| /* |
| * qemu user main |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <sys/mman.h> |
| #include <sys/syscall.h> |
| #include <sys/resource.h> |
| |
| #include "qemu.h" |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "tcg.h" |
| #include "qemu/timer.h" |
| #include "qemu/envlist.h" |
| #include "elf.h" |
| |
| char *exec_path; |
| |
| int singlestep; |
| const char *filename; |
| const char *argv0; |
| int gdbstub_port; |
| envlist_t *envlist; |
| static const char *cpu_model; |
| unsigned long mmap_min_addr; |
| #if defined(CONFIG_USE_GUEST_BASE) |
| unsigned long guest_base; |
| int have_guest_base; |
| #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) |
| /* |
| * When running 32-on-64 we should make sure we can fit all of the possible |
| * guest address space into a contiguous chunk of virtual host memory. |
| * |
| * This way we will never overlap with our own libraries or binaries or stack |
| * or anything else that QEMU maps. |
| */ |
| # ifdef TARGET_MIPS |
| /* MIPS only supports 31 bits of virtual address space for user space */ |
| unsigned long reserved_va = 0x77000000; |
| # else |
| unsigned long reserved_va = 0xf7000000; |
| # endif |
| #else |
| unsigned long reserved_va; |
| #endif |
| #endif |
| |
| static void usage(void); |
| |
| static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; |
| const char *qemu_uname_release; |
| |
| /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so |
| we allocate a bigger stack. Need a better solution, for example |
| by remapping the process stack directly at the right place */ |
| unsigned long guest_stack_size = 8 * 1024 * 1024UL; |
| |
| void gemu_log(const char *fmt, ...) |
| { |
| va_list ap; |
| |
| va_start(ap, fmt); |
| vfprintf(stderr, fmt, ap); |
| va_end(ap); |
| } |
| |
| #if defined(TARGET_I386) |
| int cpu_get_pic_interrupt(CPUX86State *env) |
| { |
| return -1; |
| } |
| #endif |
| |
| /***********************************************************/ |
| /* Helper routines for implementing atomic operations. */ |
| |
| /* To implement exclusive operations we force all cpus to syncronise. |
| We don't require a full sync, only that no cpus are executing guest code. |
| The alternative is to map target atomic ops onto host equivalents, |
| which requires quite a lot of per host/target work. */ |
| static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; |
| static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; |
| static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; |
| static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; |
| static int pending_cpus; |
| |
| /* Make sure everything is in a consistent state for calling fork(). */ |
| void fork_start(void) |
| { |
| pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); |
| pthread_mutex_lock(&exclusive_lock); |
| mmap_fork_start(); |
| } |
| |
| void fork_end(int child) |
| { |
| mmap_fork_end(child); |
| if (child) { |
| CPUState *cpu, *next_cpu; |
| /* Child processes created by fork() only have a single thread. |
| Discard information about the parent threads. */ |
| CPU_FOREACH_SAFE(cpu, next_cpu) { |
| if (cpu != thread_cpu) { |
| QTAILQ_REMOVE(&cpus, thread_cpu, node); |
| } |
| } |
| pending_cpus = 0; |
| pthread_mutex_init(&exclusive_lock, NULL); |
| pthread_mutex_init(&cpu_list_mutex, NULL); |
| pthread_cond_init(&exclusive_cond, NULL); |
| pthread_cond_init(&exclusive_resume, NULL); |
| pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL); |
| gdbserver_fork((CPUArchState *)thread_cpu->env_ptr); |
| } else { |
| pthread_mutex_unlock(&exclusive_lock); |
| pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); |
| } |
| } |
| |
| /* Wait for pending exclusive operations to complete. The exclusive lock |
| must be held. */ |
| static inline void exclusive_idle(void) |
| { |
| while (pending_cpus) { |
| pthread_cond_wait(&exclusive_resume, &exclusive_lock); |
| } |
| } |
| |
| /* Start an exclusive operation. |
| Must only be called from outside cpu_arm_exec. */ |
| static inline void start_exclusive(void) |
| { |
| CPUState *other_cpu; |
| |
| pthread_mutex_lock(&exclusive_lock); |
| exclusive_idle(); |
| |
| pending_cpus = 1; |
| /* Make all other cpus stop executing. */ |
| CPU_FOREACH(other_cpu) { |
| if (other_cpu->running) { |
| pending_cpus++; |
| cpu_exit(other_cpu); |
| } |
| } |
| if (pending_cpus > 1) { |
| pthread_cond_wait(&exclusive_cond, &exclusive_lock); |
| } |
| } |
| |
| /* Finish an exclusive operation. */ |
| static inline void end_exclusive(void) |
| { |
| pending_cpus = 0; |
| pthread_cond_broadcast(&exclusive_resume); |
| pthread_mutex_unlock(&exclusive_lock); |
| } |
| |
| /* Wait for exclusive ops to finish, and begin cpu execution. */ |
| static inline void cpu_exec_start(CPUState *cpu) |
| { |
| pthread_mutex_lock(&exclusive_lock); |
| exclusive_idle(); |
| cpu->running = true; |
| pthread_mutex_unlock(&exclusive_lock); |
| } |
| |
| /* Mark cpu as not executing, and release pending exclusive ops. */ |
| static inline void cpu_exec_end(CPUState *cpu) |
| { |
| pthread_mutex_lock(&exclusive_lock); |
| cpu->running = false; |
| if (pending_cpus > 1) { |
| pending_cpus--; |
| if (pending_cpus == 1) { |
| pthread_cond_signal(&exclusive_cond); |
| } |
| } |
| exclusive_idle(); |
| pthread_mutex_unlock(&exclusive_lock); |
| } |
| |
| void cpu_list_lock(void) |
| { |
| pthread_mutex_lock(&cpu_list_mutex); |
| } |
| |
| void cpu_list_unlock(void) |
| { |
| pthread_mutex_unlock(&cpu_list_mutex); |
| } |
| |
| |
| #ifdef TARGET_I386 |
| /***********************************************************/ |
| /* CPUX86 core interface */ |
| |
| void cpu_smm_update(CPUX86State *env) |
| { |
| } |
| |
| uint64_t cpu_get_tsc(CPUX86State *env) |
| { |
| return cpu_get_real_ticks(); |
| } |
| |
| static void write_dt(void *ptr, unsigned long addr, unsigned long limit, |
| int flags) |
| { |
| unsigned int e1, e2; |
| uint32_t *p; |
| e1 = (addr << 16) | (limit & 0xffff); |
| e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); |
| e2 |= flags; |
| p = ptr; |
| p[0] = tswap32(e1); |
| p[1] = tswap32(e2); |
| } |
| |
| static uint64_t *idt_table; |
| #ifdef TARGET_X86_64 |
| static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, |
| uint64_t addr, unsigned int sel) |
| { |
| uint32_t *p, e1, e2; |
| e1 = (addr & 0xffff) | (sel << 16); |
| e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); |
| p = ptr; |
| p[0] = tswap32(e1); |
| p[1] = tswap32(e2); |
| p[2] = tswap32(addr >> 32); |
| p[3] = 0; |
| } |
| /* only dpl matters as we do only user space emulation */ |
| static void set_idt(int n, unsigned int dpl) |
| { |
| set_gate64(idt_table + n * 2, 0, dpl, 0, 0); |
| } |
| #else |
| static void set_gate(void *ptr, unsigned int type, unsigned int dpl, |
| uint32_t addr, unsigned int sel) |
| { |
| uint32_t *p, e1, e2; |
| e1 = (addr & 0xffff) | (sel << 16); |
| e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); |
| p = ptr; |
| p[0] = tswap32(e1); |
| p[1] = tswap32(e2); |
| } |
| |
| /* only dpl matters as we do only user space emulation */ |
| static void set_idt(int n, unsigned int dpl) |
| { |
| set_gate(idt_table + n, 0, dpl, 0, 0); |
| } |
| #endif |
| |
| void cpu_loop(CPUX86State *env) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| int trapnr; |
| abi_ulong pc; |
| target_siginfo_t info; |
| |
| for(;;) { |
| trapnr = cpu_x86_exec(env); |
| switch(trapnr) { |
| case 0x80: |
| /* linux syscall from int $0x80 */ |
| env->regs[R_EAX] = do_syscall(env, |
| env->regs[R_EAX], |
| env->regs[R_EBX], |
| env->regs[R_ECX], |
| env->regs[R_EDX], |
| env->regs[R_ESI], |
| env->regs[R_EDI], |
| env->regs[R_EBP], |
| 0, 0); |
| break; |
| #ifndef TARGET_ABI32 |
| case EXCP_SYSCALL: |
| /* linux syscall from syscall instruction */ |
| env->regs[R_EAX] = do_syscall(env, |
| env->regs[R_EAX], |
| env->regs[R_EDI], |
| env->regs[R_ESI], |
| env->regs[R_EDX], |
| env->regs[10], |
| env->regs[8], |
| env->regs[9], |
| 0, 0); |
| break; |
| #endif |
| case EXCP0B_NOSEG: |
| case EXCP0C_STACK: |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = TARGET_SI_KERNEL; |
| info._sifields._sigfault._addr = 0; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP0D_GPF: |
| /* XXX: potential problem if ABI32 */ |
| #ifndef TARGET_X86_64 |
| if (env->eflags & VM_MASK) { |
| handle_vm86_fault(env); |
| } else |
| #endif |
| { |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SI_KERNEL; |
| info._sifields._sigfault._addr = 0; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP0E_PAGE: |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| if (!(env->error_code & 1)) |
| info.si_code = TARGET_SEGV_MAPERR; |
| else |
| info.si_code = TARGET_SEGV_ACCERR; |
| info._sifields._sigfault._addr = env->cr[2]; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP00_DIVZ: |
| #ifndef TARGET_X86_64 |
| if (env->eflags & VM_MASK) { |
| handle_vm86_trap(env, trapnr); |
| } else |
| #endif |
| { |
| /* division by zero */ |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_code = TARGET_FPE_INTDIV; |
| info._sifields._sigfault._addr = env->eip; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP01_DB: |
| case EXCP03_INT3: |
| #ifndef TARGET_X86_64 |
| if (env->eflags & VM_MASK) { |
| handle_vm86_trap(env, trapnr); |
| } else |
| #endif |
| { |
| info.si_signo = SIGTRAP; |
| info.si_errno = 0; |
| if (trapnr == EXCP01_DB) { |
| info.si_code = TARGET_TRAP_BRKPT; |
| info._sifields._sigfault._addr = env->eip; |
| } else { |
| info.si_code = TARGET_SI_KERNEL; |
| info._sifields._sigfault._addr = 0; |
| } |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP04_INTO: |
| case EXCP05_BOUND: |
| #ifndef TARGET_X86_64 |
| if (env->eflags & VM_MASK) { |
| handle_vm86_trap(env, trapnr); |
| } else |
| #endif |
| { |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SI_KERNEL; |
| info._sifields._sigfault._addr = 0; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP06_ILLOP: |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLOPN; |
| info._sifields._sigfault._addr = env->eip; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| default: |
| pc = env->segs[R_CS].base + env->eip; |
| fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", |
| (long)pc, trapnr); |
| abort(); |
| } |
| process_pending_signals(env); |
| } |
| } |
| #endif |
| |
| #ifdef TARGET_ARM |
| |
| #define get_user_code_u32(x, gaddr, doswap) \ |
| ({ abi_long __r = get_user_u32((x), (gaddr)); \ |
| if (!__r && (doswap)) { \ |
| (x) = bswap32(x); \ |
| } \ |
| __r; \ |
| }) |
| |
| #define get_user_code_u16(x, gaddr, doswap) \ |
| ({ abi_long __r = get_user_u16((x), (gaddr)); \ |
| if (!__r && (doswap)) { \ |
| (x) = bswap16(x); \ |
| } \ |
| __r; \ |
| }) |
| |
| #ifdef TARGET_ABI32 |
| /* Commpage handling -- there is no commpage for AArch64 */ |
| |
| /* |
| * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt |
| * Input: |
| * r0 = pointer to oldval |
| * r1 = pointer to newval |
| * r2 = pointer to target value |
| * |
| * Output: |
| * r0 = 0 if *ptr was changed, non-0 if no exchange happened |
| * C set if *ptr was changed, clear if no exchange happened |
| * |
| * Note segv's in kernel helpers are a bit tricky, we can set the |
| * data address sensibly but the PC address is just the entry point. |
| */ |
| static void arm_kernel_cmpxchg64_helper(CPUARMState *env) |
| { |
| uint64_t oldval, newval, val; |
| uint32_t addr, cpsr; |
| target_siginfo_t info; |
| |
| /* Based on the 32 bit code in do_kernel_trap */ |
| |
| /* XXX: This only works between threads, not between processes. |
| It's probably possible to implement this with native host |
| operations. However things like ldrex/strex are much harder so |
| there's not much point trying. */ |
| start_exclusive(); |
| cpsr = cpsr_read(env); |
| addr = env->regs[2]; |
| |
| if (get_user_u64(oldval, env->regs[0])) { |
| env->exception.vaddress = env->regs[0]; |
| goto segv; |
| }; |
| |
| if (get_user_u64(newval, env->regs[1])) { |
| env->exception.vaddress = env->regs[1]; |
| goto segv; |
| }; |
| |
| if (get_user_u64(val, addr)) { |
| env->exception.vaddress = addr; |
| goto segv; |
| } |
| |
| if (val == oldval) { |
| val = newval; |
| |
| if (put_user_u64(val, addr)) { |
| env->exception.vaddress = addr; |
| goto segv; |
| }; |
| |
| env->regs[0] = 0; |
| cpsr |= CPSR_C; |
| } else { |
| env->regs[0] = -1; |
| cpsr &= ~CPSR_C; |
| } |
| cpsr_write(env, cpsr, CPSR_C); |
| end_exclusive(); |
| return; |
| |
| segv: |
| end_exclusive(); |
| /* We get the PC of the entry address - which is as good as anything, |
| on a real kernel what you get depends on which mode it uses. */ |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->exception.vaddress; |
| queue_signal(env, info.si_signo, &info); |
| |
| end_exclusive(); |
| } |
| |
| /* Handle a jump to the kernel code page. */ |
| static int |
| do_kernel_trap(CPUARMState *env) |
| { |
| uint32_t addr; |
| uint32_t cpsr; |
| uint32_t val; |
| |
| switch (env->regs[15]) { |
| case 0xffff0fa0: /* __kernel_memory_barrier */ |
| /* ??? No-op. Will need to do better for SMP. */ |
| break; |
| case 0xffff0fc0: /* __kernel_cmpxchg */ |
| /* XXX: This only works between threads, not between processes. |
| It's probably possible to implement this with native host |
| operations. However things like ldrex/strex are much harder so |
| there's not much point trying. */ |
| start_exclusive(); |
| cpsr = cpsr_read(env); |
| addr = env->regs[2]; |
| /* FIXME: This should SEGV if the access fails. */ |
| if (get_user_u32(val, addr)) |
| val = ~env->regs[0]; |
| if (val == env->regs[0]) { |
| val = env->regs[1]; |
| /* FIXME: Check for segfaults. */ |
| put_user_u32(val, addr); |
| env->regs[0] = 0; |
| cpsr |= CPSR_C; |
| } else { |
| env->regs[0] = -1; |
