blob: 807edce9b56811691389d3123ba439b118688e1b [file] [log] [blame]
/*
* QEMU aio implementation
*
* Copyright IBM, Corp. 2008
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#ifndef QEMU_AIO_H
#define QEMU_AIO_H
#ifdef CONFIG_LINUX_IO_URING
#include <liburing.h>
#endif
#include "qemu/coroutine.h"
#include "qemu/queue.h"
#include "qemu/event_notifier.h"
#include "qemu/thread.h"
#include "qemu/timer.h"
typedef struct BlockAIOCB BlockAIOCB;
typedef void BlockCompletionFunc(void *opaque, int ret);
typedef struct AIOCBInfo {
void (*cancel_async)(BlockAIOCB *acb);
AioContext *(*get_aio_context)(BlockAIOCB *acb);
size_t aiocb_size;
} AIOCBInfo;
struct BlockAIOCB {
const AIOCBInfo *aiocb_info;
BlockDriverState *bs;
BlockCompletionFunc *cb;
void *opaque;
int refcnt;
};
void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
BlockCompletionFunc *cb, void *opaque);
void qemu_aio_unref(void *p);
void qemu_aio_ref(void *p);
typedef struct AioHandler AioHandler;
typedef QLIST_HEAD(, AioHandler) AioHandlerList;
typedef void QEMUBHFunc(void *opaque);
typedef bool AioPollFn(void *opaque);
typedef void IOHandler(void *opaque);
struct Coroutine;
struct ThreadPool;
struct LinuxAioState;
struct LuringState;
/* Is polling disabled? */
bool aio_poll_disabled(AioContext *ctx);
/* Callbacks for file descriptor monitoring implementations */
typedef struct {
/*
* update:
* @ctx: the AioContext
* @old_node: the existing handler or NULL if this file descriptor is being
* monitored for the first time
* @new_node: the new handler or NULL if this file descriptor is being
* removed
*
* Add/remove/modify a monitored file descriptor.
*
* Called with ctx->list_lock acquired.
*/
void (*update)(AioContext *ctx, AioHandler *old_node, AioHandler *new_node);
/*
* wait:
* @ctx: the AioContext
* @ready_list: list for handlers that become ready
* @timeout: maximum duration to wait, in nanoseconds
*
* Wait for file descriptors to become ready and place them on ready_list.
*
* Called with ctx->list_lock incremented but not locked.
*
* Returns: number of ready file descriptors.
*/
int (*wait)(AioContext *ctx, AioHandlerList *ready_list, int64_t timeout);
/*
* need_wait:
* @ctx: the AioContext
*
* Tell aio_poll() when to stop userspace polling early because ->wait()
* has fds ready.
*
* File descriptor monitoring implementations that cannot poll fd readiness
* from userspace should use aio_poll_disabled() here. This ensures that
* file descriptors are not starved by handlers that frequently make
* progress via userspace polling.
*
* Returns: true if ->wait() should be called, false otherwise.
*/
bool (*need_wait)(AioContext *ctx);
} FDMonOps;
/*
* Each aio_bh_poll() call carves off a slice of the BH list, so that newly
* scheduled BHs are not processed until the next aio_bh_poll() call. All
* active aio_bh_poll() calls chain their slices together in a list, so that
* nested aio_bh_poll() calls process all scheduled bottom halves.
*/
typedef QSLIST_HEAD(, QEMUBH) BHList;
typedef struct BHListSlice BHListSlice;
struct BHListSlice {
BHList bh_list;
QSIMPLEQ_ENTRY(BHListSlice) next;
};
typedef QSLIST_HEAD(, AioHandler) AioHandlerSList;
struct AioContext {
GSource source;
/* Used by AioContext users to protect from multi-threaded access. */
QemuRecMutex lock;
/* The list of registered AIO handlers. Protected by ctx->list_lock. */
AioHandlerList aio_handlers;
/* The list of AIO handlers to be deleted. Protected by ctx->list_lock. */
AioHandlerList deleted_aio_handlers;
/* Used to avoid unnecessary event_notifier_set calls in aio_notify;
* only written from the AioContext home thread, or under the BQL in
* the case of the main AioContext. However, it is read from any
* thread so it is still accessed with atomic primitives.
