) { | 
|  | const uint64_t memslot_offset = idx * vmem->memslot_size; | 
|  | uint64_t memslot_size = vmem->memslot_size; | 
|  |  | 
|  | /* The size of the last memslot might be smaller. */ | 
|  | if (idx == vmem->nb_memslots - 1) { | 
|  | memslot_size = region_size - memslot_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Partially covered memslots might still have some blocks plugged and | 
|  | * have to remain active if that's the case. | 
|  | */ | 
|  | if (offset > memslot_offset || | 
|  | offset + size < memslot_offset + memslot_size) { | 
|  | const uint64_t gpa = vmem->addr + memslot_offset; | 
|  |  | 
|  | if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | virtio_mem_deactivate_memslot(vmem, idx); | 
|  | } | 
|  | memory_region_transaction_commit(); | 
|  | } | 
|  |  | 
|  | static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa, | 
|  | uint64_t size, bool plug) | 
|  | { | 
|  | const uint64_t offset = start_gpa - vmem->addr; | 
|  | RAMBlock *rb = vmem->memdev->mr.ram_block; | 
|  | int ret = 0; | 
|  |  | 
|  | if (virtio_mem_is_busy()) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | if (!plug) { | 
|  | if (ram_block_discard_range(rb, offset, size)) { | 
|  | return -EBUSY; | 
|  | } | 
|  | virtio_mem_notify_unplug(vmem, offset, size); | 
|  | virtio_mem_set_range_unplugged(vmem, start_gpa, size); | 
|  | /* Deactivate completely unplugged memslots after updating the state. */ | 
|  | if (vmem->dynamic_memslots) { | 
|  | virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (vmem->prealloc) { | 
|  | void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; | 
|  | int fd = memory_region_get_fd(&vmem->memdev->mr); | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { | 
|  | static bool warned; | 
|  |  | 
|  | /* | 
|  | * Warn only once, we don't want to fill the log with these | 
|  | * warnings. | 
|  | */ | 
|  | if (!warned) { | 
|  | warn_report_err(local_err); | 
|  | warned = true; | 
|  | } else { | 
|  | error_free(local_err); | 
|  | } | 
|  | ret = -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | /* | 
|  | * Activate before notifying and rollback in case of any errors. | 
|  | * | 
|  | * When activating a yet inactive memslot, memory notifiers will get | 
|  | * notified about the added memory region and can register with the | 
|  | * RamDiscardManager; this will traverse all plugged blocks and skip the | 
|  | * blocks we are plugging here. The following notification will inform | 
|  | * registered listeners about the blocks we're plugging. | 
|  | */ | 
|  | if (vmem->dynamic_memslots) { | 
|  | virtio_mem_activate_memslots_to_plug(vmem, offset, size); | 
|  | } | 
|  | ret = virtio_mem_notify_plug(vmem, offset, size); | 
|  | if (ret && vmem->dynamic_memslots) { | 
|  | virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); | 
|  | } | 
|  | } | 
|  | if (ret) { | 
|  | /* Could be preallocation or a notifier populated memory. */ | 
|  | ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | virtio_mem_set_range_plugged(vmem, start_gpa, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa, | 
|  | uint16_t nb_blocks, bool plug) | 
|  | { | 
|  | const uint64_t size = nb_blocks * vmem->block_size; | 
|  | int ret; | 
|  |  | 
|  | if (!virtio_mem_valid_range(vmem, gpa, size)) { | 
|  | return VIRTIO_MEM_RESP_ERROR; | 
|  | } | 
|  |  | 
|  | if (plug && (vmem->size + size > vmem->requested_size)) { | 
|  | return VIRTIO_MEM_RESP_NACK; | 
|  | } | 
|  |  | 
|  | /* test if really all blocks are in the opposite state */ | 
|  | if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) || | 
|  | (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) { | 
|  | return VIRTIO_MEM_RESP_ERROR; | 
|  | } | 
|  |  | 
|  | ret = virtio_mem_set_block_state(vmem, gpa, size, plug); | 
|  | if (ret) { | 
|  | return VIRTIO_MEM_RESP_BUSY; | 
|  | } | 
|  | if (plug) { | 
|  | vmem->size += size; | 
|  | } else { | 
|  | vmem->size -= size; | 
|  | } | 
|  | notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); | 
|  | return VIRTIO_MEM_RESP_ACK; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem, | 
|  | struct virtio_mem_req *req) | 
|  | { | 
|  | const uint64_t gpa = le64_to_cpu(req->u.plug.addr); | 
|  | const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks); | 
|  | uint16_t type; | 
|  |  | 
|  | trace_virtio_mem_plug_request(gpa, nb_blocks); | 
|  | type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true); | 
|  | virtio_mem_send_response_simple(vmem, elem, type); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem, | 
|  | struct virtio_mem_req *req) | 
|  | { | 
|  | const uint64_t gpa = le64_to_cpu(req->u.unplug.addr); | 
|  | const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks); | 
|  | uint16_t type; | 
|  |  | 
|  | trace_virtio_mem_unplug_request(gpa, nb_blocks); | 
|  | type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false); | 
|  | virtio_mem_send_response_simple(vmem, elem, type); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_resize_usable_region(VirtIOMEM *vmem, | 
|  | uint64_t requested_size, | 
|  | bool can_shrink) | 
|  | { | 
|  | uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr), | 
|  | requested_size + VIRTIO_MEM_USABLE_EXTENT); | 
|  |  | 
|  | /* The usable region size always has to be multiples of the block size. */ | 
|  | newsize = QEMU_ALIGN_UP(newsize, vmem->block_size); | 
|  |  | 
|  | if (!requested_size) { | 
|  | newsize = 0; | 
|  | } | 
|  |  | 
|  | if (newsize < vmem->usable_region_size && !can_shrink) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize); | 
|  | vmem->usable_region_size = newsize; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_unplug_all(VirtIOMEM *vmem) | 