| cpsr &= ~CPSR_C; |
| } |
| cpsr_write(env, cpsr, CPSR_C); |
| end_exclusive(); |
| break; |
| case 0xffff0fe0: /* __kernel_get_tls */ |
| env->regs[0] = env->cp15.tpidrro_el[0]; |
| break; |
| case 0xffff0f60: /* __kernel_cmpxchg64 */ |
| arm_kernel_cmpxchg64_helper(env); |
| break; |
| |
| default: |
| return 1; |
| } |
| /* Jump back to the caller. */ |
| addr = env->regs[14]; |
| if (addr & 1) { |
| env->thumb = 1; |
| addr &= ~1; |
| } |
| env->regs[15] = addr; |
| |
| return 0; |
| } |
| |
| /* Store exclusive handling for AArch32 */ |
| static int do_strex(CPUARMState *env) |
| { |
| uint64_t val; |
| int size; |
| int rc = 1; |
| int segv = 0; |
| uint32_t addr; |
| start_exclusive(); |
| if (env->exclusive_addr != env->exclusive_test) { |
| goto fail; |
| } |
| /* We know we're always AArch32 so the address is in uint32_t range |
| * unless it was the -1 exclusive-monitor-lost value (which won't |
| * match exclusive_test above). |
| */ |
| assert(extract64(env->exclusive_addr, 32, 32) == 0); |
| addr = env->exclusive_addr; |
| size = env->exclusive_info & 0xf; |
| switch (size) { |
| case 0: |
| segv = get_user_u8(val, addr); |
| break; |
| case 1: |
| segv = get_user_u16(val, addr); |
| break; |
| case 2: |
| case 3: |
| segv = get_user_u32(val, addr); |
| break; |
| default: |
| abort(); |
| } |
| if (segv) { |
| env->exception.vaddress = addr; |
| goto done; |
| } |
| if (size == 3) { |
| uint32_t valhi; |
| segv = get_user_u32(valhi, addr + 4); |
| if (segv) { |
| env->exception.vaddress = addr + 4; |
| goto done; |
| } |
| val = deposit64(val, 32, 32, valhi); |
| } |
| if (val != env->exclusive_val) { |
| goto fail; |
| } |
| |
| val = env->regs[(env->exclusive_info >> 8) & 0xf]; |
| switch (size) { |
| case 0: |
| segv = put_user_u8(val, addr); |
| break; |
| case 1: |
| segv = put_user_u16(val, addr); |
| break; |
| case 2: |
| case 3: |
| segv = put_user_u32(val, addr); |
| break; |
| } |
| if (segv) { |
| env->exception.vaddress = addr; |
| goto done; |
| } |
| if (size == 3) { |
| val = env->regs[(env->exclusive_info >> 12) & 0xf]; |
| segv = put_user_u32(val, addr + 4); |
| if (segv) { |
| env->exception.vaddress = addr + 4; |
| goto done; |
| } |
| } |
| rc = 0; |
| fail: |
| env->regs[15] += 4; |
| env->regs[(env->exclusive_info >> 4) & 0xf] = rc; |
| done: |
| end_exclusive(); |
| return segv; |
| } |
| |
| void cpu_loop(CPUARMState *env) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| int trapnr; |
| unsigned int n, insn; |
| target_siginfo_t info; |
| uint32_t addr; |
| |
| for(;;) { |
| cpu_exec_start(cs); |
| trapnr = cpu_arm_exec(env); |
| cpu_exec_end(cs); |
| switch(trapnr) { |
| case EXCP_UDEF: |
| { |
| TaskState *ts = cs->opaque; |
| uint32_t opcode; |
| int rc; |
| |
| /* we handle the FPU emulation here, as Linux */ |
| /* we get the opcode */ |
| /* FIXME - what to do if get_user() fails? */ |
| get_user_code_u32(opcode, env->regs[15], env->bswap_code); |
| |
| rc = EmulateAll(opcode, &ts->fpa, env); |
| if (rc == 0) { /* illegal instruction */ |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLOPN; |
| info._sifields._sigfault._addr = env->regs[15]; |
| queue_signal(env, info.si_signo, &info); |
| } else if (rc < 0) { /* FP exception */ |
| int arm_fpe=0; |
| |
| /* translate softfloat flags to FPSR flags */ |
| if (-rc & float_flag_invalid) |
| arm_fpe |= BIT_IOC; |
| if (-rc & float_flag_divbyzero) |
| arm_fpe |= BIT_DZC; |
| if (-rc & float_flag_overflow) |
| arm_fpe |= BIT_OFC; |
| if (-rc & float_flag_underflow) |
| arm_fpe |= BIT_UFC; |
| if (-rc & float_flag_inexact) |
| arm_fpe |= BIT_IXC; |
| |
| FPSR fpsr = ts->fpa.fpsr; |
| //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); |
| |
| if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| |
| /* ordered by priority, least first */ |
| if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; |
| if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; |
| if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; |
| if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; |
| if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; |
| |
| info._sifields._sigfault._addr = env->regs[15]; |
| queue_signal(env, info.si_signo, &info); |
| } else { |
| env->regs[15] += 4; |
| } |
| |
| /* accumulate unenabled exceptions */ |
| if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) |
| fpsr |= BIT_IXC; |
| if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) |
| fpsr |= BIT_UFC; |
| if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) |
| fpsr |= BIT_OFC; |
| if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) |
| fpsr |= BIT_DZC; |
| if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) |
| fpsr |= BIT_IOC; |
| ts->fpa.fpsr=fpsr; |
| } else { /* everything OK */ |
| /* increment PC */ |
| env->regs[15] += 4; |
| } |
| } |
| break; |
| case EXCP_SWI: |
| case EXCP_BKPT: |
| { |
| env->eabi = 1; |
| /* system call */ |
| if (trapnr == EXCP_BKPT) { |
| if (env->thumb) { |
| /* FIXME - what to do if get_user() fails? */ |
| get_user_code_u16(insn, env->regs[15], env->bswap_code); |
| n = insn & 0xff; |
| env->regs[15] += 2; |
| } else { |
| /* FIXME - what to do if get_user() fails? */ |
| get_user_code_u32(insn, env->regs[15], env->bswap_code); |
| n = (insn & 0xf) | ((insn >> 4) & 0xff0); |
| env->regs[15] += 4; |
| } |
| } else { |
| if (env->thumb) { |
| /* FIXME - what to do if get_user() fails? */ |
| get_user_code_u16(insn, env->regs[15] - 2, |
| env->bswap_code); |
| n = insn & 0xff; |
| } else { |
| /* FIXME - what to do if get_user() fails? */ |
| get_user_code_u32(insn, env->regs[15] - 4, |
| env->bswap_code); |
| n = insn & 0xffffff; |
| } |
| } |
| |
| if (n == ARM_NR_cacheflush) { |
| /* nop */ |
| } else if (n == ARM_NR_semihosting |
| || n == ARM_NR_thumb_semihosting) { |
| env->regs[0] = do_arm_semihosting (env); |
| } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { |
| /* linux syscall */ |
| if (env->thumb || n == 0) { |
| n = env->regs[7]; |
| } else { |
| n -= ARM_SYSCALL_BASE; |
| env->eabi = 0; |
| } |
| if ( n > ARM_NR_BASE) { |
| switch (n) { |
| case ARM_NR_cacheflush: |
| /* nop */ |
| break; |
| case ARM_NR_set_tls: |
| cpu_set_tls(env, env->regs[0]); |
| env->regs[0] = 0; |
| break; |
| case ARM_NR_breakpoint: |
| env->regs[15] -= env->thumb ? 2 : 4; |
| goto excp_debug; |
| default: |
| gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", |
| n); |
| env->regs[0] = -TARGET_ENOSYS; |
| break; |
| } |
| } else { |
| env->regs[0] = do_syscall(env, |
| n, |
| env->regs[0], |
| env->regs[1], |
| env->regs[2], |
| env->regs[3], |
| env->regs[4], |
| env->regs[5], |
| 0, 0); |
| } |
| } else { |
| goto error; |
| } |
| } |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_STREX: |
| if (!do_strex(env)) { |
| break; |
| } |
| /* fall through for segv */ |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| addr = env->exception.vaddress; |
| { |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = addr; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP_DEBUG: |
| excp_debug: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| case EXCP_KERNEL_TRAP: |
| if (do_kernel_trap(env)) |
| goto error; |
| break; |
| default: |
| error: |
| fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", |
| trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| abort(); |
| } |
| process_pending_signals(env); |
| } |
| } |
| |
| #else |
| |
| /* |
| * Handle AArch64 store-release exclusive |
| * |
| * rs = gets the status result of store exclusive |
| * rt = is the register that is stored |
| * rt2 = is the second register store (in STP) |
| * |
| */ |
| static int do_strex_a64(CPUARMState *env) |
| { |
| uint64_t val; |
| int size; |
| bool is_pair; |
| int rc = 1; |
| int segv = 0; |
| uint64_t addr; |
| int rs, rt, rt2; |
| |
| start_exclusive(); |
| /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */ |
| size = extract32(env->exclusive_info, 0, 2); |
| is_pair = extract32(env->exclusive_info, 2, 1); |
| rs = extract32(env->exclusive_info, 4, 5); |
| rt = extract32(env->exclusive_info, 9, 5); |
| rt2 = extract32(env->exclusive_info, 14, 5); |
| |
| addr = env->exclusive_addr; |
| |
| if (addr != env->exclusive_test) { |
| goto finish; |
| } |
| |
| switch (size) { |
| case 0: |
| segv = get_user_u8(val, addr); |
| break; |
| case 1: |
| segv = get_user_u16(val, addr); |
| break; |
| case 2: |
| segv = get_user_u32(val, addr); |
| break; |
| case 3: |
| segv = get_user_u64(val, addr); |
| break; |
| default: |
| abort(); |
| } |
| if (segv) { |
| env->exception.vaddress = addr; |
| goto error; |
| } |
| if (val != env->exclusive_val) { |
| goto finish; |
| } |
| if (is_pair) { |
| if (size == 2) { |
| segv = get_user_u32(val, addr + 4); |
| } else { |
| segv = get_user_u64(val, addr + 8); |
| } |
| if (segv) { |
| env->exception.vaddress = addr + (size == 2 ? 4 : 8); |
| goto error; |
| } |
| if (val != env->exclusive_high) { |
| goto finish; |
| } |
| } |
| /* handle the zero register */ |
| val = rt == 31 ? 0 : env->xregs[rt]; |
| switch (size) { |
| case 0: |
| segv = put_user_u8(val, addr); |
| break; |
| case 1: |
| segv = put_user_u16(val, addr); |
| break; |
| case 2: |
| segv = put_user_u32(val, addr); |
| break; |
| case 3: |
| segv = put_user_u64(val, addr); |
| break; |
| } |
| if (segv) { |
| goto error; |
| } |
| if (is_pair) { |
| /* handle the zero register */ |
| val = rt2 == 31 ? 0 : env->xregs[rt2]; |
| if (size == 2) { |
| segv = put_user_u32(val, addr + 4); |
| } else { |
| segv = put_user_u64(val, addr + 8); |
| } |
| if (segv) { |
| env->exception.vaddress = addr + (size == 2 ? 4 : 8); |
| goto error; |
| } |
| } |
| rc = 0; |
| finish: |
| env->pc += 4; |
| /* rs == 31 encodes a write to the ZR, thus throwing away |
| * the status return. This is rather silly but valid. |
| */ |
| if (rs < 31) { |
| env->xregs[rs] = rc; |
| } |
| error: |
| /* instruction faulted, PC does not advance */ |
| /* either way a strex releases any exclusive lock we have */ |
| env->exclusive_addr = -1; |
| end_exclusive(); |
| return segv; |
| } |
| |
| /* AArch64 main loop */ |
| void cpu_loop(CPUARMState *env) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| int trapnr, sig; |
| target_siginfo_t info; |
| |
| for (;;) { |
| cpu_exec_start(cs); |
| trapnr = cpu_arm_exec(env); |
| cpu_exec_end(cs); |
| |
| switch (trapnr) { |
| case EXCP_SWI: |
| env->xregs[0] = do_syscall(env, |
| env->xregs[8], |
| env->xregs[0], |
| env->xregs[1], |
| env->xregs[2], |
| env->xregs[3], |
| env->xregs[4], |
| env->xregs[5], |
| 0, 0); |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_UDEF: |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLOPN; |
| info._sifields._sigfault._addr = env->pc; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_STREX: |
| if (!do_strex_a64(env)) { |
| break; |
| } |
| /* fall through for segv */ |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->exception.vaddress; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_DEBUG: |
| case EXCP_BKPT: |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| default: |
| fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", |
| trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| abort(); |
| } |
| process_pending_signals(env); |
| /* Exception return on AArch64 always clears the exclusive monitor, |
| * so any return to running guest code implies this. |
| * A strex (successful or otherwise) also clears the monitor, so |
| * we don't need to specialcase EXCP_STREX. |
| */ |
| env->exclusive_addr = -1; |
| } |
| } |
| #endif /* ndef TARGET_ABI32 */ |
| |
| #endif |
| |
| #ifdef TARGET_UNICORE32 |
| |
| void cpu_loop(CPUUniCore32State *env) |
| { |
| CPUState *cs = CPU(uc32_env_get_cpu(env)); |
| int trapnr; |
| unsigned int n, insn; |
| target_siginfo_t info; |
| |
| for (;;) { |
| cpu_exec_start(cs); |
| trapnr = uc32_cpu_exec(env); |
| cpu_exec_end(cs); |
| switch (trapnr) { |
| case UC32_EXCP_PRIV: |
| { |
| /* system call */ |
| get_user_u32(insn, env->regs[31] - 4); |
| n = insn & 0xffffff; |
| |
| if (n >= UC32_SYSCALL_BASE) { |
| /* linux syscall */ |
| n -= UC32_SYSCALL_BASE; |
| if (n == UC32_SYSCALL_NR_set_tls) { |
| cpu_set_tls(env, env->regs[0]); |
| env->regs[0] = 0; |
| } else { |
| env->regs[0] = do_syscall(env, |
| n, |
| env->regs[0], |
| env->regs[1], |
| env->regs[2], |
| env->regs[3], |
| env->regs[4], |
| env->regs[5], |
| 0, 0); |
| } |
| } else { |
| goto error; |
| } |
| } |
| break; |
| case UC32_EXCP_DTRAP: |
| case UC32_EXCP_ITRAP: |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->cp0.c4_faultaddr; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| default: |
| goto error; |
| } |
| process_pending_signals(env); |
| } |
| |
| error: |
| fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| abort(); |
| } |
| #endif |
| |
| #ifdef TARGET_SPARC |
| #define SPARC64_STACK_BIAS 2047 |
| |
| //#define DEBUG_WIN |
| |
| /* WARNING: dealing with register windows _is_ complicated. More info |
| can be found at http://www.sics.se/~psm/sparcstack.html */ |
| static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) |
| { |
| index = (index + cwp * 16) % (16 * env->nwindows); |
| /* wrap handling : if cwp is on the last window, then we use the |
| registers 'after' the end */ |
| if (index < 8 && env->cwp == env->nwindows - 1) |
| index += 16 * env->nwindows; |
| return index; |
| } |
| |
| /* save the register window 'cwp1' */ |
| static inline void save_window_offset(CPUSPARCState *env, int cwp1) |
| { |
| unsigned int i; |
| abi_ulong sp_ptr; |
| |
| sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; |
| #ifdef TARGET_SPARC64 |
| if (sp_ptr & 3) |
| sp_ptr += SPARC64_STACK_BIAS; |
| #endif |
| #if defined(DEBUG_WIN) |
| printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", |
| sp_ptr, cwp1); |
| #endif |
| for(i = 0; i < 16; i++) { |
| /* FIXME - what to do if put_user() fails? */ |
| put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); |
| sp_ptr += sizeof(abi_ulong); |
| } |
| } |
| |
| static void save_window(CPUSPARCState *env) |
| { |
| #ifndef TARGET_SPARC64 |
| unsigned int new_wim; |
| new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & |
| ((1LL << env->nwindows) - 1); |
| save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); |
| env->wim = new_wim; |
| #else |
| save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); |
| env->cansave++; |
| env->canrestore--; |
| #endif |
| } |
| |
| static void restore_window(CPUSPARCState *env) |
| { |
| #ifndef TARGET_SPARC64 |
| unsigned int new_wim; |
| #endif |
| unsigned int i, cwp1; |
| abi_ulong sp_ptr; |
| |
| #ifndef TARGET_SPARC64 |
| new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & |
| ((1LL << env->nwindows) - 1); |
| #endif |
| |
| /* restore the invalid window */ |
| cwp1 = cpu_cwp_inc(env, env->cwp + 1); |
| sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; |
| #ifdef TARGET_SPARC64 |
| if (sp_ptr & 3) |
| sp_ptr += SPARC64_STACK_BIAS; |
| #endif |
| #if defined(DEBUG_WIN) |
| printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", |
| sp_ptr, cwp1); |
| #endif |
| for(i = 0; i < 16; i++) { |
| /* FIXME - what to do if get_user() fails? */ |
| get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); |
| sp_ptr += sizeof(abi_ulong); |
| } |
| #ifdef TARGET_SPARC64 |
| env->canrestore++; |
| if (env->cleanwin < env->nwindows - 1) |
| env->cleanwin++; |
| env->cansave--; |
| #else |
| env->wim = new_wim; |
| #endif |
| } |
| |
| static void flush_windows(CPUSPARCState *env) |
| { |
| int offset, cwp1; |
| |
| offset = 1; |
| for(;;) { |
| /* if restore would invoke restore_window(), then we can stop */ |
| cwp1 = cpu_cwp_inc(env, env->cwp + offset); |
| #ifndef TARGET_SPARC64 |
| if (env->wim & (1 << cwp1)) |
| break; |
| #else |
| if (env->canrestore == 0) |
| break; |
| env->cansave++; |
| env->canrestore--; |
| #endif |
| save_window_offset(env, cwp1); |
| offset++; |
| } |
| cwp1 = cpu_cwp_inc(env, env->cwp + 1); |
| #ifndef TARGET_SPARC64 |
| /* set wim so that restore will reload the registers */ |
| env->wim = 1 << cwp1; |
| #endif |
| #if defined(DEBUG_WIN) |
| printf("flush_windows: nb=%d\n", offset - 1); |
| #endif |
| } |
| |
| void cpu_loop (CPUSPARCState *env) |
| { |
| CPUState *cs = CPU(sparc_env_get_cpu(env)); |
| int trapnr; |
| abi_long ret; |
| target_siginfo_t info; |
| |
| while (1) { |
| trapnr = cpu_sparc_exec (env); |
| |
| /* Compute PSR before exposing state. */ |
| if (env->cc_op != CC_OP_FLAGS) { |
| cpu_get_psr(env); |
| } |
| |
| switch (trapnr) { |
| #ifndef TARGET_SPARC64 |
| case 0x88: |
| case 0x90: |
| #else |
| case 0x110: |
| case 0x16d: |
| #endif |
| ret = do_syscall (env, env->gregs[1], |
| env->regwptr[0], env->regwptr[1], |
| env->regwptr[2], env->regwptr[3], |
| env->regwptr[4], env->regwptr[5], |
| 0, 0); |
| if ((abi_ulong)ret >= (abi_ulong)(-515)) { |
| #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) |
| env->xcc |= PSR_CARRY; |
| #else |
| env->psr |= PSR_CARRY; |
| #endif |
| ret = -ret; |
| } else { |
| #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) |
| env->xcc &= ~PSR_CARRY; |
| #else |
| env->psr &= ~PSR_CARRY; |
| #endif |
| } |
| env->regwptr[0] = ret; |
| /* next instruction */ |
| env->pc = env->npc; |
| env->npc = env->npc + 4; |
| break; |
| case 0x83: /* flush windows */ |
| #ifdef TARGET_ABI32 |
| case 0x103: |
| #endif |
| flush_windows(env); |
| /* next instruction */ |
| env->pc = env->npc; |
| env->npc = env->npc + 4; |
| break; |
| #ifndef TARGET_SPARC64 |
| case TT_WIN_OVF: /* window overflow */ |
| save_window(env); |
| break; |
| case TT_WIN_UNF: /* window underflow */ |
| restore_window(env); |
| break; |
| case TT_TFAULT: |
| case TT_DFAULT: |
| { |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->mmuregs[4]; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| #else |
| case TT_SPILL: /* window overflow */ |
| save_window(env); |
| break; |
| case TT_FILL: /* window underflow */ |
| restore_window(env); |
| break; |
| case TT_TFAULT: |
| case TT_DFAULT: |
| { |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| if (trapnr == TT_DFAULT) |
| info._sifields._sigfault._addr = env->dmmuregs[4]; |
| else |
| info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| #ifndef TARGET_ABI32 |
| case 0x16e: |
| flush_windows(env); |
| sparc64_get_context(env); |
| break; |
| case 0x16f: |
| flush_windows(env); |
| sparc64_set_context(env); |
| break; |
| #endif |
| #endif |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case TT_ILL_INSN: |
| { |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLOPC; |
| info._sifields._sigfault._addr = env->pc; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| default: |
| printf ("Unhandled trap: 0x%x\n", trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| exit (1); |
| } |
| process_pending_signals (env); |
| } |
| } |
| |
| #endif |
| |
| #ifdef TARGET_PPC |
| static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) |
| { |
| /* TO FIX */ |
| return 0; |
| } |
| |
| uint64_t cpu_ppc_load_tbl(CPUPPCState *env) |
| { |
| return cpu_ppc_get_tb(env); |
| } |
| |
| uint32_t cpu_ppc_load_tbu(CPUPPCState *env) |
| { |
| return cpu_ppc_get_tb(env) >> 32; |
| } |
| |
| uint64_t cpu_ppc_load_atbl(CPUPPCState *env) |
| { |
| return cpu_ppc_get_tb(env); |
| } |
| |
| uint32_t cpu_ppc_load_atbu(CPUPPCState *env) |
| { |
| return cpu_ppc_get_tb(env) >> 32; |
| } |
| |
| uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) |
| __attribute__ (( alias ("cpu_ppc_load_tbu") )); |
| |
| uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) |
| { |
| return cpu_ppc_load_tbl(env) & 0x3FFFFF80; |
| } |
| |
| /* XXX: to be fixed */ |
| int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) |
| { |
| return -1; |
| } |
| |
| int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) |
| { |
| return -1; |
| } |
| |
| #define EXCP_DUMP(env, fmt, ...) \ |
| do { \ |
| CPUState *cs = ENV_GET_CPU(env); \ |
| fprintf(stderr, fmt , ## __VA_ARGS__); \ |
| cpu_dump_state(cs, stderr, fprintf, 0); \ |
| qemu_log(fmt, ## __VA_ARGS__); \ |
| if (qemu_log_enabled()) { \ |
| log_cpu_state(cs, 0); \ |
| } \ |
| } while (0) |
| |
| static int do_store_exclusive(CPUPPCState *env) |
| { |
| target_ulong addr; |
| target_ulong page_addr; |
| target_ulong val, val2 __attribute__((unused)) = 0; |
| int flags; |
| int segv = 0; |
| |
| addr = env->reserve_ea; |
| page_addr = addr & TARGET_PAGE_MASK; |
| start_exclusive(); |
| mmap_lock(); |
| flags = page_get_flags(page_addr); |
| if ((flags & PAGE_READ) == 0) { |
| segv = 1; |
| } else { |
| int reg = env->reserve_info & 0x1f; |
| int size = env->reserve_info >> 5; |
| int stored = 0; |
| |
| if (addr == env->reserve_addr) { |
| switch (size) { |
| case 1: segv = get_user_u8(val, addr); break; |
| case 2: segv = get_user_u16(val, addr); break; |
| case 4: segv = get_user_u32(val, addr); break; |
| #if defined(TARGET_PPC64) |
| case 8: segv = get_user_u64(val, addr); break; |
| case 16: { |
| segv = get_user_u64(val, addr); |
| if (!segv) { |
| segv = get_user_u64(val2, addr + 8); |
| } |
| break; |
| } |
| #endif |
| default: abort(); |
| } |
| if (!segv && val == env->reserve_val) { |
| val = env->gpr[reg]; |
| switch (size) { |
| case 1: segv = put_user_u8(val, addr); break; |
| case 2: segv = put_user_u16(val, addr); break; |
| case 4: segv = put_user_u32(val, addr); break; |
| #if defined(TARGET_PPC64) |
| case 8: segv = put_user_u64(val, addr); break; |
| case 16: { |
| if (val2 == env->reserve_val2) { |
| if (msr_le) { |
| val2 = val; |
| val = env->gpr[reg+1]; |
| } else { |
| val2 = env->gpr[reg+1]; |
| } |
| segv = put_user_u64(val, addr); |
| if (!segv) { |
| segv = put_user_u64(val2, addr + 8); |
| } |
| } |
| break; |
| } |
| #endif |
| default: abort(); |
| } |
| if (!segv) { |
| stored = 1; |
| } |
| } |
| } |
| env->crf[0] = (stored << 1) | xer_so; |
| env->reserve_addr = (target_ulong)-1; |
| } |
| if (!segv) { |
| env->nip += 4; |
| } |
| mmap_unlock(); |
| end_exclusive(); |
| return segv; |
| } |
| |
| void cpu_loop(CPUPPCState *env) |
| { |
| CPUState *cs = CPU(ppc_env_get_cpu(env)); |
| target_siginfo_t info; |
| int trapnr; |
| target_ulong ret; |
| |
| for(;;) { |
| cpu_exec_start(cs); |
| trapnr = cpu_ppc_exec(env); |
| cpu_exec_end(cs); |
| switch(trapnr) { |
| case POWERPC_EXCP_NONE: |
| /* Just go on */ |
| break; |
| case POWERPC_EXCP_CRITICAL: /* Critical input */ |
| cpu_abort(cs, "Critical interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_MCHECK: /* Machine check exception */ |
| cpu_abort(cs, "Machine check exception while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_DSI: /* Data storage exception */ |
| EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n", |
| env->spr[SPR_DAR]); |
| /* XXX: check this. Seems bugged */ |
| switch (env->error_code & 0xFF000000) { |
| case 0x40000000: |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_MAPERR; |
| break; |
| case 0x04000000: |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLADR; |
| break; |
| case 0x08000000: |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_ACCERR; |
| break; |
| default: |
| /* Let's send a regular segfault... */ |
| EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", |
| env->error_code); |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_MAPERR; |
| break; |
| } |
| info._sifields._sigfault._addr = env->nip; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case POWERPC_EXCP_ISI: /* Instruction storage exception */ |
| EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx |
| "\n", env->spr[SPR_SRR0]); |
| /* XXX: check this */ |
| switch (env->error_code & 0xFF000000) { |
| case 0x40000000: |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_MAPERR; |
| break; |
| case 0x10000000: |
| case 0x08000000: |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_ACCERR; |
| break; |
| default: |
| /* Let's send a regular segfault... */ |
| EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", |
| env->error_code); |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_MAPERR; |
| break; |
| } |
| info._sifields._sigfault._addr = env->nip - 4; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case POWERPC_EXCP_EXTERNAL: /* External input */ |
| cpu_abort(cs, "External interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_ALIGN: /* Alignment exception */ |
| EXCP_DUMP(env, "Unaligned memory access\n"); |
| /* XXX: check this */ |
| info.si_signo = TARGET_SIGBUS; |
| info.si_errno = 0; |
| info.si_code = TARGET_BUS_ADRALN; |
| info._sifields._sigfault._addr = env->nip - 4; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case POWERPC_EXCP_PROGRAM: /* Program exception */ |
| /* XXX: check this */ |
| switch (env->error_code & ~0xF) { |
| case POWERPC_EXCP_FP: |
| EXCP_DUMP(env, "Floating point program exception\n"); |
| info.si_signo = TARGET_SIGFPE; |
| info.si_errno = 0; |
| switch (env->error_code & 0xF) { |
| case POWERPC_EXCP_FP_OX: |
| info.si_code = TARGET_FPE_FLTOVF; |
| break; |
| case POWERPC_EXCP_FP_UX: |
| info.si_code = TARGET_FPE_FLTUND; |
| break; |
| case POWERPC_EXCP_FP_ZX: |
| case POWERPC_EXCP_FP_VXZDZ: |
| info.si_code = TARGET_FPE_FLTDIV; |
| break; |
| case POWERPC_EXCP_FP_XX: |
| info.si_code = TARGET_FPE_FLTRES; |
| break; |
| case POWERPC_EXCP_FP_VXSOFT: |
| info.si_code = TARGET_FPE_FLTINV; |
| break; |
| case POWERPC_EXCP_FP_VXSNAN: |
| case POWERPC_EXCP_FP_VXISI: |
| case POWERPC_EXCP_FP_VXIDI: |
| case POWERPC_EXCP_FP_VXIMZ: |
| case POWERPC_EXCP_FP_VXVC: |
| case POWERPC_EXCP_FP_VXSQRT: |
| case POWERPC_EXCP_FP_VXCVI: |
| info.si_code = TARGET_FPE_FLTSUB; |
| break; |
| default: |
| EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", |
| env->error_code); |
| break; |
| } |
| break; |
| case POWERPC_EXCP_INVAL: |
| EXCP_DUMP(env, "Invalid instruction\n"); |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| switch (env->error_code & 0xF) { |
| case POWERPC_EXCP_INVAL_INVAL: |
| info.si_code = TARGET_ILL_ILLOPC; |
| break; |
| case POWERPC_EXCP_INVAL_LSWX: |
| info.si_code = TARGET_ILL_ILLOPN; |
| break; |
| case POWERPC_EXCP_INVAL_SPR: |
| info.si_code = TARGET_ILL_PRVREG; |
| break; |
| case POWERPC_EXCP_INVAL_FP: |
| info.si_code = TARGET_ILL_COPROC; |
| break; |
| default: |
| EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", |
| env->error_code & 0xF); |
| info.si_code = TARGET_ILL_ILLADR; |
| break; |
| } |
| break; |
| case POWERPC_EXCP_PRIV: |
| EXCP_DUMP(env, "Privilege violation\n"); |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| switch (env->error_code & 0xF) { |
| case POWERPC_EXCP_PRIV_OPC: |
| info.si_code = TARGET_ILL_PRVOPC; |
| break; |
| case POWERPC_EXCP_PRIV_REG: |
| info.si_code = TARGET_ILL_PRVREG; |
| break; |
| default: |
| EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", |
| env->error_code & 0xF); |
| info.si_code = TARGET_ILL_PRVOPC; |
| break; |
| } |
| break; |
| case POWERPC_EXCP_TRAP: |
| cpu_abort(cs, "Tried to call a TRAP\n"); |
| break; |
| default: |
| /* Should not happen ! */ |
| cpu_abort(cs, "Unknown program exception (%02x)\n", |
| env->error_code); |
| break; |
| } |
| info._sifields._sigfault._addr = env->nip - 4; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ |
| EXCP_DUMP(env, "No floating point allowed\n"); |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_COPROC; |
| info._sifields._sigfault._addr = env->nip - 4; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case POWERPC_EXCP_SYSCALL: /* System call exception */ |
