blob: 0902fca359ba6075c07ccdef01b3c3043000047d [file] [log] [blame]
/*
* SH4 emulation
*
* Copyright (c) 2005 Samuel Tardieu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
static inline void set_flag(uint32_t flag)
{
env->flags |= flag;
}
static inline void clr_flag(uint32_t flag)
{
env->flags &= ~flag;
}
static inline void set_t(void)
{
env->sr |= SR_T;
}
static inline void clr_t(void)
{
env->sr &= ~SR_T;
}
static inline void cond_t(int cond)
{
if (cond)
set_t();
else
clr_t();
}
void OPPROTO op_movl_imm_T0(void)
{
T0 = (uint32_t) PARAM1;
RETURN();
}
void OPPROTO op_movl_imm_T1(void)
{
T0 = (uint32_t) PARAM1;
RETURN();
}
void OPPROTO op_movl_imm_T2(void)
{
T0 = (uint32_t) PARAM1;
RETURN();
}
void OPPROTO op_cmp_eq_imm_T0(void)
{
cond_t((int32_t) T0 == (int32_t) PARAM1);
RETURN();
}
void OPPROTO op_cmd_eq_T0_T1(void)
{
cond_t(T0 == T1);
RETURN();
}
void OPPROTO op_cmd_hs_T0_T1(void)
{
cond_t((uint32_t) T0 <= (uint32_t) T1);
RETURN();
}
void OPPROTO op_cmd_ge_T0_T1(void)
{
cond_t((int32_t) T0 <= (int32_t) T1);
RETURN();
}
void OPPROTO op_cmd_hi_T0_T1(void)
{
cond_t((uint32_t) T0 < (uint32_t) T1);
RETURN();
}
void OPPROTO op_cmd_gt_T0_T1(void)
{
cond_t((int32_t) T0 < (int32_t) T1);
RETURN();
}
void OPPROTO op_not_T0(void)
{
T0 = ~T0;
RETURN();
}
void OPPROTO op_bf_s(void)
{
env->delayed_pc = PARAM1;
set_flag(DELAY_SLOT_CONDITIONAL | ((~env->sr) & SR_T));
RETURN();
}
void OPPROTO op_bt_s(void)
{
env->delayed_pc = PARAM1;
set_flag(DELAY_SLOT_CONDITIONAL | (env->sr & SR_T));
RETURN();
}
void OPPROTO op_bra(void)
{
env->delayed_pc = PARAM1;
set_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_braf_T0(void)
{
env->delayed_pc = PARAM1 + T0;
set_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_bsr(void)
{
env->pr = PARAM1;
env->delayed_pc = PARAM2;
set_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_bsrf_T0(void)
{
env->pr = PARAM1;
env->delayed_pc = PARAM1 + T0;
set_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_jsr_T0(void)
{
env->pr = PARAM1;
env->delayed_pc = T0;
set_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_rts(void)
{
env->delayed_pc = env->pr;
set_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_clr_delay_slot(void)
{
clr_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_clr_delay_slot_conditional(void)
{
clr_flag(DELAY_SLOT_CONDITIONAL);