|  | { | 
|  | const uint64_t region_size = memory_region_size(&vmem->memdev->mr); | 
|  | RAMBlock *rb = vmem->memdev->mr.ram_block; | 
|  |  | 
|  | if (vmem->size) { | 
|  | if (virtio_mem_is_busy()) { | 
|  | return -EBUSY; | 
|  | } | 
|  | if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { | 
|  | return -EBUSY; | 
|  | } | 
|  | virtio_mem_notify_unplug_all(vmem); | 
|  |  | 
|  | bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size); | 
|  | vmem->size = 0; | 
|  | notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); | 
|  |  | 
|  | /* Deactivate all memslots after updating the state. */ | 
|  | if (vmem->dynamic_memslots) { | 
|  | virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_virtio_mem_unplugged_all(); | 
|  | virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_unplug_all_request(VirtIOMEM *vmem, | 
|  | VirtQueueElement *elem) | 
|  | { | 
|  | trace_virtio_mem_unplug_all_request(); | 
|  | if (virtio_mem_unplug_all(vmem)) { | 
|  | virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY); | 
|  | } else { | 
|  | virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem, | 
|  | struct virtio_mem_req *req) | 
|  | { | 
|  | const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks); | 
|  | const uint64_t gpa = le64_to_cpu(req->u.state.addr); | 
|  | const uint64_t size = nb_blocks * vmem->block_size; | 
|  | struct virtio_mem_resp resp = { | 
|  | .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK), | 
|  | }; | 
|  |  | 
|  | trace_virtio_mem_state_request(gpa, nb_blocks); | 
|  | if (!virtio_mem_valid_range(vmem, gpa, size)) { | 
|  | virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (virtio_mem_is_range_plugged(vmem, gpa, size)) { | 
|  | resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED); | 
|  | } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) { | 
|  | resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED); | 
|  | } else { | 
|  | resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED); | 
|  | } | 
|  | trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state)); | 
|  | virtio_mem_send_response(vmem, elem, &resp); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq) | 
|  | { | 
|  | const int len = sizeof(struct virtio_mem_req); | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(vdev); | 
|  | VirtQueueElement *elem; | 
|  | struct virtio_mem_req req; | 
|  | uint16_t type; | 
|  |  | 
|  | while (true) { | 
|  | elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); | 
|  | if (!elem) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) { | 
|  | virtio_error(vdev, "virtio-mem protocol violation: invalid request" | 
|  | " size: %d", len); | 
|  | virtqueue_detach_element(vq, elem, 0); | 
|  | g_free(elem); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (iov_size(elem->in_sg, elem->in_num) < | 
|  | sizeof(struct virtio_mem_resp)) { | 
|  | virtio_error(vdev, "virtio-mem protocol violation: not enough space" | 
|  | " for response: %zu", | 
|  | iov_size(elem->in_sg, elem->in_num)); | 
|  | virtqueue_detach_element(vq, elem, 0); | 
|  | g_free(elem); | 
|  | return; | 
|  | } | 
|  |  | 
|  | type = le16_to_cpu(req.type); | 
|  | switch (type) { | 
|  | case VIRTIO_MEM_REQ_PLUG: | 
|  | virtio_mem_plug_request(vmem, elem, &req); | 
|  | break; | 
|  | case VIRTIO_MEM_REQ_UNPLUG: | 
|  | virtio_mem_unplug_request(vmem, elem, &req); | 
|  | break; | 
|  | case VIRTIO_MEM_REQ_UNPLUG_ALL: | 
|  | virtio_mem_unplug_all_request(vmem, elem); | 
|  | break; | 
|  | case VIRTIO_MEM_REQ_STATE: | 
|  | virtio_mem_state_request(vmem, elem, &req); | 
|  | break; | 
|  | default: | 
|  | virtio_error(vdev, "virtio-mem protocol violation: unknown request" | 
|  | " type: %d", type); | 
|  | virtqueue_detach_element(vq, elem, 0); | 
|  | g_free(elem); | 
|  | return; | 
|  | } | 
|  |  | 
|  | g_free(elem); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(vdev); | 
|  | struct virtio_mem_config *config = (void *) config_data; | 
|  |  | 
|  | config->block_size = cpu_to_le64(vmem->block_size); | 
|  | config->node_id = cpu_to_le16(vmem->node); | 
|  | config->requested_size = cpu_to_le64(vmem->requested_size); | 
|  | config->plugged_size = cpu_to_le64(vmem->size); | 
|  | config->addr = cpu_to_le64(vmem->addr); | 
|  | config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr)); | 
|  | config->usable_region_size = cpu_to_le64(vmem->usable_region_size); | 
|  | } | 
|  |  | 
|  | static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features, | 
|  | Error **errp) | 
|  | { | 
|  | MachineState *ms = MACHINE(qdev_get_machine()); | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(vdev); | 
|  |  | 
|  | if (ms->numa_state) { | 
|  | #if defined(CONFIG_ACPI) | 
|  | virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM); | 
|  | #endif | 
|  | } | 
|  | assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO); | 
|  | if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) { | 
|  | virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE); | 
|  | } | 
|  | return features; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_validate_features(VirtIODevice *vdev) | 
|  | { | 
|  | if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) && | 
|  | !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) { | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_system_reset(void *opaque) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(opaque); | 
|  |  | 
|  | /* | 
|  | * During usual resets, we will unplug all memory and shrink the usable | 
|  | * region size. This is, however, not possible in all scenarios. Then, | 
