| /* |
| * User emulator execution |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "hw/core/tcg-cpu-ops.h" |
| #include "disas/disas.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg.h" |
| #include "qemu/bitops.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/translate-all.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/atomic128.h" |
| #include "trace/trace-root.h" |
| #include "trace/mem.h" |
| |
| #undef EAX |
| #undef ECX |
| #undef EDX |
| #undef EBX |
| #undef ESP |
| #undef EBP |
| #undef ESI |
| #undef EDI |
| #undef EIP |
| #ifdef __linux__ |
| #include <sys/ucontext.h> |
| #endif |
| |
| __thread uintptr_t helper_retaddr; |
| |
| //#define DEBUG_SIGNAL |
| |
| /* exit the current TB from a signal handler. The host registers are |
| restored in a state compatible with the CPU emulator |
| */ |
| static void QEMU_NORETURN cpu_exit_tb_from_sighandler(CPUState *cpu, |
| sigset_t *old_set) |
| { |
| /* XXX: use siglongjmp ? */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit_noexc(cpu); |
| } |
| |
| /* 'pc' is the host PC at which the exception was raised. 'address' is |
| the effective address of the memory exception. 'is_write' is 1 if a |
| write caused the exception and otherwise 0'. 'old_set' is the |
| signal set which should be restored */ |
| static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info, |
| int is_write, sigset_t *old_set) |
| { |
| CPUState *cpu = current_cpu; |
| CPUClass *cc; |
| unsigned long address = (unsigned long)info->si_addr; |
| MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| |
| switch (helper_retaddr) { |
| default: |
| /* |
| * Fault during host memory operation within a helper function. |
| * The helper's host return address, saved here, gives us a |
| * pointer into the generated code that will unwind to the |
| * correct guest pc. |
| */ |
| pc = helper_retaddr; |
| break; |
| |
| case 0: |
| /* |
| * Fault during host memory operation within generated code. |
| * (Or, a unrelated bug within qemu, but we can't tell from here). |
| * |
| * We take the host pc from the signal frame. However, we cannot |
| * use that value directly. Within cpu_restore_state_from_tb, we |
| * assume PC comes from GETPC(), as used by the helper functions, |
| * so we adjust the address by -GETPC_ADJ to form an address that |
| * is within the call insn, so that the address does not accidentally |
| * match the beginning of the next guest insn. However, when the |
| * pc comes from the signal frame it points to the actual faulting |
| * host memory insn and not the return from a call insn. |
| * |
| * Therefore, adjust to compensate for what will be done later |
| * by cpu_restore_state_from_tb. |
| */ |
| pc += GETPC_ADJ; |
| break; |
| |
| case 1: |
| /* |
| * Fault during host read for translation, or loosely, "execution". |
| * |
| * The guest pc is already pointing to the start of the TB for which |
| * code is being generated. If the guest translator manages the |
| * page crossings correctly, this is exactly the correct address |
| * (and if the translator doesn't handle page boundaries correctly |
| * there's little we can do about that here). Therefore, do not |
| * trigger the unwinder. |
| * |
| * Like tb_gen_code, release the memory lock before cpu_loop_exit. |
| */ |
| pc = 0; |
| access_type = MMU_INST_FETCH; |
| mmap_unlock(); |
| break; |
| } |
| |
| /* For synchronous signals we expect to be coming from the vCPU |
| * thread (so current_cpu should be valid) and either from running |
| * code or during translation which can fault as we cross pages. |
| * |
| * If neither is true then something has gone wrong and we should |
| * abort rather than try and restart the vCPU execution. |
| */ |
| if (!cpu || !cpu->running) { |
| printf("qemu:%s received signal outside vCPU context @ pc=0x%" |
| PRIxPTR "\n", __func__, pc); |
| abort(); |
| } |
| |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| /* Note that it is important that we don't call page_unprotect() unless |
| * this is really a "write to nonwriteable page" fault, because |
| * page_unprotect() assumes that if it is called for an access to |
| * a page that's writeable this means we had two threads racing and |
| * another thread got there first and already made the page writeable; |
| * so we will retry the access. If we were to call page_unprotect() |
