blob: 834d32287b371cf30798b2509cbd7b9d1ed2d0df [file] [log] [blame]
/*
* QEMU PowerPC XIVE2 interrupt controller model (POWER10)
*
* Copyright (c) 2019-2022, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "target/ppc/cpu.h"
#include "sysemu/cpus.h"
#include "sysemu/dma.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_chip.h"
#include "hw/ppc/pnv_core.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/xive2.h"
#include "hw/ppc/pnv_xive.h"
#include "hw/ppc/xive_regs.h"
#include "hw/ppc/xive2_regs.h"
#include "hw/ppc/ppc.h"
#include "hw/qdev-properties.h"
#include "sysemu/reset.h"
#include "sysemu/qtest.h"
#include <libfdt.h>
#include "pnv_xive2_regs.h"
#undef XIVE2_DEBUG
/* XIVE Sync or Flush Notification Block */
typedef struct XiveSfnBlock {
uint8_t bytes[32];
} XiveSfnBlock;
/* XIVE Thread Sync or Flush Notification Area */
typedef struct XiveThreadNA {
XiveSfnBlock topo[16];
} XiveThreadNA;
/*
* Virtual structures table (VST)
*/
#define SBE_PER_BYTE 4
typedef struct XiveVstInfo {
const char *name;
uint32_t size;
uint32_t max_blocks;
} XiveVstInfo;
static const XiveVstInfo vst_infos[] = {
[VST_EAS] = { "EAT", sizeof(Xive2Eas), 16 },
[VST_ESB] = { "ESB", 1, 16 },
[VST_END] = { "ENDT", sizeof(Xive2End), 16 },
[VST_NVP] = { "NVPT", sizeof(Xive2Nvp), 16 },
[VST_NVG] = { "NVGT", sizeof(Xive2Nvgc), 16 },
[VST_NVC] = { "NVCT", sizeof(Xive2Nvgc), 16 },
[VST_IC] = { "IC", 1, /* ? */ 16 }, /* Topology # */
[VST_SYNC] = { "SYNC", sizeof(XiveThreadNA), 16 }, /* Topology # */
/*
* This table contains the backing store pages for the interrupt
* fifos of the VC sub-engine in case of overflow.
*
* 0 - IPI,
* 1 - HWD,
* 2 - NxC,
* 3 - INT,
* 4 - OS-Queue,
* 5 - Pool-Queue,
* 6 - Hard-Queue
*/
[VST_ERQ] = { "ERQ", 1, VC_QUEUE_COUNT },
};
#define xive2_error(xive, fmt, ...) \
qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
(xive)->chip->chip_id, ## __VA_ARGS__);
/*
* TODO: Document block id override
*/
static uint32_t pnv_xive2_block_id(PnvXive2 *xive)
{
uint8_t blk = xive->chip->chip_id;
uint64_t cfg_val = xive->cq_regs[CQ_XIVE_CFG >> 3];
if (cfg_val & CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE) {
blk = GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val);
}
return blk;
}
/*
* Remote access to controllers. HW uses MMIOs. For now, a simple scan
* of the chips is good enough.
*
* TODO: Block scope support
*/
static PnvXive2 *pnv_xive2_get_remote(uint8_t blk)
{
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
int i;
for (i = 0; i < pnv->num_chips; i++) {
Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
PnvXive2 *xive = &chip10->xive;
if (pnv_xive2_block_id(xive) == blk) {
return xive;
}
}
return NULL;
}
/*
* VST accessors for ESB, EAT, ENDT, NVP
*
* Indirect VST tables are arrays of VSDs pointing to a page (of same
* size). Each page is a direct VST table.
*/
#define XIVE_VSD_SIZE 8
/* Indirect page size can be 4K, 64K, 2M, 16M. */
static uint64_t pnv_xive2_vst_page_size_allowed(uint32_t page_shift)
{
return page_shift == 12 || page_shift == 16 ||
page_shift == 21 || page_shift == 24;
}
static uint64_t pnv_xive2_vst_addr_direct(PnvXive2 *xive, uint32_t type,
uint64_t vsd, uint32_t idx)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
uint32_t idx_max;
idx_max = vst_tsize / info->size - 1;
if (idx > idx_max) {
#ifdef XIVE2_DEBUG
xive2_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
info->name, idx, idx_max);
#endif
return 0;
}
return vst_addr + idx * info->size;
}
static uint64_t pnv_xive2_vst_addr_indirect(PnvXive2 *xive, uint32_t type,
uint64_t vsd, uint32_t idx)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t vsd_addr;
uint32_t vsd_idx;
uint32_t page_shift;
uint32_t vst_per_page;
/* Get the page size of the indirect table. */
vsd_addr = vsd & VSD_ADDRESS_MASK;
ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED);
if (!(vsd & VSD_ADDRESS_MASK)) {
#ifdef XIVE2_DEBUG
xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
#endif
return 0;
}
page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
xive2_error(xive, "VST: invalid %s page shift %d", info->name,
page_shift);
return 0;
}
vst_per_page = (1ull << page_shift) / info->size;
vsd_idx = idx / vst_per_page;
/* Load the VSD we are looking for, if not already done */
if (vsd_idx) {
vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
MEMTXATTRS_UNSPECIFIED);
if (!(vsd & VSD_ADDRESS_MASK)) {
#ifdef XIVE2_DEBUG
xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
#endif
return 0;
}
/*
* Check that the pages have a consistent size across the
* indirect table
*/
if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
xive2_error(xive, "VST: %s entry %x indirect page size differ !?",
info->name, idx);
return 0;
}
}
return pnv_xive2_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
}
static uint8_t pnv_xive2_nvc_table_compress_shift(PnvXive2 *xive)
{
uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVC_TABLE_COMPRESS,
xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]);
return shift > 8 ? 0 : shift;
}
static uint8_t pnv_xive2_nvg_table_compress_shift(PnvXive2 *xive)
{
uint8_t shift = GETFIELD(PC_NXC_PROC_CONFIG_NVG_TABLE_COMPRESS,
xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]);
return shift > 8 ? 0 : shift;
}
static uint64_t pnv_xive2_vst_addr(PnvXive2 *xive, uint32_t type, uint8_t blk,
uint32_t idx)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t vsd;
if (blk >= info->max_blocks) {
xive2_error(xive, "VST: invalid block id %d for VST %s %d !?",
blk, info->name, idx);
return 0;
}
vsd = xive->vsds[type][blk];
if (vsd == 0) {
xive2_error(xive, "VST: vsd == 0 block id %d for VST %s %d !?",
blk, info->name, idx);
return 0;
}
/* Remote VST access */
if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
xive = pnv_xive2_get_remote(blk);
return xive ? pnv_xive2_vst_addr(xive, type, blk, idx) : 0;
}
if (type == VST_NVG) {
idx >>= pnv_xive2_nvg_table_compress_shift(xive);
} else if (type == VST_NVC) {
idx >>= pnv_xive2_nvc_table_compress_shift(xive);
}
if (VSD_INDIRECT & vsd) {
return pnv_xive2_vst_addr_indirect(xive, type, vsd, idx);
}
return pnv_xive2_vst_addr_direct(xive, type, vsd, idx);
}
static int pnv_xive2_vst_read(PnvXive2 *xive, uint32_t type, uint8_t blk,
uint32_t idx, void *data)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx);
MemTxResult result;
if (!addr) {
return -1;
}
result = address_space_read(&address_space_memory, addr,
MEMTXATTRS_UNSPECIFIED, data,
info->size);
if (result != MEMTX_OK) {
xive2_error(xive, "VST: read failed at @0x%" HWADDR_PRIx
" for VST %s %x/%x\n", addr, info->name, blk, idx);
return -1;
}
return 0;
}
#define XIVE_VST_WORD_ALL -1
static int pnv_xive2_vst_write(PnvXive2 *xive, uint32_t type, uint8_t blk,
uint32_t idx, void *data, uint32_t word_number)
{
const XiveVstInfo *info = &vst_infos[type];
uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx);
MemTxResult result;
if (!addr) {
return -1;
}
if (word_number == XIVE_VST_WORD_ALL) {
result = address_space_write(&address_space_memory, addr,
MEMTXATTRS_UNSPECIFIED, data,
info->size);
} else {
result = address_space_write(&address_space_memory,
addr + word_number * 4,
MEMTXATTRS_UNSPECIFIED,
data + word_number * 4, 4);
}
if (result != MEMTX_OK) {
xive2_error(xive, "VST: write failed at @0x%" HWADDR_PRIx
"for VST %s %x/%x\n", addr, info->name, blk, idx);
return -1;
}
return 0;
}
static int pnv_xive2_get_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
uint8_t *pq)
{
PnvXive2 *xive = PNV_XIVE2(xrtr);
if (pnv_xive2_block_id(xive) != blk) {
xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
return -1;
}
*pq = xive_source_esb_get(&xive->ipi_source, idx);
return 0;
}
static int pnv_xive2_set_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
uint8_t *pq)
{
PnvXive2 *xive = PNV_XIVE2(xrtr);
if (pnv_xive2_block_id(xive) != blk) {
xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
return -1;
}
*pq = xive_source_esb_set(&xive->ipi_source, idx, *pq);
return 0;
}
static int pnv_xive2_get_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
Xive2End *end)
{
return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_END, blk, idx, end);
}
static int pnv_xive2_write_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
Xive2End *end, uint8_t word_number)
{
return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_END, blk, idx, end,
word_number);
}
static inline int pnv_xive2_get_current_pir(PnvXive2 *xive)
{
if (!qtest_enabled()) {
PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
return ppc_cpu_pir(cpu);
}
return 0;
}
/*
* After SW injects a Queue Sync or Cache Flush operation, HW will notify
* SW of the completion of the operation by writing a byte of all 1's (0xff)
* to a specific memory location. The memory location is calculated by first
* looking up a base address in the SYNC VSD using the Topology ID of the
* originating thread as the "block" number. This points to a
* 64k block of memory that is further divided into 128 512 byte chunks of
* memory, which is indexed by the thread id of the requesting thread.