|  | * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL). | 
|  | */ | 
|  | virtio_mem_unplug_all(vmem); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_prepare_mr(VirtIOMEM *vmem) | 
|  | { | 
|  | const uint64_t region_size = memory_region_size(&vmem->memdev->mr); | 
|  |  | 
|  | assert(!vmem->mr && vmem->dynamic_memslots); | 
|  | vmem->mr = g_new0(MemoryRegion, 1); | 
|  | memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem", | 
|  | region_size); | 
|  | vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_prepare_memslots(VirtIOMEM *vmem) | 
|  | { | 
|  | const uint64_t region_size = memory_region_size(&vmem->memdev->mr); | 
|  | unsigned int idx; | 
|  |  | 
|  | g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots); | 
|  | vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots); | 
|  |  | 
|  | /* Initialize our memslots, but don't map them yet. */ | 
|  | for (idx = 0; idx < vmem->nb_memslots; idx++) { | 
|  | const uint64_t memslot_offset = idx * vmem->memslot_size; | 
|  | uint64_t memslot_size = vmem->memslot_size; | 
|  | char name[20]; | 
|  |  | 
|  | /* The size of the last memslot might be smaller. */ | 
|  | if (idx == vmem->nb_memslots - 1) { | 
|  | memslot_size = region_size - memslot_offset; | 
|  | } | 
|  |  | 
|  | snprintf(name, sizeof(name), "memslot-%u", idx); | 
|  | memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name, | 
|  | &vmem->memdev->mr, memslot_offset, | 
|  | memslot_size); | 
|  | /* | 
|  | * We want to be able to atomically and efficiently activate/deactivate | 
|  | * individual memslots without affecting adjacent memslots in memory | 
|  | * notifiers. | 
|  | */ | 
|  | memory_region_set_unmergeable(&vmem->memslots[idx], true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virtio_mem_device_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | MachineState *ms = MACHINE(qdev_get_machine()); | 
|  | int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0; | 
|  | VirtIODevice *vdev = VIRTIO_DEVICE(dev); | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(dev); | 
|  | uint64_t page_size; | 
|  | RAMBlock *rb; | 
|  | int ret; | 
|  |  | 
|  | if (!vmem->memdev) { | 
|  | error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP); | 
|  | return; | 
|  | } else if (host_memory_backend_is_mapped(vmem->memdev)) { | 
|  | error_setg(errp, "'%s' property specifies a busy memdev: %s", | 
|  | VIRTIO_MEM_MEMDEV_PROP, | 
|  | object_get_canonical_path_component(OBJECT(vmem->memdev))); | 
|  | return; | 
|  | } else if (!memory_region_is_ram(&vmem->memdev->mr) || | 
|  | memory_region_is_rom(&vmem->memdev->mr) || | 
|  | !vmem->memdev->mr.ram_block) { | 
|  | error_setg(errp, "'%s' property specifies an unsupported memdev", | 
|  | VIRTIO_MEM_MEMDEV_PROP); | 
|  | return; | 
|  | } else if (vmem->memdev->prealloc) { | 
|  | error_setg(errp, "'%s' property specifies a memdev with preallocation" | 
|  | " enabled: %s. Instead, specify 'prealloc=on' for the" | 
|  | " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP, | 
|  | object_get_canonical_path_component(OBJECT(vmem->memdev))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) || | 
|  | (!nb_numa_nodes && vmem->node)) { | 
|  | error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds" | 
|  | "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP, | 
|  | vmem->node, nb_numa_nodes ? nb_numa_nodes : 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (enable_mlock) { | 
|  | error_setg(errp, "Incompatible with mlock"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rb = vmem->memdev->mr.ram_block; | 
|  | page_size = qemu_ram_pagesize(rb); | 
|  |  | 
|  | #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) | 
|  | switch (vmem->unplugged_inaccessible) { | 
|  | case ON_OFF_AUTO_AUTO: | 
|  | if (virtio_mem_has_shared_zeropage(rb)) { | 
|  | vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF; | 
|  | } else { | 
|  | vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; | 
|  | } | 
|  | break; | 
|  | case ON_OFF_AUTO_OFF: | 
|  | if (!virtio_mem_has_shared_zeropage(rb)) { | 
|  | warn_report("'%s' property set to 'off' with a memdev that does" | 
|  | " not support the shared zeropage.", | 
|  | VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ | 
|  | vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; | 
|  | #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ | 
|  |  | 
|  | if (vmem->dynamic_memslots && | 
|  | vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) { | 
|  | error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'", | 
|  | VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, | 
|  | VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the block size wasn't configured by the user, use a sane default. This | 
|  | * allows using hugetlbfs backends of any page size without manual | 
|  | * intervention. | 
|  | */ | 
|  | if (!vmem->block_size) { | 
|  | vmem->block_size = virtio_mem_default_block_size(rb); | 
|  | } | 
|  |  | 
|  | if (vmem->block_size < page_size) { | 
|  | error_setg(errp, "'%s' property has to be at least the page size (0x%" | 
|  | PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size); | 
|  | return; | 
|  | } else if (vmem->block_size < virtio_mem_default_block_size(rb)) { | 
|  | warn_report("'%s' property is smaller than the default block size (%" | 
|  | PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP, | 
|  | virtio_mem_default_block_size(rb) / MiB); | 
|  | } | 
|  | if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) { | 
|  | error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 | 
|  | ")", VIRTIO_MEM_REQUESTED_SIZE_PROP, | 