| cpu_abort(cs, "Syscall exception while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ |
| EXCP_DUMP(env, "No APU instruction allowed\n"); |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_COPROC; |
| info._sifields._sigfault._addr = env->nip - 4; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case POWERPC_EXCP_DECR: /* Decrementer exception */ |
| cpu_abort(cs, "Decrementer interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ |
| cpu_abort(cs, "Fix interval timer interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ |
| cpu_abort(cs, "Watchdog timer interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_DTLB: /* Data TLB error */ |
| cpu_abort(cs, "Data TLB exception while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_ITLB: /* Instruction TLB error */ |
| cpu_abort(cs, "Instruction TLB exception while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ |
| EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n"); |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_COPROC; |
| info._sifields._sigfault._addr = env->nip - 4; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ |
| cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); |
| break; |
| case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ |
| cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); |
| break; |
| case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ |
| cpu_abort(cs, "Performance monitor exception not handled\n"); |
| break; |
| case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ |
| cpu_abort(cs, "Doorbell interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ |
| cpu_abort(cs, "Doorbell critical interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_RESET: /* System reset exception */ |
| cpu_abort(cs, "Reset interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_DSEG: /* Data segment exception */ |
| cpu_abort(cs, "Data segment exception while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_ISEG: /* Instruction segment exception */ |
| cpu_abort(cs, "Instruction segment exception " |
| "while in user mode. Aborting\n"); |
| break; |
| /* PowerPC 64 with hypervisor mode support */ |
| case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ |
| cpu_abort(cs, "Hypervisor decrementer interrupt " |
| "while in user mode. Aborting\n"); |
| break; |
| case POWERPC_EXCP_TRACE: /* Trace exception */ |
| /* Nothing to do: |
| * we use this exception to emulate step-by-step execution mode. |
| */ |
| break; |
| /* PowerPC 64 with hypervisor mode support */ |
| case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ |
| cpu_abort(cs, "Hypervisor data storage exception " |
| "while in user mode. Aborting\n"); |
| break; |
| case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ |
| cpu_abort(cs, "Hypervisor instruction storage exception " |
| "while in user mode. Aborting\n"); |
| break; |
| case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ |
| cpu_abort(cs, "Hypervisor data segment exception " |
| "while in user mode. Aborting\n"); |
| break; |
| case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ |
| cpu_abort(cs, "Hypervisor instruction segment exception " |
| "while in user mode. Aborting\n"); |
| break; |
| case POWERPC_EXCP_VPU: /* Vector unavailable exception */ |
| EXCP_DUMP(env, "No Altivec instructions allowed\n"); |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_COPROC; |
| info._sifields._sigfault._addr = env->nip - 4; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ |
| cpu_abort(cs, "Programmable interval timer interrupt " |
| "while in user mode. Aborting\n"); |
| break; |
| case POWERPC_EXCP_IO: /* IO error exception */ |
| cpu_abort(cs, "IO error exception while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_RUNM: /* Run mode exception */ |
| cpu_abort(cs, "Run mode exception while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_EMUL: /* Emulation trap exception */ |
| cpu_abort(cs, "Emulation trap exception not handled\n"); |
| break; |
| case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ |
| cpu_abort(cs, "Instruction fetch TLB exception " |
| "while in user-mode. Aborting"); |
| break; |
| case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ |
| cpu_abort(cs, "Data load TLB exception while in user-mode. " |
| "Aborting"); |
| break; |
| case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ |
| cpu_abort(cs, "Data store TLB exception while in user-mode. " |
| "Aborting"); |
| break; |
| case POWERPC_EXCP_FPA: /* Floating-point assist exception */ |
| cpu_abort(cs, "Floating-point assist exception not handled\n"); |
| break; |
| case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ |
| cpu_abort(cs, "Instruction address breakpoint exception " |
| "not handled\n"); |
| break; |
| case POWERPC_EXCP_SMI: /* System management interrupt */ |
| cpu_abort(cs, "System management interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_THERM: /* Thermal interrupt */ |
| cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ |
| cpu_abort(cs, "Performance monitor exception not handled\n"); |
| break; |
| case POWERPC_EXCP_VPUA: /* Vector assist exception */ |
| cpu_abort(cs, "Vector assist exception not handled\n"); |
| break; |
| case POWERPC_EXCP_SOFTP: /* Soft patch exception */ |
| cpu_abort(cs, "Soft patch exception not handled\n"); |
| break; |
| case POWERPC_EXCP_MAINT: /* Maintenance exception */ |
| cpu_abort(cs, "Maintenance exception while in user mode. " |
| "Aborting\n"); |
| break; |
| case POWERPC_EXCP_STOP: /* stop translation */ |
| /* We did invalidate the instruction cache. Go on */ |
| break; |
| case POWERPC_EXCP_BRANCH: /* branch instruction: */ |
| /* We just stopped because of a branch. Go on */ |
| break; |
| case POWERPC_EXCP_SYSCALL_USER: |
| /* system call in user-mode emulation */ |
| /* WARNING: |
| * PPC ABI uses overflow flag in cr0 to signal an error |
| * in syscalls. |
| */ |
| env->crf[0] &= ~0x1; |
| ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], |
| env->gpr[5], env->gpr[6], env->gpr[7], |
| env->gpr[8], 0, 0); |
| if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { |
| /* Returning from a successful sigreturn syscall. |
| Avoid corrupting register state. */ |
| break; |
| } |
| if (ret > (target_ulong)(-515)) { |
| env->crf[0] |= 0x1; |
| ret = -ret; |
| } |
| env->gpr[3] = ret; |
| break; |
| case POWERPC_EXCP_STCX: |
| if (do_store_exclusive(env)) { |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->nip; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| default: |
| cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr); |
| break; |
| } |
| process_pending_signals(env); |
| } |
| } |
| #endif |
| |
| #ifdef TARGET_MIPS |
| |
| # ifdef TARGET_ABI_MIPSO32 |
| # define MIPS_SYS(name, args) args, |
| static const uint8_t mips_syscall_args[] = { |
| MIPS_SYS(sys_syscall , 8) /* 4000 */ |
| MIPS_SYS(sys_exit , 1) |
| MIPS_SYS(sys_fork , 0) |
| MIPS_SYS(sys_read , 3) |
| MIPS_SYS(sys_write , 3) |
| MIPS_SYS(sys_open , 3) /* 4005 */ |
| MIPS_SYS(sys_close , 1) |
| MIPS_SYS(sys_waitpid , 3) |
| MIPS_SYS(sys_creat , 2) |
| MIPS_SYS(sys_link , 2) |
| MIPS_SYS(sys_unlink , 1) /* 4010 */ |
| MIPS_SYS(sys_execve , 0) |
| MIPS_SYS(sys_chdir , 1) |
| MIPS_SYS(sys_time , 1) |
| MIPS_SYS(sys_mknod , 3) |
| MIPS_SYS(sys_chmod , 2) /* 4015 */ |
| MIPS_SYS(sys_lchown , 3) |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ |
| MIPS_SYS(sys_lseek , 3) |
| MIPS_SYS(sys_getpid , 0) /* 4020 */ |
| MIPS_SYS(sys_mount , 5) |
| MIPS_SYS(sys_umount , 1) |
| MIPS_SYS(sys_setuid , 1) |
| MIPS_SYS(sys_getuid , 0) |
| MIPS_SYS(sys_stime , 1) /* 4025 */ |
| MIPS_SYS(sys_ptrace , 4) |
| MIPS_SYS(sys_alarm , 1) |
| MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ |
| MIPS_SYS(sys_pause , 0) |
| MIPS_SYS(sys_utime , 2) /* 4030 */ |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_access , 2) |
| MIPS_SYS(sys_nice , 1) |
| MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ |
| MIPS_SYS(sys_sync , 0) |
| MIPS_SYS(sys_kill , 2) |
| MIPS_SYS(sys_rename , 2) |
| MIPS_SYS(sys_mkdir , 2) |
| MIPS_SYS(sys_rmdir , 1) /* 4040 */ |
| MIPS_SYS(sys_dup , 1) |
| MIPS_SYS(sys_pipe , 0) |
| MIPS_SYS(sys_times , 1) |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_brk , 1) /* 4045 */ |
| MIPS_SYS(sys_setgid , 1) |
| MIPS_SYS(sys_getgid , 0) |
| MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ |
| MIPS_SYS(sys_geteuid , 0) |
| MIPS_SYS(sys_getegid , 0) /* 4050 */ |
| MIPS_SYS(sys_acct , 0) |
| MIPS_SYS(sys_umount2 , 2) |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_ioctl , 3) |
| MIPS_SYS(sys_fcntl , 3) /* 4055 */ |
| MIPS_SYS(sys_ni_syscall , 2) |
| MIPS_SYS(sys_setpgid , 2) |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_olduname , 1) |
| MIPS_SYS(sys_umask , 1) /* 4060 */ |
| MIPS_SYS(sys_chroot , 1) |
| MIPS_SYS(sys_ustat , 2) |
| MIPS_SYS(sys_dup2 , 2) |
| MIPS_SYS(sys_getppid , 0) |
| MIPS_SYS(sys_getpgrp , 0) /* 4065 */ |
| MIPS_SYS(sys_setsid , 0) |
| MIPS_SYS(sys_sigaction , 3) |
| MIPS_SYS(sys_sgetmask , 0) |
| MIPS_SYS(sys_ssetmask , 1) |
| MIPS_SYS(sys_setreuid , 2) /* 4070 */ |
| MIPS_SYS(sys_setregid , 2) |
| MIPS_SYS(sys_sigsuspend , 0) |
| MIPS_SYS(sys_sigpending , 1) |
| MIPS_SYS(sys_sethostname , 2) |
| MIPS_SYS(sys_setrlimit , 2) /* 4075 */ |
| MIPS_SYS(sys_getrlimit , 2) |
| MIPS_SYS(sys_getrusage , 2) |
| MIPS_SYS(sys_gettimeofday, 2) |
| MIPS_SYS(sys_settimeofday, 2) |
| MIPS_SYS(sys_getgroups , 2) /* 4080 */ |
| MIPS_SYS(sys_setgroups , 2) |
| MIPS_SYS(sys_ni_syscall , 0) /* old_select */ |
| MIPS_SYS(sys_symlink , 2) |
| MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ |
| MIPS_SYS(sys_readlink , 3) /* 4085 */ |
| MIPS_SYS(sys_uselib , 1) |
| MIPS_SYS(sys_swapon , 2) |
| MIPS_SYS(sys_reboot , 3) |
| MIPS_SYS(old_readdir , 3) |
| MIPS_SYS(old_mmap , 6) /* 4090 */ |
| MIPS_SYS(sys_munmap , 2) |
| MIPS_SYS(sys_truncate , 2) |
| MIPS_SYS(sys_ftruncate , 2) |
| MIPS_SYS(sys_fchmod , 2) |
| MIPS_SYS(sys_fchown , 3) /* 4095 */ |
| MIPS_SYS(sys_getpriority , 2) |
| MIPS_SYS(sys_setpriority , 3) |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_statfs , 2) |
| MIPS_SYS(sys_fstatfs , 2) /* 4100 */ |
| MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ |
| MIPS_SYS(sys_socketcall , 2) |
| MIPS_SYS(sys_syslog , 3) |
| MIPS_SYS(sys_setitimer , 3) |
| MIPS_SYS(sys_getitimer , 2) /* 4105 */ |
| MIPS_SYS(sys_newstat , 2) |
| MIPS_SYS(sys_newlstat , 2) |
| MIPS_SYS(sys_newfstat , 2) |
| MIPS_SYS(sys_uname , 1) |
| MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ |
| MIPS_SYS(sys_vhangup , 0) |
| MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ |
| MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ |
| MIPS_SYS(sys_wait4 , 4) |
| MIPS_SYS(sys_swapoff , 1) /* 4115 */ |
| MIPS_SYS(sys_sysinfo , 1) |
| MIPS_SYS(sys_ipc , 6) |
| MIPS_SYS(sys_fsync , 1) |
| MIPS_SYS(sys_sigreturn , 0) |
| MIPS_SYS(sys_clone , 6) /* 4120 */ |
| MIPS_SYS(sys_setdomainname, 2) |
| MIPS_SYS(sys_newuname , 1) |
| MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ |
| MIPS_SYS(sys_adjtimex , 1) |
| MIPS_SYS(sys_mprotect , 3) /* 4125 */ |
| MIPS_SYS(sys_sigprocmask , 3) |
| MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ |
| MIPS_SYS(sys_init_module , 5) |
| MIPS_SYS(sys_delete_module, 1) |
| MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ |
| MIPS_SYS(sys_quotactl , 0) |
| MIPS_SYS(sys_getpgid , 1) |
| MIPS_SYS(sys_fchdir , 1) |
| MIPS_SYS(sys_bdflush , 2) |
| MIPS_SYS(sys_sysfs , 3) /* 4135 */ |
| MIPS_SYS(sys_personality , 1) |
| MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ |
| MIPS_SYS(sys_setfsuid , 1) |
| MIPS_SYS(sys_setfsgid , 1) |
| MIPS_SYS(sys_llseek , 5) /* 4140 */ |
| MIPS_SYS(sys_getdents , 3) |
| MIPS_SYS(sys_select , 5) |
| MIPS_SYS(sys_flock , 2) |
| MIPS_SYS(sys_msync , 3) |
| MIPS_SYS(sys_readv , 3) /* 4145 */ |
| MIPS_SYS(sys_writev , 3) |
| MIPS_SYS(sys_cacheflush , 3) |
| MIPS_SYS(sys_cachectl , 3) |
| MIPS_SYS(sys_sysmips , 4) |
| MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ |
| MIPS_SYS(sys_getsid , 1) |
| MIPS_SYS(sys_fdatasync , 0) |
| MIPS_SYS(sys_sysctl , 1) |
| MIPS_SYS(sys_mlock , 2) |
| MIPS_SYS(sys_munlock , 2) /* 4155 */ |
| MIPS_SYS(sys_mlockall , 1) |
| MIPS_SYS(sys_munlockall , 0) |
| MIPS_SYS(sys_sched_setparam, 2) |
| MIPS_SYS(sys_sched_getparam, 2) |
| MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ |
| MIPS_SYS(sys_sched_getscheduler, 1) |
| MIPS_SYS(sys_sched_yield , 0) |
| MIPS_SYS(sys_sched_get_priority_max, 1) |
| MIPS_SYS(sys_sched_get_priority_min, 1) |
| MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ |
| MIPS_SYS(sys_nanosleep, 2) |
| MIPS_SYS(sys_mremap , 5) |
| MIPS_SYS(sys_accept , 3) |
| MIPS_SYS(sys_bind , 3) |
| MIPS_SYS(sys_connect , 3) /* 4170 */ |
| MIPS_SYS(sys_getpeername , 3) |
| MIPS_SYS(sys_getsockname , 3) |
| MIPS_SYS(sys_getsockopt , 5) |
| MIPS_SYS(sys_listen , 2) |
| MIPS_SYS(sys_recv , 4) /* 4175 */ |
| MIPS_SYS(sys_recvfrom , 6) |
| MIPS_SYS(sys_recvmsg , 3) |
| MIPS_SYS(sys_send , 4) |
| MIPS_SYS(sys_sendmsg , 3) |
| MIPS_SYS(sys_sendto , 6) /* 4180 */ |
| MIPS_SYS(sys_setsockopt , 5) |
| MIPS_SYS(sys_shutdown , 2) |
| MIPS_SYS(sys_socket , 3) |
| MIPS_SYS(sys_socketpair , 4) |
| MIPS_SYS(sys_setresuid , 3) /* 4185 */ |
| MIPS_SYS(sys_getresuid , 3) |
| MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ |
| MIPS_SYS(sys_poll , 3) |
| MIPS_SYS(sys_nfsservctl , 3) |
| MIPS_SYS(sys_setresgid , 3) /* 4190 */ |
| MIPS_SYS(sys_getresgid , 3) |
| MIPS_SYS(sys_prctl , 5) |
| MIPS_SYS(sys_rt_sigreturn, 0) |
| MIPS_SYS(sys_rt_sigaction, 4) |
| MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ |
| MIPS_SYS(sys_rt_sigpending, 2) |
| MIPS_SYS(sys_rt_sigtimedwait, 4) |