| * for some other kind of fault that should really be passed to the |
| * guest, we'd end up in an infinite loop of retrying the faulting |
| * access. |
| */ |
| if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR && |
| h2g_valid(address)) { |
| switch (page_unprotect(h2g(address), pc)) { |
| case 0: |
| /* Fault not caused by a page marked unwritable to protect |
| * cached translations, must be the guest binary's problem. |
| */ |
| break; |
| case 1: |
| /* Fault caused by protection of cached translation; TBs |
| * invalidated, so resume execution. Retain helper_retaddr |
| * for a possible second fault. |
| */ |
| return 1; |
| case 2: |
| /* Fault caused by protection of cached translation, and the |
| * currently executing TB was modified and must be exited |
| * immediately. Clear helper_retaddr for next execution. |
| */ |
| clear_helper_retaddr(); |
| cpu_exit_tb_from_sighandler(cpu, old_set); |
| /* NORETURN */ |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Convert forcefully to guest address space, invalid addresses |
| are still valid segv ones */ |
| address = h2g_nocheck(address); |
| |
| /* |
| * There is no way the target can handle this other than raising |
| * an exception. Undo signal and retaddr state prior to longjmp. |
| */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| clear_helper_retaddr(); |
| |
| cc = CPU_GET_CLASS(cpu); |
| cc->tcg_ops->tlb_fill(cpu, address, 0, access_type, |
| MMU_USER_IDX, false, pc); |
| g_assert_not_reached(); |
| } |
| |
| static int probe_access_internal(CPUArchState *env, target_ulong addr, |
| int fault_size, MMUAccessType access_type, |
| bool nonfault, uintptr_t ra) |
| { |
| int flags; |
| |
| switch (access_type) { |
| case MMU_DATA_STORE: |
| flags = PAGE_WRITE; |
| break; |
| case MMU_DATA_LOAD: |
| flags = PAGE_READ; |
| break; |
| case MMU_INST_FETCH: |
| flags = PAGE_EXEC; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (!guest_addr_valid_untagged(addr) || |
| page_check_range(addr, 1, flags) < 0) { |
| if (nonfault) { |
| return TLB_INVALID_MASK; |
| } else { |
| CPUState *cpu = env_cpu(env); |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type, |
| MMU_USER_IDX, false, ra); |
| g_assert_not_reached(); |
| } |
| } |
| return 0; |
| } |
| |
| int probe_access_flags(CPUArchState *env, target_ulong addr, |
| MMUAccessType access_type, int mmu_idx, |
| bool nonfault, void **phost, uintptr_t ra) |
| { |
| int flags; |
| |
| flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra); |
| *phost = flags ? NULL : g2h(env_cpu(env), addr); |
| return flags; |
| } |
| |
| void *probe_access(CPUArchState *env, target_ulong addr, int size, |
| MMUAccessType access_type, int mmu_idx, uintptr_t ra) |
| { |
| int flags; |
| |
| g_assert(-(addr | TARGET_PAGE_MASK) >= size); |
| flags = probe_access_internal(env, addr, size, access_type, false, ra); |
| g_assert(flags == 0); |
| |
| return size ? g2h(env_cpu(env), addr) : NULL; |
| } |
| |
| #if defined(__i386__) |
| |
| #if defined(__NetBSD__) |
| #include <ucontext.h> |
| |
| #define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP]) |
| #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) |
| #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) |
| #define MASK_sig(context) ((context)->uc_sigmask) |
| #elif defined(__FreeBSD__) || defined(__DragonFly__) |
| #include <ucontext.h> |
| |
| #define EIP_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_eip)) |
| #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) |
| #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) |
| #define MASK_sig(context) ((context)->uc_sigmask) |
| #elif defined(__OpenBSD__) |
| #define EIP_sig(context) ((context)->sc_eip) |
| #define TRAP_sig(context) ((context)->sc_trapno) |
| #define ERROR_sig(context) ((context)->sc_err) |
| #define MASK_sig(context) ((context)->sc_mask) |
| #else |
| #define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) |
| #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) |
| #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) |
| #define MASK_sig(context) ((context)->uc_sigmask) |
| #endif |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) |
| ucontext_t *uc = puc; |
| #elif defined(__OpenBSD__) |
| struct sigcontext *uc = puc; |
| #else |
| ucontext_t *uc = puc; |
| #endif |
| unsigned long pc; |