|  | VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); | 
|  | return; | 
|  | } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) { | 
|  | error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 | 
|  | ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP, | 
|  | vmem->block_size); | 
|  | return; | 
|  | } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr), | 
|  | vmem->block_size)) { | 
|  | error_setg(errp, "'%s' property memdev size has to be multiples of" | 
|  | "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP, | 
|  | VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ram_block_coordinated_discard_require(true)) { | 
|  | error_setg(errp, "Discarding RAM is disabled"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't know at this point whether shared RAM is migrated using | 
|  | * QEMU or migrated using the file content. "x-ignore-shared" will be | 
|  | * configured after realizing the device. So in case we have an | 
|  | * incoming migration, simply always skip the discard step. | 
|  | * | 
|  | * Otherwise, make sure that we start with a clean slate: either the | 
|  | * memory backend might get reused or the shared file might still have | 
|  | * memory allocated. | 
|  | */ | 
|  | if (!runstate_check(RUN_STATE_INMIGRATE)) { | 
|  | ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb)); | 
|  | if (ret) { | 
|  | error_setg_errno(errp, -ret, "Unexpected error discarding RAM"); | 
|  | ram_block_coordinated_discard_require(false); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); | 
|  |  | 
|  | vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) / | 
|  | vmem->block_size; | 
|  | vmem->bitmap = bitmap_new(vmem->bitmap_size); | 
|  |  | 
|  | virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config)); | 
|  | vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request); | 
|  |  | 
|  | /* | 
|  | * With "dynamic-memslots=off" (old behavior) we always map the whole | 
|  | * RAM memory region directly. | 
|  | */ | 
|  | if (vmem->dynamic_memslots) { | 
|  | if (!vmem->mr) { | 
|  | virtio_mem_prepare_mr(vmem); | 
|  | } | 
|  | if (vmem->nb_memslots <= 1) { | 
|  | vmem->nb_memslots = 1; | 
|  | vmem->memslot_size = memory_region_size(&vmem->memdev->mr); | 
|  | } | 
|  | if (!vmem->memslots) { | 
|  | virtio_mem_prepare_memslots(vmem); | 
|  | } | 
|  | } else { | 
|  | assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots); | 
|  | } | 
|  |  | 
|  | host_memory_backend_set_mapped(vmem->memdev, true); | 
|  | vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem)); | 
|  | if (vmem->early_migration) { | 
|  | vmstate_register_any(VMSTATE_IF(vmem), | 
|  | &vmstate_virtio_mem_device_early, vmem); | 
|  | } | 
|  | qemu_register_reset(virtio_mem_system_reset, vmem); | 
|  |  | 
|  | /* | 
|  | * Set ourselves as RamDiscardManager before the plug handler maps the | 
|  | * memory region and exposes it via an address space. | 
|  | */ | 
|  | memory_region_set_ram_discard_manager(&vmem->memdev->mr, | 
|  | RAM_DISCARD_MANAGER(vmem)); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_device_unrealize(DeviceState *dev) | 
|  | { | 
|  | VirtIODevice *vdev = VIRTIO_DEVICE(dev); | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(dev); | 
|  |  | 
|  | /* | 
|  | * The unplug handler unmapped the memory region, it cannot be | 
|  | * found via an address space anymore. Unset ourselves. | 
|  | */ | 
|  | memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL); | 
|  | qemu_unregister_reset(virtio_mem_system_reset, vmem); | 
|  | if (vmem->early_migration) { | 
|  | vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early, | 
|  | vmem); | 
|  | } | 
|  | vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem)); | 
|  | host_memory_backend_set_mapped(vmem->memdev, false); | 
|  | virtio_del_queue(vdev, 0); | 
|  | virtio_cleanup(vdev); | 
|  | g_free(vmem->bitmap); | 
|  | ram_block_coordinated_discard_require(false); | 
|  | } | 
|  |  | 
|  | static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg, | 
|  | uint64_t offset, uint64_t size) | 
|  | { | 
|  | RAMBlock *rb = vmem->memdev->mr.ram_block; | 
|  |  | 
|  | return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_restore_unplugged(VirtIOMEM *vmem) | 
|  | { | 
|  | /* Make sure all memory is really discarded after migration. */ | 
|  | return virtio_mem_for_each_unplugged_range(vmem, NULL, | 
|  | virtio_mem_discard_range_cb); | 
|  | } | 
|  |  | 
|  | static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg, | 
|  | uint64_t offset, uint64_t size) | 
|  | { | 
|  | virtio_mem_activate_memslots_to_plug(vmem, offset, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem) | 
|  | { | 
|  | RamDiscardListener *rdl; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We restored the bitmap and updated the requested size; activate all | 
|  | * memslots (so listeners register) before notifying about plugged blocks. | 
|  | */ | 
|  | if (vmem->dynamic_memslots) { | 
|  | /* | 
|  | * We don't expect any active memslots at this point to deactivate: no | 
|  | * memory was plugged on the migration destination. | 
|  | */ | 
|  | virtio_mem_for_each_plugged_range(vmem, NULL, | 
|  | virtio_mem_activate_memslot_range_cb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We started out with all memory discarded and our memory region is mapped | 
|  | * into an address space. Replay, now that we updated the bitmap. | 
|  | */ | 
|  | QLIST_FOREACH(rdl, &vmem->rdl_list, next) { | 
|  | ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, | 
|  | virtio_mem_notify_populate_cb); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_post_load(void *opaque, int version_id) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(opaque); | 