*
* If this field is 0, everything (file descriptors, bottom halves,
* timers) will be re-evaluated before the next blocking poll() or
* io_uring wait; therefore, the event_notifier_set call can be
* skipped. If it is non-zero, you may need to wake up a concurrent
* aio_poll or the glib main event loop, making event_notifier_set
* necessary.
*
* Bit 0 is reserved for GSource usage of the AioContext, and is 1
* between a call to aio_ctx_prepare and the next call to aio_ctx_check.
* Bits 1-31 simply count the number of active calls to aio_poll
* that are in the prepare or poll phase.
*
* The GSource and aio_poll must use a different mechanism because
* there is no certainty that a call to GSource's prepare callback
* (via g_main_context_prepare) is indeed followed by check and
* dispatch. It's not clear whether this would be a bug, but let's
* play safe and allow it---it will just cause extra calls to
* event_notifier_set until the next call to dispatch.
*
* Instead, the aio_poll calls include both the prepare and the
* dispatch phase, hence a simple counter is enough for them.
*/
uint32_t notify_me;
/* A lock to protect between QEMUBH and AioHandler adders and deleter,
* and to ensure that no callbacks are removed while we're walking and
* dispatching them.
*/
QemuLockCnt list_lock;
/* Bottom Halves pending aio_bh_poll() processing */
BHList bh_list;
/* Chained BH list slices for each nested aio_bh_poll() call */
QSIMPLEQ_HEAD(, BHListSlice) bh_slice_list;
/* Used by aio_notify.
*
* "notified" is used to avoid expensive event_notifier_test_and_clear
* calls. When it is clear, the EventNotifier is clear, or one thread
* is going to clear "notified" before processing more events. False
* positives are possible, i.e. "notified" could be set even though the
* EventNotifier is clear.
*
* Note that event_notifier_set *cannot* be optimized the same way. For
* more information on the problem that would result, see "#ifdef BUG2"
* in the docs/aio_notify_accept.promela formal model.
*/
bool notified;
EventNotifier notifier;
QSLIST_HEAD(, Coroutine) scheduled_coroutines;
QEMUBH *co_schedule_bh;
/* Thread pool for performing work and receiving completion callbacks.
* Has its own locking.
*/
struct ThreadPool *thread_pool;
#ifdef CONFIG_LINUX_AIO
/*
* State for native Linux AIO. Uses aio_context_acquire/release for
* locking.
*/
struct LinuxAioState *linux_aio;
#endif
#ifdef CONFIG_LINUX_IO_URING
/*
* State for Linux io_uring. Uses aio_context_acquire/release for
* locking.
*/
struct LuringState *linux_io_uring;
/* State for file descriptor monitoring using Linux io_uring */
struct io_uring fdmon_io_uring;
AioHandlerSList submit_list;
#endif
/* TimerLists for calling timers - one per clock type. Has its own
* locking.
*/
QEMUTimerListGroup tlg;
int external_disable_cnt;
/* Number of AioHandlers without .io_poll() */
int poll_disable_cnt;
/* Polling mode parameters */
int64_t poll_ns; /* current polling time in nanoseconds */
int64_t poll_max_ns; /* maximum polling time in nanoseconds */
int64_t poll_grow; /* polling time growth factor */
int64_t poll_shrink; /* polling time shrink factor */
/*
* List of handlers participating in userspace polling. Protected by
* ctx->list_lock. Iterated and modified mostly by the event loop thread
* from aio_poll() with ctx->list_lock incremented. aio_set_fd_handler()
* only touches the list to delete nodes if ctx->list_lock's count is zero.
*/
AioHandlerList poll_aio_handlers;
/* Are we in polling mode or monitoring file descriptors? */
bool poll_started;
/* epoll(7) state used when built with CONFIG_EPOLL */
int epollfd;
const FDMonOps *fdmon_ops;
};
/**
* aio_context_new: Allocate a new AioContext.
