|  | /* | 
|  | *  Emulation of Linux signals | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu.h" | 
|  | #include "user-internals.h" | 
|  | #include "signal-common.h" | 
|  | #include "linux-user/trace.h" | 
|  |  | 
|  | /* A Sparc register window */ | 
|  | struct target_reg_window { | 
|  | abi_ulong locals[8]; | 
|  | abi_ulong ins[8]; | 
|  | }; | 
|  |  | 
|  | /* A Sparc stack frame. */ | 
|  | struct target_stackf { | 
|  | /* | 
|  | * Since qemu does not reference fp or callers_pc directly, | 
|  | * it's simpler to treat fp and callers_pc as elements of ins[], | 
|  | * and then bundle locals[] and ins[] into reg_window. | 
|  | */ | 
|  | struct target_reg_window win; | 
|  | /* | 
|  | * Similarly, bundle structptr and xxargs into xargs[]. | 
|  | * This portion of the struct is part of the function call abi, | 
|  | * and belongs to the callee for spilling argument registers. | 
|  | */ | 
|  | abi_ulong xargs[8]; | 
|  | }; | 
|  |  | 
|  | struct target_siginfo_fpu { | 
|  | #ifdef TARGET_SPARC64 | 
|  | uint64_t si_double_regs[32]; | 
|  | uint64_t si_fsr; | 
|  | uint64_t si_gsr; | 
|  | uint64_t si_fprs; | 
|  | #else | 
|  | /* It is more convenient for qemu to move doubles, not singles. */ | 
|  | uint64_t si_double_regs[16]; | 
|  | uint32_t si_fsr; | 
|  | uint32_t si_fpqdepth; | 
|  | struct { | 
|  | uint32_t insn_addr; | 
|  | uint32_t insn; | 
|  | } si_fpqueue [16]; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef TARGET_ARCH_HAS_SETUP_FRAME | 
|  | struct target_signal_frame { | 
|  | struct target_stackf ss; | 
|  | struct target_pt_regs regs; | 
|  | uint32_t si_mask; | 
|  | abi_ulong fpu_save; | 
|  | uint32_t insns[2] QEMU_ALIGNED(8); | 
|  | abi_ulong extramask[TARGET_NSIG_WORDS - 1]; | 
|  | abi_ulong extra_size; /* Should be 0 */ | 
|  | abi_ulong rwin_save; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | struct target_rt_signal_frame { | 
|  | struct target_stackf ss; | 
|  | target_siginfo_t info; | 
|  | struct target_pt_regs regs; | 
|  | #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) | 
|  | abi_ulong fpu_save; | 
|  | target_stack_t stack; | 
|  | target_sigset_t mask; | 
|  | #else | 
|  | target_sigset_t mask; | 
|  | abi_ulong fpu_save; | 
|  | uint32_t insns[2]; | 
|  | target_stack_t stack; | 
|  | abi_ulong extra_size; /* Should be 0 */ | 
|  | #endif | 
|  | abi_ulong rwin_save; | 
|  | }; | 
|  |  | 
|  | static abi_ulong get_sigframe(struct target_sigaction *sa, | 
|  | CPUSPARCState *env, | 
|  | size_t framesize) | 
|  | { | 
|  | abi_ulong sp = get_sp_from_cpustate(env); | 
|  |  | 
|  | /* | 
|  | * If we are on the alternate signal stack and would overflow it, don't. | 
|  | * Return an always-bogus address instead so we will die with SIGSEGV. | 
|  | */ | 
|  | if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* This is the X/Open sanctioned signal stack switching.  */ | 
|  | sp = target_sigsp(sp, sa) - framesize; | 
|  |  | 
|  | /* | 
|  | * Always align the stack frame.  This handles two cases.  First, | 
|  | * sigaltstack need not be mindful of platform specific stack | 
|  | * alignment.  Second, if we took this signal because the stack | 
|  | * is not aligned properly, we'd like to take the signal cleanly | 
|  | * and report that. | 
|  | */ | 
|  | sp &= ~15UL; | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) | 
|  | __put_user(sparc64_tstate(env), ®s->tstate); | 
|  | /* TODO: magic should contain PT_REG_MAGIC + %tt. */ | 
|  | __put_user(0, ®s->magic); | 
|  | #else | 
|  | __put_user(cpu_get_psr(env), ®s->psr); | 
|  | #endif | 
|  |  | 
|  | __put_user(env->pc, ®s->pc); | 
|  | __put_user(env->npc, ®s->npc); | 
