| /*============================================================================ |
| |
| This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic |
| Package, Release 2b. |
| |
| Written by John R. Hauser. This work was made possible in part by the |
| International Computer Science Institute, located at Suite 600, 1947 Center |
| Street, Berkeley, California 94704. Funding was partially provided by the |
| National Science Foundation under grant MIP-9311980. The original version |
| of this code was written as part of a project to build a fixed-point vector |
| processor in collaboration with the University of California at Berkeley, |
| overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ |
| arithmetic/SoftFloat.html'. |
| |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has |
| been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES |
| RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS |
| AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, |
| COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE |
| EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE |
| INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR |
| OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. |
| |
| Derivative works are acceptable, even for commercial purposes, so long as |
| (1) the source code for the derivative work includes prominent notice that |
| the work is derivative, and (2) the source code includes prominent notice with |
| these four paragraphs for those parts of this code that are retained. |
| |
| =============================================================================*/ |
| |
| #ifndef SOFTFLOAT_H |
| #define SOFTFLOAT_H |
| |
| #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH) |
| #include <sunmath.h> |
| #endif |
| |
| #include <inttypes.h> |
| #include "config.h" |
| |
| /*---------------------------------------------------------------------------- |
| | Each of the following `typedef's defines the most convenient type that holds |
| | integers of at least as many bits as specified. For example, `uint8' should |
| | be the most convenient type that can hold unsigned integers of as many as |
| | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most |
| | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed |
| | to the same as `int'. |
| *----------------------------------------------------------------------------*/ |
| typedef uint8_t flag; |
| typedef uint8_t uint8; |
| typedef int8_t int8; |
| #ifndef _AIX |
| typedef int uint16; |
| typedef int int16; |
| #endif |
| typedef unsigned int uint32; |
| typedef signed int int32; |
| typedef uint64_t uint64; |
| typedef int64_t int64; |
| |
| /*---------------------------------------------------------------------------- |
| | Each of the following `typedef's defines a type that holds integers |
| | of _exactly_ the number of bits specified. For instance, for most |
| | implementation of C, `bits16' and `sbits16' should be `typedef'ed to |
| | `unsigned short int' and `signed short int' (or `short int'), respectively. |
| *----------------------------------------------------------------------------*/ |
| typedef uint8_t bits8; |
| typedef int8_t sbits8; |
| typedef uint16_t bits16; |
| typedef int16_t sbits16; |
| typedef uint32_t bits32; |
| typedef int32_t sbits32; |
| typedef uint64_t bits64; |
| typedef int64_t sbits64; |
| |
| #define LIT64( a ) a##LL |
| #define INLINE static inline |
| |
| /*---------------------------------------------------------------------------- |
| | The macro `FLOATX80' must be defined to enable the extended double-precision |
| | floating-point format `floatx80'. If this macro is not defined, the |
| | `floatx80' type will not be defined, and none of the functions that either |
| | input or output the `floatx80' type will be defined. The same applies to |
| | the `FLOAT128' macro and the quadruple-precision format `float128'. |
| *----------------------------------------------------------------------------*/ |
| #ifdef CONFIG_SOFTFLOAT |
| /* bit exact soft float support */ |
| #define FLOATX80 |
| #define FLOAT128 |
| #else |
| /* native float support */ |
| #if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD) |