|  | int ret; | 
|  |  | 
|  | if (!vmem->early_migration) { | 
|  | ret = virtio_mem_post_load_bitmap(vmem); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If shared RAM is migrated using the file content and not using QEMU, | 
|  | * don't mess with preallocation and postcopy. | 
|  | */ | 
|  | if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (vmem->prealloc && !vmem->early_migration) { | 
|  | warn_report("Proper preallocation with migration requires a newer QEMU machine"); | 
|  | } | 
|  |  | 
|  | if (migration_in_incoming_postcopy()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return virtio_mem_restore_unplugged(vmem); | 
|  | } | 
|  |  | 
|  | static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg, | 
|  | uint64_t offset, uint64_t size) | 
|  | { | 
|  | void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; | 
|  | int fd = memory_region_get_fd(&vmem->memdev->mr); | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) { | 
|  | error_report_err(local_err); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_post_load_early(void *opaque, int version_id) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(opaque); | 
|  | RAMBlock *rb = vmem->memdev->mr.ram_block; | 
|  | int ret; | 
|  |  | 
|  | if (!vmem->prealloc) { | 
|  | goto post_load_bitmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If shared RAM is migrated using the file content and not using QEMU, | 
|  | * don't mess with preallocation and postcopy. | 
|  | */ | 
|  | if (migrate_ram_is_ignored(rb)) { | 
|  | goto post_load_bitmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We restored the bitmap and verified that the basic properties | 
|  | * match on source and destination, so we can go ahead and preallocate | 
|  | * memory for all plugged memory blocks, before actual RAM migration starts | 
|  | * touching this memory. | 
|  | */ | 
|  | ret = virtio_mem_for_each_plugged_range(vmem, NULL, | 
|  | virtio_mem_prealloc_range_cb); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is tricky: postcopy wants to start with a clean slate. On | 
|  | * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily | 
|  | * preallocated) RAM such that postcopy will work as expected later. | 
|  | * | 
|  | * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual | 
|  | * RAM migration. So let's discard all memory again. This looks like an | 
|  | * expensive NOP, but actually serves a purpose: we made sure that we | 
|  | * were able to allocate all required backend memory once. We cannot | 
|  | * guarantee that the backend memory we will free will remain free | 
|  | * until we need it during postcopy, but at least we can catch the | 
|  | * obvious setup issues this way. | 
|  | */ | 
|  | if (migration_incoming_postcopy_advised()) { | 
|  | if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | post_load_bitmap: | 
|  | /* Finally, update any other state to be consistent with the new bitmap. */ | 
|  | return virtio_mem_post_load_bitmap(vmem); | 
|  | } | 
|  |  | 
|  | typedef struct VirtIOMEMMigSanityChecks { | 
|  | VirtIOMEM *parent; | 
|  | uint64_t addr; | 
|  | uint64_t region_size; | 
|  | uint64_t block_size; | 
|  | uint32_t node; | 
|  | } VirtIOMEMMigSanityChecks; | 
|  |  | 
|  | static int virtio_mem_mig_sanity_checks_pre_save(void *opaque) | 
|  | { | 
|  | VirtIOMEMMigSanityChecks *tmp = opaque; | 
|  | VirtIOMEM *vmem = tmp->parent; | 
|  |  | 
|  | tmp->addr = vmem->addr; | 
|  | tmp->region_size = memory_region_size(&vmem->memdev->mr); | 
|  | tmp->block_size = vmem->block_size; | 
|  | tmp->node = vmem->node; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id) | 
|  | { | 
|  | VirtIOMEMMigSanityChecks *tmp = opaque; | 
|  | VirtIOMEM *vmem = tmp->parent; | 
|  | const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr); | 
|  |  | 
|  | if (tmp->addr != vmem->addr) { | 
|  | error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, | 
|  | VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* | 
|  | * Note: Preparation for resizable memory regions. The maximum size | 
|  | * of the memory region must not change during migration. | 
|  | */ | 
|  | if (tmp->region_size != new_region_size) { | 
|  | error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%" | 
|  | PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size, | 
|  | new_region_size); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (tmp->block_size != vmem->block_size) { | 
|  | error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, | 
|  | VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size, | 
|  | vmem->block_size); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (tmp->node != vmem->node) { | 
|  | error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32, | 
|  | VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_virtio_mem_sanity_checks = { | 
|  | .name = "virtio-mem-device/sanity-checks", | 
|  | .pre_save = virtio_mem_mig_sanity_checks_pre_save, | 
|  | .post_load = virtio_mem_mig_sanity_checks_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks), | 
|  | VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks), | 
|  | VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks), | 
|  | VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks), | 
|  | VMSTATE_END_OF_LIST(), | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id) | 
|  | { | 
|  | const VirtIOMEM *vmem = VIRTIO_MEM(opaque); | 
|  |  | 
|  | /* With early migration, these fields were already migrated. */ | 
|  | return !vmem->early_migration; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_virtio_mem_device = { | 