| int trapno; |
| |
| #ifndef REG_EIP |
| /* for glibc 2.1 */ |
| #define REG_EIP EIP |
| #define REG_ERR ERR |
| #define REG_TRAPNO TRAPNO |
| #endif |
| pc = EIP_sig(uc); |
| trapno = TRAP_sig(uc); |
| return handle_cpu_signal(pc, info, |
| trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, |
| &MASK_sig(uc)); |
| } |
| |
| #elif defined(__x86_64__) |
| |
| #ifdef __NetBSD__ |
| #define PC_sig(context) _UC_MACHINE_PC(context) |
| #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) |
| #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) |
| #define MASK_sig(context) ((context)->uc_sigmask) |
| #elif defined(__OpenBSD__) |
| #define PC_sig(context) ((context)->sc_rip) |
| #define TRAP_sig(context) ((context)->sc_trapno) |
| #define ERROR_sig(context) ((context)->sc_err) |
| #define MASK_sig(context) ((context)->sc_mask) |
| #elif defined(__FreeBSD__) || defined(__DragonFly__) |
| #include <ucontext.h> |
| |
| #define PC_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_rip)) |
| #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) |
| #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) |
| #define MASK_sig(context) ((context)->uc_sigmask) |
| #else |
| #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP]) |
| #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) |
| #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) |
| #define MASK_sig(context) ((context)->uc_sigmask) |
| #endif |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| unsigned long pc; |
| #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) |
| ucontext_t *uc = puc; |
| #elif defined(__OpenBSD__) |
| struct sigcontext *uc = puc; |
| #else |
| ucontext_t *uc = puc; |
| #endif |
| |
| pc = PC_sig(uc); |
| return handle_cpu_signal(pc, info, |
| TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, |
| &MASK_sig(uc)); |
| } |
| |
| #elif defined(_ARCH_PPC) |
| |
| /*********************************************************************** |
| * signal context platform-specific definitions |
| * From Wine |
| */ |
| #ifdef linux |
| /* All Registers access - only for local access */ |
| #define REG_sig(reg_name, context) \ |
| ((context)->uc_mcontext.regs->reg_name) |
| /* Gpr Registers access */ |
| #define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) |
| /* Program counter */ |
| #define IAR_sig(context) REG_sig(nip, context) |
| /* Machine State Register (Supervisor) */ |
| #define MSR_sig(context) REG_sig(msr, context) |
| /* Count register */ |
| #define CTR_sig(context) REG_sig(ctr, context) |
| /* User's integer exception register */ |
| #define XER_sig(context) REG_sig(xer, context) |
| /* Link register */ |
| #define LR_sig(context) REG_sig(link, context) |
| /* Condition register */ |
| #define CR_sig(context) REG_sig(ccr, context) |
| |
| /* Float Registers access */ |
| #define FLOAT_sig(reg_num, context) \ |
| (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num]) |
| #define FPSCR_sig(context) \ |
| (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4))) |
| /* Exception Registers access */ |
| #define DAR_sig(context) REG_sig(dar, context) |
| #define DSISR_sig(context) REG_sig(dsisr, context) |
| #define TRAP_sig(context) REG_sig(trap, context) |
| #endif /* linux */ |
| |
| #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) |
| #include <ucontext.h> |
| #define IAR_sig(context) ((context)->uc_mcontext.mc_srr0) |
| #define MSR_sig(context) ((context)->uc_mcontext.mc_srr1) |
| #define CTR_sig(context) ((context)->uc_mcontext.mc_ctr) |
| #define XER_sig(context) ((context)->uc_mcontext.mc_xer) |
| #define LR_sig(context) ((context)->uc_mcontext.mc_lr) |
| #define CR_sig(context) ((context)->uc_mcontext.mc_cr) |
| /* Exception Registers access */ |
| #define DAR_sig(context) ((context)->uc_mcontext.mc_dar) |
| #define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr) |
| #define TRAP_sig(context) ((context)->uc_mcontext.mc_exc) |
| #endif /* __FreeBSD__|| __FreeBSD_kernel__ */ |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) |
| ucontext_t *uc = puc; |
| #else |
| ucontext_t *uc = puc; |
| #endif |
| unsigned long pc; |
| int is_write; |
| |
| pc = IAR_sig(uc); |
| is_write = 0; |
| #if 0 |
| /* ppc 4xx case */ |
| if (DSISR_sig(uc) & 0x00800000) { |
| is_write = 1; |
| } |
| #else |
| if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) { |