*
* AioContext provide a mini event-loop that can be waited on synchronously.
* They also provide bottom halves, a service to execute a piece of code
* as soon as possible.
*/
AioContext *aio_context_new(Error **errp);
/**
* aio_context_ref:
* @ctx: The AioContext to operate on.
*
* Add a reference to an AioContext.
*/
void aio_context_ref(AioContext *ctx);
/**
* aio_context_unref:
* @ctx: The AioContext to operate on.
*
* Drop a reference to an AioContext.
*/
void aio_context_unref(AioContext *ctx);
/* Take ownership of the AioContext. If the AioContext will be shared between
* threads, and a thread does not want to be interrupted, it will have to
* take ownership around calls to aio_poll(). Otherwise, aio_poll()
* automatically takes care of calling aio_context_acquire and
* aio_context_release.
*
* Note that this is separate from bdrv_drained_begin/bdrv_drained_end. A
* thread still has to call those to avoid being interrupted by the guest.
*
* Bottom halves, timers and callbacks can be created or removed without
* acquiring the AioContext.
*/
void aio_context_acquire(AioContext *ctx);
/* Relinquish ownership of the AioContext. */
void aio_context_release(AioContext *ctx);
/**
* aio_bh_schedule_oneshot_full: Allocate a new bottom half structure that will
* run only once and as soon as possible.
*
* @name: A human-readable identifier for debugging purposes.
*/
void aio_bh_schedule_oneshot_full(AioContext *ctx, QEMUBHFunc *cb, void *opaque,
const char *name);
/**
* aio_bh_schedule_oneshot: Allocate a new bottom half structure that will run
* only once and as soon as possible.
*
* A convenience wrapper for aio_bh_schedule_oneshot_full() that uses cb as the
* name string.
*/
#define aio_bh_schedule_oneshot(ctx, cb, opaque) \
aio_bh_schedule_oneshot_full((ctx), (cb), (opaque), (stringify(cb)))
/**
* aio_bh_new_full: Allocate a new bottom half structure.
*
* Bottom halves are lightweight callbacks whose invocation is guaranteed
* to be wait-free, thread-safe and signal-safe. The #QEMUBH structure
* is opaque and must be allocated prior to its use.
*
* @name: A human-readable identifier for debugging purposes.
*/
QEMUBH *aio_bh_new_full(AioContext *ctx, QEMUBHFunc *cb, void *opaque,
const char *name);
/**
* aio_bh_new: Allocate a new bottom half structure
*
* A convenience wrapper for aio_bh_new_full() that uses the cb as the name
* string.
*/
#define aio_bh_new(ctx, cb, opaque) \
aio_bh_new_full((ctx), (cb), (opaque), (stringify(cb)))
/**
* aio_notify: Force processing of pending events.
*
* Similar to signaling a condition variable, aio_notify forces
* aio_poll to exit, so that the next call will re-examine pending events.
* The caller of aio_notify will usually call aio_poll again very soon,
* or go through another iteration of the GLib main loop. Hence, aio_notify
* also has the side effect of recalculating the sets of file descriptors
* that the main loop waits for.
*
* Calling aio_notify is rarely necessary, because for example scheduling
* a bottom half calls it already.
*/
void aio_notify(AioContext *ctx);
/**
* aio_notify_accept: Acknowledge receiving an aio_notify.
*
* aio_notify() uses an EventNotifier in order to wake up a sleeping
* aio_poll() or g_main_context_iteration(). Calls to aio_notify() are
* usually rare, but the AioContext has to clear the EventNotifier on
* every aio_poll() or g_main_context_iteration() in order to avoid
* busy waiting. This event_notifier_test_and_clear() cannot be done
* using the usual aio_context_set_event_notifier(), because it must
* be done before processing all events (file descriptors, bottom halves,
* timers).
*
* aio_notify_accept() is an optimized event_notifier_test_and_clear()
* that is specific to an AioContext's notifier; it is used internally
* to clear the EventNotifier only if aio_notify() had been called.