|  | .name = "virtio-mem-device", | 
|  | .minimum_version_id = 1, | 
|  | .version_id = 1, | 
|  | .priority = MIG_PRI_VIRTIO_MEM, | 
|  | .post_load = virtio_mem_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists, | 
|  | VirtIOMEMMigSanityChecks, | 
|  | vmstate_virtio_mem_sanity_checks), | 
|  | VMSTATE_UINT64(usable_region_size, VirtIOMEM), | 
|  | VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists), | 
|  | VMSTATE_UINT64(requested_size, VirtIOMEM), | 
|  | VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists, | 
|  | 0, bitmap_size), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Transfer properties that are immutable while migration is active early, | 
|  | * such that we have have this information around before migrating any RAM | 
|  | * content. | 
|  | * | 
|  | * Note that virtio_mem_is_busy() makes sure these properties can no longer | 
|  | * change on the migration source until migration completed. | 
|  | * | 
|  | * With QEMU compat machines, we transmit these properties later, via | 
|  | * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists(). | 
|  | */ | 
|  | static const VMStateDescription vmstate_virtio_mem_device_early = { | 
|  | .name = "virtio-mem-device-early", | 
|  | .minimum_version_id = 1, | 
|  | .version_id = 1, | 
|  | .early_setup = true, | 
|  | .post_load = virtio_mem_post_load_early, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks, | 
|  | vmstate_virtio_mem_sanity_checks), | 
|  | VMSTATE_UINT64(size, VirtIOMEM), | 
|  | VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_virtio_mem = { | 
|  | .name = "virtio-mem", | 
|  | .minimum_version_id = 1, | 
|  | .version_id = 1, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_VIRTIO_DEVICE, | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void virtio_mem_fill_device_info(const VirtIOMEM *vmem, | 
|  | VirtioMEMDeviceInfo *vi) | 
|  | { | 
|  | vi->memaddr = vmem->addr; | 
|  | vi->node = vmem->node; | 
|  | vi->requested_size = vmem->requested_size; | 
|  | vi->size = vmem->size; | 
|  | vi->max_size = memory_region_size(&vmem->memdev->mr); | 
|  | vi->block_size = vmem->block_size; | 
|  | vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev)); | 
|  | } | 
|  |  | 
|  | static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp) | 
|  | { | 
|  | if (!vmem->memdev) { | 
|  | error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP); | 
|  | return NULL; | 
|  | } else if (vmem->dynamic_memslots) { | 
|  | if (!vmem->mr) { | 
|  | virtio_mem_prepare_mr(vmem); | 
|  | } | 
|  | return vmem->mr; | 
|  | } | 
|  |  | 
|  | return &vmem->memdev->mr; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit) | 
|  | { | 
|  | uint64_t region_size, memslot_size, min_memslot_size; | 
|  | unsigned int memslots; | 
|  | RAMBlock *rb; | 
|  |  | 
|  | if (!vmem->dynamic_memslots) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We're called exactly once, before realizing the device. */ | 
|  | assert(!vmem->nb_memslots); | 
|  |  | 
|  | /* If realizing the device will fail, just assume a single memslot. */ | 
|  | if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) { | 
|  | vmem->nb_memslots = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | rb = vmem->memdev->mr.ram_block; | 
|  | region_size = memory_region_size(&vmem->memdev->mr); | 
|  |  | 
|  | /* | 
|  | * Determine the default block size now, to determine the minimum memslot | 
|  | * size. We want the minimum slot size to be at least the device block size. | 
|  | */ | 
|  | if (!vmem->block_size) { | 
|  | vmem->block_size = virtio_mem_default_block_size(rb); | 
|  | } | 
|  | /* If realizing the device will fail, just assume a single memslot. */ | 
|  | if (vmem->block_size < qemu_ram_pagesize(rb) || | 
|  | !QEMU_IS_ALIGNED(region_size, vmem->block_size)) { | 
|  | vmem->nb_memslots = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All memslots except the last one have a reasonable minimum size, and | 
|  | * and all memslot sizes are aligned to the device block size. | 
|  | */ | 
|  | memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size); | 
|  | min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE); | 
|  | memslot_size = MAX(memslot_size, min_memslot_size); | 
|  |  | 
|  | memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size; | 
|  | if (memslots != 1) { | 
|  | vmem->memslot_size = memslot_size; | 
|  | } | 
|  | vmem->nb_memslots = memslots; | 
|  | } | 
|  |  | 
|  | static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem) | 
|  | { | 
|  | if (!vmem->dynamic_memslots) { | 
|  | /* Exactly one static RAM memory region. */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* We're called after instructed to make a decision. */ | 
|  | g_assert(vmem->nb_memslots); | 
|  | return vmem->nb_memslots; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem, | 
|  | Notifier *notifier) | 
|  | { | 
|  | notifier_list_add(&vmem->size_change_notifiers, notifier); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem, | 
|  | Notifier *notifier) | 
|  | { | 
|  | notifier_remove(notifier); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name, | 
|  | void *opaque, Error **errp) | 
|  | { | 
|  | const VirtIOMEM *vmem = VIRTIO_MEM(obj); | 
|  | uint64_t value = vmem->size; | 
|  |  | 
|  | visit_type_size(v, name, &value, errp); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_get_requested_size(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | const VirtIOMEM *vmem = VIRTIO_MEM(obj); | 
|  | uint64_t value = vmem->requested_size; | 
|  |  | 