|  | __put_user(env->y, ®s->y); | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | __put_user(env->gregs[i], ®s->u_regs[i]); | 
|  | } | 
|  | for (i = 0; i < 8; i++) { | 
|  | __put_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) | 
|  | /* User can only change condition codes and %asi in %tstate. */ | 
|  | uint64_t tstate; | 
|  | __get_user(tstate, ®s->tstate); | 
|  | cpu_put_ccr(env, tstate >> 32); | 
|  | env->asi = extract64(tstate, 24, 8); | 
|  | #else | 
|  | /* | 
|  | * User can only change condition codes and FPU enabling in %psr. | 
|  | * But don't bother with FPU enabling, since a real kernel would | 
|  | * just re-enable the FPU upon the next fpu trap. | 
|  | */ | 
|  | uint32_t psr; | 
|  | __get_user(psr, ®s->psr); | 
|  | cpu_put_psr_icc(env, psr); | 
|  | #endif | 
|  |  | 
|  | /* Note that pc and npc are handled in the caller. */ | 
|  |  | 
|  | __get_user(env->y, ®s->y); | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | __get_user(env->gregs[i], ®s->u_regs[i]); | 
|  | } | 
|  | for (i = 0; i < 8; i++) { | 
|  | __get_user(env->regwptr[WREG_O0 + i], ®s->u_regs[i + 8]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | __put_user(env->regwptr[i + WREG_L0], &win->locals[i]); | 
|  | } | 
|  | for (i = 0; i < 8; i++) { | 
|  | __put_user(env->regwptr[i + WREG_I0], &win->ins[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | for (i = 0; i < 32; ++i) { | 
|  | __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); | 
|  | } | 
|  | __put_user(cpu_get_fsr(env), &fpu->si_fsr); | 
|  | __put_user(env->gsr, &fpu->si_gsr); | 
|  | __put_user(env->fprs, &fpu->si_fprs); | 
|  | #else | 
|  | for (i = 0; i < 16; ++i) { | 
|  | __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]); | 
|  | } | 
|  | __put_user(cpu_get_fsr(env), &fpu->si_fsr); | 
|  | __put_user(0, &fpu->si_fpqdepth); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env) | 
|  | { | 
|  | target_ulong fsr; | 
|  | int i; | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | uint64_t fprs; | 
|  | __get_user(fprs, &fpu->si_fprs); | 
|  |  | 
|  | /* In case the user mucks about with FPRS, restore as directed. */ | 
|  | if (fprs & FPRS_DL) { | 
|  | for (i = 0; i < 16; ++i) { | 
|  | __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); | 
|  | } | 
|  | } | 
|  | if (fprs & FPRS_DU) { | 
|  | for (i = 16; i < 32; ++i) { | 
|  | __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); | 
|  | } | 
|  | } | 
|  | __get_user(env->gsr, &fpu->si_gsr); | 
|  | env->fprs |= fprs; | 
|  | #else | 
|  | for (i = 0; i < 16; ++i) { | 
|  | __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | __get_user(fsr, &fpu->si_fsr); | 
|  | cpu_put_fsr(env, fsr); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_ARCH_HAS_SETUP_FRAME | 
|  | static void install_sigtramp(uint32_t *tramp, int syscall) | 
|  | { | 
|  | __put_user(0x82102000u + syscall, &tramp[0]); /* mov syscall, %g1 */ | 
|  | __put_user(0x91d02010u, &tramp[1]);           /* t 0x10 */ | 
|  | } | 
|  |  | 
|  | void setup_frame(int sig, struct target_sigaction *ka, | 
|  | target_sigset_t *set, CPUSPARCState *env) | 
|  | { | 
|  | abi_ulong sf_addr; | 
|  | struct target_signal_frame *sf; | 
|  | size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); | 
|  | int i; | 
|  |  | 
|  | sf_addr = get_sigframe(ka, env, sf_size); | 
|  | trace_user_setup_frame(env, sf_addr); | 
|  |  | 
|  | sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); | 
|  | if (!sf) { | 
|  | force_sigsegv(sig); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* 2. Save the current process state */ | 
|  | save_pt_regs(&sf->regs, env); | 
|  | __put_user(0, &sf->extra_size); | 
|  |  | 