*/
void aio_notify_accept(AioContext *ctx);
/**
* aio_bh_call: Executes callback function of the specified BH.
*/
void aio_bh_call(QEMUBH *bh);
/**
* aio_bh_poll: Poll bottom halves for an AioContext.
*
* These are internal functions used by the QEMU main loop.
* And notice that multiple occurrences of aio_bh_poll cannot
* be called concurrently
*/
int aio_bh_poll(AioContext *ctx);
/**
* qemu_bh_schedule: Schedule a bottom half.
*
* Scheduling a bottom half interrupts the main loop and causes the
* execution of the callback that was passed to qemu_bh_new.
*
* Bottom halves that are scheduled from a bottom half handler are instantly
* invoked. This can create an infinite loop if a bottom half handler
* schedules itself.
*
* @bh: The bottom half to be scheduled.
*/
void qemu_bh_schedule(QEMUBH *bh);
/**
* qemu_bh_cancel: Cancel execution of a bottom half.
*
* Canceling execution of a bottom half undoes the effect of calls to
* qemu_bh_schedule without freeing its resources yet. While cancellation
* itself is also wait-free and thread-safe, it can of course race with the
* loop that executes bottom halves unless you are holding the iothread
* mutex. This makes it mostly useless if you are not holding the mutex.
*
* @bh: The bottom half to be canceled.
*/
void qemu_bh_cancel(QEMUBH *bh);
/**
*qemu_bh_delete: Cancel execution of a bottom half and free its resources.
*
* Deleting a bottom half frees the memory that was allocated for it by
* qemu_bh_new. It also implies canceling the bottom half if it was
* scheduled.
* This func is async. The bottom half will do the delete action at the finial
* end.
*
* @bh: The bottom half to be deleted.
*/
void qemu_bh_delete(QEMUBH *bh);
/* Return whether there are any pending callbacks from the GSource
* attached to the AioContext, before g_poll is invoked.
*
* This is used internally in the implementation of the GSource.
*/
bool aio_prepare(AioContext *ctx);
/* Return whether there are any pending callbacks from the GSource
* attached to the AioContext, after g_poll is invoked.
*
* This is used internally in the implementation of the GSource.
*/
bool aio_pending(AioContext *ctx);
/* Dispatch any pending callbacks from the GSource attached to the AioContext.
*
* This is used internally in the implementation of the GSource.
*/
void aio_dispatch(AioContext *ctx);
/* Progress in completing AIO work to occur. This can issue new pending
* aio as a result of executing I/O completion or bh callbacks.
*
* Return whether any progress was made by executing AIO or bottom half
* handlers. If @blocking == true, this should always be true except
* if someone called aio_notify.
*
* If there are no pending bottom halves, but there are pending AIO
* operations, it may not be possible to make any progress without
* blocking. If @blocking is true, this function will wait until one
* or more AIO events have completed, to ensure something has moved
* before returning.
*/
bool aio_poll(AioContext *ctx, bool blocking);
/* Register a file descriptor and associated callbacks. Behaves very similarly
* to qemu_set_fd_handler. Unlike qemu_set_fd_handler, these callbacks will
* be invoked when using aio_poll().
*
* Code that invokes AIO completion functions should rely on this function
* instead of qemu_set_fd_handler[2].
*/
void aio_set_fd_handler(AioContext *ctx,
int fd,
bool is_external,
IOHandler *io_read,
IOHandler *io_write,
AioPollFn *io_poll,
void *opaque);
/* Set polling begin/end callbacks for a file descriptor that has already been
* registered with aio_set_fd_handler. Do nothing if the file descriptor is
* not registered.
*/
void aio_set_fd_poll(AioContext *ctx, int fd,
IOHandler *io_poll_begin,
IOHandler *io_poll_end);
/* Register an event notifier and associated callbacks. Behaves very similarly
* to event_notifier_set_handler. Unlike event_notifier_set_handler, these callbacks
* will be invoked when using aio_poll().
*
* Code that invokes AIO completion functions should rely on this function
* instead of event_notifier_set_handler.