RETURN();
}
void OPPROTO op_exit_tb(void)
{
EXIT_TB();
RETURN();
}
void OPPROTO op_addl_imm_T0(void)
{
T0 += PARAM1;
RETURN();
}
void OPPROTO op_addl_imm_T1(void)
{
T1 += PARAM1;
RETURN();
}
void OPPROTO op_clrmac(void)
{
env->mach = env->macl = 0;
RETURN();
}
void OPPROTO op_clrs(void)
{
env->sr &= ~SR_S;
RETURN();
}
void OPPROTO op_clrt(void)
{
env->sr &= ~SR_T;
RETURN();
}
void OPPROTO op_sets(void)
{
env->sr |= SR_S;
RETURN();
}
void OPPROTO op_sett(void)
{
env->sr |= SR_T;
RETURN();
}
void OPPROTO op_frchg(void)
{
env->fpscr ^= FPSCR_FR;
RETURN();
}
void OPPROTO op_fschg(void)
{
env->fpscr ^= FPSCR_SZ;
RETURN();
}
void OPPROTO op_rte(void)
{
env->sr = env->ssr;
env->delayed_pc = env->spc;
set_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_swapb_T0(void)
{
T0 = (T0 & 0xffff0000) | ((T0 & 0xff) << 8) | ((T0 >> 8) & 0xff);
RETURN();
}
void OPPROTO op_swapw_T0(void)
{
T0 = ((T0 & 0xffff) << 16) | ((T0 >> 16) & 0xffff);
RETURN();
}
void OPPROTO op_xtrct_T0_T1(void)
{
T1 = ((T0 & 0xffff) << 16) | ((T1 >> 16) & 0xffff);
RETURN();
}
void OPPROTO op_addc_T0_T1(void)
{
helper_addc_T0_T1();
RETURN();
}
void OPPROTO op_addv_T0_T1(void)
{
helper_addv_T0_T1();
RETURN();
}
void OPPROTO op_cmp_eq_T0_T1(void)
{
cond_t(T1 == T0);
RETURN();
}
void OPPROTO op_cmp_ge_T0_T1(void)
{
cond_t((int32_t) T1 >= (int32_t) T0);
RETURN();
}
void OPPROTO op_cmp_gt_T0_T1(void)
{
cond_t((int32_t) T1 > (int32_t) T0);
RETURN();
}
void OPPROTO op_cmp_hi_T0_T1(void)
{
cond_t((uint32_t) T1 > (uint32_t) T0);
RETURN();
}
void OPPROTO op_cmp_hs_T0_T1(void)
{
cond_t((uint32_t) T1 >= (uint32_t) T0);
RETURN();
}
void OPPROTO op_cmp_str_T0_T1(void)
{
cond_t((T0 & 0x000000ff) == (T1 & 0x000000ff) ||
(T0 & 0x0000ff00) == (T1 & 0x0000ff00) ||
(T0 & 0x00ff0000) == (T1 & 0x00ff0000) ||
(T0 & 0xff000000) == (T1 & 0xff000000));
RETURN();
}
void OPPROTO op_tst_T0_T1(void)
{
cond_t((T1 & T0) == 0);
RETURN();
}
void OPPROTO op_div0s_T0_T1(void)
{
if (T1 & 0x80000000)
env->sr |= SR_Q;
else
env->sr &= ~SR_Q;
if (T0 & 0x80000000)
env->sr |= SR_M;
else
env->sr &= ~SR_M;
cond_t((T1 ^ T0) & 0x80000000);
RETURN();
}
void OPPROTO op_div0u(void)
{
env->sr &= ~(SR_M | SR_Q | SR_T);
RETURN();
}
void OPPROTO op_div1_T0_T1(void)
{
helper_div1_T0_T1();
RETURN();
}
void OPPROTO op_dmulsl_T0_T1(void)
{
helper_dmulsl_T0_T1();
RETURN();
}