|  | save_fpu((struct target_siginfo_fpu *)(sf + 1), env); | 
|  | __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); | 
|  |  | 
|  | __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */ | 
|  |  | 
|  | __put_user(set->sig[0], &sf->si_mask); | 
|  | for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { | 
|  | __put_user(set->sig[i + 1], &sf->extramask[i]); | 
|  | } | 
|  |  | 
|  | save_reg_win(&sf->ss.win, env); | 
|  |  | 
|  | /* 3. signal handler back-trampoline and parameters */ | 
|  | env->regwptr[WREG_SP] = sf_addr; | 
|  | env->regwptr[WREG_O0] = sig; | 
|  | env->regwptr[WREG_O1] = sf_addr + | 
|  | offsetof(struct target_signal_frame, regs); | 
|  | env->regwptr[WREG_O2] = sf_addr + | 
|  | offsetof(struct target_signal_frame, regs); | 
|  |  | 
|  | /* 4. signal handler */ | 
|  | env->pc = ka->_sa_handler; | 
|  | env->npc = env->pc + 4; | 
|  |  | 
|  | /* 5. return to kernel instructions */ | 
|  | if (ka->ka_restorer) { | 
|  | env->regwptr[WREG_O7] = ka->ka_restorer; | 
|  | } else { | 
|  | /* Not used, but retain for ABI compatibility. */ | 
|  | install_sigtramp(sf->insns, TARGET_NR_sigreturn); | 
|  | env->regwptr[WREG_O7] = default_sigreturn; | 
|  | } | 
|  | unlock_user(sf, sf_addr, sf_size); | 
|  | } | 
|  | #endif /* TARGET_ARCH_HAS_SETUP_FRAME */ | 
|  |  | 
|  | void setup_rt_frame(int sig, struct target_sigaction *ka, | 
|  | target_siginfo_t *info, | 
|  | target_sigset_t *set, CPUSPARCState *env) | 
|  | { | 
|  | abi_ulong sf_addr; | 
|  | struct target_rt_signal_frame *sf; | 
|  | size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu); | 
|  |  | 
|  | sf_addr = get_sigframe(ka, env, sf_size); | 
|  | trace_user_setup_rt_frame(env, sf_addr); | 
|  |  | 
|  | sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0); | 
|  | if (!sf) { | 
|  | force_sigsegv(sig); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* 2. Save the current process state */ | 
|  | save_reg_win(&sf->ss.win, env); | 
|  | save_pt_regs(&sf->regs, env); | 
|  |  | 
|  | save_fpu((struct target_siginfo_fpu *)(sf + 1), env); | 
|  | __put_user(sf_addr + sizeof(*sf), &sf->fpu_save); | 
|  |  | 
|  | __put_user(0, &sf->rwin_save);  /* TODO: save_rwin_state */ | 
|  |  | 
|  | sf->info = *info; | 
|  | tswap_sigset(&sf->mask, set); | 
|  | target_save_altstack(&sf->stack, env); | 
|  |  | 
|  | #ifdef TARGET_ABI32 | 
|  | __put_user(0, &sf->extra_size); | 
|  | #endif | 
|  |  | 
|  | /* 3. signal handler back-trampoline and parameters */ | 
|  | env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS; | 
|  | env->regwptr[WREG_O0] = sig; | 
|  | env->regwptr[WREG_O1] = | 
|  | sf_addr + offsetof(struct target_rt_signal_frame, info); | 
|  | #ifdef TARGET_ABI32 | 
|  | env->regwptr[WREG_O2] = | 
|  | sf_addr + offsetof(struct target_rt_signal_frame, regs); | 
|  | #else | 
|  | env->regwptr[WREG_O2] = env->regwptr[WREG_O1]; | 
|  | #endif | 
|  |  | 
|  | /* 4. signal handler */ | 
|  | env->pc = ka->_sa_handler; | 
|  | env->npc = env->pc + 4; | 
|  |  | 
|  | /* 5. return to kernel instructions */ | 
|  | #ifdef TARGET_ABI32 | 
|  | if (ka->ka_restorer) { | 
|  | env->regwptr[WREG_O7] = ka->ka_restorer; | 
|  | } else { | 
|  | /* Not used, but retain for ABI compatibility. */ | 
|  | install_sigtramp(sf->insns, TARGET_NR_rt_sigreturn); | 
|  | env->regwptr[WREG_O7] = default_rt_sigreturn; | 
|  | } | 
|  | #else | 
|  | env->regwptr[WREG_O7] = ka->ka_restorer; | 
|  | #endif | 
|  |  | 
|  | unlock_user(sf, sf_addr, sf_size); | 
|  | } | 
|  |  | 
|  | long do_sigreturn(CPUSPARCState *env) | 
|  | { | 
|  | #ifdef TARGET_ARCH_HAS_SETUP_FRAME | 
|  | abi_ulong sf_addr; | 
|  | struct target_signal_frame *sf = NULL; | 