* Finally, this 512 byte chunk of memory is divided into 16 32 byte
* chunks which are indexed by the topology id of the targeted IC's chip.
* The values below are the offsets into that 32 byte chunk of memory for
* each type of cache flush or queue sync operation.
*/
#define PNV_XIVE2_QUEUE_IPI 0x00
#define PNV_XIVE2_QUEUE_HW 0x01
#define PNV_XIVE2_QUEUE_NXC 0x02
#define PNV_XIVE2_QUEUE_INT 0x03
#define PNV_XIVE2_QUEUE_OS 0x04
#define PNV_XIVE2_QUEUE_POOL 0x05
#define PNV_XIVE2_QUEUE_HARD 0x06
#define PNV_XIVE2_CACHE_ENDC 0x08
#define PNV_XIVE2_CACHE_ESBC 0x09
#define PNV_XIVE2_CACHE_EASC 0x0a
#define PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO 0x10
#define PNV_XIVE2_QUEUE_NXC_LD_LCL_CO 0x11
#define PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI 0x12
#define PNV_XIVE2_QUEUE_NXC_ST_LCL_CI 0x13
#define PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI 0x14
#define PNV_XIVE2_QUEUE_NXC_ST_RMT_CI 0x15
#define PNV_XIVE2_CACHE_NXC 0x18
static int pnv_xive2_inject_notify(PnvXive2 *xive, int type)
{
uint64_t addr;
int pir = pnv_xive2_get_current_pir(xive);
int thread_nr = PNV10_PIR2THREAD(pir);
int thread_topo_id = PNV10_PIR2CHIP(pir);
int ic_topo_id = xive->chip->chip_id;
uint64_t offset = ic_topo_id * sizeof(XiveSfnBlock);
uint8_t byte = 0xff;
MemTxResult result;
/* Retrieve the address of requesting thread's notification area */
addr = pnv_xive2_vst_addr(xive, VST_SYNC, thread_topo_id, thread_nr);
if (!addr) {
xive2_error(xive, "VST: no SYNC entry %x/%x !?",
thread_topo_id, thread_nr);
return -1;
}
address_space_stb(&address_space_memory, addr + offset + type, byte,
MEMTXATTRS_UNSPECIFIED, &result);
assert(result == MEMTX_OK);
return 0;
}
static int pnv_xive2_end_update(PnvXive2 *xive, uint8_t watch_engine)
{
uint8_t blk;
uint32_t idx;
int i, spec_reg, data_reg;
uint64_t endc_watch[4];
assert(watch_engine < ARRAY_SIZE(endc_watch));
spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3;
data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3;
blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]);
idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]);
for (i = 0; i < ARRAY_SIZE(endc_watch); i++) {
endc_watch[i] = cpu_to_be64(xive->vc_regs[data_reg + i]);
}
return pnv_xive2_vst_write(xive, VST_END, blk, idx, endc_watch,
XIVE_VST_WORD_ALL);
}
static void pnv_xive2_end_cache_load(PnvXive2 *xive, uint8_t watch_engine)
{
uint8_t blk;
uint32_t idx;
uint64_t endc_watch[4] = { 0 };
int i, spec_reg, data_reg;
assert(watch_engine < ARRAY_SIZE(endc_watch));
spec_reg = (VC_ENDC_WATCH0_SPEC + watch_engine * 0x40) >> 3;
data_reg = (VC_ENDC_WATCH0_DATA0 + watch_engine * 0x40) >> 3;
blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[spec_reg]);
idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[spec_reg]);
if (pnv_xive2_vst_read(xive, VST_END, blk, idx, endc_watch)) {
xive2_error(xive, "VST: no END entry %x/%x !?", blk, idx);
}
for (i = 0; i < ARRAY_SIZE(endc_watch); i++) {
xive->vc_regs[data_reg + i] = be64_to_cpu(endc_watch[i]);
}
}
static int pnv_xive2_get_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
Xive2Nvp *nvp)
{
return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp);
}
static int pnv_xive2_write_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
Xive2Nvp *nvp, uint8_t word_number)
{
return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp,
word_number);
}
static int pnv_xive2_get_nvgc(Xive2Router *xrtr, bool crowd,
uint8_t blk, uint32_t idx,
Xive2Nvgc *nvgc)
{
return pnv_xive2_vst_read(PNV_XIVE2(xrtr), crowd ? VST_NVC : VST_NVG,
blk, idx, nvgc);
}
static int pnv_xive2_write_nvgc(Xive2Router *xrtr, bool crowd,
uint8_t blk, uint32_t idx,
Xive2Nvgc *nvgc)
{
return pnv_xive2_vst_write(PNV_XIVE2(xrtr), crowd ? VST_NVC : VST_NVG,
blk, idx, nvgc,
XIVE_VST_WORD_ALL);
}
static int pnv_xive2_nxc_to_table_type(uint8_t nxc_type, uint32_t *table_type)
{
switch (nxc_type) {
case PC_NXC_WATCH_NXC_NVP:
*table_type = VST_NVP;
break;
case PC_NXC_WATCH_NXC_NVG:
*table_type = VST_NVG;
break;
case PC_NXC_WATCH_NXC_NVC:
*table_type = VST_NVC;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"XIVE: invalid table type for nxc operation\n");
return -1;
}
return 0;
}
static int pnv_xive2_nxc_update(PnvXive2 *xive, uint8_t watch_engine)
{
uint8_t blk, nxc_type;
uint32_t idx, table_type = -1;
int i, spec_reg, data_reg;
uint64_t nxc_watch[4];
assert(watch_engine < ARRAY_SIZE(nxc_watch));
spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3;
data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3;
nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]);
blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]);
idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]);
assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type));
for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) {
nxc_watch[i] = cpu_to_be64(xive->pc_regs[data_reg + i]);
}
return pnv_xive2_vst_write(xive, table_type, blk, idx, nxc_watch,
XIVE_VST_WORD_ALL);
}
static void pnv_xive2_nxc_cache_load(PnvXive2 *xive, uint8_t watch_engine)
{
uint8_t blk, nxc_type;
uint32_t idx, table_type = -1;
uint64_t nxc_watch[4] = { 0 };
int i, spec_reg, data_reg;
assert(watch_engine < ARRAY_SIZE(nxc_watch));
spec_reg = (PC_NXC_WATCH0_SPEC + watch_engine * 0x40) >> 3;
data_reg = (PC_NXC_WATCH0_DATA0 + watch_engine * 0x40) >> 3;
nxc_type = GETFIELD(PC_NXC_WATCH_NXC_TYPE, xive->pc_regs[spec_reg]);
blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[spec_reg]);
idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[spec_reg]);
assert(!pnv_xive2_nxc_to_table_type(nxc_type, &table_type));
if (pnv_xive2_vst_read(xive, table_type, blk, idx, nxc_watch)) {
xive2_error(xive, "VST: no NXC entry %x/%x in %s table!?",
blk, idx, vst_infos[table_type].name);
}
for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) {
xive->pc_regs[data_reg + i] = be64_to_cpu(nxc_watch[i]);
}
}
static int pnv_xive2_get_eas(Xive2Router *xrtr, uint8_t blk, uint32_t idx,
Xive2Eas *eas)
{
PnvXive2 *xive = PNV_XIVE2(xrtr);
if (pnv_xive2_block_id(xive) != blk) {
xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
return -1;
}
return pnv_xive2_vst_read(xive, VST_EAS, blk, idx, eas);
}
static uint32_t pnv_xive2_get_config(Xive2Router *xrtr)
{
PnvXive2 *xive = PNV_XIVE2(xrtr);
uint32_t cfg = 0;
if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) {
cfg |= XIVE2_GEN1_TIMA_OS;
}
if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_EN_VP_SAVE_RESTORE) {
cfg |= XIVE2_VP_SAVE_RESTORE;
}
if (GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE,
xive->cq_regs[CQ_XIVE_CFG >> 3]) == CQ_XIVE_CFG_THREADID_8BITS) {
cfg |= XIVE2_THREADID_8BITS;
}
return cfg;
}
static bool pnv_xive2_is_cpu_enabled(PnvXive2 *xive, PowerPCCPU *cpu)
{
int pir = ppc_cpu_pir(cpu);
uint32_t fc = PNV10_PIR2FUSEDCORE(pir);
uint64_t reg = fc < 8 ? TCTXT_EN0 : TCTXT_EN1;
uint32_t bit = pir & 0x3f;
return xive->tctxt_regs[reg >> 3] & PPC_BIT(bit);
}
static int pnv_xive2_match_nvt(XivePresenter *xptr, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv, XiveTCTXMatch *match)
{
PnvXive2 *xive = PNV_XIVE2(xptr);
PnvChip *chip = xive->chip;
int count = 0;
int i, j;
bool gen1_tima_os =
xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS;
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pc = chip->cores[i];
CPUCore *cc = CPU_CORE(pc);
for (j = 0; j < cc->nr_threads; j++) {
PowerPCCPU *cpu = pc->threads[j];
XiveTCTX *tctx;
int ring;
if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
continue;
}
tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
if (gen1_tima_os) {
ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
nvt_idx, cam_ignore,
logic_serv);
} else {
ring = xive2_presenter_tctx_match(xptr, tctx, format, nvt_blk,
nvt_idx, cam_ignore,
logic_serv);
}
/*
* Save the context and follow on to catch duplicates,
* that we don't support yet.