|  | visit_type_size(v, name, &value, errp); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_set_requested_size(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(obj); | 
|  | uint64_t value; | 
|  |  | 
|  | if (!visit_type_size(v, name, &value, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The block size and memory backend are not fixed until the device was | 
|  | * realized. realize() will verify these properties then. | 
|  | */ | 
|  | if (DEVICE(obj)->realized) { | 
|  | if (!QEMU_IS_ALIGNED(value, vmem->block_size)) { | 
|  | error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64 | 
|  | ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP, | 
|  | vmem->block_size); | 
|  | return; | 
|  | } else if (value > memory_region_size(&vmem->memdev->mr)) { | 
|  | error_setg(errp, "'%s' cannot exceed the memory backend size" | 
|  | "(0x%" PRIx64 ")", name, | 
|  | memory_region_size(&vmem->memdev->mr)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (value != vmem->requested_size) { | 
|  | virtio_mem_resize_usable_region(vmem, value, false); | 
|  | vmem->requested_size = value; | 
|  | } | 
|  | /* | 
|  | * Trigger a config update so the guest gets notified. We trigger | 
|  | * even if the size didn't change (especially helpful for debugging). | 
|  | */ | 
|  | virtio_notify_config(VIRTIO_DEVICE(vmem)); | 
|  | } else { | 
|  | vmem->requested_size = value; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name, | 
|  | void *opaque, Error **errp) | 
|  | { | 
|  | const VirtIOMEM *vmem = VIRTIO_MEM(obj); | 
|  | uint64_t value = vmem->block_size; | 
|  |  | 
|  | /* | 
|  | * If not configured by the user (and we're not realized yet), use the | 
|  | * default block size we would use with the current memory backend. | 
|  | */ | 
|  | if (!value) { | 
|  | if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) { | 
|  | value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block); | 
|  | } else { | 
|  | value = virtio_mem_thp_size(); | 
|  | } | 
|  | } | 
|  |  | 
|  | visit_type_size(v, name, &value, errp); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name, | 
|  | void *opaque, Error **errp) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(obj); | 
|  | uint64_t value; | 
|  |  | 
|  | if (DEVICE(obj)->realized) { | 
|  | error_setg(errp, "'%s' cannot be changed", name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!visit_type_size(v, name, &value, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) { | 
|  | error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name, | 
|  | VIRTIO_MEM_MIN_BLOCK_SIZE); | 
|  | return; | 
|  | } else if (!is_power_of_2(value)) { | 
|  | error_setg(errp, "'%s' property has to be a power of two", name); | 
|  | return; | 
|  | } | 
|  | vmem->block_size = value; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_instance_init(Object *obj) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(obj); | 
|  |  | 
|  | notifier_list_init(&vmem->size_change_notifiers); | 
|  | QLIST_INIT(&vmem->rdl_list); | 
|  |  | 
|  | object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size, | 
|  | NULL, NULL, NULL); | 
|  | object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size", | 
|  | virtio_mem_get_requested_size, | 
|  | virtio_mem_set_requested_size, NULL, NULL); | 
|  | object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size", | 
|  | virtio_mem_get_block_size, virtio_mem_set_block_size, | 
|  | NULL, NULL); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_instance_finalize(Object *obj) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(obj); | 
|  |  | 
|  | /* | 
|  | * Note: the core already dropped the references on all memory regions | 
|  | * (it's passed as the owner to memory_region_init_*()) and finalized | 
|  | * these objects. We can simply free the memory. | 
|  | */ | 
|  | g_free(vmem->memslots); | 
|  | vmem->memslots = NULL; | 
|  | g_free(vmem->mr); | 
|  | vmem->mr = NULL; | 
|  | } | 
|  |  | 
|  | static Property virtio_mem_properties[] = { | 
|  | DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0), | 
|  | DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0), | 
|  | DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false), | 
|  | DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev, | 
|  | TYPE_MEMORY_BACKEND, HostMemoryBackend *), | 
|  | #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) | 
|  | DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM, | 
|  | unplugged_inaccessible, ON_OFF_AUTO_ON), | 
|  | #endif | 
|  | DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM, | 
|  | early_migration, true), | 
|  | DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM, | 
|  | dynamic_memslots, false), | 
|  | DEFINE_PROP_END_OF_LIST(), | 
|  | }; | 
|  |  | 
|  | static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm, | 
|  | const MemoryRegion *mr) | 
|  | { | 
|  | const VirtIOMEM *vmem = VIRTIO_MEM(rdm); | 
|  |  | 
|  | g_assert(mr == &vmem->memdev->mr); | 
|  | return vmem->block_size; | 
|  | } | 
|  |  | 
|  | static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm, | 
|  | const MemoryRegionSection *s) | 
|  | { | 
|  | const VirtIOMEM *vmem = VIRTIO_MEM(rdm); | 
|  | uint64_t start_gpa = vmem->addr + s->offset_within_region; | 
|  | uint64_t end_gpa = start_gpa + int128_get64(s->size); | 
|  |  | 
|  | g_assert(s->mr == &vmem->memdev->mr); | 
|  |  | 
|  | start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size); | 
|  | end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size); | 
|  |  | 
|  | if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa); | 
|  | } | 
|  |  | 
|  | struct VirtIOMEMReplayData { | 
|  | void *fn; | 
|  | void *opaque; | 