| MIPS_SYS(sys_rt_sigqueueinfo, 3) |
| MIPS_SYS(sys_rt_sigsuspend, 0) |
| MIPS_SYS(sys_pread64 , 6) /* 4200 */ |
| MIPS_SYS(sys_pwrite64 , 6) |
| MIPS_SYS(sys_chown , 3) |
| MIPS_SYS(sys_getcwd , 2) |
| MIPS_SYS(sys_capget , 2) |
| MIPS_SYS(sys_capset , 2) /* 4205 */ |
| MIPS_SYS(sys_sigaltstack , 2) |
| MIPS_SYS(sys_sendfile , 4) |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_mmap2 , 6) /* 4210 */ |
| MIPS_SYS(sys_truncate64 , 4) |
| MIPS_SYS(sys_ftruncate64 , 4) |
| MIPS_SYS(sys_stat64 , 2) |
| MIPS_SYS(sys_lstat64 , 2) |
| MIPS_SYS(sys_fstat64 , 2) /* 4215 */ |
| MIPS_SYS(sys_pivot_root , 2) |
| MIPS_SYS(sys_mincore , 3) |
| MIPS_SYS(sys_madvise , 3) |
| MIPS_SYS(sys_getdents64 , 3) |
| MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ |
| MIPS_SYS(sys_ni_syscall , 0) |
| MIPS_SYS(sys_gettid , 0) |
| MIPS_SYS(sys_readahead , 5) |
| MIPS_SYS(sys_setxattr , 5) |
| MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ |
| MIPS_SYS(sys_fsetxattr , 5) |
| MIPS_SYS(sys_getxattr , 4) |
| MIPS_SYS(sys_lgetxattr , 4) |
| MIPS_SYS(sys_fgetxattr , 4) |
| MIPS_SYS(sys_listxattr , 3) /* 4230 */ |
| MIPS_SYS(sys_llistxattr , 3) |
| MIPS_SYS(sys_flistxattr , 3) |
| MIPS_SYS(sys_removexattr , 2) |
| MIPS_SYS(sys_lremovexattr, 2) |
| MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ |
| MIPS_SYS(sys_tkill , 2) |
| MIPS_SYS(sys_sendfile64 , 5) |
| MIPS_SYS(sys_futex , 6) |
| MIPS_SYS(sys_sched_setaffinity, 3) |
| MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ |
| MIPS_SYS(sys_io_setup , 2) |
| MIPS_SYS(sys_io_destroy , 1) |
| MIPS_SYS(sys_io_getevents, 5) |
| MIPS_SYS(sys_io_submit , 3) |
| MIPS_SYS(sys_io_cancel , 3) /* 4245 */ |
| MIPS_SYS(sys_exit_group , 1) |
| MIPS_SYS(sys_lookup_dcookie, 3) |
| MIPS_SYS(sys_epoll_create, 1) |
| MIPS_SYS(sys_epoll_ctl , 4) |
| MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ |
| MIPS_SYS(sys_remap_file_pages, 5) |
| MIPS_SYS(sys_set_tid_address, 1) |
| MIPS_SYS(sys_restart_syscall, 0) |
| MIPS_SYS(sys_fadvise64_64, 7) |
| MIPS_SYS(sys_statfs64 , 3) /* 4255 */ |
| MIPS_SYS(sys_fstatfs64 , 2) |
| MIPS_SYS(sys_timer_create, 3) |
| MIPS_SYS(sys_timer_settime, 4) |
| MIPS_SYS(sys_timer_gettime, 2) |
| MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ |
| MIPS_SYS(sys_timer_delete, 1) |
| MIPS_SYS(sys_clock_settime, 2) |
| MIPS_SYS(sys_clock_gettime, 2) |
| MIPS_SYS(sys_clock_getres, 2) |
| MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ |
| MIPS_SYS(sys_tgkill , 3) |
| MIPS_SYS(sys_utimes , 2) |
| MIPS_SYS(sys_mbind , 4) |
| MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ |
| MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ |
| MIPS_SYS(sys_mq_open , 4) |
| MIPS_SYS(sys_mq_unlink , 1) |
| MIPS_SYS(sys_mq_timedsend, 5) |
| MIPS_SYS(sys_mq_timedreceive, 5) |
| MIPS_SYS(sys_mq_notify , 2) /* 4275 */ |
| MIPS_SYS(sys_mq_getsetattr, 3) |
| MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ |
| MIPS_SYS(sys_waitid , 4) |
| MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ |
| MIPS_SYS(sys_add_key , 5) |
| MIPS_SYS(sys_request_key, 4) |
| MIPS_SYS(sys_keyctl , 5) |
| MIPS_SYS(sys_set_thread_area, 1) |
| MIPS_SYS(sys_inotify_init, 0) |
| MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ |
| MIPS_SYS(sys_inotify_rm_watch, 2) |
| MIPS_SYS(sys_migrate_pages, 4) |
| MIPS_SYS(sys_openat, 4) |
| MIPS_SYS(sys_mkdirat, 3) |
| MIPS_SYS(sys_mknodat, 4) /* 4290 */ |
| MIPS_SYS(sys_fchownat, 5) |
| MIPS_SYS(sys_futimesat, 3) |
| MIPS_SYS(sys_fstatat64, 4) |
| MIPS_SYS(sys_unlinkat, 3) |
| MIPS_SYS(sys_renameat, 4) /* 4295 */ |
| MIPS_SYS(sys_linkat, 5) |
| MIPS_SYS(sys_symlinkat, 3) |
| MIPS_SYS(sys_readlinkat, 4) |
| MIPS_SYS(sys_fchmodat, 3) |
| MIPS_SYS(sys_faccessat, 3) /* 4300 */ |
| MIPS_SYS(sys_pselect6, 6) |
| MIPS_SYS(sys_ppoll, 5) |
| MIPS_SYS(sys_unshare, 1) |
| MIPS_SYS(sys_splice, 6) |
| MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ |
| MIPS_SYS(sys_tee, 4) |
| MIPS_SYS(sys_vmsplice, 4) |
| MIPS_SYS(sys_move_pages, 6) |
| MIPS_SYS(sys_set_robust_list, 2) |
| MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ |
| MIPS_SYS(sys_kexec_load, 4) |
| MIPS_SYS(sys_getcpu, 3) |
| MIPS_SYS(sys_epoll_pwait, 6) |
| MIPS_SYS(sys_ioprio_set, 3) |
| MIPS_SYS(sys_ioprio_get, 2) |
| MIPS_SYS(sys_utimensat, 4) |
| MIPS_SYS(sys_signalfd, 3) |
| MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ |
| MIPS_SYS(sys_eventfd, 1) |
| MIPS_SYS(sys_fallocate, 6) /* 4320 */ |
| MIPS_SYS(sys_timerfd_create, 2) |
| MIPS_SYS(sys_timerfd_gettime, 2) |
| MIPS_SYS(sys_timerfd_settime, 4) |
| MIPS_SYS(sys_signalfd4, 4) |
| MIPS_SYS(sys_eventfd2, 2) /* 4325 */ |
| MIPS_SYS(sys_epoll_create1, 1) |
| MIPS_SYS(sys_dup3, 3) |
| MIPS_SYS(sys_pipe2, 2) |
| MIPS_SYS(sys_inotify_init1, 1) |
| MIPS_SYS(sys_preadv, 6) /* 4330 */ |
| MIPS_SYS(sys_pwritev, 6) |
| MIPS_SYS(sys_rt_tgsigqueueinfo, 4) |
| MIPS_SYS(sys_perf_event_open, 5) |
| MIPS_SYS(sys_accept4, 4) |
| MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ |
| MIPS_SYS(sys_fanotify_init, 2) |
| MIPS_SYS(sys_fanotify_mark, 6) |
| MIPS_SYS(sys_prlimit64, 4) |
| MIPS_SYS(sys_name_to_handle_at, 5) |
| MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ |
| MIPS_SYS(sys_clock_adjtime, 2) |
| MIPS_SYS(sys_syncfs, 1) |
| }; |
| # undef MIPS_SYS |
| # endif /* O32 */ |
| |
| static int do_store_exclusive(CPUMIPSState *env) |
| { |
| target_ulong addr; |
| target_ulong page_addr; |
| target_ulong val; |
| int flags; |
| int segv = 0; |
| int reg; |
| int d; |
| |
| addr = env->lladdr; |
| page_addr = addr & TARGET_PAGE_MASK; |
| start_exclusive(); |
| mmap_lock(); |
| flags = page_get_flags(page_addr); |
| if ((flags & PAGE_READ) == 0) { |
| segv = 1; |
| } else { |
| reg = env->llreg & 0x1f; |
| d = (env->llreg & 0x20) != 0; |
| if (d) { |
| segv = get_user_s64(val, addr); |
| } else { |
| segv = get_user_s32(val, addr); |
| } |
| if (!segv) { |
| if (val != env->llval) { |
| env->active_tc.gpr[reg] = 0; |
| } else { |
| if (d) { |
| segv = put_user_u64(env->llnewval, addr); |
| } else { |
| segv = put_user_u32(env->llnewval, addr); |
| } |
| if (!segv) { |
| env->active_tc.gpr[reg] = 1; |
| } |
| } |
| } |
| } |
| env->lladdr = -1; |
| if (!segv) { |
| env->active_tc.PC += 4; |
| } |
| mmap_unlock(); |
| end_exclusive(); |
| return segv; |
| } |
| |
| /* Break codes */ |
| enum { |
| BRK_OVERFLOW = 6, |
| BRK_DIVZERO = 7 |
| }; |
| |
| static int do_break(CPUMIPSState *env, target_siginfo_t *info, |
| unsigned int code) |
| { |
| int ret = -1; |
| |
| switch (code) { |
| case BRK_OVERFLOW: |
| case BRK_DIVZERO: |
| info->si_signo = TARGET_SIGFPE; |
| info->si_errno = 0; |
| info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; |
| queue_signal(env, info->si_signo, &*info); |
| ret = 0; |
| break; |
| default: |
| info->si_signo = TARGET_SIGTRAP; |
| info->si_errno = 0; |
| queue_signal(env, info->si_signo, &*info); |
| ret = 0; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| void cpu_loop(CPUMIPSState *env) |
| { |
| CPUState *cs = CPU(mips_env_get_cpu(env)); |
| target_siginfo_t info; |
| int trapnr; |
| abi_long ret; |
| # ifdef TARGET_ABI_MIPSO32 |
| unsigned int syscall_num; |
| # endif |
| |
| for(;;) { |
| cpu_exec_start(cs); |
| trapnr = cpu_mips_exec(env); |
| cpu_exec_end(cs); |
| switch(trapnr) { |
| case EXCP_SYSCALL: |
| env->active_tc.PC += 4; |
| # ifdef TARGET_ABI_MIPSO32 |
| syscall_num = env->active_tc.gpr[2] - 4000; |
| if (syscall_num >= sizeof(mips_syscall_args)) { |
| ret = -TARGET_ENOSYS; |
| } else { |
| int nb_args; |
| abi_ulong sp_reg; |
| abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; |
| |
| nb_args = mips_syscall_args[syscall_num]; |
| sp_reg = env->active_tc.gpr[29]; |
| switch (nb_args) { |
| /* these arguments are taken from the stack */ |
| case 8: |
| if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { |
| goto done_syscall; |
| } |
| case 7: |
| if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { |
| goto done_syscall; |
| } |
| case 6: |
| if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { |
| goto done_syscall; |
| } |
| case 5: |
| if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { |
| goto done_syscall; |
| } |
| default: |
| break; |
| } |
| ret = do_syscall(env, env->active_tc.gpr[2], |
| env->active_tc.gpr[4], |
| env->active_tc.gpr[5], |
| env->active_tc.gpr[6], |
| env->active_tc.gpr[7], |
| arg5, arg6, arg7, arg8); |
| } |
| done_syscall: |
| # else |
| ret = do_syscall(env, env->active_tc.gpr[2], |
| env->active_tc.gpr[4], env->active_tc.gpr[5], |
| env->active_tc.gpr[6], env->active_tc.gpr[7], |
| env->active_tc.gpr[8], env->active_tc.gpr[9], |
| env->active_tc.gpr[10], env->active_tc.gpr[11]); |
| # endif /* O32 */ |
| if (ret == -TARGET_QEMU_ESIGRETURN) { |
| /* Returning from a successful sigreturn syscall. |
| Avoid clobbering register state. */ |
| break; |
| } |
| if ((abi_ulong)ret >= (abi_ulong)-1133) { |
| env->active_tc.gpr[7] = 1; /* error flag */ |
| ret = -ret; |
| } else { |
| env->active_tc.gpr[7] = 0; /* error flag */ |
| } |
| env->active_tc.gpr[2] = ret; |
| break; |
| case EXCP_TLBL: |
| case EXCP_TLBS: |
| case EXCP_AdEL: |
| case EXCP_AdES: |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->CP0_BadVAddr; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_CpU: |
| case EXCP_RI: |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = 0; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| case EXCP_SC: |
| if (do_store_exclusive(env)) { |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->active_tc.PC; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP_DSPDIS: |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLOPC; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| /* The code below was inspired by the MIPS Linux kernel trap |
| * handling code in arch/mips/kernel/traps.c. |
| */ |
| case EXCP_BREAK: |
| { |
| abi_ulong trap_instr; |
| unsigned int code; |
| |
| if (env->hflags & MIPS_HFLAG_M16) { |
| if (env->insn_flags & ASE_MICROMIPS) { |
| /* microMIPS mode */ |
| ret = get_user_u16(trap_instr, env->active_tc.PC); |
| if (ret != 0) { |
| goto error; |
| } |
| |
| if ((trap_instr >> 10) == 0x11) { |
| /* 16-bit instruction */ |
| code = trap_instr & 0xf; |
| } else { |
| /* 32-bit instruction */ |
| abi_ulong instr_lo; |
| |
| ret = get_user_u16(instr_lo, |
| env->active_tc.PC + 2); |
| if (ret != 0) { |
| goto error; |
| } |
| trap_instr = (trap_instr << 16) | instr_lo; |
| code = ((trap_instr >> 6) & ((1 << 20) - 1)); |
| /* Unfortunately, microMIPS also suffers from |
| the old assembler bug... */ |
| if (code >= (1 << 10)) { |
| code >>= 10; |
| } |
| } |
| } else { |
| /* MIPS16e mode */ |
| ret = get_user_u16(trap_instr, env->active_tc.PC); |
| if (ret != 0) { |
| goto error; |
| } |
| code = (trap_instr >> 6) & 0x3f; |
| } |
| } else { |
| ret = get_user_ual(trap_instr, env->active_tc.PC); |
| if (ret != 0) { |
| goto error; |
| } |
| |
| /* As described in the original Linux kernel code, the |
| * below checks on 'code' are to work around an old |
| * assembly bug. |
| */ |
| code = ((trap_instr >> 6) & ((1 << 20) - 1)); |
| if (code >= (1 << 10)) { |
| code >>= 10; |
| } |
| } |
| |
| if (do_break(env, &info, code) != 0) { |
| goto error; |
| } |
| } |
| break; |
| case EXCP_TRAP: |
| { |
| abi_ulong trap_instr; |
| unsigned int code = 0; |
| |
| if (env->hflags & MIPS_HFLAG_M16) { |
| /* microMIPS mode */ |
| abi_ulong instr[2]; |
| |
| ret = get_user_u16(instr[0], env->active_tc.PC) || |
| get_user_u16(instr[1], env->active_tc.PC + 2); |
| |
| trap_instr = (instr[0] << 16) | instr[1]; |
| } else { |
| ret = get_user_ual(trap_instr, env->active_tc.PC); |
| } |
| |
| if (ret != 0) { |
| goto error; |
| } |
| |
| /* The immediate versions don't provide a code. */ |
| if (!(trap_instr & 0xFC000000)) { |
| if (env->hflags & MIPS_HFLAG_M16) { |
| /* microMIPS mode */ |
| code = ((trap_instr >> 12) & ((1 << 4) - 1)); |
| } else { |
| code = ((trap_instr >> 6) & ((1 << 10) - 1)); |
| } |
| } |
| |
| if (do_break(env, &info, code) != 0) { |
| goto error; |
| } |
| } |
| break; |
| default: |
| error: |
| fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", |
| trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| abort(); |
| } |
| process_pending_signals(env); |
| } |
| } |
| #endif |
| |
| #ifdef TARGET_OPENRISC |
| |
| void cpu_loop(CPUOpenRISCState *env) |
| { |
| CPUState *cs = CPU(openrisc_env_get_cpu(env)); |
| int trapnr, gdbsig; |
| |
| for (;;) { |
| trapnr = cpu_exec(env); |
| gdbsig = 0; |
| |
| switch (trapnr) { |
| case EXCP_RESET: |
| qemu_log("\nReset request, exit, pc is %#x\n", env->pc); |
| exit(1); |
| break; |
| case EXCP_BUSERR: |
| qemu_log("\nBus error, exit, pc is %#x\n", env->pc); |
| gdbsig = SIGBUS; |
| break; |
| case EXCP_DPF: |
| case EXCP_IPF: |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| gdbsig = TARGET_SIGSEGV; |
| break; |
| case EXCP_TICK: |
| qemu_log("\nTick time interrupt pc is %#x\n", env->pc); |
| break; |
| case EXCP_ALIGN: |
| qemu_log("\nAlignment pc is %#x\n", env->pc); |
| gdbsig = SIGBUS; |
| break; |
| case EXCP_ILLEGAL: |
| qemu_log("\nIllegal instructionpc is %#x\n", env->pc); |
| gdbsig = SIGILL; |
| break; |
| case EXCP_INT: |
| qemu_log("\nExternal interruptpc is %#x\n", env->pc); |
| break; |
| case EXCP_DTLBMISS: |
| case EXCP_ITLBMISS: |
| qemu_log("\nTLB miss\n"); |
| break; |
| case EXCP_RANGE: |
| qemu_log("\nRange\n"); |
| gdbsig = SIGSEGV; |
| break; |
| case EXCP_SYSCALL: |
| env->pc += 4; /* 0xc00; */ |
| env->gpr[11] = do_syscall(env, |
| env->gpr[11], /* return value */ |
| env->gpr[3], /* r3 - r7 are params */ |
| env->gpr[4], |
| env->gpr[5], |
| env->gpr[6], |
| env->gpr[7], |
| env->gpr[8], 0, 0); |
| break; |
| case EXCP_FPE: |
| qemu_log("\nFloating point error\n"); |