*/
if (ring != -1) {
if (match->tctx) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
"thread context NVT %x/%x\n",
nvt_blk, nvt_idx);
return false;
}
match->ring = ring;
match->tctx = tctx;
count++;
}
}
}
return count;
}
static uint32_t pnv_xive2_presenter_get_config(XivePresenter *xptr)
{
PnvXive2 *xive = PNV_XIVE2(xptr);
uint32_t cfg = 0;
if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) {
cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
}
return cfg;
}
static uint8_t pnv_xive2_get_block_id(Xive2Router *xrtr)
{
return pnv_xive2_block_id(PNV_XIVE2(xrtr));
}
/*
* The TIMA MMIO space is shared among the chips and to identify the
* chip from which the access is being done, we extract the chip id
* from the PIR.
*/
static PnvXive2 *pnv_xive2_tm_get_xive(PowerPCCPU *cpu)
{
int pir = ppc_cpu_pir(cpu);
XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
PnvXive2 *xive = PNV_XIVE2(xptr);
if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
xive2_error(xive, "IC: CPU %x is not enabled", pir);
}
return xive;
}
/*
* The internal sources of the interrupt controller have no knowledge
* of the XIVE2 chip on which they reside. Encode the block id in the
* source interrupt number before forwarding the source event
* notification to the Router. This is required on a multichip system.
*/
static void pnv_xive2_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked)
{
PnvXive2 *xive = PNV_XIVE2(xn);
uint8_t blk = pnv_xive2_block_id(xive);
xive2_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked);
}
/*
* Set Translation Tables
*
* TODO add support for multiple sets
*/
static int pnv_xive2_stt_set_data(PnvXive2 *xive, uint64_t val)
{
uint8_t tsel = GETFIELD(CQ_TAR_SELECT, xive->cq_regs[CQ_TAR >> 3]);
uint8_t entry = GETFIELD(CQ_TAR_ENTRY_SELECT,
xive->cq_regs[CQ_TAR >> 3]);
switch (tsel) {
case CQ_TAR_NVPG:
case CQ_TAR_ESB:
case CQ_TAR_END:
case CQ_TAR_NVC:
xive->tables[tsel][entry] = val;
break;
default:
xive2_error(xive, "IC: unsupported table %d", tsel);
return -1;
}
if (xive->cq_regs[CQ_TAR >> 3] & CQ_TAR_AUTOINC) {
xive->cq_regs[CQ_TAR >> 3] = SETFIELD(CQ_TAR_ENTRY_SELECT,
xive->cq_regs[CQ_TAR >> 3], ++entry);
}
return 0;
}
/*
* Virtual Structure Tables (VST) configuration
*/
static void pnv_xive2_vst_set_exclusive(PnvXive2 *xive, uint8_t type,
uint8_t blk, uint64_t vsd)
{
Xive2EndSource *end_xsrc = &xive->end_source;
XiveSource *xsrc = &xive->ipi_source;
const XiveVstInfo *info = &vst_infos[type];
uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
uint64_t vst_tsize = 1ull << page_shift;
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
/* Basic checks */
if (VSD_INDIRECT & vsd) {
if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
xive2_error(xive, "VST: invalid %s page shift %d", info->name,
page_shift);
return;
}
}
if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
xive2_error(xive, "VST: %s table address 0x%"PRIx64
" is not aligned with page shift %d",
info->name, vst_addr, page_shift);
return;
}
/* Record the table configuration (in SRAM on HW) */
xive->vsds[type][blk] = vsd;
/* Now tune the models with the configuration provided by the FW */
switch (type) {
case VST_ESB:
/*
* Backing store pages for the source PQ bits. The model does
* not use these PQ bits backed in RAM because the XiveSource
* model has its own.
*
* If the table is direct, we can compute the number of PQ
* entries provisioned by FW (such as skiboot) and resize the
* ESB window accordingly.
*/
if (memory_region_is_mapped(&xsrc->esb_mmio)) {
memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio);
}
if (!(VSD_INDIRECT & vsd)) {
memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
* (1ull << xsrc->esb_shift));
}
memory_region_add_subregion(&xive->esb_mmio, 0, &xsrc->esb_mmio);
break;
case VST_EAS: /* Nothing to be done */
break;
case VST_END:
/*
* Backing store pages for the END.
*/
if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio);
}
if (!(VSD_INDIRECT & vsd)) {
memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
* (1ull << end_xsrc->esb_shift));
}
memory_region_add_subregion(&xive->end_mmio, 0, &end_xsrc->esb_mmio);
break;
case VST_NVP: /* Not modeled */
case VST_NVG: /* Not modeled */
case VST_NVC: /* Not modeled */
case VST_IC: /* Not modeled */
case VST_SYNC: /* Not modeled */
case VST_ERQ: /* Not modeled */
break;
default:
g_assert_not_reached();
}
}
/*
* Both PC and VC sub-engines are configured as each use the Virtual
* Structure Tables
*/
static void pnv_xive2_vst_set_data(PnvXive2 *xive, uint64_t vsd,
uint8_t type, uint8_t blk)
{
uint8_t mode = GETFIELD(VSD_MODE, vsd);
uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
if (type > VST_ERQ) {
xive2_error(xive, "VST: invalid table type %d", type);
return;
}
if (blk >= vst_infos[type].max_blocks) {
xive2_error(xive, "VST: invalid block id %d for"
" %s table", blk, vst_infos[type].name);
return;
}
if (!vst_addr) {
xive2_error(xive, "VST: invalid %s table address",
vst_infos[type].name);
return;
}
switch (mode) {
case VSD_MODE_FORWARD:
xive->vsds[type][blk] = vsd;
break;
case VSD_MODE_EXCLUSIVE:
pnv_xive2_vst_set_exclusive(xive, type, blk, vsd);
break;
default:
xive2_error(xive, "VST: unsupported table mode %d", mode);
return;
}
}
static void pnv_xive2_vc_vst_set_data(PnvXive2 *xive, uint64_t vsd)
{
uint8_t type = GETFIELD(VC_VSD_TABLE_SELECT,
xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]);
uint8_t blk = GETFIELD(VC_VSD_TABLE_ADDRESS,
xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]);
pnv_xive2_vst_set_data(xive, vsd, type, blk);
}
/*
* MMIO handlers
*/
/*
* IC BAR layout
*
* Page 0: Internal CQ register accesses (reads & writes)
* Page 1: Internal PC register accesses (reads & writes)
* Page 2: Internal VC register accesses (reads & writes)
* Page 3: Internal TCTXT (TIMA) reg accesses (read & writes)
* Page 4: Notify Port page (writes only, w/data),
* Page 5: Reserved
* Page 6: Sync Poll page (writes only, dataless)
* Page 7: Sync Inject page (writes only, dataless)
* Page 8: LSI Trigger page (writes only, dataless)
* Page 9: LSI SB Management page (reads & writes dataless)
* Pages 10-255: Reserved
* Pages 256-383: Direct mapped Thread Context Area (reads & writes)
* covering the 128 threads in P10.