| #define FLOATX80 |
| #endif |
| #endif /* !CONFIG_SOFTFLOAT */ |
| |
| #define STATUS_PARAM , float_status *status |
| #define STATUS(field) status->field |
| #define STATUS_VAR , status |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE floating-point ordering relations |
| *----------------------------------------------------------------------------*/ |
| enum { |
| float_relation_less = -1, |
| float_relation_equal = 0, |
| float_relation_greater = 1, |
| float_relation_unordered = 2 |
| }; |
| |
| #ifdef CONFIG_SOFTFLOAT |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE floating-point types. |
| *----------------------------------------------------------------------------*/ |
| /* Use structures for soft-float types. This prevents accidentally mixing |
| them with native int/float types. A sufficiently clever compiler and |
| sane ABI should be able to see though these structs. However |
| x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ |
| //#define USE_SOFTFLOAT_STRUCT_TYPES |
| #ifdef USE_SOFTFLOAT_STRUCT_TYPES |
| typedef struct { |
| uint32_t v; |
| } float32; |
| /* The cast ensures an error if the wrong type is passed. */ |
| #define float32_val(x) (((float32)(x)).v) |
| #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) |
| typedef struct { |
| uint64_t v; |
| } float64; |
| #define float64_val(x) (((float64)(x)).v) |
| #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) |
| #else |
| typedef uint32_t float32; |
| typedef uint64_t float64; |
| #define float32_val(x) (x) |
| #define float64_val(x) (x) |
| #define make_float32(x) (x) |
| #define make_float64(x) (x) |
| #endif |
| #ifdef FLOATX80 |
| typedef struct { |
| uint64_t low; |
| uint16_t high; |
| } floatx80; |
| #endif |
| #ifdef FLOAT128 |
| typedef struct { |
| #ifdef HOST_WORDS_BIGENDIAN |
| uint64_t high, low; |
| #else |
| uint64_t low, high; |
| #endif |
| } float128; |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE floating-point underflow tininess-detection mode. |
| *----------------------------------------------------------------------------*/ |
| enum { |
| float_tininess_after_rounding = 0, |
| float_tininess_before_rounding = 1 |
| }; |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE floating-point rounding mode. |
| *----------------------------------------------------------------------------*/ |
| enum { |
| float_round_nearest_even = 0, |
| float_round_down = 1, |
| float_round_up = 2, |
| float_round_to_zero = 3 |
| }; |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE floating-point exception flags. |
| *----------------------------------------------------------------------------*/ |
| enum { |
| float_flag_invalid = 1, |
| float_flag_divbyzero = 4, |
| float_flag_overflow = 8, |
| float_flag_underflow = 16, |
| float_flag_inexact = 32, |
| float_flag_input_denormal = 64 |
| }; |
| |
| typedef struct float_status { |
| signed char float_detect_tininess; |
| signed char float_rounding_mode; |
| signed char float_exception_flags; |
| #ifdef FLOATX80 |
| signed char floatx80_rounding_precision; |
| #endif |
| /* should denormalised results go to zero and set the inexact flag? */ |
| flag flush_to_zero; |
| /* should denormalised inputs go to zero and set the input_denormal flag? */ |
| flag flush_inputs_to_zero; |
| flag default_nan_mode; |
| } float_status; |
| |
| void set_float_rounding_mode(int val STATUS_PARAM); |
| void set_float_exception_flags(int val STATUS_PARAM); |
| INLINE void set_flush_to_zero(flag val STATUS_PARAM) |
| { |
| STATUS(flush_to_zero) = val; |
| } |
| INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM) |
| { |
| STATUS(flush_inputs_to_zero) = val; |
| } |
| INLINE void set_default_nan_mode(flag val STATUS_PARAM) |
| { |
| STATUS(default_nan_mode) = val; |
| } |
| INLINE int get_float_exception_flags(float_status *status) |
| { |
| return STATUS(float_exception_flags); |
| } |
| #ifdef FLOATX80 |
| void set_floatx80_rounding_precision(int val STATUS_PARAM); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Routine to raise any or all of the software IEC/IEEE floating-point |
| | exception flags. |