| break; |
| case EXCP_TRAP: |
| qemu_log("\nTrap\n"); |
| gdbsig = SIGTRAP; |
| break; |
| case EXCP_NR: |
| qemu_log("\nNR\n"); |
| break; |
| default: |
| qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n", |
| trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| gdbsig = TARGET_SIGILL; |
| break; |
| } |
| if (gdbsig) { |
| gdb_handlesig(cs, gdbsig); |
| if (gdbsig != TARGET_SIGTRAP) { |
| exit(1); |
| } |
| } |
| |
| process_pending_signals(env); |
| } |
| } |
| |
| #endif /* TARGET_OPENRISC */ |
| |
| #ifdef TARGET_SH4 |
| void cpu_loop(CPUSH4State *env) |
| { |
| CPUState *cs = CPU(sh_env_get_cpu(env)); |
| int trapnr, ret; |
| target_siginfo_t info; |
| |
| while (1) { |
| trapnr = cpu_sh4_exec (env); |
| |
| switch (trapnr) { |
| case 0x160: |
| env->pc += 2; |
| ret = do_syscall(env, |
| env->gregs[3], |
| env->gregs[4], |
| env->gregs[5], |
| env->gregs[6], |
| env->gregs[7], |
| env->gregs[0], |
| env->gregs[1], |
| 0, 0); |
| env->gregs[0] = ret; |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| case 0xa0: |
| case 0xc0: |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->tea; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| |
| default: |
| printf ("Unhandled trap: 0x%x\n", trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| exit (1); |
| } |
| process_pending_signals (env); |
| } |
| } |
| #endif |
| |
| #ifdef TARGET_CRIS |
| void cpu_loop(CPUCRISState *env) |
| { |
| CPUState *cs = CPU(cris_env_get_cpu(env)); |
| int trapnr, ret; |
| target_siginfo_t info; |
| |
| while (1) { |
| trapnr = cpu_cris_exec (env); |
| switch (trapnr) { |
| case 0xaa: |
| { |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->pregs[PR_EDA]; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_BREAK: |
| ret = do_syscall(env, |
| env->regs[9], |
| env->regs[10], |
| env->regs[11], |
| env->regs[12], |
| env->regs[13], |
| env->pregs[7], |
| env->pregs[11], |
| 0, 0); |
| env->regs[10] = ret; |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| default: |
| printf ("Unhandled trap: 0x%x\n", trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| exit (1); |
| } |
| process_pending_signals (env); |
| } |
| } |
| #endif |
| |
| #ifdef TARGET_MICROBLAZE |
| void cpu_loop(CPUMBState *env) |
| { |
| CPUState *cs = CPU(mb_env_get_cpu(env)); |
| int trapnr, ret; |
| target_siginfo_t info; |
| |
| while (1) { |
| trapnr = cpu_mb_exec (env); |
| switch (trapnr) { |
| case 0xaa: |
| { |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = 0; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_BREAK: |
| /* Return address is 4 bytes after the call. */ |
| env->regs[14] += 4; |
| env->sregs[SR_PC] = env->regs[14]; |
| ret = do_syscall(env, |
| env->regs[12], |
| env->regs[5], |
| env->regs[6], |
| env->regs[7], |
| env->regs[8], |
| env->regs[9], |
| env->regs[10], |
| 0, 0); |
| env->regs[3] = ret; |
| break; |
| case EXCP_HW_EXCP: |
| env->regs[17] = env->sregs[SR_PC] + 4; |
| if (env->iflags & D_FLAG) { |
| env->sregs[SR_ESR] |= 1 << 12; |
| env->sregs[SR_PC] -= 4; |
| /* FIXME: if branch was immed, replay the imm as well. */ |
| } |
| |
| env->iflags &= ~(IMM_FLAG | D_FLAG); |
| |
| switch (env->sregs[SR_ESR] & 31) { |
| case ESR_EC_DIVZERO: |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_code = TARGET_FPE_FLTDIV; |
| info._sifields._sigfault._addr = 0; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case ESR_EC_FPU: |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| if (env->sregs[SR_FSR] & FSR_IO) { |
| info.si_code = TARGET_FPE_FLTINV; |
| } |
| if (env->sregs[SR_FSR] & FSR_DZ) { |
| info.si_code = TARGET_FPE_FLTDIV; |
| } |
| info._sifields._sigfault._addr = 0; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| default: |
| printf ("Unhandled hw-exception: 0x%x\n", |
| env->sregs[SR_ESR] & ESR_EC_MASK); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| exit (1); |
| break; |
| } |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| default: |
| printf ("Unhandled trap: 0x%x\n", trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| exit (1); |
| } |
| process_pending_signals (env); |
| } |
| } |
| #endif |
| |
| #ifdef TARGET_M68K |
| |
| void cpu_loop(CPUM68KState *env) |
| { |
| CPUState *cs = CPU(m68k_env_get_cpu(env)); |
| int trapnr; |
| unsigned int n; |
| target_siginfo_t info; |
| TaskState *ts = cs->opaque; |
| |
| for(;;) { |
| trapnr = cpu_m68k_exec(env); |
| switch(trapnr) { |
| case EXCP_ILLEGAL: |
| { |
| if (ts->sim_syscalls) { |
| uint16_t nr; |
| nr = lduw(env->pc + 2); |
| env->pc += 4; |
| do_m68k_simcall(env, nr); |
| } else { |
| goto do_sigill; |
| } |
| } |
| break; |
| case EXCP_HALT_INSN: |
| /* Semihosing syscall. */ |
| env->pc += 4; |
| do_m68k_semihosting(env, env->dregs[0]); |
| break; |
| case EXCP_LINEA: |
| case EXCP_LINEF: |
| case EXCP_UNSUPPORTED: |
| do_sigill: |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLOPN; |
| info._sifields._sigfault._addr = env->pc; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_TRAP0: |
| { |
| ts->sim_syscalls = 0; |
| n = env->dregs[0]; |
| env->pc += 2; |
| env->dregs[0] = do_syscall(env, |
| n, |
| env->dregs[1], |
| env->dregs[2], |
| env->dregs[3], |
| env->dregs[4], |
| env->dregs[5], |
| env->aregs[0], |
| 0, 0); |
| } |
| break; |
| case EXCP_INTERRUPT: |
| /* just indicate that signals should be handled asap */ |
| break; |
| case EXCP_ACCESS: |
| { |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* XXX: check env->error_code */ |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = env->mmu.ar; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP_DEBUG: |
| { |
| int sig; |
| |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) |
| { |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| } |
| break; |
| default: |
| fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", |
| trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| abort(); |
| } |
| process_pending_signals(env); |
| } |
| } |
| #endif /* TARGET_M68K */ |
| |
| #ifdef TARGET_ALPHA |
| static void do_store_exclusive(CPUAlphaState *env, int reg, int quad) |
| { |
| target_ulong addr, val, tmp; |
| target_siginfo_t info; |
| int ret = 0; |
| |
| addr = env->lock_addr; |
| tmp = env->lock_st_addr; |
| env->lock_addr = -1; |
| env->lock_st_addr = 0; |
| |
| start_exclusive(); |
| mmap_lock(); |
| |
| if (addr == tmp) { |
| if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { |
| goto do_sigsegv; |
| } |
| |
| if (val == env->lock_value) { |
| tmp = env->ir[reg]; |
| if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) { |
| goto do_sigsegv; |
| } |
| ret = 1; |
| } |
| } |
| env->ir[reg] = ret; |
| env->pc += 4; |
| |
| mmap_unlock(); |
| end_exclusive(); |
| return; |
| |
| do_sigsegv: |
| mmap_unlock(); |
| end_exclusive(); |
| |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = TARGET_SEGV_MAPERR; |
| info._sifields._sigfault._addr = addr; |
| queue_signal(env, TARGET_SIGSEGV, &info); |
| } |
| |
| void cpu_loop(CPUAlphaState *env) |
| { |
| CPUState *cs = CPU(alpha_env_get_cpu(env)); |
| int trapnr; |
| target_siginfo_t info; |
| abi_long sysret; |
| |
| while (1) { |
| trapnr = cpu_alpha_exec (env); |
| |
| /* All of the traps imply a transition through PALcode, which |
| implies an REI instruction has been executed. Which means |
| that the intr_flag should be cleared. */ |
| env->intr_flag = 0; |
| |
| switch (trapnr) { |
| case EXCP_RESET: |
| fprintf(stderr, "Reset requested. Exit\n"); |
| exit(1); |
| break; |
| case EXCP_MCHK: |
| fprintf(stderr, "Machine check exception. Exit\n"); |
| exit(1); |
| break; |
| case EXCP_SMP_INTERRUPT: |
| case EXCP_CLK_INTERRUPT: |
| case EXCP_DEV_INTERRUPT: |
| fprintf(stderr, "External interrupt. Exit\n"); |
| exit(1); |
| break; |
| case EXCP_MMFAULT: |
| env->lock_addr = -1; |
| info.si_signo = TARGET_SIGSEGV; |
| info.si_errno = 0; |
| info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID |
| ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); |
| info._sifields._sigfault._addr = env->trap_arg0; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_UNALIGN: |
| env->lock_addr = -1; |
| info.si_signo = TARGET_SIGBUS; |
| info.si_errno = 0; |
| info.si_code = TARGET_BUS_ADRALN; |
| info._sifields._sigfault._addr = env->trap_arg0; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_OPCDEC: |
| do_sigill: |
| env->lock_addr = -1; |
| info.si_signo = TARGET_SIGILL; |
| info.si_errno = 0; |
| info.si_code = TARGET_ILL_ILLOPC; |
| info._sifields._sigfault._addr = env->pc; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_ARITH: |
| env->lock_addr = -1; |
| info.si_signo = TARGET_SIGFPE; |
| info.si_errno = 0; |
| info.si_code = TARGET_FPE_FLTINV; |
| info._sifields._sigfault._addr = env->pc; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case EXCP_FEN: |
| /* No-op. Linux simply re-enables the FPU. */ |
| break; |
| case EXCP_CALL_PAL: |
| env->lock_addr = -1; |
| switch (env->error_code) { |
| case 0x80: |
| /* BPT */ |
| info.si_signo = TARGET_SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| info._sifields._sigfault._addr = env->pc; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case 0x81: |
| /* BUGCHK */ |
| info.si_signo = TARGET_SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = 0; |
| info._sifields._sigfault._addr = env->pc; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| case 0x83: |
| /* CALLSYS */ |
| trapnr = env->ir[IR_V0]; |
| sysret = do_syscall(env, trapnr, |
| env->ir[IR_A0], env->ir[IR_A1], |
| env->ir[IR_A2], env->ir[IR_A3], |
| env->ir[IR_A4], env->ir[IR_A5], |
| 0, 0); |
| if (trapnr == TARGET_NR_sigreturn |
| || trapnr == TARGET_NR_rt_sigreturn) { |
| break; |
| } |
| /* Syscall writes 0 to V0 to bypass error check, similar |
| to how this is handled internal to Linux kernel. |
| (Ab)use trapnr temporarily as boolean indicating error. */ |
| trapnr = (env->ir[IR_V0] != 0 && sysret < 0); |
| env->ir[IR_V0] = (trapnr ? -sysret : sysret); |
| env->ir[IR_A3] = trapnr; |
| break; |
| case 0x86: |
| /* IMB */ |
| /* ??? We can probably elide the code using page_unprotect |
| that is checking for self-modifying code. Instead we |
| could simply call tb_flush here. Until we work out the |
| changes required to turn off the extra write protection, |
| this can be a no-op. */ |
| break; |
| case 0x9E: |
| /* RDUNIQUE */ |
| /* Handled in the translator for usermode. */ |
| abort(); |
| case 0x9F: |
| /* WRUNIQUE */ |
| /* Handled in the translator for usermode. */ |
| abort(); |
| case 0xAA: |
| /* GENTRAP */ |
| info.si_signo = TARGET_SIGFPE; |
| switch (env->ir[IR_A0]) { |
| case TARGET_GEN_INTOVF: |
| info.si_code = TARGET_FPE_INTOVF; |
| break; |
| case TARGET_GEN_INTDIV: |
| info.si_code = TARGET_FPE_INTDIV; |
| break; |
| case TARGET_GEN_FLTOVF: |
| info.si_code = TARGET_FPE_FLTOVF; |
| break; |
| case TARGET_GEN_FLTUND: |
| info.si_code = TARGET_FPE_FLTUND; |
| break; |
| case TARGET_GEN_FLTINV: |
| info.si_code = TARGET_FPE_FLTINV; |
| break; |
| case TARGET_GEN_FLTINE: |
| info.si_code = TARGET_FPE_FLTRES; |
| break; |
| case TARGET_GEN_ROPRAND: |
| info.si_code = 0; |
| break; |
| default: |
| info.si_signo = TARGET_SIGTRAP; |
| info.si_code = 0; |
| break; |
| } |
| info.si_errno = 0; |
| info._sifields._sigfault._addr = env->pc; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| default: |
| goto do_sigill; |
| } |
| break; |
| case EXCP_DEBUG: |
| info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (info.si_signo) { |
| env->lock_addr = -1; |
| info.si_errno = 0; |
| info.si_code = TARGET_TRAP_BRKPT; |
| queue_signal(env, info.si_signo, &info); |
| } |
| break; |
| case EXCP_STL_C: |
| case EXCP_STQ_C: |
| do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C); |
| break; |
| case EXCP_INTERRUPT: |
| /* Just indicate that signals should be handled asap. */ |
| break; |
| default: |
| printf ("Unhandled trap: 0x%x\n", trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| exit (1); |
| } |
| process_pending_signals (env); |
| } |
| } |
| #endif /* TARGET_ALPHA */ |
| |
| #ifdef TARGET_S390X |
| void cpu_loop(CPUS390XState *env) |
| { |
| CPUState *cs = CPU(s390_env_get_cpu(env)); |
| int trapnr, n, sig; |
| target_siginfo_t info; |
| target_ulong addr; |
| |
| while (1) { |
| trapnr = cpu_s390x_exec(env); |
| switch (trapnr) { |
| case EXCP_INTERRUPT: |
| /* Just indicate that signals should be handled asap. */ |
| break; |
| |
| case EXCP_SVC: |
| n = env->int_svc_code; |
| if (!n) { |
| /* syscalls > 255 */ |
| n = env->regs[1]; |
| } |
| env->psw.addr += env->int_svc_ilen; |
| env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3], |
| env->regs[4], env->regs[5], |
| env->regs[6], env->regs[7], 0, 0); |
| break; |
| |
| case EXCP_DEBUG: |
| sig = gdb_handlesig(cs, TARGET_SIGTRAP); |
| if (sig) { |
| n = TARGET_TRAP_BRKPT; |
| goto do_signal_pc; |
| } |
| break; |
| case EXCP_PGM: |
| n = env->int_pgm_code; |
| switch (n) { |
| case PGM_OPERATION: |
| case PGM_PRIVILEGED: |
| sig = SIGILL; |
| n = TARGET_ILL_ILLOPC; |
| goto do_signal_pc; |
| case PGM_PROTECTION: |
| case PGM_ADDRESSING: |
| sig = SIGSEGV; |
| /* XXX: check env->error_code */ |
| n = TARGET_SEGV_MAPERR; |
| addr = env->__excp_addr; |
| goto do_signal; |
| case PGM_EXECUTE: |
| case PGM_SPECIFICATION: |
| case PGM_SPECIAL_OP: |
| case PGM_OPERAND: |
| do_sigill_opn: |
| sig = SIGILL; |
| n = TARGET_ILL_ILLOPN; |
| goto do_signal_pc; |
| |
| case PGM_FIXPT_OVERFLOW: |
| sig = SIGFPE; |
| n = TARGET_FPE_INTOVF; |
| goto do_signal_pc; |
| case PGM_FIXPT_DIVIDE: |
| sig = SIGFPE; |
| n = TARGET_FPE_INTDIV; |
| goto do_signal_pc; |
| |
| case PGM_DATA: |
| n = (env->fpc >> 8) & 0xff; |
| if (n == 0xff) { |
| /* compare-and-trap */ |
| goto do_sigill_opn; |
| } else { |