* Pages 384-511: Reserved
*/
typedef struct PnvXive2Region {
const char *name;
uint32_t pgoff;
uint32_t pgsize;
const MemoryRegionOps *ops;
} PnvXive2Region;
static const MemoryRegionOps pnv_xive2_ic_cq_ops;
static const MemoryRegionOps pnv_xive2_ic_pc_ops;
static const MemoryRegionOps pnv_xive2_ic_vc_ops;
static const MemoryRegionOps pnv_xive2_ic_tctxt_ops;
static const MemoryRegionOps pnv_xive2_ic_notify_ops;
static const MemoryRegionOps pnv_xive2_ic_sync_ops;
static const MemoryRegionOps pnv_xive2_ic_lsi_ops;
static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops;
/* 512 pages. 4K: 2M range, 64K: 32M range */
static const PnvXive2Region pnv_xive2_ic_regions[] = {
{ "xive-ic-cq", 0, 1, &pnv_xive2_ic_cq_ops },
{ "xive-ic-vc", 1, 1, &pnv_xive2_ic_vc_ops },
{ "xive-ic-pc", 2, 1, &pnv_xive2_ic_pc_ops },
{ "xive-ic-tctxt", 3, 1, &pnv_xive2_ic_tctxt_ops },
{ "xive-ic-notify", 4, 1, &pnv_xive2_ic_notify_ops },
/* page 5 reserved */
{ "xive-ic-sync", 6, 2, &pnv_xive2_ic_sync_ops },
{ "xive-ic-lsi", 8, 2, &pnv_xive2_ic_lsi_ops },
/* pages 10-255 reserved */
{ "xive-ic-tm-indirect", 256, 128, &pnv_xive2_ic_tm_indirect_ops },
/* pages 384-511 reserved */
};
/*
* CQ operations
*/
static uint64_t pnv_xive2_ic_cq_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint32_t reg = offset >> 3;
uint64_t val = 0;
switch (offset) {
case CQ_XIVE_CAP: /* Set at reset */
case CQ_XIVE_CFG:
val = xive->cq_regs[reg];
break;
case CQ_MSGSND: /* TODO check the #cores of the machine */
val = 0xffffffff00000000;
break;
case CQ_CFG_PB_GEN:
val = CQ_CFG_PB_GEN_PB_INIT; /* TODO: fix CQ_CFG_PB_GEN default value */
break;
default:
xive2_error(xive, "CQ: invalid read @%"HWADDR_PRIx, offset);
}
return val;
}
static uint64_t pnv_xive2_bar_size(uint64_t val)
{
return 1ull << (GETFIELD(CQ_BAR_RANGE, val) + 24);
}
static void pnv_xive2_ic_cq_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
MemoryRegion *sysmem = get_system_memory();
uint32_t reg = offset >> 3;
int i;
switch (offset) {
case CQ_XIVE_CFG:
case CQ_RST_CTL: /* TODO: reset all BARs */
break;
case CQ_IC_BAR:
xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
if (!(val & CQ_IC_BAR_VALID)) {
xive->ic_base = 0;
if (xive->cq_regs[reg] & CQ_IC_BAR_VALID) {
for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
memory_region_del_subregion(&xive->ic_mmio,
&xive->ic_mmios[i]);
}
memory_region_del_subregion(sysmem, &xive->ic_mmio);
}
} else {
xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
if (!(xive->cq_regs[reg] & CQ_IC_BAR_VALID)) {
for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
memory_region_add_subregion(&xive->ic_mmio,
pnv_xive2_ic_regions[i].pgoff << xive->ic_shift,
&xive->ic_mmios[i]);
}
memory_region_add_subregion(sysmem, xive->ic_base,
&xive->ic_mmio);
}
}
break;
case CQ_TM_BAR:
xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
if (!(val & CQ_TM_BAR_VALID)) {
xive->tm_base = 0;
if (xive->cq_regs[reg] & CQ_TM_BAR_VALID) {
memory_region_del_subregion(sysmem, &xive->tm_mmio);
}
} else {
xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
if (!(xive->cq_regs[reg] & CQ_TM_BAR_VALID)) {
memory_region_add_subregion(sysmem, xive->tm_base,
&xive->tm_mmio);
}
}
break;
case CQ_ESB_BAR:
xive->esb_shift = val & CQ_BAR_64K ? 16 : 12;
if (!(val & CQ_BAR_VALID)) {
xive->esb_base = 0;
if (xive->cq_regs[reg] & CQ_BAR_VALID) {
memory_region_del_subregion(sysmem, &xive->esb_mmio);
}
} else {
xive->esb_base = val & CQ_BAR_ADDR;
if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
memory_region_set_size(&xive->esb_mmio,
pnv_xive2_bar_size(val));
memory_region_add_subregion(sysmem, xive->esb_base,
&xive->esb_mmio);
}
}
break;
case CQ_END_BAR:
xive->end_shift = val & CQ_BAR_64K ? 16 : 12;
if (!(val & CQ_BAR_VALID)) {
xive->end_base = 0;
if (xive->cq_regs[reg] & CQ_BAR_VALID) {
memory_region_del_subregion(sysmem, &xive->end_mmio);
}
} else {
xive->end_base = val & CQ_BAR_ADDR;
if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
memory_region_set_size(&xive->end_mmio,
pnv_xive2_bar_size(val));
memory_region_add_subregion(sysmem, xive->end_base,
&xive->end_mmio);
}
}
break;
case CQ_NVC_BAR:
xive->nvc_shift = val & CQ_BAR_64K ? 16 : 12;
if (!(val & CQ_BAR_VALID)) {
xive->nvc_base = 0;
if (xive->cq_regs[reg] & CQ_BAR_VALID) {
memory_region_del_subregion(sysmem, &xive->nvc_mmio);
}
} else {
xive->nvc_base = val & CQ_BAR_ADDR;
if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
memory_region_set_size(&xive->nvc_mmio,
pnv_xive2_bar_size(val));
memory_region_add_subregion(sysmem, xive->nvc_base,
&xive->nvc_mmio);
}
}
break;
case CQ_NVPG_BAR:
xive->nvpg_shift = val & CQ_BAR_64K ? 16 : 12;
if (!(val & CQ_BAR_VALID)) {
xive->nvpg_base = 0;
if (xive->cq_regs[reg] & CQ_BAR_VALID) {
memory_region_del_subregion(sysmem, &xive->nvpg_mmio);
}
} else {
xive->nvpg_base = val & CQ_BAR_ADDR;
if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) {
memory_region_set_size(&xive->nvpg_mmio,
pnv_xive2_bar_size(val));
memory_region_add_subregion(sysmem, xive->nvpg_base,
&xive->nvpg_mmio);
}
}
break;
case CQ_TAR: /* Set Translation Table Address */
break;
case CQ_TDR: /* Set Translation Table Data */
pnv_xive2_stt_set_data(xive, val);
break;
case CQ_FIRMASK_OR: /* FIR error reporting */
break;
default:
xive2_error(xive, "CQ: invalid write 0x%"HWADDR_PRIx, offset);
return;
}
xive->cq_regs[reg] = val;
}
static const MemoryRegionOps pnv_xive2_ic_cq_ops = {
.read = pnv_xive2_ic_cq_read,
.write = pnv_xive2_ic_cq_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint8_t pnv_xive2_cache_watch_assign(uint64_t engine_mask,
uint64_t *state)
{
uint8_t val = 0xFF;
int i;
for (i = 3; i >= 0; i--) {
if (BIT(i) & engine_mask) {
if (!(BIT(i) & *state)) {
*state |= BIT(i);
val = 3 - i;
break;
}
}
}
return val;
}
static void pnv_xive2_cache_watch_release(uint64_t *state, uint8_t watch_engine)
{
uint8_t engine_bit = 3 - watch_engine;
if (*state & BIT(engine_bit)) {
*state &= ~BIT(engine_bit);
}
}
static uint8_t pnv_xive2_endc_cache_watch_assign(PnvXive2 *xive)
{
uint64_t engine_mask = GETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN,
xive->vc_regs[VC_ENDC_CFG >> 3]);
uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3];
uint8_t val;
/*
* We keep track of which engines are currently busy in the
* VC_ENDC_WATCH_ASSIGN register directly. When the firmware reads
* the register, we don't return its value but the ID of an engine
* it can use.
* There are 4 engines. 0xFF means no engine is available.
*/
val = pnv_xive2_cache_watch_assign(engine_mask, &state);
if (val != 0xFF) {
xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state;
}
return val;
}
static void pnv_xive2_endc_cache_watch_release(PnvXive2 *xive,
uint8_t watch_engine)
{
uint64_t state = xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3];
pnv_xive2_cache_watch_release(&state, watch_engine);
xive->vc_regs[VC_ENDC_WATCH_ASSIGN >> 3] = state;
}
static uint64_t pnv_xive2_ic_vc_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint64_t val = 0;
uint32_t reg = offset >> 3;
uint8_t watch_engine;
switch (offset) {
/*
* VSD table settings.
*/
case VC_VSD_TABLE_ADDR:
case VC_VSD_TABLE_DATA:
val = xive->vc_regs[reg];
break;
/*
* ESB cache updates (not modeled)
*/
case VC_ESBC_FLUSH_CTRL:
xive->vc_regs[reg] &= ~VC_ESBC_FLUSH_CTRL_POLL_VALID;
val = xive->vc_regs[reg];
break;
case VC_ESBC_CFG:
val = xive->vc_regs[reg];
break;
/*
* EAS cache updates (not modeled)
*/
case VC_EASC_FLUSH_CTRL:
xive->vc_regs[reg] &= ~VC_EASC_FLUSH_CTRL_POLL_VALID;
val = xive->vc_regs[reg];
break;
case VC_ENDC_WATCH_ASSIGN:
val = pnv_xive2_endc_cache_watch_assign(xive);
break;
case VC_ENDC_CFG:
val = xive->vc_regs[reg];
break;
/*
* END cache updates
*/
case VC_ENDC_WATCH0_SPEC:
case VC_ENDC_WATCH1_SPEC:
case VC_ENDC_WATCH2_SPEC:
case VC_ENDC_WATCH3_SPEC:
watch_engine = (offset - VC_ENDC_WATCH0_SPEC) >> 6;
xive->vc_regs[reg] &= ~(VC_ENDC_WATCH_FULL | VC_ENDC_WATCH_CONFLICT);
pnv_xive2_endc_cache_watch_release(xive, watch_engine);
val = xive->vc_regs[reg];
break;
case VC_ENDC_WATCH0_DATA0:
case VC_ENDC_WATCH1_DATA0:
case VC_ENDC_WATCH2_DATA0:
case VC_ENDC_WATCH3_DATA0:
/*
* Load DATA registers from cache with data requested by the
* SPEC register
*/
watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6;
pnv_xive2_end_cache_load(xive, watch_engine);
val = xive->vc_regs[reg];
break;
case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3:
case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3:
case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3:
case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3:
val = xive->vc_regs[reg];
break;
case VC_ENDC_FLUSH_CTRL:
xive->vc_regs[reg] &= ~VC_ENDC_FLUSH_CTRL_POLL_VALID;
val = xive->vc_regs[reg];
break;
/*
* Indirect invalidation
*/
case VC_AT_MACRO_KILL_MASK:
val = xive->vc_regs[reg];
break;
case VC_AT_MACRO_KILL:
xive->vc_regs[reg] &= ~VC_AT_MACRO_KILL_VALID;
val = xive->vc_regs[reg];
break;
/*
* Interrupt fifo overflow in memory backing store (Not modeled)
*/
case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6:
val = xive->vc_regs[reg];
break;
/*
* Synchronisation
*/
case VC_ENDC_SYNC_DONE:
val = VC_ENDC_SYNC_POLL_DONE;
break;
default:
xive2_error(xive, "VC: invalid read @%"HWADDR_PRIx, offset);
}
return val;
}
static void pnv_xive2_ic_vc_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint32_t reg = offset >> 3;
uint8_t watch_engine;
switch (offset) {
/*
* VSD table settings.