| is_write = 1; |
| } |
| #endif |
| return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); |
| } |
| |
| #elif defined(__alpha__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| ucontext_t *uc = puc; |
| uint32_t *pc = uc->uc_mcontext.sc_pc; |
| uint32_t insn = *pc; |
| int is_write = 0; |
| |
| /* XXX: need kernel patch to get write flag faster */ |
| switch (insn >> 26) { |
| case 0x0d: /* stw */ |
| case 0x0e: /* stb */ |
| case 0x0f: /* stq_u */ |
| case 0x24: /* stf */ |
| case 0x25: /* stg */ |
| case 0x26: /* sts */ |
| case 0x27: /* stt */ |
| case 0x2c: /* stl */ |
| case 0x2d: /* stq */ |
| case 0x2e: /* stl_c */ |
| case 0x2f: /* stq_c */ |
| is_write = 1; |
| } |
| |
| return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); |
| } |
| #elif defined(__sparc__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| int is_write; |
| uint32_t insn; |
| #if !defined(__arch64__) || defined(CONFIG_SOLARIS) |
| uint32_t *regs = (uint32_t *)(info + 1); |
| void *sigmask = (regs + 20); |
| /* XXX: is there a standard glibc define ? */ |
| unsigned long pc = regs[1]; |
| #else |
| #ifdef __linux__ |
| struct sigcontext *sc = puc; |
| unsigned long pc = sc->sigc_regs.tpc; |
| void *sigmask = (void *)sc->sigc_mask; |
| #elif defined(__OpenBSD__) |
| struct sigcontext *uc = puc; |
| unsigned long pc = uc->sc_pc; |
| void *sigmask = (void *)(long)uc->sc_mask; |
| #elif defined(__NetBSD__) |
| ucontext_t *uc = puc; |
| unsigned long pc = _UC_MACHINE_PC(uc); |
| void *sigmask = (void *)&uc->uc_sigmask; |
| #endif |
| #endif |
| |
| /* XXX: need kernel patch to get write flag faster */ |
| is_write = 0; |
| insn = *(uint32_t *)pc; |
| if ((insn >> 30) == 3) { |
| switch ((insn >> 19) & 0x3f) { |
| case 0x05: /* stb */ |
| case 0x15: /* stba */ |
| case 0x06: /* sth */ |
| case 0x16: /* stha */ |
| case 0x04: /* st */ |
| case 0x14: /* sta */ |
| case 0x07: /* std */ |
| case 0x17: /* stda */ |
| case 0x0e: /* stx */ |
| case 0x1e: /* stxa */ |
| case 0x24: /* stf */ |
| case 0x34: /* stfa */ |
| case 0x27: /* stdf */ |
| case 0x37: /* stdfa */ |
| case 0x26: /* stqf */ |
| case 0x36: /* stqfa */ |
| case 0x25: /* stfsr */ |
| case 0x3c: /* casa */ |
| case 0x3e: /* casxa */ |
| is_write = 1; |
| break; |
| } |
| } |
| return handle_cpu_signal(pc, info, is_write, sigmask); |
| } |
| |
| #elif defined(__arm__) |
| |
| #if defined(__NetBSD__) |
| #include <ucontext.h> |
| #include <sys/siginfo.h> |
| #endif |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| #if defined(__NetBSD__) |
| ucontext_t *uc = puc; |
| siginfo_t *si = pinfo; |
| #else |
| ucontext_t *uc = puc; |
| #endif |
| unsigned long pc; |
| uint32_t fsr; |
| int is_write; |
| |
| #if defined(__NetBSD__) |
| pc = uc->uc_mcontext.__gregs[_REG_R15]; |
| #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) |
| pc = uc->uc_mcontext.gregs[R15]; |
| #else |
| pc = uc->uc_mcontext.arm_pc; |
| #endif |
| |
| #ifdef __NetBSD__ |
| fsr = si->si_trap; |
| #else |
| fsr = uc->uc_mcontext.error_code; |
| #endif |
| /* |
| * In the FSR, bit 11 is WnR, assuming a v6 or |
| * later processor. On v5 we will always report |
| * this as a read, which will fail later. |
| */ |
| is_write = extract32(fsr, 11, 1); |
| return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); |
| } |
| |
| #elif defined(__aarch64__) |
| |
| #if defined(__NetBSD__) |
| |
| #include <ucontext.h> |
| #include <sys/siginfo.h> |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, void *puc) |
| { |
| ucontext_t *uc = puc; |
| siginfo_t *si = pinfo; |
| unsigned long pc; |
| int is_write; |
| uint32_t esr; |
| |
| pc = uc->uc_mcontext.__gregs[_REG_PC]; |
| esr = si->si_trap; |
| |
| /* |
| * siginfo_t::si_trap is the ESR value, for data aborts ESR.EC |
| * is 0b10010x: then bit 6 is the WnR bit |
| */ |
| is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1; |
| return handle_cpu_signal(pc, si, is_write, &uc->uc_sigmask); |
| } |
| |
| #else |
| |
| #ifndef ESR_MAGIC |
| /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */ |
| #define ESR_MAGIC 0x45535201 |
| struct esr_context { |
| struct _aarch64_ctx head; |
| uint64_t esr; |
| }; |
| #endif |
| |
| static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc) |
| { |
| return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved; |
| } |
| |