|  | abi_ulong pc, npc, ptr; | 
|  | target_sigset_t set; | 
|  | sigset_t host_set; | 
|  | int i; | 
|  |  | 
|  | sf_addr = env->regwptr[WREG_SP]; | 
|  | trace_user_do_sigreturn(env, sf_addr); | 
|  |  | 
|  | /* 1. Make sure we are not getting garbage from the user */ | 
|  | if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { | 
|  | goto segv_and_exit; | 
|  | } | 
|  |  | 
|  | /* Make sure stack pointer is aligned.  */ | 
|  | __get_user(ptr, &sf->regs.u_regs[14]); | 
|  | if (ptr & 7) { | 
|  | goto segv_and_exit; | 
|  | } | 
|  |  | 
|  | /* Make sure instruction pointers are aligned.  */ | 
|  | __get_user(pc, &sf->regs.pc); | 
|  | __get_user(npc, &sf->regs.npc); | 
|  | if ((pc | npc) & 3) { | 
|  | goto segv_and_exit; | 
|  | } | 
|  |  | 
|  | /* 2. Restore the state */ | 
|  | restore_pt_regs(&sf->regs, env); | 
|  | env->pc = pc; | 
|  | env->npc = npc; | 
|  |  | 
|  | __get_user(ptr, &sf->fpu_save); | 
|  | if (ptr) { | 
|  | struct target_siginfo_fpu *fpu; | 
|  | if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { | 
|  | goto segv_and_exit; | 
|  | } | 
|  | restore_fpu(fpu, env); | 
|  | unlock_user_struct(fpu, ptr, 0); | 
|  | } | 
|  |  | 
|  | __get_user(ptr, &sf->rwin_save); | 
|  | if (ptr) { | 
|  | goto segv_and_exit;  /* TODO: restore_rwin */ | 
|  | } | 
|  |  | 
|  | __get_user(set.sig[0], &sf->si_mask); | 
|  | for (i = 1; i < TARGET_NSIG_WORDS; i++) { | 
|  | __get_user(set.sig[i], &sf->extramask[i - 1]); | 
|  | } | 
|  |  | 
|  | target_to_host_sigset_internal(&host_set, &set); | 
|  | set_sigmask(&host_set); | 
|  |  | 
|  | unlock_user_struct(sf, sf_addr, 0); | 
|  | return -QEMU_ESIGRETURN; | 
|  |  | 
|  | segv_and_exit: | 
|  | unlock_user_struct(sf, sf_addr, 0); | 
|  | force_sig(TARGET_SIGSEGV); | 
|  | return -QEMU_ESIGRETURN; | 
|  | #else | 
|  | return -TARGET_ENOSYS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | long do_rt_sigreturn(CPUSPARCState *env) | 
|  | { | 
|  | abi_ulong sf_addr, tpc, tnpc, ptr; | 
|  | struct target_rt_signal_frame *sf = NULL; | 
|  | sigset_t set; | 
|  |  | 
|  | sf_addr = get_sp_from_cpustate(env); | 
|  | trace_user_do_rt_sigreturn(env, sf_addr); | 
|  |  | 
|  | /* 1. Make sure we are not getting garbage from the user */ | 
|  | if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { | 
|  | goto segv_and_exit; | 
|  | } | 
|  |  | 
|  | /* Validate SP alignment.  */ | 
|  | __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]); | 
|  | if ((ptr + TARGET_STACK_BIAS) & 7) { | 
|  | goto segv_and_exit; | 
|  | } | 
|  |  | 
|  | /* Validate PC and NPC alignment.  */ | 
|  | __get_user(tpc, &sf->regs.pc); | 
|  | __get_user(tnpc, &sf->regs.npc); | 
|  | if ((tpc | tnpc) & 3) { | 
|  | goto segv_and_exit; | 
|  | } | 
|  |  | 
|  | /* 2. Restore the state */ | 
|  | restore_pt_regs(&sf->regs, env); | 
|  |  | 
|  | __get_user(ptr, &sf->fpu_save); | 
|  | if (ptr) { | 
|  | struct target_siginfo_fpu *fpu; | 
|  | if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) { | 
|  | goto segv_and_exit; | 
|  | } | 
|  | restore_fpu(fpu, env); | 
|  | unlock_user_struct(fpu, ptr, 0); | 
|  | } | 
|  |  | 
|  | __get_user(ptr, &sf->rwin_save); | 
|  | if (ptr) { | 
|  | goto segv_and_exit;  /* TODO: restore_rwin_state */ | 
|  | } | 
|  |  | 
|  | target_restore_altstack(&sf->stack, env); | 
|  | target_to_host_sigset(&set, &sf->mask); | 
|  | set_sigmask(&set); | 
|  |  | 
|  | env->pc = tpc; | 
|  | env->npc = tnpc; | 
|  |  | 
|  | unlock_user_struct(sf, sf_addr, 0); | 
|  | return -QEMU_ESIGRETURN; | 
|  |  | 
|  | segv_and_exit: | 
|  | unlock_user_struct(sf, sf_addr, 0); | 
|  | force_sig(TARGET_SIGSEGV); | 