*/
case VC_VSD_TABLE_ADDR:
break;
case VC_VSD_TABLE_DATA:
pnv_xive2_vc_vst_set_data(xive, val);
break;
/*
* ESB cache updates (not modeled)
*/
/* case VC_ESBC_FLUSH_CTRL: */
case VC_ESBC_FLUSH_POLL:
xive->vc_regs[VC_ESBC_FLUSH_CTRL >> 3] |= VC_ESBC_FLUSH_CTRL_POLL_VALID;
/* ESB update */
break;
case VC_ESBC_FLUSH_INJECT:
pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ESBC);
break;
case VC_ESBC_CFG:
break;
/*
* EAS cache updates (not modeled)
*/
/* case VC_EASC_FLUSH_CTRL: */
case VC_EASC_FLUSH_POLL:
xive->vc_regs[VC_EASC_FLUSH_CTRL >> 3] |= VC_EASC_FLUSH_CTRL_POLL_VALID;
/* EAS update */
break;
case VC_EASC_FLUSH_INJECT:
pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_EASC);
break;
case VC_ENDC_CFG:
break;
/*
* END cache updates
*/
case VC_ENDC_WATCH0_SPEC:
case VC_ENDC_WATCH1_SPEC:
case VC_ENDC_WATCH2_SPEC:
case VC_ENDC_WATCH3_SPEC:
val &= ~VC_ENDC_WATCH_CONFLICT; /* HW will set this bit */
break;
case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3:
case VC_ENDC_WATCH1_DATA1 ... VC_ENDC_WATCH1_DATA3:
case VC_ENDC_WATCH2_DATA1 ... VC_ENDC_WATCH2_DATA3:
case VC_ENDC_WATCH3_DATA1 ... VC_ENDC_WATCH3_DATA3:
break;
case VC_ENDC_WATCH0_DATA0:
case VC_ENDC_WATCH1_DATA0:
case VC_ENDC_WATCH2_DATA0:
case VC_ENDC_WATCH3_DATA0:
/* writing to DATA0 triggers the cache write */
watch_engine = (offset - VC_ENDC_WATCH0_DATA0) >> 6;
xive->vc_regs[reg] = val;
pnv_xive2_end_update(xive, watch_engine);
break;
/* case VC_ENDC_FLUSH_CTRL: */
case VC_ENDC_FLUSH_POLL:
xive->vc_regs[VC_ENDC_FLUSH_CTRL >> 3] |= VC_ENDC_FLUSH_CTRL_POLL_VALID;
break;
case VC_ENDC_FLUSH_INJECT:
pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_ENDC);
break;
/*
* Indirect invalidation
*/
case VC_AT_MACRO_KILL:
case VC_AT_MACRO_KILL_MASK:
break;
/*
* Interrupt fifo overflow in memory backing store (Not modeled)
*/
case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6:
break;
/*
* Synchronisation
*/
case VC_ENDC_SYNC_DONE:
break;
default:
xive2_error(xive, "VC: invalid write @%"HWADDR_PRIx, offset);
return;
}
xive->vc_regs[reg] = val;
}
static const MemoryRegionOps pnv_xive2_ic_vc_ops = {
.read = pnv_xive2_ic_vc_read,
.write = pnv_xive2_ic_vc_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint8_t pnv_xive2_nxc_cache_watch_assign(PnvXive2 *xive)
{
uint64_t engine_mask = GETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN,
xive->pc_regs[PC_NXC_PROC_CONFIG >> 3]);
uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3];
uint8_t val;
/*
* We keep track of which engines are currently busy in the
* PC_NXC_WATCH_ASSIGN register directly. When the firmware reads
* the register, we don't return its value but the ID of an engine
* it can use.
* There are 4 engines. 0xFF means no engine is available.
*/
val = pnv_xive2_cache_watch_assign(engine_mask, &state);
if (val != 0xFF) {
xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state;
}
return val;
}
static void pnv_xive2_nxc_cache_watch_release(PnvXive2 *xive,
uint8_t watch_engine)
{
uint64_t state = xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3];
pnv_xive2_cache_watch_release(&state, watch_engine);
xive->pc_regs[PC_NXC_WATCH_ASSIGN >> 3] = state;
}
static uint64_t pnv_xive2_ic_pc_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint64_t val = -1;
uint32_t reg = offset >> 3;
uint8_t watch_engine;
switch (offset) {
/*
* VSD table settings.
*/
case PC_VSD_TABLE_ADDR:
case PC_VSD_TABLE_DATA:
val = xive->pc_regs[reg];
break;
case PC_NXC_WATCH_ASSIGN:
val = pnv_xive2_nxc_cache_watch_assign(xive);
break;
case PC_NXC_PROC_CONFIG:
val = xive->pc_regs[reg];
break;
/*
* cache updates
*/
case PC_NXC_WATCH0_SPEC:
case PC_NXC_WATCH1_SPEC:
case PC_NXC_WATCH2_SPEC:
case PC_NXC_WATCH3_SPEC:
watch_engine = (offset - PC_NXC_WATCH0_SPEC) >> 6;
xive->pc_regs[reg] &= ~(PC_NXC_WATCH_FULL | PC_NXC_WATCH_CONFLICT);
pnv_xive2_nxc_cache_watch_release(xive, watch_engine);
val = xive->pc_regs[reg];
break;
case PC_NXC_WATCH0_DATA0:
case PC_NXC_WATCH1_DATA0:
case PC_NXC_WATCH2_DATA0:
case PC_NXC_WATCH3_DATA0:
/*
* Load DATA registers from cache with data requested by the
* SPEC register
*/
watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6;
pnv_xive2_nxc_cache_load(xive, watch_engine);
val = xive->pc_regs[reg];
break;
case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3:
case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3:
case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3:
case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3:
val = xive->pc_regs[reg];
break;
case PC_NXC_FLUSH_CTRL:
xive->pc_regs[reg] &= ~PC_NXC_FLUSH_CTRL_POLL_VALID;
val = xive->pc_regs[reg];
break;
/*
* Indirect invalidation
*/
case PC_AT_KILL:
xive->pc_regs[reg] &= ~PC_AT_KILL_VALID;
val = xive->pc_regs[reg];
break;
default:
xive2_error(xive, "PC: invalid read @%"HWADDR_PRIx, offset);
}
return val;
}
static void pnv_xive2_pc_vst_set_data(PnvXive2 *xive, uint64_t vsd)
{
uint8_t type = GETFIELD(PC_VSD_TABLE_SELECT,
xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]);
uint8_t blk = GETFIELD(PC_VSD_TABLE_ADDRESS,
xive->pc_regs[PC_VSD_TABLE_ADDR >> 3]);
pnv_xive2_vst_set_data(xive, vsd, type, blk);
}
static void pnv_xive2_ic_pc_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint32_t reg = offset >> 3;
uint8_t watch_engine;
switch (offset) {
/*
* VSD table settings.
* The Xive2Router model combines both VC and PC sub-engines. We
* allow to configure the tables through both, for the rare cases
* where a table only really needs to be configured for one of
* them (e.g. the NVG table for the presenter). It assumes that
* firmware passes the same address to the VC and PC when tables
* are defined for both, which seems acceptable.