| static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr) |
| { |
| return (struct _aarch64_ctx *)((char *)hdr + hdr->size); |
| } |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, void *puc) |
| { |
| siginfo_t *info = pinfo; |
| ucontext_t *uc = puc; |
| uintptr_t pc = uc->uc_mcontext.pc; |
| bool is_write; |
| struct _aarch64_ctx *hdr; |
| struct esr_context const *esrctx = NULL; |
| |
| /* Find the esr_context, which has the WnR bit in it */ |
| for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) { |
| if (hdr->magic == ESR_MAGIC) { |
| esrctx = (struct esr_context const *)hdr; |
| break; |
| } |
| } |
| |
| if (esrctx) { |
| /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */ |
| uint64_t esr = esrctx->esr; |
| is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1; |
| } else { |
| /* |
| * Fall back to parsing instructions; will only be needed |
| * for really ancient (pre-3.16) kernels. |
| */ |
| uint32_t insn = *(uint32_t *)pc; |
| |
| is_write = ((insn & 0xbfff0000) == 0x0c000000 /* C3.3.1 */ |
| || (insn & 0xbfe00000) == 0x0c800000 /* C3.3.2 */ |
| || (insn & 0xbfdf0000) == 0x0d000000 /* C3.3.3 */ |
| || (insn & 0xbfc00000) == 0x0d800000 /* C3.3.4 */ |
| || (insn & 0x3f400000) == 0x08000000 /* C3.3.6 */ |
| || (insn & 0x3bc00000) == 0x39000000 /* C3.3.13 */ |
| || (insn & 0x3fc00000) == 0x3d800000 /* ... 128bit */ |
| /* Ignore bits 10, 11 & 21, controlling indexing. */ |
| || (insn & 0x3bc00000) == 0x38000000 /* C3.3.8-12 */ |
| || (insn & 0x3fe00000) == 0x3c800000 /* ... 128bit */ |
| /* Ignore bits 23 & 24, controlling indexing. */ |
| || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */ |
| } |
| return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); |
| } |
| #endif |
| |
| #elif defined(__s390__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| ucontext_t *uc = puc; |
| unsigned long pc; |
| uint16_t *pinsn; |
| int is_write = 0; |
| |
| pc = uc->uc_mcontext.psw.addr; |
| |
| /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead |
| of the normal 2 arguments. The 3rd argument contains the "int_code" |
| from the hardware which does in fact contain the is_write value. |
| The rt signal handler, as far as I can tell, does not give this value |
| at all. Not that we could get to it from here even if it were. */ |
| /* ??? This is not even close to complete, since it ignores all |
| of the read-modify-write instructions. */ |
| pinsn = (uint16_t *)pc; |
| switch (pinsn[0] >> 8) { |
| case 0x50: /* ST */ |
| case 0x42: /* STC */ |
| case 0x40: /* STH */ |
| is_write = 1; |
| break; |
| case 0xc4: /* RIL format insns */ |
| switch (pinsn[0] & 0xf) { |
| case 0xf: /* STRL */ |
| case 0xb: /* STGRL */ |
| case 0x7: /* STHRL */ |
| is_write = 1; |
| } |
| break; |
| case 0xe3: /* RXY format insns */ |
| switch (pinsn[2] & 0xff) { |
| case 0x50: /* STY */ |
| case 0x24: /* STG */ |
| case 0x72: /* STCY */ |
| case 0x70: /* STHY */ |
| case 0x8e: /* STPQ */ |
| case 0x3f: /* STRVH */ |
| case 0x3e: /* STRV */ |
| case 0x2f: /* STRVG */ |
| is_write = 1; |
| } |
| break; |
| } |
| return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); |
| } |
| |
| #elif defined(__mips__) |
| |
| #if defined(__misp16) || defined(__mips_micromips) |
| #error "Unsupported encoding" |
| #endif |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| ucontext_t *uc = puc; |
| uintptr_t pc = uc->uc_mcontext.pc; |
| uint32_t insn = *(uint32_t *)pc; |
| int is_write = 0; |
| |
| /* Detect all store instructions at program counter. */ |
| switch((insn >> 26) & 077) { |
| case 050: /* SB */ |
| case 051: /* SH */ |
| case 052: /* SWL */ |
| case 053: /* SW */ |
| case 054: /* SDL */ |
| case 055: /* SDR */ |
| case 056: /* SWR */ |
| case 070: /* SC */ |
| case 071: /* SWC1 */ |
| case 074: /* SCD */ |
| case 075: /* SDC1 */ |
| case 077: /* SD */ |
| #if !defined(__mips_isa_rev) || __mips_isa_rev < 6 |
| case 072: /* SWC2 */ |
| case 076: /* SDC2 */ |
| #endif |
| is_write = 1; |
| break; |
| case 023: /* COP1X */ |
| /* Required in all versions of MIPS64 since |
| MIPS64r1 and subsequent versions of MIPS32r2. */ |
| switch (insn & 077) { |
| case 010: /* SWXC1 */ |
| case 011: /* SDXC1 */ |
| case 015: /* SUXC1 */ |
| is_write = 1; |
| } |
| break; |
| } |
| |
| return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); |
| } |
| |