|  | return -QEMU_ESIGRETURN; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_ABI32 | 
|  | void setup_sigtramp(abi_ulong sigtramp_page) | 
|  | { | 
|  | uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0); | 
|  | assert(tramp != NULL); | 
|  |  | 
|  | default_sigreturn = sigtramp_page; | 
|  | install_sigtramp(tramp, TARGET_NR_sigreturn); | 
|  |  | 
|  | default_rt_sigreturn = sigtramp_page + 8; | 
|  | install_sigtramp(tramp + 2, TARGET_NR_rt_sigreturn); | 
|  |  | 
|  | unlock_user(tramp, sigtramp_page, 2 * 8); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | #define SPARC_MC_TSTATE 0 | 
|  | #define SPARC_MC_PC 1 | 
|  | #define SPARC_MC_NPC 2 | 
|  | #define SPARC_MC_Y 3 | 
|  | #define SPARC_MC_G1 4 | 
|  | #define SPARC_MC_G2 5 | 
|  | #define SPARC_MC_G3 6 | 
|  | #define SPARC_MC_G4 7 | 
|  | #define SPARC_MC_G5 8 | 
|  | #define SPARC_MC_G6 9 | 
|  | #define SPARC_MC_G7 10 | 
|  | #define SPARC_MC_O0 11 | 
|  | #define SPARC_MC_O1 12 | 
|  | #define SPARC_MC_O2 13 | 
|  | #define SPARC_MC_O3 14 | 
|  | #define SPARC_MC_O4 15 | 
|  | #define SPARC_MC_O5 16 | 
|  | #define SPARC_MC_O6 17 | 
|  | #define SPARC_MC_O7 18 | 
|  | #define SPARC_MC_NGREG 19 | 
|  |  | 
|  | typedef abi_ulong target_mc_greg_t; | 
|  | typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; | 
|  |  | 
|  | struct target_mc_fq { | 
|  | abi_ulong mcfq_addr; | 
|  | uint32_t mcfq_insn; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Note the manual 16-alignment; the kernel gets this because it | 
|  | * includes a "long double qregs[16]" in the mcpu_fregs union, | 
|  | * which we can't do. | 
|  | */ | 
|  | struct target_mc_fpu { | 
|  | union { | 
|  | uint32_t sregs[32]; | 
|  | uint64_t dregs[32]; | 
|  | //uint128_t qregs[16]; | 
|  | } mcfpu_fregs; | 
|  | abi_ulong mcfpu_fsr; | 
|  | abi_ulong mcfpu_fprs; | 
|  | abi_ulong mcfpu_gsr; | 
|  | abi_ulong mcfpu_fq; | 
|  | unsigned char mcfpu_qcnt; | 
|  | unsigned char mcfpu_qentsz; | 
|  | unsigned char mcfpu_enab; | 
|  | } __attribute__((aligned(16))); | 
|  | typedef struct target_mc_fpu target_mc_fpu_t; | 
|  |  | 
|  | typedef struct { | 
|  | target_mc_gregset_t mc_gregs; | 
|  | target_mc_greg_t mc_fp; | 
|  | target_mc_greg_t mc_i7; | 
|  | target_mc_fpu_t mc_fpregs; | 
|  | } target_mcontext_t; | 
|  |  | 
|  | struct target_ucontext { | 
|  | abi_ulong tuc_link; | 
|  | abi_ulong tuc_flags; | 
|  | target_sigset_t tuc_sigmask; | 
|  | target_mcontext_t tuc_mcontext; | 
|  | }; | 
|  |  | 
|  | /* {set, get}context() needed for 64-bit SparcLinux userland. */ | 
|  | void sparc64_set_context(CPUSPARCState *env) | 
|  | { | 
|  | abi_ulong ucp_addr; | 
|  | struct target_ucontext *ucp; | 
|  | target_mc_gregset_t *grp; | 
|  | target_mc_fpu_t *fpup; | 
|  | target_ulong pc, npc, tstate; | 
|  | unsigned int i; | 
|  | unsigned char fenab; | 
|  |  | 
|  | ucp_addr = env->regwptr[WREG_O0]; | 
|  | if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { | 
|  | goto do_sigsegv; | 
|  | } | 
|  | grp  = &ucp->tuc_mcontext.mc_gregs; | 
|  | __get_user(pc, &((*grp)[SPARC_MC_PC])); | 
|  | __get_user(npc, &((*grp)[SPARC_MC_NPC])); | 
|  | if ((pc | npc) & 3) { | 
|  | goto do_sigsegv; | 
|  | } | 
|  | if (env->regwptr[WREG_O1]) { | 
|  | target_sigset_t target_set; | 
|  | sigset_t set; | 
|  |  | 
|  | if (TARGET_NSIG_WORDS == 1) { | 
|  | __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); | 
|  | } else { | 
|  | abi_ulong *src, *dst; | 
|  | src = ucp->tuc_sigmask.sig; | 
|  | dst = target_set.sig; | 
|  | for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { | 
|  | __get_user(*dst, src); | 
|  | } | 
|  | } | 
|  | target_to_host_sigset_internal(&set, &target_set); | 
|  | set_sigmask(&set); | 