*/
case PC_VSD_TABLE_ADDR:
break;
case PC_VSD_TABLE_DATA:
pnv_xive2_pc_vst_set_data(xive, val);
break;
case PC_NXC_PROC_CONFIG:
break;
/*
* cache updates
*/
case PC_NXC_WATCH0_SPEC:
case PC_NXC_WATCH1_SPEC:
case PC_NXC_WATCH2_SPEC:
case PC_NXC_WATCH3_SPEC:
val &= ~PC_NXC_WATCH_CONFLICT; /* HW will set this bit */
break;
case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3:
case PC_NXC_WATCH1_DATA1 ... PC_NXC_WATCH1_DATA3:
case PC_NXC_WATCH2_DATA1 ... PC_NXC_WATCH2_DATA3:
case PC_NXC_WATCH3_DATA1 ... PC_NXC_WATCH3_DATA3:
break;
case PC_NXC_WATCH0_DATA0:
case PC_NXC_WATCH1_DATA0:
case PC_NXC_WATCH2_DATA0:
case PC_NXC_WATCH3_DATA0:
/* writing to DATA0 triggers the cache write */
watch_engine = (offset - PC_NXC_WATCH0_DATA0) >> 6;
xive->pc_regs[reg] = val;
pnv_xive2_nxc_update(xive, watch_engine);
break;
/* case PC_NXC_FLUSH_CTRL: */
case PC_NXC_FLUSH_POLL:
xive->pc_regs[PC_NXC_FLUSH_CTRL >> 3] |= PC_NXC_FLUSH_CTRL_POLL_VALID;
break;
case PC_NXC_FLUSH_INJECT:
pnv_xive2_inject_notify(xive, PNV_XIVE2_CACHE_NXC);
break;
/*
* Indirect invalidation
*/
case PC_AT_KILL:
case PC_AT_KILL_MASK:
break;
default:
xive2_error(xive, "PC: invalid write @%"HWADDR_PRIx, offset);
return;
}
xive->pc_regs[reg] = val;
}
static const MemoryRegionOps pnv_xive2_ic_pc_ops = {
.read = pnv_xive2_ic_pc_read,
.write = pnv_xive2_ic_pc_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint64_t pnv_xive2_ic_tctxt_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint64_t val = -1;
uint32_t reg = offset >> 3;
switch (offset) {
/*
* XIVE2 hardware thread enablement
*/
case TCTXT_EN0:
case TCTXT_EN1:
val = xive->tctxt_regs[reg];
break;
case TCTXT_EN0_SET:
case TCTXT_EN0_RESET:
val = xive->tctxt_regs[TCTXT_EN0 >> 3];
break;
case TCTXT_EN1_SET:
case TCTXT_EN1_RESET:
val = xive->tctxt_regs[TCTXT_EN1 >> 3];
break;
case TCTXT_CFG:
val = xive->tctxt_regs[reg];
break;
default:
xive2_error(xive, "TCTXT: invalid read @%"HWADDR_PRIx, offset);
}
return val;
}
static void pnv_xive2_ic_tctxt_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint32_t reg = offset >> 3;
switch (offset) {
/*
* XIVE2 hardware thread enablement
*/
case TCTXT_EN0: /* Physical Thread Enable */
case TCTXT_EN1: /* Physical Thread Enable (fused core) */
xive->tctxt_regs[reg] = val;
break;
case TCTXT_EN0_SET:
xive->tctxt_regs[TCTXT_EN0 >> 3] |= val;
break;
case TCTXT_EN1_SET:
xive->tctxt_regs[TCTXT_EN1 >> 3] |= val;
break;
case TCTXT_EN0_RESET:
xive->tctxt_regs[TCTXT_EN0 >> 3] &= ~val;
break;
case TCTXT_EN1_RESET:
xive->tctxt_regs[TCTXT_EN1 >> 3] &= ~val;
break;
case TCTXT_CFG:
xive->tctxt_regs[reg] = val;
break;
default:
xive2_error(xive, "TCTXT: invalid write @%"HWADDR_PRIx, offset);
return;
}
}
static const MemoryRegionOps pnv_xive2_ic_tctxt_ops = {
.read = pnv_xive2_ic_tctxt_read,
.write = pnv_xive2_ic_tctxt_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* Redirect XSCOM to MMIO handlers
*/
static uint64_t pnv_xive2_xscom_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint64_t val = -1;
uint32_t xscom_reg = offset >> 3;
uint32_t mmio_offset = (xscom_reg & 0xFF) << 3;
switch (xscom_reg) {
case 0x000 ... 0x0FF:
val = pnv_xive2_ic_cq_read(opaque, mmio_offset, size);
break;
case 0x100 ... 0x1FF:
val = pnv_xive2_ic_vc_read(opaque, mmio_offset, size);
break;
case 0x200 ... 0x2FF:
val = pnv_xive2_ic_pc_read(opaque, mmio_offset, size);
break;
case 0x300 ... 0x3FF:
val = pnv_xive2_ic_tctxt_read(opaque, mmio_offset, size);
break;
default:
xive2_error(xive, "XSCOM: invalid read @%"HWADDR_PRIx, offset);
}
return val;
}
static void pnv_xive2_xscom_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
uint32_t xscom_reg = offset >> 3;
uint32_t mmio_offset = (xscom_reg & 0xFF) << 3;
switch (xscom_reg) {
case 0x000 ... 0x0FF:
pnv_xive2_ic_cq_write(opaque, mmio_offset, val, size);
break;
case 0x100 ... 0x1FF:
pnv_xive2_ic_vc_write(opaque, mmio_offset, val, size);
break;
case 0x200 ... 0x2FF:
pnv_xive2_ic_pc_write(opaque, mmio_offset, val, size);
break;
case 0x300 ... 0x3FF:
pnv_xive2_ic_tctxt_write(opaque, mmio_offset, val, size);
break;
default:
xive2_error(xive, "XSCOM: invalid write @%"HWADDR_PRIx, offset);
}
}
static const MemoryRegionOps pnv_xive2_xscom_ops = {
.read = pnv_xive2_xscom_read,
.write = pnv_xive2_xscom_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* Notify port page. The layout is compatible between 4K and 64K pages :
*
* Page 1 Notify page (writes only)
* 0x000 - 0x7FF IPI interrupt (NPU)
* 0x800 - 0xFFF HW interrupt triggers (PSI, PHB)
*/
static void pnv_xive2_ic_hw_trigger(PnvXive2 *xive, hwaddr addr,
uint64_t val)
{
uint8_t blk;
uint32_t idx;
if (val & XIVE_TRIGGER_END) {
xive2_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
addr, val);
return;
}
/*
* Forward the source event notification directly to the Router.
* The source interrupt number should already be correctly encoded
* with the chip block id by the sending device (PHB, PSI).
*/
blk = XIVE_EAS_BLOCK(val);
idx = XIVE_EAS_INDEX(val);
xive2_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx),
!!(val & XIVE_TRIGGER_PQ));
}
static void pnv_xive2_ic_notify_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
/* VC: IPI triggers */
switch (offset) {
case 0x000 ... 0x7FF:
/* TODO: check IPI notify sub-page routing */
pnv_xive2_ic_hw_trigger(opaque, offset, val);
break;
/* VC: HW triggers */
case 0x800 ... 0xFFF:
pnv_xive2_ic_hw_trigger(opaque, offset, val);
break;
default:
xive2_error(xive, "NOTIFY: invalid write @%"HWADDR_PRIx, offset);
}
}
static uint64_t pnv_xive2_ic_notify_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
/* loads are invalid */
xive2_error(xive, "NOTIFY: invalid read @%"HWADDR_PRIx, offset);
return -1;
}
static const MemoryRegionOps pnv_xive2_ic_notify_ops = {
.read = pnv_xive2_ic_notify_read,
.write = pnv_xive2_ic_notify_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint64_t pnv_xive2_ic_lsi_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
xive2_error(xive, "LSI: invalid read @%"HWADDR_PRIx, offset);
return -1;
}
static void pnv_xive2_ic_lsi_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
xive2_error(xive, "LSI: invalid write @%"HWADDR_PRIx, offset);
}
static const MemoryRegionOps pnv_xive2_ic_lsi_ops = {
.read = pnv_xive2_ic_lsi_read,
.write = pnv_xive2_ic_lsi_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* Sync MMIO page (write only)
*/
#define PNV_XIVE2_SYNC_IPI 0x000
#define PNV_XIVE2_SYNC_HW 0x080
#define PNV_XIVE2_SYNC_NxC 0x100
#define PNV_XIVE2_SYNC_INT 0x180
#define PNV_XIVE2_SYNC_OS_ESC 0x200
#define PNV_XIVE2_SYNC_POOL_ESC 0x280
#define PNV_XIVE2_SYNC_HARD_ESC 0x300
#define PNV_XIVE2_SYNC_NXC_LD_LCL_NCO 0x800
#define PNV_XIVE2_SYNC_NXC_LD_LCL_CO 0x880
#define PNV_XIVE2_SYNC_NXC_ST_LCL_NCI 0x900
#define PNV_XIVE2_SYNC_NXC_ST_LCL_CI 0x980
#define PNV_XIVE2_SYNC_NXC_ST_RMT_NCI 0xA00
#define PNV_XIVE2_SYNC_NXC_ST_RMT_CI 0xA80
static uint64_t pnv_xive2_ic_sync_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
/* loads are invalid */
xive2_error(xive, "SYNC: invalid read @%"HWADDR_PRIx, offset);
return -1;
}
/*
* The sync MMIO space spans two pages. The lower page is use for
* queue sync "poll" requests while the upper page is used for queue
* sync "inject" requests. Inject requests require the HW to write
* a byte of all 1's to a predetermined location in memory in order
* to signal completion of the request. Both pages have the same
* layout, so it is easiest to handle both with a single function.