| /* An IEEE exception, simulated or otherwise. */ |
| if (n & 0x80) { |
| n = TARGET_FPE_FLTINV; |
| } else if (n & 0x40) { |
| n = TARGET_FPE_FLTDIV; |
| } else if (n & 0x20) { |
| n = TARGET_FPE_FLTOVF; |
| } else if (n & 0x10) { |
| n = TARGET_FPE_FLTUND; |
| } else if (n & 0x08) { |
| n = TARGET_FPE_FLTRES; |
| } else { |
| /* ??? Quantum exception; BFP, DFP error. */ |
| goto do_sigill_opn; |
| } |
| sig = SIGFPE; |
| goto do_signal_pc; |
| } |
| |
| default: |
| fprintf(stderr, "Unhandled program exception: %#x\n", n); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| exit(1); |
| } |
| break; |
| |
| do_signal_pc: |
| addr = env->psw.addr; |
| do_signal: |
| info.si_signo = sig; |
| info.si_errno = 0; |
| info.si_code = n; |
| info._sifields._sigfault._addr = addr; |
| queue_signal(env, info.si_signo, &info); |
| break; |
| |
| default: |
| fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); |
| cpu_dump_state(cs, stderr, fprintf, 0); |
| exit(1); |
| } |
| process_pending_signals (env); |
| } |
| } |
| |
| #endif /* TARGET_S390X */ |
| |
| THREAD CPUState *thread_cpu; |
| |
| void task_settid(TaskState *ts) |
| { |
| if (ts->ts_tid == 0) { |
| ts->ts_tid = (pid_t)syscall(SYS_gettid); |
| } |
| } |
| |
| void stop_all_tasks(void) |
| { |
| /* |
| * We trust that when using NPTL, start_exclusive() |
| * handles thread stopping correctly. |
| */ |
| start_exclusive(); |
| } |
| |
| /* Assumes contents are already zeroed. */ |
| void init_task_state(TaskState *ts) |
| { |
| int i; |
| |
| ts->used = 1; |
| ts->first_free = ts->sigqueue_table; |
| for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { |
| ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; |
| } |
| ts->sigqueue_table[i].next = NULL; |
| } |
| |
| CPUArchState *cpu_copy(CPUArchState *env) |
| { |
| CPUState *cpu = ENV_GET_CPU(env); |
| CPUArchState *new_env = cpu_init(cpu_model); |
| CPUState *new_cpu = ENV_GET_CPU(new_env); |
| #if defined(TARGET_HAS_ICE) |
| CPUBreakpoint *bp; |
| CPUWatchpoint *wp; |
| #endif |
| |
| /* Reset non arch specific state */ |
| cpu_reset(new_cpu); |
| |
| memcpy(new_env, env, sizeof(CPUArchState)); |
| |
| /* Clone all break/watchpoints. |
| Note: Once we support ptrace with hw-debug register access, make sure |
| BP_CPU break/watchpoints are handled correctly on clone. */ |
| QTAILQ_INIT(&cpu->breakpoints); |
| QTAILQ_INIT(&cpu->watchpoints); |
| #if defined(TARGET_HAS_ICE) |
| QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
| cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); |
| } |
| QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
| cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); |
| } |
| #endif |
| |
| return new_env; |
| } |
| |
| static void handle_arg_help(const char *arg) |
| { |
| usage(); |
| } |
| |
| static void handle_arg_log(const char *arg) |
| { |
| int mask; |
| |
| mask = qemu_str_to_log_mask(arg); |
| if (!mask) { |
| qemu_print_log_usage(stdout); |
| exit(1); |
| } |
| qemu_set_log(mask); |
| } |
| |
| static void handle_arg_log_filename(const char *arg) |
| { |
| qemu_set_log_filename(arg); |
| } |
| |
| static void handle_arg_set_env(const char *arg) |
| { |
| char *r, *p, *token; |
| r = p = strdup(arg); |
| while ((token = strsep(&p, ",")) != NULL) { |
| if (envlist_setenv(envlist, token) != 0) { |
| usage(); |
| } |
| } |
| free(r); |
| } |
| |
| static void handle_arg_unset_env(const char *arg) |
| { |
| char *r, *p, *token; |
| r = p = strdup(arg); |
| while ((token = strsep(&p, ",")) != NULL) { |
| if (envlist_unsetenv(envlist, token) != 0) { |
| usage(); |
| } |
| } |
| free(r); |
| } |
| |
| static void handle_arg_argv0(const char *arg) |
| { |
| argv0 = strdup(arg); |
| } |
| |
| static void handle_arg_stack_size(const char *arg) |
| { |
| char *p; |
| guest_stack_size = strtoul(arg, &p, 0); |
| if (guest_stack_size == 0) { |
| usage(); |
| } |
| |
| if (*p == 'M') { |
| guest_stack_size *= 1024 * 1024; |
| } else if (*p == 'k' || *p == 'K') { |
| guest_stack_size *= 1024; |
| } |
| } |
| |
| static void handle_arg_ld_prefix(const char *arg) |
| { |
| interp_prefix = strdup(arg); |
| } |
| |
| static void handle_arg_pagesize(const char *arg) |
| { |
| qemu_host_page_size = atoi(arg); |
| if (qemu_host_page_size == 0 || |
| (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { |
| fprintf(stderr, "page size must be a power of two\n"); |
| exit(1); |
| } |
| } |
| |
| static void handle_arg_randseed(const char *arg) |
| { |
| unsigned long long seed; |
| |
| if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { |
| fprintf(stderr, "Invalid seed number: %s\n", arg); |
| exit(1); |
| } |
| srand(seed); |
| } |
| |
| static void handle_arg_gdb(const char *arg) |
| { |
| gdbstub_port = atoi(arg); |
| } |
| |
| static void handle_arg_uname(const char *arg) |
| { |
| qemu_uname_release = strdup(arg); |
| } |
| |
| static void handle_arg_cpu(const char *arg) |
| { |
| cpu_model = strdup(arg); |
| if (cpu_model == NULL || is_help_option(cpu_model)) { |
| /* XXX: implement xxx_cpu_list for targets that still miss it */ |
| #if defined(cpu_list) |
| cpu_list(stdout, &fprintf); |
| #endif |
| exit(1); |
| } |
| } |
| |
| #if defined(CONFIG_USE_GUEST_BASE) |
| static void handle_arg_guest_base(const char *arg) |
| { |
| guest_base = strtol(arg, NULL, 0); |
| have_guest_base = 1; |
| } |
| |
| static void handle_arg_reserved_va(const char *arg) |
| { |
| char *p; |
| int shift = 0; |
| reserved_va = strtoul(arg, &p, 0); |
| switch (*p) { |
| case 'k': |
| case 'K': |
| shift = 10; |
| break; |
| case 'M': |
| shift = 20; |
| break; |
| case 'G': |
| shift = 30; |
| break; |
| } |
| if (shift) { |
| unsigned long unshifted = reserved_va; |
| p++; |
| reserved_va <<= shift; |
| if (((reserved_va >> shift) != unshifted) |
| #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS |
| || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) |
| #endif |
| ) { |
| fprintf(stderr, "Reserved virtual address too big\n"); |
| exit(1); |
| } |
| } |
| if (*p) { |
| fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); |
| exit(1); |
| } |
| } |
| #endif |
| |
| static void handle_arg_singlestep(const char *arg) |
| { |
| singlestep = 1; |
| } |
| |
| static void handle_arg_strace(const char *arg) |
| { |
| do_strace = 1; |
| } |
| |
| static void handle_arg_version(const char *arg) |
| { |
| printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION |
| ", Copyright (c) 2003-2008 Fabrice Bellard\n"); |
| exit(0); |
| } |
| |
| struct qemu_argument { |
| const char *argv; |
| const char *env; |
| bool has_arg; |
| void (*handle_opt)(const char *arg); |
| const char *example; |
| const char *help; |
| }; |
| |
| static const struct qemu_argument arg_table[] = { |
| {"h", "", false, handle_arg_help, |
| "", "print this help"}, |
| {"g", "QEMU_GDB", true, handle_arg_gdb, |
| "port", "wait gdb connection to 'port'"}, |
| {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, |
| "path", "set the elf interpreter prefix to 'path'"}, |
| {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, |
| "size", "set the stack size to 'size' bytes"}, |
| {"cpu", "QEMU_CPU", true, handle_arg_cpu, |
| "model", "select CPU (-cpu help for list)"}, |
| {"E", "QEMU_SET_ENV", true, handle_arg_set_env, |
| "var=value", "sets targets environment variable (see below)"}, |
| {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, |
| "var", "unsets targets environment variable (see below)"}, |
| {"0", "QEMU_ARGV0", true, handle_arg_argv0, |
| "argv0", "forces target process argv[0] to be 'argv0'"}, |
| {"r", "QEMU_UNAME", true, handle_arg_uname, |
| "uname", "set qemu uname release string to 'uname'"}, |
| #if defined(CONFIG_USE_GUEST_BASE) |
| {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, |
| "address", "set guest_base address to 'address'"}, |
| {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, |
| "size", "reserve 'size' bytes for guest virtual address space"}, |
| #endif |
| {"d", "QEMU_LOG", true, handle_arg_log, |
| "item[,...]", "enable logging of specified items " |
| "(use '-d help' for a list of items)"}, |
| {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, |
| "logfile", "write logs to 'logfile' (default stderr)"}, |
| {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, |
| "pagesize", "set the host page size to 'pagesize'"}, |
| {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, |
| "", "run in singlestep mode"}, |
| {"strace", "QEMU_STRACE", false, handle_arg_strace, |
| "", "log system calls"}, |
| {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, |
| "", "Seed for pseudo-random number generator"}, |
| {"version", "QEMU_VERSION", false, handle_arg_version, |
| "", "display version information and exit"}, |
| {NULL, NULL, false, NULL, NULL, NULL} |
| }; |
| |
| static void usage(void) |
| { |
| const struct qemu_argument *arginfo; |
| int maxarglen; |
| int maxenvlen; |
| |
| printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" |
| "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" |
| "\n" |
| "Options and associated environment variables:\n" |
| "\n"); |
| |
| /* Calculate column widths. We must always have at least enough space |
| * for the column header. |
| */ |
| maxarglen = strlen("Argument"); |
| maxenvlen = strlen("Env-variable"); |
| |
| for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { |
| int arglen = strlen(arginfo->argv); |
| if (arginfo->has_arg) { |
| arglen += strlen(arginfo->example) + 1; |
| } |
| if (strlen(arginfo->env) > maxenvlen) { |
| maxenvlen = strlen(arginfo->env); |
| } |
| if (arglen > maxarglen) { |
| maxarglen = arglen; |
| } |
| } |
| |
| printf("%-*s %-*s Description\n", maxarglen+1, "Argument", |
| maxenvlen, "Env-variable"); |
| |
| for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { |
| if (arginfo->has_arg) { |
| printf("-%s %-*s %-*s %s\n", arginfo->argv, |
| (int)(maxarglen - strlen(arginfo->argv) - 1), |
| arginfo->example, maxenvlen, arginfo->env, arginfo->help); |
| } else { |
| printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, |
| maxenvlen, arginfo->env, |
| arginfo->help); |
| } |
| } |
| |
| printf("\n" |
| "Defaults:\n" |
| "QEMU_LD_PREFIX = %s\n" |
| "QEMU_STACK_SIZE = %ld byte\n", |
| interp_prefix, |
| guest_stack_size); |
| |
| printf("\n" |
| "You can use -E and -U options or the QEMU_SET_ENV and\n" |
| "QEMU_UNSET_ENV environment variables to set and unset\n" |
| "environment variables for the target process.\n" |
| "It is possible to provide several variables by separating them\n" |
| "by commas in getsubopt(3) style. Additionally it is possible to\n" |
| "provide the -E and -U options multiple times.\n" |
| "The following lines are equivalent:\n" |
| " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" |
| " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" |
| " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" |
| "Note that if you provide several changes to a single variable\n" |
| "the last change will stay in effect.\n"); |
| |
| exit(1); |
| } |
| |
| static int parse_args(int argc, char **argv) |
| { |
| const char *r; |
| int optind; |
| const struct qemu_argument *arginfo; |
| |
| for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { |
| if (arginfo->env == NULL) { |
| continue; |
| } |
| |
| r = getenv(arginfo->env); |
| if (r != NULL) { |
| arginfo->handle_opt(r); |
| } |
| } |
| |
| optind = 1; |
| for (;;) { |
| if (optind >= argc) { |
| break; |
| } |
| r = argv[optind]; |
| if (r[0] != '-') { |
| break; |
| } |
| optind++; |
| r++; |
| if (!strcmp(r, "-")) { |
| break; |
| } |
| |
| for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { |
| if (!strcmp(r, arginfo->argv)) { |
| if (arginfo->has_arg) { |
| if (optind >= argc) { |
| usage(); |
| } |
| arginfo->handle_opt(argv[optind]); |
| optind++; |
| } else { |
| arginfo->handle_opt(NULL); |
| } |
| break; |
| } |
| } |
| |
| /* no option matched the current argv */ |
| if (arginfo->handle_opt == NULL) { |
| usage(); |
| } |
| } |
| |
| if (optind >= argc) { |
| usage(); |
| } |
| |
| filename = argv[optind]; |
| exec_path = argv[optind]; |
| |
| return optind; |
| } |
| |
| int main(int argc, char **argv, char **envp) |
| { |
| struct target_pt_regs regs1, *regs = ®s1; |
| struct image_info info1, *info = &info1; |
| struct linux_binprm bprm; |
| TaskState *ts; |
| CPUArchState *env; |
| CPUState *cpu; |
| int optind; |
| char **target_environ, **wrk; |
| char **target_argv; |
| int target_argc; |
| int i; |
| int ret; |
| int execfd; |
| |
| module_call_init(MODULE_INIT_QOM); |
| |
| if ((envlist = envlist_create()) == NULL) { |
| (void) fprintf(stderr, "Unable to allocate envlist\n"); |
| exit(1); |
| } |
| |
| /* add current environment into the list */ |
| for (wrk = environ; *wrk != NULL; wrk++) { |
| (void) envlist_setenv(envlist, *wrk); |
| } |
| |
| /* Read the stack limit from the kernel. If it's "unlimited", |
| then we can do little else besides use the default. */ |
| { |
| struct rlimit lim; |
| if (getrlimit(RLIMIT_STACK, &lim) == 0 |
| && lim.rlim_cur != RLIM_INFINITY |
| && lim.rlim_cur == (target_long)lim.rlim_cur) { |
| guest_stack_size = lim.rlim_cur; |
| } |
| } |
| |
| cpu_model = NULL; |
| #if defined(cpudef_setup) |
| cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ |
| #endif |
| |
| srand(time(NULL)); |
| |
| optind = parse_args(argc, argv); |
| |
| /* Zero out regs */ |
| memset(regs, 0, sizeof(struct target_pt_regs)); |
| |
| /* Zero out image_info */ |
| memset(info, 0, sizeof(struct image_info)); |
| |
| memset(&bprm, 0, sizeof (bprm)); |
| |
| /* Scan interp_prefix dir for replacement files. */ |
| init_paths(interp_prefix); |
| |
| init_qemu_uname_release(); |
| |
| if (cpu_model == NULL) { |
| #if defined(TARGET_I386) |