*/
void aio_set_event_notifier(AioContext *ctx,
EventNotifier *notifier,
bool is_external,
EventNotifierHandler *io_read,
AioPollFn *io_poll);
/* Set polling begin/end callbacks for an event notifier that has already been
* registered with aio_set_event_notifier. Do nothing if the event notifier is
* not registered.
*/
void aio_set_event_notifier_poll(AioContext *ctx,
EventNotifier *notifier,
EventNotifierHandler *io_poll_begin,
EventNotifierHandler *io_poll_end);
/* Return a GSource that lets the main loop poll the file descriptors attached
* to this AioContext.
*/
GSource *aio_get_g_source(AioContext *ctx);
/* Return the ThreadPool bound to this AioContext */
struct ThreadPool *aio_get_thread_pool(AioContext *ctx);
/* Setup the LinuxAioState bound to this AioContext */
struct LinuxAioState *aio_setup_linux_aio(AioContext *ctx, Error **errp);
/* Return the LinuxAioState bound to this AioContext */
struct LinuxAioState *aio_get_linux_aio(AioContext *ctx);
/* Setup the LuringState bound to this AioContext */
struct LuringState *aio_setup_linux_io_uring(AioContext *ctx, Error **errp);
/* Return the LuringState bound to this AioContext */
struct LuringState *aio_get_linux_io_uring(AioContext *ctx);
/**
* aio_timer_new_with_attrs:
* @ctx: the aio context
* @type: the clock type
* @scale: the scale
* @attributes: 0, or one to multiple OR'ed QEMU_TIMER_ATTR_<id> values
* to assign
* @cb: the callback to call on timer expiry
* @opaque: the opaque pointer to pass to the callback
*
* Allocate a new timer (with attributes) attached to the context @ctx.
* The function is responsible for memory allocation.
*
* The preferred interface is aio_timer_init or aio_timer_init_with_attrs.
* Use that unless you really need dynamic memory allocation.
*
* Returns: a pointer to the new timer
*/
static inline QEMUTimer *aio_timer_new_with_attrs(AioContext *ctx,
QEMUClockType type,
int scale, int attributes,
QEMUTimerCB *cb, void *opaque)
{
return timer_new_full(&ctx->tlg, type, scale, attributes, cb, opaque);
}
/**
* aio_timer_new:
* @ctx: the aio context
* @type: the clock type
* @scale: the scale
* @cb: the callback to call on timer expiry
* @opaque: the opaque pointer to pass to the callback
*
* Allocate a new timer attached to the context @ctx.
* See aio_timer_new_with_attrs for details.
*
* Returns: a pointer to the new timer
*/
static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type,
int scale,
QEMUTimerCB *cb, void *opaque)
{
return timer_new_full(&ctx->tlg, type, scale, 0, cb, opaque);
}
/**
* aio_timer_init_with_attrs:
* @ctx: the aio context
* @ts: the timer
* @type: the clock type
* @scale: the scale
* @attributes: 0, or one to multiple OR'ed QEMU_TIMER_ATTR_<id> values
* to assign
* @cb: the callback to call on timer expiry
* @opaque: the opaque pointer to pass to the callback
*
* Initialise a new timer (with attributes) attached to the context @ctx.
* The caller is responsible for memory allocation.
*/
static inline void aio_timer_init_with_attrs(AioContext *ctx,
QEMUTimer *ts, QEMUClockType type,
int scale, int attributes,
QEMUTimerCB *cb, void *opaque)
{
timer_init_full(ts, &ctx->tlg, type, scale, attributes, cb, opaque);
}
/**
* aio_timer_init:
* @ctx: the aio context
* @ts: the timer
* @type: the clock type
* @scale: the scale
* @cb: the callback to call on timer expiry
* @opaque: the opaque pointer to pass to the callback
*
* Initialise a new timer attached to the context @ctx.
* See aio_timer_init_with_attrs for details.
*/
static inline void aio_timer_init(AioContext *ctx,
QEMUTimer *ts, QEMUClockType type,
int scale,
QEMUTimerCB *cb, void *opaque)
{
timer_init_full(ts, &ctx->tlg, type, scale, 0, cb, opaque);
}
/**
* aio_compute_timeout:
* @ctx: the aio context
*
* Compute the timeout that a blocking aio_poll should use.