*/
static void pnv_xive2_ic_sync_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
int inject_type;
hwaddr pg_offset_mask = (1ull << xive->ic_shift) - 1;
/* adjust offset for inject page */
hwaddr adj_offset = offset & pg_offset_mask;
switch (adj_offset) {
case PNV_XIVE2_SYNC_IPI:
inject_type = PNV_XIVE2_QUEUE_IPI;
break;
case PNV_XIVE2_SYNC_HW:
inject_type = PNV_XIVE2_QUEUE_HW;
break;
case PNV_XIVE2_SYNC_NxC:
inject_type = PNV_XIVE2_QUEUE_NXC;
break;
case PNV_XIVE2_SYNC_INT:
inject_type = PNV_XIVE2_QUEUE_INT;
break;
case PNV_XIVE2_SYNC_OS_ESC:
inject_type = PNV_XIVE2_QUEUE_OS;
break;
case PNV_XIVE2_SYNC_POOL_ESC:
inject_type = PNV_XIVE2_QUEUE_POOL;
break;
case PNV_XIVE2_SYNC_HARD_ESC:
inject_type = PNV_XIVE2_QUEUE_HARD;
break;
case PNV_XIVE2_SYNC_NXC_LD_LCL_NCO:
inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_NCO;
break;
case PNV_XIVE2_SYNC_NXC_LD_LCL_CO:
inject_type = PNV_XIVE2_QUEUE_NXC_LD_LCL_CO;
break;
case PNV_XIVE2_SYNC_NXC_ST_LCL_NCI:
inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_NCI;
break;
case PNV_XIVE2_SYNC_NXC_ST_LCL_CI:
inject_type = PNV_XIVE2_QUEUE_NXC_ST_LCL_CI;
break;
case PNV_XIVE2_SYNC_NXC_ST_RMT_NCI:
inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_NCI;
break;
case PNV_XIVE2_SYNC_NXC_ST_RMT_CI:
inject_type = PNV_XIVE2_QUEUE_NXC_ST_RMT_CI;
break;
default:
xive2_error(xive, "SYNC: invalid write @%"HWADDR_PRIx, offset);
return;
}
/* Write Queue Sync notification byte if writing to sync inject page */
if ((offset & ~pg_offset_mask) != 0) {
pnv_xive2_inject_notify(xive, inject_type);
}
}
static const MemoryRegionOps pnv_xive2_ic_sync_ops = {
.read = pnv_xive2_ic_sync_read,
.write = pnv_xive2_ic_sync_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* When the TM direct pages of the IC controller are accessed, the
* target HW thread is deduced from the page offset.
*/
static uint32_t pnv_xive2_ic_tm_get_pir(PnvXive2 *xive, hwaddr offset)
{
/* On P10, the node ID shift in the PIR register is 8 bits */
return xive->chip->chip_id << 8 | offset >> xive->ic_shift;
}
static uint32_t pnv_xive2_ic_tm_get_hw_page_offset(PnvXive2 *xive,
hwaddr offset)
{
/*
* Indirect TIMA accesses are similar to direct accesses for
* privilege ring 0. So remove any traces of the hw thread ID from
* the offset in the IC BAR as it could be interpreted as the ring
* privilege when calling the underlying direct access functions.
*/
return offset & ((1ull << xive->ic_shift) - 1);
}
static XiveTCTX *pnv_xive2_get_indirect_tctx(PnvXive2 *xive, uint32_t pir)
{
PnvChip *chip = xive->chip;
PowerPCCPU *cpu = NULL;
cpu = pnv_chip_find_cpu(chip, pir);
if (!cpu) {
xive2_error(xive, "IC: invalid PIR %x for indirect access", pir);
return NULL;
}
if (!pnv_xive2_is_cpu_enabled(xive, cpu)) {
xive2_error(xive, "IC: CPU %x is not enabled", pir);
}
return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
}
static uint64_t pnv_xive2_ic_tm_indirect_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
XivePresenter *xptr = XIVE_PRESENTER(xive);
hwaddr hw_page_offset;
uint32_t pir;
XiveTCTX *tctx;
uint64_t val = -1;
pir = pnv_xive2_ic_tm_get_pir(xive, offset);
hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset);
tctx = pnv_xive2_get_indirect_tctx(xive, pir);
if (tctx) {
val = xive_tctx_tm_read(xptr, tctx, hw_page_offset, size);
}
return val;
}
static void pnv_xive2_ic_tm_indirect_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
XivePresenter *xptr = XIVE_PRESENTER(xive);
hwaddr hw_page_offset;
uint32_t pir;
XiveTCTX *tctx;
pir = pnv_xive2_ic_tm_get_pir(xive, offset);
hw_page_offset = pnv_xive2_ic_tm_get_hw_page_offset(xive, offset);
tctx = pnv_xive2_get_indirect_tctx(xive, pir);
if (tctx) {
xive_tctx_tm_write(xptr, tctx, hw_page_offset, val, size);
}
}
static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops = {
.read = pnv_xive2_ic_tm_indirect_read,
.write = pnv_xive2_ic_tm_indirect_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
/*
* TIMA ops
*/
static void pnv_xive2_tm_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu);
XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
XivePresenter *xptr = XIVE_PRESENTER(xive);
xive_tctx_tm_write(xptr, tctx, offset, value, size);
}
static uint64_t pnv_xive2_tm_read(void *opaque, hwaddr offset, unsigned size)
{
PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu);
XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
XivePresenter *xptr = XIVE_PRESENTER(xive);
return xive_tctx_tm_read(xptr, tctx, offset, size);
}
static const MemoryRegionOps pnv_xive2_tm_ops = {
.read = pnv_xive2_tm_read,
.write = pnv_xive2_tm_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static uint64_t pnv_xive2_nvc_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
xive2_error(xive, "NVC: invalid read @%"HWADDR_PRIx, offset);
return -1;
}
static void pnv_xive2_nvc_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
xive2_error(xive, "NVC: invalid write @%"HWADDR_PRIx, offset);
}
static const MemoryRegionOps pnv_xive2_nvc_ops = {
.read = pnv_xive2_nvc_read,
.write = pnv_xive2_nvc_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint64_t pnv_xive2_nvpg_read(void *opaque, hwaddr offset,
unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
xive2_error(xive, "NVPG: invalid read @%"HWADDR_PRIx, offset);
return -1;
}
static void pnv_xive2_nvpg_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
PnvXive2 *xive = PNV_XIVE2(opaque);
xive2_error(xive, "NVPG: invalid write @%"HWADDR_PRIx, offset);
}
static const MemoryRegionOps pnv_xive2_nvpg_ops = {
.read = pnv_xive2_nvpg_read,
.write = pnv_xive2_nvpg_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
/*
* POWER10 default capabilities: 0x2000120076f000FC
*/
#define PNV_XIVE2_CAPABILITIES 0x2000120076f000FC
/*
* POWER10 default configuration: 0x0030000033000000
*
* 8bits thread id was dropped for P10
*/
#define PNV_XIVE2_CONFIGURATION 0x0030000033000000
static void pnv_xive2_reset(void *dev)
{
PnvXive2 *xive = PNV_XIVE2(dev);
XiveSource *xsrc = &xive->ipi_source;
Xive2EndSource *end_xsrc = &xive->end_source;
xive->cq_regs[CQ_XIVE_CAP >> 3] = xive->capabilities;
xive->cq_regs[CQ_XIVE_CFG >> 3] = xive->config;
/* HW hardwires the #Topology of the chip in the block field */
xive->cq_regs[CQ_XIVE_CFG >> 3] |=
SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, xive->chip->chip_id);
/* VC and PC cache watch assign mechanism */
xive->vc_regs[VC_ENDC_CFG >> 3] =
SETFIELD(VC_ENDC_CFG_CACHE_WATCH_ASSIGN, 0ull, 0b0111);
xive->pc_regs[PC_NXC_PROC_CONFIG >> 3] =
SETFIELD(PC_NXC_PROC_CONFIG_WATCH_ASSIGN, 0ull, 0b0111);
/* Set default page size to 64k */
xive->ic_shift = xive->esb_shift = xive->end_shift = 16;
xive->nvc_shift = xive->nvpg_shift = xive->tm_shift = 16;
/* Clear source MMIOs */
if (memory_region_is_mapped(&xsrc->esb_mmio)) {
memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio);
}
if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio);
}
}
/*
* Maximum number of IRQs and ENDs supported by HW. Will be tuned by
* software.
*/
#define PNV_XIVE2_NR_IRQS (PNV10_XIVE2_ESB_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
#define PNV_XIVE2_NR_ENDS (PNV10_XIVE2_END_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
static void pnv_xive2_realize(DeviceState *dev, Error **errp)
{
PnvXive2 *xive = PNV_XIVE2(dev);
PnvXive2Class *pxc = PNV_XIVE2_GET_CLASS(dev);
XiveSource *xsrc = &xive->ipi_source;
Xive2EndSource *end_xsrc = &xive->end_source;
Error *local_err = NULL;
int i;
pxc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
assert(xive->chip);
/*
* The XiveSource and Xive2EndSource objects are realized with the
* maximum allowed HW configuration. The ESB MMIO regions will be
* resized dynamically when the controller is configured by the FW
* to limit accesses to resources not provisioned.
*/
object_property_set_int(OBJECT(xsrc), "flags", XIVE_SRC_STORE_EOI,
&error_fatal);
object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE2_NR_IRQS,
&error_fatal);
object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive),
&error_fatal);
qdev_realize(DEVICE(xsrc), NULL, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE2_NR_ENDS,
&error_fatal);
object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
&error_abort);
qdev_realize(DEVICE(end_xsrc), NULL, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* XSCOM region, used for initial configuration of the BARs */
memory_region_init_io(&xive->xscom_regs, OBJECT(dev),
&pnv_xive2_xscom_ops, xive, "xscom-xive",
PNV10_XSCOM_XIVE2_SIZE << 3);
/* Interrupt controller MMIO regions */
xive->ic_shift = 16;
memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
PNV10_XIVE2_IC_SIZE);
for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) {
memory_region_init_io(&xive->ic_mmios[i], OBJECT(dev),
pnv_xive2_ic_regions[i].ops, xive,
pnv_xive2_ic_regions[i].name,
pnv_xive2_ic_regions[i].pgsize << xive->ic_shift);
}
/*
* VC MMIO regions.