| #elif defined(__riscv) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| ucontext_t *uc = puc; |
| greg_t pc = uc->uc_mcontext.__gregs[REG_PC]; |
| uint32_t insn = *(uint32_t *)pc; |
| int is_write = 0; |
| |
| /* Detect store by reading the instruction at the program |
| counter. Note: we currently only generate 32-bit |
| instructions so we thus only detect 32-bit stores */ |
| switch (((insn >> 0) & 0b11)) { |
| case 3: |
| switch (((insn >> 2) & 0b11111)) { |
| case 8: |
| switch (((insn >> 12) & 0b111)) { |
| case 0: /* sb */ |
| case 1: /* sh */ |
| case 2: /* sw */ |
| case 3: /* sd */ |
| case 4: /* sq */ |
| is_write = 1; |
| break; |
| default: |
| break; |
| } |
| break; |
| case 9: |
| switch (((insn >> 12) & 0b111)) { |
| case 2: /* fsw */ |
| case 3: /* fsd */ |
| case 4: /* fsq */ |
| is_write = 1; |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Check for compressed instructions */ |
| switch (((insn >> 13) & 0b111)) { |
| case 7: |
| switch (insn & 0b11) { |
| case 0: /*c.sd */ |
| case 2: /* c.sdsp */ |
| is_write = 1; |
| break; |
| default: |
| break; |
| } |
| break; |
| case 6: |
| switch (insn & 0b11) { |
| case 0: /* c.sw */ |
| case 3: /* c.swsp */ |
| is_write = 1; |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); |
| } |
| |
| #else |
| |
| #error host CPU specific signal handler needed |
| |
| #endif |
| |
| /* The softmmu versions of these helpers are in cputlb.c. */ |
| |
| uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = ldub_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr) |
| { |
| int ret; |
| uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = ldsb_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = lduw_be_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr) |
| { |
| int ret; |
| uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = ldsw_be_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = ldl_be_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr) |
| { |
| uint64_t ret; |
| uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = ldq_be_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = lduw_le_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr) |
| { |
| int ret; |
| uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = ldsw_le_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = ldl_le_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr) |
| { |
| uint64_t ret; |
| uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| ret = ldq_le_p(g2h(env_cpu(env), ptr)); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| return ret; |
| } |
| |
| uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_ldub_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| int ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_ldsb_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_lduw_be_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| int ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_ldsw_be_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_ldl_be_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| uint64_t ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_ldq_be_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_lduw_le_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| int ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_ldsw_le_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_ldl_le_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) |
| { |
| uint64_t ret; |
| |
| set_helper_retaddr(retaddr); |
| ret = cpu_ldq_le_data(env, ptr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val) |
| { |
| uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| stb_p(g2h(env_cpu(env), ptr), val); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| } |
| |
| void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val) |
| { |
| uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| stw_be_p(g2h(env_cpu(env), ptr), val); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| } |
| |
| void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val) |
| { |
| uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| stl_be_p(g2h(env_cpu(env), ptr), val); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| } |
| |
| void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val) |
| { |
| uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| stq_be_p(g2h(env_cpu(env), ptr), val); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| } |