|  | } | 
|  | env->pc = pc; | 
|  | env->npc = npc; | 
|  | __get_user(env->y, &((*grp)[SPARC_MC_Y])); | 
|  | __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); | 
|  | /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */ | 
|  | env->asi = (tstate >> 24) & 0xff; | 
|  | cpu_put_ccr(env, (tstate >> 32) & 0xff); | 
|  | __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); | 
|  | __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); | 
|  | __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); | 
|  | __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); | 
|  | __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); | 
|  | __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); | 
|  | /* Skip g7 as that's the thread register in userspace */ | 
|  |  | 
|  | /* | 
|  | * Note that unlike the kernel, we didn't need to mess with the | 
|  | * guest register window state to save it into a pt_regs to run | 
|  | * the kernel. So for us the guest's O regs are still in WREG_O* | 
|  | * (unlike the kernel which has put them in UREG_I* in a pt_regs) | 
|  | * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't | 
|  | * need to be written back to userspace memory. | 
|  | */ | 
|  | __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); | 
|  | __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); | 
|  | __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); | 
|  | __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); | 
|  | __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); | 
|  | __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); | 
|  | __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); | 
|  | __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); | 
|  |  | 
|  | __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp)); | 
|  | __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7)); | 
|  |  | 
|  | fpup = &ucp->tuc_mcontext.mc_fpregs; | 
|  |  | 
|  | __get_user(fenab, &(fpup->mcfpu_enab)); | 
|  | if (fenab) { | 
|  | abi_ulong fprs; | 
|  | abi_ulong fsr; | 
|  |  | 
|  | /* | 
|  | * We use the FPRS from the guest only in deciding whether | 
|  | * to restore the upper, lower, or both banks of the FPU regs. | 
|  | * The kernel here writes the FPU register data into the | 
|  | * process's current_thread_info state and unconditionally | 
|  | * clears FPRS and TSTATE_PEF: this disables the FPU so that the | 
|  | * next FPU-disabled trap will copy the data out of | 
|  | * current_thread_info and into the real FPU registers. | 
|  | * QEMU doesn't need to handle lazy-FPU-state-restoring like that, | 
|  | * so we always load the data directly into the FPU registers | 
|  | * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled). | 
|  | * Note that because we (and the kernel) always write zeroes for | 
|  | * the fenab and fprs in sparc64_get_context() none of this code | 
|  | * will execute unless the guest manually constructed or changed | 
|  | * the context structure. | 
|  | */ | 
|  | __get_user(fprs, &(fpup->mcfpu_fprs)); | 
|  | if (fprs & FPRS_DL) { | 
|  | for (i = 0; i < 16; i++) { | 
|  | __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); | 
|  | } | 
|  | } | 
|  | if (fprs & FPRS_DU) { | 
|  | for (i = 16; i < 32; i++) { | 
|  | __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i])); | 
|  | } | 
|  | } | 
|  | __get_user(fsr, &(fpup->mcfpu_fsr)); | 
|  | cpu_put_fsr(env, fsr); | 
|  | __get_user(env->gsr, &(fpup->mcfpu_gsr)); | 
|  | } | 
|  | unlock_user_struct(ucp, ucp_addr, 0); | 
|  | return; | 
|  | do_sigsegv: | 
|  | unlock_user_struct(ucp, ucp_addr, 0); | 
|  | force_sig(TARGET_SIGSEGV); | 
|  | } | 