| *----------------------------------------------------------------------------*/ |
| void float_raise( int8 flags STATUS_PARAM); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE integer-to-floating-point conversion routines. |
| *----------------------------------------------------------------------------*/ |
| float32 int32_to_float32( int STATUS_PARAM ); |
| float64 int32_to_float64( int STATUS_PARAM ); |
| float32 uint32_to_float32( unsigned int STATUS_PARAM ); |
| float64 uint32_to_float64( unsigned int STATUS_PARAM ); |
| #ifdef FLOATX80 |
| floatx80 int32_to_floatx80( int STATUS_PARAM ); |
| #endif |
| #ifdef FLOAT128 |
| float128 int32_to_float128( int STATUS_PARAM ); |
| #endif |
| float32 int64_to_float32( int64_t STATUS_PARAM ); |
| float32 uint64_to_float32( uint64_t STATUS_PARAM ); |
| float64 int64_to_float64( int64_t STATUS_PARAM ); |
| float64 uint64_to_float64( uint64_t STATUS_PARAM ); |
| #ifdef FLOATX80 |
| floatx80 int64_to_floatx80( int64_t STATUS_PARAM ); |
| #endif |
| #ifdef FLOAT128 |
| float128 int64_to_float128( int64_t STATUS_PARAM ); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software half-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| bits16 float32_to_float16( float32, flag STATUS_PARAM ); |
| float32 float16_to_float32( bits16, flag STATUS_PARAM ); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE single-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int float32_to_int16_round_to_zero( float32 STATUS_PARAM ); |
| unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM ); |
| int float32_to_int32( float32 STATUS_PARAM ); |
| int float32_to_int32_round_to_zero( float32 STATUS_PARAM ); |
| unsigned int float32_to_uint32( float32 STATUS_PARAM ); |
| unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM ); |
| int64_t float32_to_int64( float32 STATUS_PARAM ); |
| int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM ); |
| float64 float32_to_float64( float32 STATUS_PARAM ); |
| #ifdef FLOATX80 |
| floatx80 float32_to_floatx80( float32 STATUS_PARAM ); |
| #endif |
| #ifdef FLOAT128 |
| float128 float32_to_float128( float32 STATUS_PARAM ); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE single-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float32 float32_round_to_int( float32 STATUS_PARAM ); |
| float32 float32_add( float32, float32 STATUS_PARAM ); |
| float32 float32_sub( float32, float32 STATUS_PARAM ); |
| float32 float32_mul( float32, float32 STATUS_PARAM ); |
| float32 float32_div( float32, float32 STATUS_PARAM ); |
| float32 float32_rem( float32, float32 STATUS_PARAM ); |
| float32 float32_sqrt( float32 STATUS_PARAM ); |
| float32 float32_exp2( float32 STATUS_PARAM ); |
| float32 float32_log2( float32 STATUS_PARAM ); |
| int float32_eq( float32, float32 STATUS_PARAM ); |
| int float32_le( float32, float32 STATUS_PARAM ); |
| int float32_lt( float32, float32 STATUS_PARAM ); |
| int float32_eq_signaling( float32, float32 STATUS_PARAM ); |
| int float32_le_quiet( float32, float32 STATUS_PARAM ); |
| int float32_lt_quiet( float32, float32 STATUS_PARAM ); |
| int float32_compare( float32, float32 STATUS_PARAM ); |
| int float32_compare_quiet( float32, float32 STATUS_PARAM ); |
| int float32_is_quiet_nan( float32 ); |
| int float32_is_signaling_nan( float32 ); |
| float32 float32_maybe_silence_nan( float32 ); |
| float32 float32_scalbn( float32, int STATUS_PARAM ); |
| |
| INLINE float32 float32_abs(float32 a) |
| { |
| /* Note that abs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float32(float32_val(a) & 0x7fffffff); |
| } |
| |
| INLINE float32 float32_chs(float32 a) |
| { |
| /* Note that chs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float32(float32_val(a) ^ 0x80000000); |
| } |
| |
| INLINE int float32_is_infinity(float32 a) |
| { |
| return (float32_val(a) & 0x7fffffff) == 0x7f800000; |
| } |
| |
| INLINE int float32_is_neg(float32 a) |
| { |
| return float32_val(a) >> 31; |
| } |
| |
| INLINE int float32_is_zero(float32 a) |
| { |
| return (float32_val(a) & 0x7fffffff) == 0; |
| } |
| |
| INLINE int float32_is_any_nan(float32 a) |
| { |
| return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); |
| } |
| |
| #define float32_zero make_float32(0) |