| |
| void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val) |
| { |
| uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| stw_le_p(g2h(env_cpu(env), ptr), val); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| } |
| |
| void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val) |
| { |
| uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| stl_le_p(g2h(env_cpu(env), ptr), val); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| } |
| |
| void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val) |
| { |
| uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true); |
| |
| trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); |
| stq_le_p(g2h(env_cpu(env), ptr), val); |
| qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); |
| } |
| |
| void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t retaddr) |
| { |
| set_helper_retaddr(retaddr); |
| cpu_stb_data(env, ptr, val); |
| clear_helper_retaddr(); |
| } |
| |
| void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t retaddr) |
| { |
| set_helper_retaddr(retaddr); |
| cpu_stw_be_data(env, ptr, val); |
| clear_helper_retaddr(); |
| } |
| |
| void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t retaddr) |
| { |
| set_helper_retaddr(retaddr); |
| cpu_stl_be_data(env, ptr, val); |
| clear_helper_retaddr(); |
| } |
| |
| void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint64_t val, uintptr_t retaddr) |
| { |
| set_helper_retaddr(retaddr); |
| cpu_stq_be_data(env, ptr, val); |
| clear_helper_retaddr(); |
| } |
| |
| void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t retaddr) |
| { |
| set_helper_retaddr(retaddr); |
| cpu_stw_le_data(env, ptr, val); |
| clear_helper_retaddr(); |
| } |
| |
| void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint32_t val, uintptr_t retaddr) |
| { |
| set_helper_retaddr(retaddr); |
| cpu_stl_le_data(env, ptr, val); |
| clear_helper_retaddr(); |
| } |
| |
| void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr, |
| uint64_t val, uintptr_t retaddr) |
| { |
| set_helper_retaddr(retaddr); |
| cpu_stq_le_data(env, ptr, val); |
| clear_helper_retaddr(); |
| } |
| |
| uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldub_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = lduw_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldl_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint64_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldq_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| /* Do not allow unaligned operations to proceed. Return the host address. */ |
| static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, |
| int size, uintptr_t retaddr) |
| { |
| /* Enforce qemu required alignment. */ |
| if (unlikely(addr & (size - 1))) { |
| cpu_loop_exit_atomic(env_cpu(env), retaddr); |
| } |
| void *ret = g2h(env_cpu(env), addr); |
| set_helper_retaddr(retaddr); |
| return ret; |
| } |
| |
| /* Macro to call the above, with local variables from the use context. */ |
| #define ATOMIC_MMU_DECLS do {} while (0) |
| #define ATOMIC_MMU_LOOKUP_RW atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC()) |
| #define ATOMIC_MMU_LOOKUP_R ATOMIC_MMU_LOOKUP_RW |
| #define ATOMIC_MMU_LOOKUP_W ATOMIC_MMU_LOOKUP_RW |
| #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) |
| #define ATOMIC_MMU_IDX MMU_USER_IDX |
| |
| #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) |
| #define EXTRA_ARGS |
| |
| #include "atomic_common.c.inc" |
| |
| #define DATA_SIZE 1 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 2 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 4 |
| #include "atomic_template.h" |
| |
| #ifdef CONFIG_ATOMIC64 |
| #define DATA_SIZE 8 |
| #include "atomic_template.h" |
| #endif |
| |
| /* The following is only callable from other helpers, and matches up |
| with the softmmu version. */ |
| |
| #if HAVE_ATOMIC128 || HAVE_CMPXCHG128 |
| |
| #undef EXTRA_ARGS |
| #undef ATOMIC_NAME |
| #undef ATOMIC_MMU_LOOKUP_RW |
| |
| #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr |
| #define ATOMIC_NAME(X) \ |
| HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) |
| #define ATOMIC_MMU_LOOKUP_RW atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr) |
| |
| #define DATA_SIZE 16 |
| #include "atomic_template.h" |
| #endif |