*/
xive->esb_shift = 16;
xive->end_shift = 16;
memory_region_init(&xive->esb_mmio, OBJECT(xive), "xive-esb",
PNV10_XIVE2_ESB_SIZE);
memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-end",
PNV10_XIVE2_END_SIZE);
/* Presenter Controller MMIO region (not modeled) */
xive->nvc_shift = 16;
xive->nvpg_shift = 16;
memory_region_init_io(&xive->nvc_mmio, OBJECT(dev),
&pnv_xive2_nvc_ops, xive,
"xive-nvc", PNV10_XIVE2_NVC_SIZE);
memory_region_init_io(&xive->nvpg_mmio, OBJECT(dev),
&pnv_xive2_nvpg_ops, xive,
"xive-nvpg", PNV10_XIVE2_NVPG_SIZE);
/* Thread Interrupt Management Area (Direct) */
xive->tm_shift = 16;
memory_region_init_io(&xive->tm_mmio, OBJECT(dev), &pnv_xive2_tm_ops,
xive, "xive-tima", PNV10_XIVE2_TM_SIZE);
qemu_register_reset(pnv_xive2_reset, dev);
}
static Property pnv_xive2_properties[] = {
DEFINE_PROP_UINT64("ic-bar", PnvXive2, ic_base, 0),
DEFINE_PROP_UINT64("esb-bar", PnvXive2, esb_base, 0),
DEFINE_PROP_UINT64("end-bar", PnvXive2, end_base, 0),
DEFINE_PROP_UINT64("nvc-bar", PnvXive2, nvc_base, 0),
DEFINE_PROP_UINT64("nvpg-bar", PnvXive2, nvpg_base, 0),
DEFINE_PROP_UINT64("tm-bar", PnvXive2, tm_base, 0),
DEFINE_PROP_UINT64("capabilities", PnvXive2, capabilities,
PNV_XIVE2_CAPABILITIES),
DEFINE_PROP_UINT64("config", PnvXive2, config,
PNV_XIVE2_CONFIGURATION),
DEFINE_PROP_LINK("chip", PnvXive2, chip, TYPE_PNV_CHIP, PnvChip *),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_xive2_instance_init(Object *obj)
{
PnvXive2 *xive = PNV_XIVE2(obj);
object_initialize_child(obj, "ipi_source", &xive->ipi_source,
TYPE_XIVE_SOURCE);
object_initialize_child(obj, "end_source", &xive->end_source,
TYPE_XIVE2_END_SOURCE);
}
static int pnv_xive2_dt_xscom(PnvXScomInterface *dev, void *fdt,
int xscom_offset)
{
const char compat_p10[] = "ibm,power10-xive-x";
char *name;
int offset;
uint32_t reg[] = {
cpu_to_be32(PNV10_XSCOM_XIVE2_BASE),
cpu_to_be32(PNV10_XSCOM_XIVE2_SIZE)
};
name = g_strdup_printf("xive@%x", PNV10_XSCOM_XIVE2_BASE);
offset = fdt_add_subnode(fdt, xscom_offset, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT(fdt_setprop(fdt, offset, "compatible", compat_p10,
sizeof(compat_p10)));
return 0;
}
static void pnv_xive2_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
Xive2RouterClass *xrc = XIVE2_ROUTER_CLASS(klass);
XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
PnvXive2Class *pxc = PNV_XIVE2_CLASS(klass);
xdc->dt_xscom = pnv_xive2_dt_xscom;
dc->desc = "PowerNV XIVE2 Interrupt Controller (POWER10)";
device_class_set_parent_realize(dc, pnv_xive2_realize,
&pxc->parent_realize);
device_class_set_props(dc, pnv_xive2_properties);
xrc->get_eas = pnv_xive2_get_eas;
xrc->get_pq = pnv_xive2_get_pq;
xrc->set_pq = pnv_xive2_set_pq;
xrc->get_end = pnv_xive2_get_end;
xrc->write_end = pnv_xive2_write_end;
xrc->get_nvp = pnv_xive2_get_nvp;
xrc->write_nvp = pnv_xive2_write_nvp;
xrc->get_nvgc = pnv_xive2_get_nvgc;
xrc->write_nvgc = pnv_xive2_write_nvgc;
xrc->get_config = pnv_xive2_get_config;
xrc->get_block_id = pnv_xive2_get_block_id;
xnc->notify = pnv_xive2_notify;
xpc->match_nvt = pnv_xive2_match_nvt;
xpc->get_config = pnv_xive2_presenter_get_config;
};
static const TypeInfo pnv_xive2_info = {
.name = TYPE_PNV_XIVE2,
.parent = TYPE_XIVE2_ROUTER,
.instance_init = pnv_xive2_instance_init,
.instance_size = sizeof(PnvXive2),
.class_init = pnv_xive2_class_init,
.class_size = sizeof(PnvXive2Class),
.interfaces = (InterfaceInfo[]) {
{ TYPE_PNV_XSCOM_INTERFACE },
{ }
}
};
static void pnv_xive2_register_types(void)
{
type_register_static(&pnv_xive2_info);
}
type_init(pnv_xive2_register_types)
/*
* If the table is direct, we can compute the number of PQ entries
* provisioned by FW.
*/
static uint32_t pnv_xive2_nr_esbs(PnvXive2 *xive)
{
uint8_t blk = pnv_xive2_block_id(xive);
uint64_t vsd = xive->vsds[VST_ESB][blk];
uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
}
/*
* Compute the number of entries per indirect subpage.
*/
static uint64_t pnv_xive2_vst_per_subpage(PnvXive2 *xive, uint32_t type)
{
uint8_t blk = pnv_xive2_block_id(xive);
uint64_t vsd = xive->vsds[type][blk];
const XiveVstInfo *info = &vst_infos[type];
uint64_t vsd_addr;
uint32_t page_shift;
/* For direct tables, fake a valid value */
if (!(VSD_INDIRECT & vsd)) {
return 1;
}
/* Get the page size of the indirect table. */
vsd_addr = vsd & VSD_ADDRESS_MASK;
ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED);
if (!(vsd & VSD_ADDRESS_MASK)) {
#ifdef XIVE2_DEBUG
xive2_error(xive, "VST: invalid %s entry!?", info->name);
#endif
return 0;
}
page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
if (!pnv_xive2_vst_page_size_allowed(page_shift)) {
xive2_error(xive, "VST: invalid %s page shift %d", info->name,
page_shift);
return 0;
}
return (1ull << page_shift) / info->size;
}
void pnv_xive2_pic_print_info(PnvXive2 *xive, GString *buf)
{
Xive2Router *xrtr = XIVE2_ROUTER(xive);
uint8_t blk = pnv_xive2_block_id(xive);
uint8_t chip_id = xive->chip->chip_id;
uint32_t srcno0 = XIVE_EAS(blk, 0);
uint32_t nr_esbs = pnv_xive2_nr_esbs(xive);
Xive2Eas eas;
Xive2End end;
Xive2Nvp nvp;
Xive2Nvgc nvgc;
int i;
uint64_t entries_per_subpage;
g_string_append_printf(buf, "XIVE[%x] Source %08x .. %08x\n",
blk, srcno0, srcno0 + nr_esbs - 1);
xive_source_pic_print_info(&xive->ipi_source, srcno0, buf);
g_string_append_printf(buf, "XIVE[%x] EAT %08x .. %08x\n",
blk, srcno0, srcno0 + nr_esbs - 1);
for (i = 0; i < nr_esbs; i++) {
if (xive2_router_get_eas(xrtr, blk, i, &eas)) {
break;
}
if (!xive2_eas_is_masked(&eas)) {
xive2_eas_pic_print_info(&eas, i, buf);
}
}
g_string_append_printf(buf, "XIVE[%x] #%d END Escalation EAT\n",
chip_id, blk);
i = 0;
while (!xive2_router_get_end(xrtr, blk, i, &end)) {
xive2_end_eas_pic_print_info(&end, i++, buf);
}
g_string_append_printf(buf, "XIVE[%x] #%d ENDT\n", chip_id, blk);
i = 0;
while (!xive2_router_get_end(xrtr, blk, i, &end)) {
xive2_end_pic_print_info(&end, i++, buf);
}
g_string_append_printf(buf, "XIVE[%x] #%d NVPT %08x .. %08x\n",
chip_id, blk, 0, XIVE2_NVP_COUNT - 1);
entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVP);
for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) {
while (!xive2_router_get_nvp(xrtr, blk, i, &nvp)) {
xive2_nvp_pic_print_info(&nvp, i++, buf);
}
}
g_string_append_printf(buf, "XIVE[%x] #%d NVGT %08x .. %08x\n",
chip_id, blk, 0, XIVE2_NVP_COUNT - 1);
entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVG);
for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) {
while (!xive2_router_get_nvgc(xrtr, false, blk, i, &nvgc)) {
xive2_nvgc_pic_print_info(&nvgc, i++, buf);
}
}
g_string_append_printf(buf, "XIVE[%x] #%d NVCT %08x .. %08x\n",
chip_id, blk, 0, XIVE2_NVP_COUNT - 1);
entries_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVC);
for (i = 0; i < XIVE2_NVP_COUNT; i += entries_per_subpage) {
while (!xive2_router_get_nvgc(xrtr, true, blk, i, &nvgc)) {
xive2_nvgc_pic_print_info(&nvgc, i++, buf);
}
}
}