| #ifdef TARGET_X86_64 |
| cpu_model = "qemu64"; |
| #else |
| cpu_model = "qemu32"; |
| #endif |
| #elif defined(TARGET_ARM) |
| cpu_model = "any"; |
| #elif defined(TARGET_UNICORE32) |
| cpu_model = "any"; |
| #elif defined(TARGET_M68K) |
| cpu_model = "any"; |
| #elif defined(TARGET_SPARC) |
| #ifdef TARGET_SPARC64 |
| cpu_model = "TI UltraSparc II"; |
| #else |
| cpu_model = "Fujitsu MB86904"; |
| #endif |
| #elif defined(TARGET_MIPS) |
| #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) |
| cpu_model = "20Kc"; |
| #else |
| cpu_model = "24Kf"; |
| #endif |
| #elif defined TARGET_OPENRISC |
| cpu_model = "or1200"; |
| #elif defined(TARGET_PPC) |
| # ifdef TARGET_PPC64 |
| cpu_model = "POWER7"; |
| # else |
| cpu_model = "750"; |
| # endif |
| #else |
| cpu_model = "any"; |
| #endif |
| } |
| tcg_exec_init(0); |
| cpu_exec_init_all(); |
| /* NOTE: we need to init the CPU at this stage to get |
| qemu_host_page_size */ |
| env = cpu_init(cpu_model); |
| if (!env) { |
| fprintf(stderr, "Unable to find CPU definition\n"); |
| exit(1); |
| } |
| cpu = ENV_GET_CPU(env); |
| cpu_reset(cpu); |
| |
| thread_cpu = cpu; |
| |
| if (getenv("QEMU_STRACE")) { |
| do_strace = 1; |
| } |
| |
| if (getenv("QEMU_RAND_SEED")) { |
| handle_arg_randseed(getenv("QEMU_RAND_SEED")); |
| } |
| |
| target_environ = envlist_to_environ(envlist, NULL); |
| envlist_free(envlist); |
| |
| #if defined(CONFIG_USE_GUEST_BASE) |
| /* |
| * Now that page sizes are configured in cpu_init() we can do |
| * proper page alignment for guest_base. |
| */ |
| guest_base = HOST_PAGE_ALIGN(guest_base); |
| |
| if (reserved_va || have_guest_base) { |
| guest_base = init_guest_space(guest_base, reserved_va, 0, |
| have_guest_base); |
| if (guest_base == (unsigned long)-1) { |
| fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " |
| "space for use as guest address space (check your virtual " |
| "memory ulimit setting or reserve less using -R option)\n", |
| reserved_va); |
| exit(1); |
| } |
| |
| if (reserved_va) { |
| mmap_next_start = reserved_va; |
| } |
| } |
| #endif /* CONFIG_USE_GUEST_BASE */ |
| |
| /* |
| * Read in mmap_min_addr kernel parameter. This value is used |
| * When loading the ELF image to determine whether guest_base |
| * is needed. It is also used in mmap_find_vma. |
| */ |
| { |
| FILE *fp; |
| |
| if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { |
| unsigned long tmp; |
| if (fscanf(fp, "%lu", &tmp) == 1) { |
| mmap_min_addr = tmp; |
| qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr); |
| } |
| fclose(fp); |
| } |
| } |
| |
| /* |
| * Prepare copy of argv vector for target. |
| */ |
| target_argc = argc - optind; |
| target_argv = calloc(target_argc + 1, sizeof (char *)); |
| if (target_argv == NULL) { |
| (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); |
| exit(1); |
| } |
| |
| /* |
| * If argv0 is specified (using '-0' switch) we replace |
| * argv[0] pointer with the given one. |
| */ |
| i = 0; |
| if (argv0 != NULL) { |
| target_argv[i++] = strdup(argv0); |
| } |
| for (; i < target_argc; i++) { |
| target_argv[i] = strdup(argv[optind + i]); |
| } |
| target_argv[target_argc] = NULL; |
| |
| ts = g_malloc0 (sizeof(TaskState)); |
| init_task_state(ts); |
| /* build Task State */ |
| ts->info = info; |
| ts->bprm = &bprm; |
| cpu->opaque = ts; |
| task_settid(ts); |
| |
| execfd = qemu_getauxval(AT_EXECFD); |
| if (execfd == 0) { |
| execfd = open(filename, O_RDONLY); |
| if (execfd < 0) { |
| printf("Error while loading %s: %s\n", filename, strerror(errno)); |
| _exit(1); |
| } |
| } |
| |
| ret = loader_exec(execfd, filename, target_argv, target_environ, regs, |
| info, &bprm); |
| if (ret != 0) { |
| printf("Error while loading %s: %s\n", filename, strerror(-ret)); |
| _exit(1); |
| } |
| |
| for (wrk = target_environ; *wrk; wrk++) { |
| free(*wrk); |
| } |
| |
| free(target_environ); |
| |
| if (qemu_log_enabled()) { |
| #if defined(CONFIG_USE_GUEST_BASE) |
| qemu_log("guest_base 0x%lx\n", guest_base); |
| #endif |
| log_page_dump(); |
| |
| qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); |
| qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); |
| qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", |
| info->start_code); |
| qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", |
| info->start_data); |
| qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); |
| qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", |
| info->start_stack); |
| qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); |
| qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); |
| } |
| |
| target_set_brk(info->brk); |
| syscall_init(); |
| signal_init(); |
| |
| #if defined(CONFIG_USE_GUEST_BASE) |
| /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay |
| generating the prologue until now so that the prologue can take |
| the real value of GUEST_BASE into account. */ |
| tcg_prologue_init(&tcg_ctx); |
| #endif |
| |
| #if defined(TARGET_I386) |
| env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; |
| env->hflags |= HF_PE_MASK | HF_CPL_MASK; |
| if (env->features[FEAT_1_EDX] & CPUID_SSE) { |
| env->cr[4] |= CR4_OSFXSR_MASK; |
| env->hflags |= HF_OSFXSR_MASK; |
| } |
| #ifndef TARGET_ABI32 |
| /* enable 64 bit mode if possible */ |
| if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { |
| fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); |
| exit(1); |
| } |
| env->cr[4] |= CR4_PAE_MASK; |
| env->efer |= MSR_EFER_LMA | MSR_EFER_LME; |
| env->hflags |= HF_LMA_MASK; |
| #endif |
| |
| /* flags setup : we activate the IRQs by default as in user mode */ |
| env->eflags |= IF_MASK; |
| |
| /* linux register setup */ |
| #ifndef TARGET_ABI32 |
| env->regs[R_EAX] = regs->rax; |
| env->regs[R_EBX] = regs->rbx; |
| env->regs[R_ECX] = regs->rcx; |
| env->regs[R_EDX] = regs->rdx; |
| env->regs[R_ESI] = regs->rsi; |
| env->regs[R_EDI] = regs->rdi; |
| env->regs[R_EBP] = regs->rbp; |
| env->regs[R_ESP] = regs->rsp; |
| env->eip = regs->rip; |
| #else |
| env->regs[R_EAX] = regs->eax; |
| env->regs[R_EBX] = regs->ebx; |
| env->regs[R_ECX] = regs->ecx; |
| env->regs[R_EDX] = regs->edx; |
| env->regs[R_ESI] = regs->esi; |
| env->regs[R_EDI] = regs->edi; |
| env->regs[R_EBP] = regs->ebp; |
| env->regs[R_ESP] = regs->esp; |
| env->eip = regs->eip; |
| #endif |
| |
| /* linux interrupt setup */ |
| #ifndef TARGET_ABI32 |
| env->idt.limit = 511; |
| #else |
| env->idt.limit = 255; |
| #endif |
| env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), |
| PROT_READ|PROT_WRITE, |
| MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); |
| idt_table = g2h(env->idt.base); |
| set_idt(0, 0); |
| set_idt(1, 0); |
| set_idt(2, 0); |
| set_idt(3, 3); |
| set_idt(4, 3); |
| set_idt(5, 0); |
| set_idt(6, 0); |
| set_idt(7, 0); |
| set_idt(8, 0); |
| set_idt(9, 0); |
| set_idt(10, 0); |
| set_idt(11, 0); |
| set_idt(12, 0); |
| set_idt(13, 0); |
| set_idt(14, 0); |
| set_idt(15, 0); |
| set_idt(16, 0); |
| set_idt(17, 0); |
| set_idt(18, 0); |
| set_idt(19, 0); |
| set_idt(0x80, 3); |
| |
| /* linux segment setup */ |
| { |
| uint64_t *gdt_table; |
| env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, |
| PROT_READ|PROT_WRITE, |
| MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); |
| env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; |
| gdt_table = g2h(env->gdt.base); |
| #ifdef TARGET_ABI32 |
| write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, |
| DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | |
| (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); |
| #else |
| /* 64 bit code segment */ |
| write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, |
| DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | |
| DESC_L_MASK | |
| (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); |
| #endif |
| write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, |
| DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | |
| (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); |
| } |
| cpu_x86_load_seg(env, R_CS, __USER_CS); |
| cpu_x86_load_seg(env, R_SS, __USER_DS); |
| #ifdef TARGET_ABI32 |
| cpu_x86_load_seg(env, R_DS, __USER_DS); |
| cpu_x86_load_seg(env, R_ES, __USER_DS); |
| cpu_x86_load_seg(env, R_FS, __USER_DS); |
| cpu_x86_load_seg(env, R_GS, __USER_DS); |
| /* This hack makes Wine work... */ |
| env->segs[R_FS].selector = 0; |
| #else |
| cpu_x86_load_seg(env, R_DS, 0); |
| cpu_x86_load_seg(env, R_ES, 0); |
| cpu_x86_load_seg(env, R_FS, 0); |
| cpu_x86_load_seg(env, R_GS, 0); |
| #endif |
| #elif defined(TARGET_AARCH64) |
| { |
| int i; |
| |
| if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { |
| fprintf(stderr, |
| "The selected ARM CPU does not support 64 bit mode\n"); |
| exit(1); |
| } |
| |
| for (i = 0; i < 31; i++) { |
| env->xregs[i] = regs->regs[i]; |
| } |
| env->pc = regs->pc; |
| env->xregs[31] = regs->sp; |
| } |
| #elif defined(TARGET_ARM) |
| { |
| int i; |
| cpsr_write(env, regs->uregs[16], 0xffffffff); |
| for(i = 0; i < 16; i++) { |
| env->regs[i] = regs->uregs[i]; |
| } |
| /* Enable BE8. */ |
| if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 |
| && (info->elf_flags & EF_ARM_BE8)) { |
| env->bswap_code = 1; |
| } |
| } |
| #elif defined(TARGET_UNICORE32) |
| { |
| int i; |
| cpu_asr_write(env, regs->uregs[32], 0xffffffff); |
| for (i = 0; i < 32; i++) { |
| env->regs[i] = regs->uregs[i]; |
| } |
| } |
| #elif defined(TARGET_SPARC) |
| { |
| int i; |
| env->pc = regs->pc; |
| env->npc = regs->npc; |
| env->y = regs->y; |
| for(i = 0; i < 8; i++) |
| env->gregs[i] = regs->u_regs[i]; |
| for(i = 0; i < 8; i++) |
| env->regwptr[i] = regs->u_regs[i + 8]; |
| } |
| #elif defined(TARGET_PPC) |
| { |
| int i; |
| |
| #if defined(TARGET_PPC64) |
| #if defined(TARGET_ABI32) |
| env->msr &= ~((target_ulong)1 << MSR_SF); |
| #else |
| env->msr |= (target_ulong)1 << MSR_SF; |
| #endif |
| #endif |
| env->nip = regs->nip; |
| for(i = 0; i < 32; i++) { |
| env->gpr[i] = regs->gpr[i]; |
| } |
| } |
| #elif defined(TARGET_M68K) |
| { |
| env->pc = regs->pc; |
| env->dregs[0] = regs->d0; |
| env->dregs[1] = regs->d1; |
| env->dregs[2] = regs->d2; |
| env->dregs[3] = regs->d3; |
| env->dregs[4] = regs->d4; |
| env->dregs[5] = regs->d5; |
| env->dregs[6] = regs->d6; |
| env->dregs[7] = regs->d7; |
| env->aregs[0] = regs->a0; |
| env->aregs[1] = regs->a1; |
| env->aregs[2] = regs->a2; |
| env->aregs[3] = regs->a3; |
| env->aregs[4] = regs->a4; |
| env->aregs[5] = regs->a5; |
| env->aregs[6] = regs->a6; |
| env->aregs[7] = regs->usp; |
| env->sr = regs->sr; |
| ts->sim_syscalls = 1; |
| } |
| #elif defined(TARGET_MICROBLAZE) |
| { |
| env->regs[0] = regs->r0; |
| env->regs[1] = regs->r1; |
| env->regs[2] = regs->r2; |
| env->regs[3] = regs->r3; |
| env->regs[4] = regs->r4; |
| env->regs[5] = regs->r5; |
| env->regs[6] = regs->r6; |
| env->regs[7] = regs->r7; |
| env->regs[8] = regs->r8; |
| env->regs[9] = regs->r9; |
| env->regs[10] = regs->r10; |
| env->regs[11] = regs->r11; |
| env->regs[12] = regs->r12; |
| env->regs[13] = regs->r13; |
| env->regs[14] = regs->r14; |
| env->regs[15] = regs->r15; |
| env->regs[16] = regs->r16; |
| env->regs[17] = regs->r17; |
| env->regs[18] = regs->r18; |
| env->regs[19] = regs->r19; |
| env->regs[20] = regs->r20; |
| env->regs[21] = regs->r21; |
| env->regs[22] = regs->r22; |
| env->regs[23] = regs->r23; |
| env->regs[24] = regs->r24; |
| env->regs[25] = regs->r25; |
| env->regs[26] = regs->r26; |
| env->regs[27] = regs->r27; |
| env->regs[28] = regs->r28; |
| env->regs[29] = regs->r29; |
| env->regs[30] = regs->r30; |
| env->regs[31] = regs->r31; |
| env->sregs[SR_PC] = regs->pc; |
| } |
| #elif defined(TARGET_MIPS) |
| { |
| int i; |
| |
| for(i = 0; i < 32; i++) { |
| env->active_tc.gpr[i] = regs->regs[i]; |
| } |
| env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; |
| if (regs->cp0_epc & 1) { |
| env->hflags |= MIPS_HFLAG_M16; |
| } |
| } |
| #elif defined(TARGET_OPENRISC) |
| { |
| int i; |
| |
| for (i = 0; i < 32; i++) { |
| env->gpr[i] = regs->gpr[i]; |
| } |
| |
| env->sr = regs->sr; |
| env->pc = regs->pc; |
| } |
| #elif defined(TARGET_SH4) |
| { |
| int i; |
| |
| for(i = 0; i < 16; i++) { |
| env->gregs[i] = regs->regs[i]; |
| } |
| env->pc = regs->pc; |
| } |
| #elif defined(TARGET_ALPHA) |
| { |
| int i; |
| |
| for(i = 0; i < 28; i++) { |
| env->ir[i] = ((abi_ulong *)regs)[i]; |
| } |
| env->ir[IR_SP] = regs->usp; |
| env->pc = regs->pc; |
| } |
| #elif defined(TARGET_CRIS) |
| { |
| env->regs[0] = regs->r0; |
| env->regs[1] = regs->r1; |
| env->regs[2] = regs->r2; |
| env->regs[3] = regs->r3; |
| env->regs[4] = regs->r4; |
| env->regs[5] = regs->r5; |
| env->regs[6] = regs->r6; |
| env->regs[7] = regs->r7; |
| env->regs[8] = regs->r8; |
| env->regs[9] = regs->r9; |
| env->regs[10] = regs->r10; |
| env->regs[11] = regs->r11; |
| env->regs[12] = regs->r12; |
| env->regs[13] = regs->r13; |
| env->regs[14] = info->start_stack; |
| env->regs[15] = regs->acr; |
| env->pc = regs->erp; |
| } |
| #elif defined(TARGET_S390X) |
| { |
| int i; |
| for (i = 0; i < 16; i++) { |
| env->regs[i] = regs->gprs[i]; |
| } |
| env->psw.mask = regs->psw.mask; |
| env->psw.addr = regs->psw.addr; |
| } |
| #else |
| #error unsupported target CPU |
| #endif |
| |
| #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) |
| ts->stack_base = info->start_stack; |
| ts->heap_base = info->brk; |
| /* This will be filled in on the first SYS_HEAPINFO call. */ |
| ts->heap_limit = 0; |
| #endif |
| |
| if (gdbstub_port) { |
| if (gdbserver_start(gdbstub_port) < 0) { |
| fprintf(stderr, "qemu: could not open gdbserver on port %d\n", |
| gdbstub_port); |
| exit(1); |
| } |
| gdb_handlesig(cpu, 0); |
| } |
| cpu_loop(env); |
| /* never exits */ |
| return 0; |
| } |