void OPPROTO op_dmulul_T0_T1(void)
{
helper_dmulul_T0_T1();
RETURN();
}
void OPPROTO op_macl_T0_T1(void)
{
helper_macl_T0_T1();
RETURN();
}
void OPPROTO op_macw_T0_T1(void)
{
helper_macw_T0_T1();
RETURN();
}
void OPPROTO op_mull_T0_T1(void)
{
env->macl = (T0 * T1) & 0xffffffff;
RETURN();
}
void OPPROTO op_mulsw_T0_T1(void)
{
env->macl = (int32_t) T0 *(int32_t) T1;
RETURN();
}
void OPPROTO op_muluw_T0_T1(void)
{
env->macl = (uint32_t) T0 *(uint32_t) T1;
RETURN();
}
void OPPROTO op_neg_T0(void)
{
T0 = -T0;
RETURN();
}
void OPPROTO op_negc_T0(void)
{
helper_negc_T0();
RETURN();
}
void OPPROTO op_shad_T0_T1(void)
{
if ((T0 & 0x80000000) == 0)
T1 <<= (T0 & 0x1f);
else if ((T0 & 0x1f) == 0)
T1 = 0;
else
T1 = ((int32_t) T1) >> ((~T0 & 0x1f) + 1);
RETURN();
}
void OPPROTO op_shld_T0_T1(void)
{
if ((T0 & 0x80000000) == 0)
T1 <<= (T0 & 0x1f);
else if ((T0 & 0x1f) == 0)
T1 = 0;
else
T1 = ((uint32_t) T1) >> ((~T0 & 0x1f) + 1);
RETURN();
}
void OPPROTO op_subc_T0_T1(void)
{
helper_subc_T0_T1();
RETURN();
}
void OPPROTO op_subv_T0_T1(void)
{
helper_subv_T0_T1();
RETURN();
}
void OPPROTO op_trapa(void)
{
env->tra = PARAM1 * 2;
env->exception_index = 0x160;
do_raise_exception();
RETURN();
}
void OPPROTO op_cmp_pl_T0(void)
{
cond_t((int32_t) T0 > 0);
RETURN();
}
void OPPROTO op_cmp_pz_T0(void)
{
cond_t((int32_t) T0 >= 0);
RETURN();
}
void OPPROTO op_jmp_T0(void)
{
env->delayed_pc = T0;
set_flag(DELAY_SLOT);
RETURN();
}
void OPPROTO op_movl_rN_rN(void)
{
env->gregs[PARAM2] = env->gregs[PARAM1];
RETURN();
}
void OPPROTO op_ldcl_rMplus_rN_bank(void)
{
env->gregs[PARAM2] = env->gregs[PARAM1];
env->gregs[PARAM1] += 4;
RETURN();
}
void OPPROTO op_ldc_T0_sr(void)
{
env->sr = T0 & 0x700083f3;
RETURN();
}
void OPPROTO op_stc_sr_T0(void)
{
T0 = env->sr;
RETURN();
}
#define LDSTOPS(target,load,store) \
void OPPROTO op_##load##_T0_##target (void) \
{ env ->target = T0; RETURN(); \
} \
void OPPROTO op_##store##_##target##_T0 (void) \
{ T0 = env->target; RETURN(); \
} \
LDSTOPS(gbr, ldc, stc)
LDSTOPS(vbr, ldc, stc)
LDSTOPS(ssr, ldc, stc)
LDSTOPS(spc, ldc, stc)
LDSTOPS(sgr, ldc, stc)
LDSTOPS(dbr, ldc, stc)
LDSTOPS(mach, lds, sts)
LDSTOPS(macl, lds, sts)
LDSTOPS(pr, lds, sts)
LDSTOPS(fpul, lds, sts)
void OPPROTO op_lds_T0_fpscr(void)
{
env->fpscr = T0 & 0x003fffff;
env->fp_status.float_rounding_mode = T0 & 0x01 ?