|  |  | 
|  | void sparc64_get_context(CPUSPARCState *env) | 
|  | { | 
|  | abi_ulong ucp_addr; | 
|  | struct target_ucontext *ucp; | 
|  | target_mc_gregset_t *grp; | 
|  | target_mcontext_t *mcp; | 
|  | int err; | 
|  | unsigned int i; | 
|  | target_sigset_t target_set; | 
|  | sigset_t set; | 
|  |  | 
|  | ucp_addr = env->regwptr[WREG_O0]; | 
|  | if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { | 
|  | goto do_sigsegv; | 
|  | } | 
|  |  | 
|  | memset(ucp, 0, sizeof(*ucp)); | 
|  |  | 
|  | mcp = &ucp->tuc_mcontext; | 
|  | grp = &mcp->mc_gregs; | 
|  |  | 
|  | /* Skip over the trap instruction, first. */ | 
|  | env->pc = env->npc; | 
|  | env->npc += 4; | 
|  |  | 
|  | /* If we're only reading the signal mask then do_sigprocmask() | 
|  | * is guaranteed not to fail, which is important because we don't | 
|  | * have any way to signal a failure or restart this operation since | 
|  | * this is not a normal syscall. | 
|  | */ | 
|  | err = do_sigprocmask(0, NULL, &set); | 
|  | assert(err == 0); | 
|  | host_to_target_sigset_internal(&target_set, &set); | 
|  | if (TARGET_NSIG_WORDS == 1) { | 
|  | __put_user(target_set.sig[0], | 
|  | (abi_ulong *)&ucp->tuc_sigmask); | 
|  | } else { | 
|  | abi_ulong *src, *dst; | 
|  | src = target_set.sig; | 
|  | dst = ucp->tuc_sigmask.sig; | 
|  | for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { | 
|  | __put_user(*src, dst); | 
|  | } | 
|  | } | 
|  |  | 
|  | __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE])); | 
|  | __put_user(env->pc, &((*grp)[SPARC_MC_PC])); | 
|  | __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); | 
|  | __put_user(env->y, &((*grp)[SPARC_MC_Y])); | 
|  | __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); | 
|  | __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); | 
|  | __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); | 
|  | __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); | 
|  | __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); | 
|  | __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); | 
|  | __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); | 
|  |  | 
|  | /* | 
|  | * Note that unlike the kernel, we didn't need to mess with the | 
|  | * guest register window state to save it into a pt_regs to run | 
|  | * the kernel. So for us the guest's O regs are still in WREG_O* | 
|  | * (unlike the kernel which has put them in UREG_I* in a pt_regs) | 
|  | * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't | 
|  | * need to be fished out of userspace memory. | 
|  | */ | 
|  | __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); | 
|  | __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); | 
|  | __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); | 
|  | __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); | 
|  | __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); | 
|  | __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); | 
|  | __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); | 
|  | __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); | 
|  |  | 
|  | __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp)); | 
|  | __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7)); | 
|  |  | 
|  | /* | 
|  | * We don't write out the FPU state. This matches the kernel's | 
|  | * implementation (which has the code for doing this but | 
|  | * hidden behind an "if (fenab)" where fenab is always 0). | 
|  | */ | 
|  |  | 
|  | unlock_user_struct(ucp, ucp_addr, 1); | 
|  | return; | 
|  | do_sigsegv: | 
|  | unlock_user_struct(ucp, ucp_addr, 1); | 
|  | force_sig(TARGET_SIGSEGV); | 
|  | } | 
|  | #endif /* TARGET_SPARC64 */ |