|  | }; | 
|  |  | 
|  | static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg) | 
|  | { | 
|  | struct VirtIOMEMReplayData *data = arg; | 
|  |  | 
|  | return ((ReplayRamPopulate)data->fn)(s, data->opaque); | 
|  | } | 
|  |  | 
|  | static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm, | 
|  | MemoryRegionSection *s, | 
|  | ReplayRamPopulate replay_fn, | 
|  | void *opaque) | 
|  | { | 
|  | const VirtIOMEM *vmem = VIRTIO_MEM(rdm); | 
|  | struct VirtIOMEMReplayData data = { | 
|  | .fn = replay_fn, | 
|  | .opaque = opaque, | 
|  | }; | 
|  |  | 
|  | g_assert(s->mr == &vmem->memdev->mr); | 
|  | return virtio_mem_for_each_plugged_section(vmem, s, &data, | 
|  | virtio_mem_rdm_replay_populated_cb); | 
|  | } | 
|  |  | 
|  | static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s, | 
|  | void *arg) | 
|  | { | 
|  | struct VirtIOMEMReplayData *data = arg; | 
|  |  | 
|  | ((ReplayRamDiscard)data->fn)(s, data->opaque); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm, | 
|  | MemoryRegionSection *s, | 
|  | ReplayRamDiscard replay_fn, | 
|  | void *opaque) | 
|  | { | 
|  | const VirtIOMEM *vmem = VIRTIO_MEM(rdm); | 
|  | struct VirtIOMEMReplayData data = { | 
|  | .fn = replay_fn, | 
|  | .opaque = opaque, | 
|  | }; | 
|  |  | 
|  | g_assert(s->mr == &vmem->memdev->mr); | 
|  | virtio_mem_for_each_unplugged_section(vmem, s, &data, | 
|  | virtio_mem_rdm_replay_discarded_cb); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm, | 
|  | RamDiscardListener *rdl, | 
|  | MemoryRegionSection *s) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(rdm); | 
|  | int ret; | 
|  |  | 
|  | g_assert(s->mr == &vmem->memdev->mr); | 
|  | rdl->section = memory_region_section_new_copy(s); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next); | 
|  | ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, | 
|  | virtio_mem_notify_populate_cb); | 
|  | if (ret) { | 
|  | error_report("%s: Replaying plugged ranges failed: %s", __func__, | 
|  | strerror(-ret)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm, | 
|  | RamDiscardListener *rdl) | 
|  | { | 
|  | VirtIOMEM *vmem = VIRTIO_MEM(rdm); | 
|  |  | 
|  | g_assert(rdl->section->mr == &vmem->memdev->mr); | 
|  | if (vmem->size) { | 
|  | if (rdl->double_discard_supported) { | 
|  | rdl->notify_discard(rdl, rdl->section); | 
|  | } else { | 
|  | virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, | 
|  | virtio_mem_notify_discard_cb); | 
|  | } | 
|  | } | 
|  |  | 
|  | memory_region_section_free_copy(rdl->section); | 
|  | rdl->section = NULL; | 
|  | QLIST_REMOVE(rdl, next); | 
|  | } | 
|  |  | 
|  | static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp) | 
|  | { | 
|  | if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) { | 
|  | /* | 
|  | * We could allow it with a usable region size of 0, but let's just | 
|  | * not care about that legacy setting. | 
|  | */ | 
|  | error_setg(errp, "virtio-mem device cannot get unplugged while" | 
|  | " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (vmem->size) { | 
|  | error_setg(errp, "virtio-mem device cannot get unplugged while" | 
|  | " '" VIRTIO_MEM_SIZE_PROP "' != '0'"); | 
|  | return; | 
|  | } | 
|  | if (vmem->requested_size) { | 
|  | error_setg(errp, "virtio-mem device cannot get unplugged while" | 
|  | " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void virtio_mem_class_init(ObjectClass *klass, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  | VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); | 
|  | VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass); | 
|  | RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass); | 
|  |  | 
|  | device_class_set_props(dc, virtio_mem_properties); | 
|  | dc->vmsd = &vmstate_virtio_mem; | 
|  |  | 
|  | set_bit(DEVICE_CATEGORY_MISC, dc->categories); | 
|  | vdc->realize = virtio_mem_device_realize; | 
|  | vdc->unrealize = virtio_mem_device_unrealize; | 
|  | vdc->get_config = virtio_mem_get_config; | 
|  | vdc->get_features = virtio_mem_get_features; | 
|  | vdc->validate_features = virtio_mem_validate_features; | 
|  | vdc->vmsd = &vmstate_virtio_mem_device; | 
|  |  | 
|  | vmc->fill_device_info = virtio_mem_fill_device_info; | 
|  | vmc->get_memory_region = virtio_mem_get_memory_region; | 
|  | vmc->decide_memslots = virtio_mem_decide_memslots; | 
|  | vmc->get_memslots = virtio_mem_get_memslots; | 
|  | vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier; | 
|  | vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier; | 
|  | vmc->unplug_request_check = virtio_mem_unplug_request_check; | 
|  |  | 
|  | rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity; | 
|  | rdmc->is_populated = virtio_mem_rdm_is_populated; | 
|  | rdmc->replay_populated = virtio_mem_rdm_replay_populated; | 
|  | rdmc->replay_discarded = virtio_mem_rdm_replay_discarded; | 
|  | rdmc->register_listener = virtio_mem_rdm_register_listener; | 
|  | rdmc->unregister_listener = virtio_mem_rdm_unregister_listener; | 
|  | } | 
|  |  | 
|  | static const TypeInfo virtio_mem_info = { | 
|  | .name = TYPE_VIRTIO_MEM, | 
|  | .parent = TYPE_VIRTIO_DEVICE, | 
|  | .instance_size = sizeof(VirtIOMEM), | 
|  | .instance_init = virtio_mem_instance_init, | 
|  | .instance_finalize = virtio_mem_instance_finalize, | 
|  | .class_init = virtio_mem_class_init, | 
|  | .class_size = sizeof(VirtIOMEMClass), | 
|  | .interfaces = (InterfaceInfo[]) { | 
|  | { TYPE_RAM_DISCARD_MANAGER }, | 
|  | { } | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void virtio_register_types(void) | 
|  | { | 
|  | type_register_static(&virtio_mem_info); | 
|  | } | 
|  |  | 
|  | type_init(virtio_register_types) |