float_round_to_zero : float_round_nearest_even;
RETURN();
}
void OPPROTO op_sts_fpscr_T0(void)
{
T0 = env->fpscr & 0x003fffff;
RETURN();
}
void OPPROTO op_movt_rN(void)
{
env->gregs[PARAM1] = env->sr & SR_T;
RETURN();
}
void OPPROTO op_rotcl_Rn(void)
{
helper_rotcl(&env->gregs[PARAM1]);
RETURN();
}
void OPPROTO op_rotcr_Rn(void)
{
helper_rotcr(&env->gregs[PARAM1]);
RETURN();
}
void OPPROTO op_rotl_Rn(void)
{
cond_t(env->gregs[PARAM1] & 0x80000000);
env->gregs[PARAM1] = (env->gregs[PARAM1] << 1) | (env->sr & SR_T);
RETURN();
}
void OPPROTO op_rotr_Rn(void)
{
cond_t(env->gregs[PARAM1] & 1);
env->gregs[PARAM1] = (env->gregs[PARAM1] >> 1) |
((env->sr & SR_T) ? 0x80000000 : 0);
RETURN();
}
void OPPROTO op_shal_Rn(void)
{
cond_t(env->gregs[PARAM1] & 0x80000000);
env->gregs[PARAM1] <<= 1;
RETURN();
}
void OPPROTO op_shar_Rn(void)
{
cond_t(env->gregs[PARAM1] & 1);
env->gregs[PARAM1] >>= 1;
RETURN();
}
void OPPROTO op_shlr_Rn(void)
{
cond_t(env->gregs[PARAM1] & 1);
env->gregs[PARAM1] >>= 1;
RETURN();
}
void OPPROTO op_shll2_Rn(void)
{
env->gregs[PARAM1] <<= 2;
RETURN();
}
void OPPROTO op_shll8_Rn(void)
{
env->gregs[PARAM1] <<= 8;
RETURN();
}
void OPPROTO op_shll16_Rn(void)
{
env->gregs[PARAM1] <<= 16;
RETURN();
}
void OPPROTO op_shlr2_Rn(void)
{
env->gregs[PARAM1] >>= 2;
RETURN();
}
void OPPROTO op_shlr8_Rn(void)
{
env->gregs[PARAM1] >>= 8;
RETURN();
}
void OPPROTO op_shlr16_Rn(void)
{
env->gregs[PARAM1] >>= 16;
RETURN();
}
void OPPROTO op_tasb_rN(void)
{
cond_t(*(int8_t *) env->gregs[PARAM1] == 0);
*(int8_t *) env->gregs[PARAM1] |= 0x80;
RETURN();
}
void OPPROTO op_movl_T0_rN(void)
{
env->gregs[PARAM1] = T0;
RETURN();
}
void OPPROTO op_movl_T1_rN(void)
{
env->gregs[PARAM1] = T1;
RETURN();
}
void OPPROTO op_movb_rN_T0(void)
{
T0 = (int32_t) (int8_t) (env->gregs[PARAM1] & 0xff);
RETURN();
}
void OPPROTO op_movub_rN_T0(void)
{
T0 = env->gregs[PARAM1] & 0xff;
RETURN();
}
void OPPROTO op_movw_rN_T0(void)
{
T0 = (int32_t) (int16_t) (env->gregs[PARAM1] & 0xffff);
RETURN();
}
void OPPROTO op_movuw_rN_T0(void)
{
T0 = env->gregs[PARAM1] & 0xffff;
RETURN();
}
void OPPROTO op_movl_rN_T0(void)
{
T0 = env->gregs[PARAM1];
RETURN();
}
void OPPROTO op_movb_rN_T1(void)
{
T1 = (int32_t) (int8_t) (env->gregs[PARAM1] & 0xff);
RETURN();
}
void OPPROTO op_movub_rN_T1(void)
{
T1 = env->gregs[PARAM1] & 0xff;
RETURN();
}
void OPPROTO op_movw_rN_T1(void)
{
T1 = (int32_t) (int16_t) (env->gregs[PARAM1] & 0xffff);
RETURN();
}
void OPPROTO op_movuw_rN_T1(void)
{
T1 = env->gregs[PARAM1] & 0xffff;
RETURN();
}
void OPPROTO op_movl_rN_T1(void)
{
T1 = env->gregs[PARAM1];
RETURN();
}