| #define float32_one make_float32(0x3f800000) |
| #define float32_ln2 make_float32(0x3f317218) |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE double-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int float64_to_int16_round_to_zero( float64 STATUS_PARAM ); |
| unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM ); |
| int float64_to_int32( float64 STATUS_PARAM ); |
| int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); |
| unsigned int float64_to_uint32( float64 STATUS_PARAM ); |
| unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); |
| int64_t float64_to_int64( float64 STATUS_PARAM ); |
| int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); |
| uint64_t float64_to_uint64 (float64 a STATUS_PARAM); |
| uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM); |
| float32 float64_to_float32( float64 STATUS_PARAM ); |
| #ifdef FLOATX80 |
| floatx80 float64_to_floatx80( float64 STATUS_PARAM ); |
| #endif |
| #ifdef FLOAT128 |
| float128 float64_to_float128( float64 STATUS_PARAM ); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE double-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float64 float64_round_to_int( float64 STATUS_PARAM ); |
| float64 float64_trunc_to_int( float64 STATUS_PARAM ); |
| float64 float64_add( float64, float64 STATUS_PARAM ); |
| float64 float64_sub( float64, float64 STATUS_PARAM ); |
| float64 float64_mul( float64, float64 STATUS_PARAM ); |
| float64 float64_div( float64, float64 STATUS_PARAM ); |
| float64 float64_rem( float64, float64 STATUS_PARAM ); |
| float64 float64_sqrt( float64 STATUS_PARAM ); |
| float64 float64_log2( float64 STATUS_PARAM ); |
| int float64_eq( float64, float64 STATUS_PARAM ); |
| int float64_le( float64, float64 STATUS_PARAM ); |
| int float64_lt( float64, float64 STATUS_PARAM ); |
| int float64_eq_signaling( float64, float64 STATUS_PARAM ); |
| int float64_le_quiet( float64, float64 STATUS_PARAM ); |
| int float64_lt_quiet( float64, float64 STATUS_PARAM ); |
| int float64_compare( float64, float64 STATUS_PARAM ); |
| int float64_compare_quiet( float64, float64 STATUS_PARAM ); |
| int float64_is_quiet_nan( float64 a ); |
| int float64_is_signaling_nan( float64 ); |
| float64 float64_maybe_silence_nan( float64 ); |
| float64 float64_scalbn( float64, int STATUS_PARAM ); |
| |
| INLINE float64 float64_abs(float64 a) |
| { |
| /* Note that abs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float64(float64_val(a) & 0x7fffffffffffffffLL); |
| } |
| |
| INLINE float64 float64_chs(float64 a) |
| { |
| /* Note that chs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float64(float64_val(a) ^ 0x8000000000000000LL); |
| } |
| |
| INLINE int float64_is_infinity(float64 a) |
| { |
| return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; |
| } |
| |
| INLINE int float64_is_neg(float64 a) |
| { |
| return float64_val(a) >> 63; |
| } |
| |
| INLINE int float64_is_zero(float64 a) |
| { |
| return (float64_val(a) & 0x7fffffffffffffffLL) == 0; |
| } |
| |
| INLINE int float64_is_any_nan(float64 a) |
| { |
| return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); |
| } |
| |
| #define float64_zero make_float64(0) |
| #define float64_one make_float64(0x3ff0000000000000LL) |
| #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) |
| |
| #ifdef FLOATX80 |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE extended double-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int floatx80_to_int32( floatx80 STATUS_PARAM ); |
| int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); |
| int64_t floatx80_to_int64( floatx80 STATUS_PARAM ); |
| int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); |
| float32 floatx80_to_float32( floatx80 STATUS_PARAM ); |
| float64 floatx80_to_float64( floatx80 STATUS_PARAM ); |
| #ifdef FLOAT128 |
| float128 floatx80_to_float128( floatx80 STATUS_PARAM ); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE extended double-precision operations. |
| *----------------------------------------------------------------------------*/ |
| floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); |
| floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM ); |
| floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM ); |
| floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM ); |
| floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM ); |
| floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); |
| floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); |
| int floatx80_eq( floatx80, floatx80 STATUS_PARAM ); |
| int floatx80_le( floatx80, floatx80 STATUS_PARAM ); |
| int floatx80_lt( floatx80, floatx80 STATUS_PARAM ); |
| int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM ); |
| int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); |
| int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); |
| int floatx80_is_quiet_nan( floatx80 ); |
| int floatx80_is_signaling_nan( floatx80 ); |
| floatx80 floatx80_maybe_silence_nan( floatx80 ); |
| floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM ); |
| |
| INLINE floatx80 floatx80_abs(floatx80 a) |
| { |
| a.high &= 0x7fff; |
| return a; |
| } |
| |
| INLINE floatx80 floatx80_chs(floatx80 a) |
| { |
| a.high ^= 0x8000; |
| return a; |
| } |
| |
| INLINE int floatx80_is_infinity(floatx80 a) |
| { |
| return (a.high & 0x7fff) == 0x7fff && a.low == 0; |
| } |
| |
| INLINE int floatx80_is_neg(floatx80 a) |
| { |
| return a.high >> 15; |
| } |
| |
| INLINE int floatx80_is_zero(floatx80 a) |
| { |
| return (a.high & 0x7fff) == 0 && a.low == 0; |
| } |
| |
| INLINE int floatx80_is_any_nan(floatx80 a) |
| { |
| return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); |
| } |
| |
| #endif |
| |
| #ifdef FLOAT128 |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE quadruple-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int float128_to_int32( float128 STATUS_PARAM ); |
| int float128_to_int32_round_to_zero( float128 STATUS_PARAM ); |
| int64_t float128_to_int64( float128 STATUS_PARAM ); |
| int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM ); |
| float32 float128_to_float32( float128 STATUS_PARAM ); |
| float64 float128_to_float64( float128 STATUS_PARAM ); |
| #ifdef FLOATX80 |
| floatx80 float128_to_floatx80( float128 STATUS_PARAM ); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE quadruple-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float128 float128_round_to_int( float128 STATUS_PARAM ); |
| float128 float128_add( float128, float128 STATUS_PARAM ); |
| float128 float128_sub( float128, float128 STATUS_PARAM ); |
| float128 float128_mul( float128, float128 STATUS_PARAM ); |
| float128 float128_div( float128, float128 STATUS_PARAM ); |
| float128 float128_rem( float128, float128 STATUS_PARAM ); |
| float128 float128_sqrt( float128 STATUS_PARAM ); |
| int float128_eq( float128, float128 STATUS_PARAM ); |
| int float128_le( float128, float128 STATUS_PARAM ); |
| int float128_lt( float128, float128 STATUS_PARAM ); |
| int float128_eq_signaling( float128, float128 STATUS_PARAM ); |
| int float128_le_quiet( float128, float128 STATUS_PARAM ); |
| int float128_lt_quiet( float128, float128 STATUS_PARAM ); |
| int float128_compare( float128, float128 STATUS_PARAM ); |
| int float128_compare_quiet( float128, float128 STATUS_PARAM ); |
| int float128_is_quiet_nan( float128 ); |
| int float128_is_signaling_nan( float128 ); |
| float128 float128_maybe_silence_nan( float128 ); |
| float128 float128_scalbn( float128, int STATUS_PARAM ); |
| |
| INLINE float128 float128_abs(float128 a) |
| { |
| a.high &= 0x7fffffffffffffffLL; |
| return a; |
| } |
| |
| INLINE float128 float128_chs(float128 a) |
| { |
| a.high ^= 0x8000000000000000LL; |
| return a; |
| } |
| |
| INLINE int float128_is_infinity(float128 a) |
| { |
| return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; |
| } |
| |
| INLINE int float128_is_neg(float128 a) |
| { |
| return a.high >> 63; |
| } |
| |
| INLINE int float128_is_zero(float128 a) |
| { |
| return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; |
| } |
| |
| INLINE int float128_is_any_nan(float128 a) |
| { |
| return ((a.high >> 48) & 0x7fff) == 0x7fff && |
| ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); |
| } |
| |
| #endif |
| |
| #else /* CONFIG_SOFTFLOAT */ |
| |
| #include "softfloat-native.h" |
| |
| #endif /* !CONFIG_SOFTFLOAT */ |
| |
| #endif /* !SOFTFLOAT_H */ |