*/
int64_t aio_compute_timeout(AioContext *ctx);
/**
* aio_disable_external:
* @ctx: the aio context
*
* Disable the further processing of external clients.
*/
static inline void aio_disable_external(AioContext *ctx)
{
qatomic_inc(&ctx->external_disable_cnt);
}
/**
* aio_enable_external:
* @ctx: the aio context
*
* Enable the processing of external clients.
*/
static inline void aio_enable_external(AioContext *ctx)
{
int old;
old = qatomic_fetch_dec(&ctx->external_disable_cnt);
assert(old > 0);
if (old == 1) {
/* Kick event loop so it re-arms file descriptors */
aio_notify(ctx);
}
}
/**
* aio_external_disabled:
* @ctx: the aio context
*
* Return true if the external clients are disabled.
*/
static inline bool aio_external_disabled(AioContext *ctx)
{
return qatomic_read(&ctx->external_disable_cnt);
}
/**
* aio_node_check:
* @ctx: the aio context
* @is_external: Whether or not the checked node is an external event source.
*
* Check if the node's is_external flag is okay to be polled by the ctx at this
* moment. True means green light.
*/
static inline bool aio_node_check(AioContext *ctx, bool is_external)
{
return !is_external || !qatomic_read(&ctx->external_disable_cnt);
}
/**
* aio_co_schedule:
* @ctx: the aio context
* @co: the coroutine
*
* Start a coroutine on a remote AioContext.
*
* The coroutine must not be entered by anyone else while aio_co_schedule()
* is active. In addition the coroutine must have yielded unless ctx
* is the context in which the coroutine is running (i.e. the value of
* qemu_get_current_aio_context() from the coroutine itself).
*/
void aio_co_schedule(AioContext *ctx, struct Coroutine *co);
/**
* aio_co_reschedule_self:
* @new_ctx: the new context
*
* Move the currently running coroutine to new_ctx. If the coroutine is already
* running in new_ctx, do nothing.
*/
void coroutine_fn aio_co_reschedule_self(AioContext *new_ctx);
/**
* aio_co_wake:
* @co: the coroutine
*
* Restart a coroutine on the AioContext where it was running last, thus
* preventing coroutines from jumping from one context to another when they
* go to sleep.
*
* aio_co_wake may be executed either in coroutine or non-coroutine
* context. The coroutine must not be entered by anyone else while
* aio_co_wake() is active.
*/
void aio_co_wake(struct Coroutine *co);
/**
* aio_co_enter:
* @ctx: the context to run the coroutine
* @co: the coroutine to run
*
* Enter a coroutine in the specified AioContext.
*/
void aio_co_enter(AioContext *ctx, struct Coroutine *co);
/**
* Return the AioContext whose event loop runs in the current thread.
*
* If called from an IOThread this will be the IOThread's AioContext. If
* called from the main thread or with the "big QEMU lock" taken it
* will be the main loop AioContext.
*/
AioContext *qemu_get_current_aio_context(void);
void qemu_set_current_aio_context(AioContext *ctx);
/**
* aio_context_setup:
* @ctx: the aio context
*
* Initialize the aio context.
*/
void aio_context_setup(AioContext *ctx);
/**
* aio_context_destroy:
* @ctx: the aio context
*
* Destroy the aio context.
*/
void aio_context_destroy(AioContext *ctx);
/* Used internally, do not call outside AioContext code */
void aio_context_use_g_source(AioContext *ctx);
/**
* aio_context_set_poll_params:
* @ctx: the aio context
* @max_ns: how long to busy poll for, in nanoseconds
* @grow: polling time growth factor
* @shrink: polling time shrink factor
*
* Poll mode can be disabled by setting poll_max_ns to 0.
*/
void aio_context_set_poll_params(AioContext *ctx, int64_t max_ns,
int64_t grow, int64_t shrink,
Error **errp);
#endif