void OPPROTO op_movl_imm_rN(void)
{
env->gregs[PARAM2] = PARAM1;
RETURN();
}
void OPPROTO op_fmov_frN_FT0(void)
{
FT0 = env->fregs[PARAM1];
RETURN();
}
void OPPROTO op_fmov_drN_DT0(void)
{
CPU_DoubleU d;
d.l.upper = *(uint32_t *)&env->fregs[PARAM1];
d.l.lower = *(uint32_t *)&env->fregs[PARAM1 + 1];
DT0 = d.d;
RETURN();
}
void OPPROTO op_fmov_frN_FT1(void)
{
FT1 = env->fregs[PARAM1];
RETURN();
}
void OPPROTO op_fmov_drN_DT1(void)
{
CPU_DoubleU d;
d.l.upper = *(uint32_t *)&env->fregs[PARAM1];
d.l.lower = *(uint32_t *)&env->fregs[PARAM1 + 1];
DT1 = d.d;
RETURN();
}
void OPPROTO op_fmov_FT0_frN(void)
{
env->fregs[PARAM1] = FT0;
RETURN();
}
void OPPROTO op_fmov_DT0_drN(void)
{
CPU_DoubleU d;
d.d = DT0;
*(uint32_t *)&env->fregs[PARAM1] = d.l.upper;
*(uint32_t *)&env->fregs[PARAM1 + 1] = d.l.lower;
RETURN();
}
void OPPROTO op_fadd_FT(void)
{
FT0 = float32_add(FT0, FT1, &env->fp_status);
RETURN();
}
void OPPROTO op_fadd_DT(void)
{
DT0 = float64_add(DT0, DT1, &env->fp_status);
RETURN();
}
void OPPROTO op_fsub_FT(void)
{
FT0 = float32_sub(FT0, FT1, &env->fp_status);
RETURN();
}
void OPPROTO op_fsub_DT(void)
{
DT0 = float64_sub(DT0, DT1, &env->fp_status);
RETURN();
}
void OPPROTO op_fmul_FT(void)
{
FT0 = float32_mul(FT0, FT1, &env->fp_status);
RETURN();
}
void OPPROTO op_fmul_DT(void)
{
DT0 = float64_mul(DT0, DT1, &env->fp_status);
RETURN();
}
void OPPROTO op_fdiv_FT(void)
{
FT0 = float32_div(FT0, FT1, &env->fp_status);
RETURN();
}
void OPPROTO op_fdiv_DT(void)
{
DT0 = float64_div(DT0, DT1, &env->fp_status);
RETURN();
}
void OPPROTO op_float_FT(void)
{
FT0 = int32_to_float32(env->fpul, &env->fp_status);
RETURN();
}
void OPPROTO op_float_DT(void)
{
DT0 = int32_to_float64(env->fpul, &env->fp_status);
RETURN();
}
void OPPROTO op_ftrc_FT(void)
{
env->fpul = float32_to_int32_round_to_zero(FT0, &env->fp_status);
RETURN();
}
void OPPROTO op_ftrc_DT(void)
{
env->fpul = float64_to_int32_round_to_zero(DT0, &env->fp_status);
RETURN();
}
void OPPROTO op_fmov_T0_frN(void)
{
*(unsigned int *)&env->fregs[PARAM1] = T0;
RETURN();
}
void OPPROTO op_dec1_rN(void)
{
env->gregs[PARAM1] -= 1;
RETURN();
}
void OPPROTO op_dec2_rN(void)
{
env->gregs[PARAM1] -= 2;
RETURN();
}
void OPPROTO op_dec4_rN(void)
{
env->gregs[PARAM1] -= 4;
RETURN();
}
void OPPROTO op_dec8_rN(void)
{
env->gregs[PARAM1] -= 8;
RETURN();
}
void OPPROTO op_inc1_rN(void)
{
env->gregs[PARAM1] += 1;
RETURN();
}
void OPPROTO op_inc2_rN(void)
{
env->gregs[PARAM1] += 2;
RETURN();
}
void OPPROTO op_inc4_rN(void)
{
env->gregs[PARAM1] += 4;
RETURN();
}
void OPPROTO op_inc8_rN(void)
{
env->gregs[PARAM1] += 8;
RETURN();
}
void OPPROTO op_add_T0_rN(void)
{
env->gregs[PARAM1] += T0;
RETURN();
}
void OPPROTO op_sub_T0_rN(void)
{
env->gregs[PARAM1] -= T0;
RETURN();
}
void OPPROTO op_and_T0_rN(void)
{
env->gregs[PARAM1] &= T0;
RETURN();
}
void OPPROTO op_or_T0_rN(void)
{
env->gregs[PARAM1] |= T0;
RETURN();
}
void OPPROTO op_xor_T0_rN(void)
{
env->gregs[PARAM1] ^= T0;
RETURN();
}
void OPPROTO op_add_rN_T0(void)
{
T0 += env->gregs[PARAM1];
RETURN();
}
void OPPROTO op_add_rN_T1(void)
{
T1 += env->gregs[PARAM1];
RETURN();
}
void OPPROTO op_add_imm_rN(void)
{
env->gregs[PARAM2] += PARAM1;
RETURN();
}
void OPPROTO op_and_imm_rN(void)
{
env->gregs[PARAM2] &= PARAM1;
RETURN();
}
void OPPROTO op_or_imm_rN(void)
{
env->gregs[PARAM2] |= PARAM1;
RETURN();
}
void OPPROTO op_xor_imm_rN(void)
{
env->gregs[PARAM2] ^= PARAM1;
RETURN();
}
void OPPROTO op_dt_rN(void)
{
cond_t((--env->gregs[PARAM1]) == 0);
RETURN();
}
void OPPROTO op_tst_imm_rN(void)
{
cond_t((env->gregs[PARAM2] & PARAM1) == 0);
RETURN();
}
void OPPROTO op_movl_T0_T1(void)
{
T1 = T0;
RETURN();
}
void OPPROTO op_movl_fpul_FT0(void)
{
FT0 = *(float32 *)&env->fpul;
RETURN();
}
void OPPROTO op_movl_FT0_fpul(void)
{
*(float32 *)&env->fpul = FT0;
RETURN();
}
void OPPROTO op_goto_tb0(void)
{
GOTO_TB(op_goto_tb0, PARAM1, 0);
RETURN();
}
void OPPROTO op_goto_tb1(void)
{
GOTO_TB(op_goto_tb1, PARAM1, 1);
RETURN();
}
void OPPROTO op_movl_imm_PC(void)
{
env->pc = PARAM1;
RETURN();
}
void OPPROTO op_jT(void)
{
if (env->sr & SR_T)
GOTO_LABEL_PARAM(1);
RETURN();
}
void OPPROTO op_jdelayed(void)
{
uint32_t flags;
flags = env->flags;
env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
if (flags & DELAY_SLOT)
GOTO_LABEL_PARAM(1);
RETURN();
}
void OPPROTO op_movl_delayed_pc_PC(void)
{
env->pc = env->delayed_pc;
RETURN();
}
void OPPROTO op_addl_GBR_T0(void)
{
T0 += env->gbr;
RETURN();
}
void OPPROTO op_and_imm_T0(void)
{
T0 &= PARAM1;
RETURN();
}
void OPPROTO op_or_imm_T0(void)
{
T0 |= PARAM1;
RETURN();
}
void OPPROTO op_xor_imm_T0(void)
{
T0 ^= PARAM1;
RETURN();
}
void OPPROTO op_tst_imm_T0(void)
{
cond_t((T0 & PARAM1) == 0);
RETURN();
}
void OPPROTO op_raise_illegal_instruction(void)
{
env->exception_index = 0x180;
do_raise_exception();
RETURN();
}
void OPPROTO op_raise_slot_illegal_instruction(void)
{
env->exception_index = 0x1a0;
do_raise_exception();
RETURN();
}
void OPPROTO op_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
/* Load and store */
#define MEMSUFFIX _raw
#include "op_mem.c"
#undef MEMSUFFIX
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.c"
#undef MEMSUFFIX
#define MEMSUFFIX _kernel
#include "op_mem.c"
#undef MEMSUFFIX
#endif