| /* |
| * Host code generation |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qemu-common.h" |
| |
| #define NO_CPU_IO_DEFS |
| #include "cpu.h" |
| #include "trace.h" |
| #include "disas/disas.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg.h" |
| #if defined(CONFIG_USER_ONLY) |
| #include "qemu.h" |
| #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) |
| #include <sys/param.h> |
| #if __FreeBSD_version >= 700104 |
| #define HAVE_KINFO_GETVMMAP |
| #define sigqueue sigqueue_freebsd /* avoid redefinition */ |
| #include <sys/proc.h> |
| #include <machine/profile.h> |
| #define _KERNEL |
| #include <sys/user.h> |
| #undef _KERNEL |
| #undef sigqueue |
| #include <libutil.h> |
| #endif |
| #endif |
| #else |
| #include "exec/ram_addr.h" |
| #endif |
| |
| #include "exec/cputlb.h" |
| #include "exec/tb-hash.h" |
| #include "translate-all.h" |
| #include "qemu/bitmap.h" |
| #include "qemu/error-report.h" |
| #include "qemu/qemu-print.h" |
| #include "qemu/timer.h" |
| #include "qemu/main-loop.h" |
| #include "exec/log.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/tcg.h" |
| |
| /* #define DEBUG_TB_INVALIDATE */ |
| /* #define DEBUG_TB_FLUSH */ |
| /* make various TB consistency checks */ |
| /* #define DEBUG_TB_CHECK */ |
| |
| #ifdef DEBUG_TB_INVALIDATE |
| #define DEBUG_TB_INVALIDATE_GATE 1 |
| #else |
| #define DEBUG_TB_INVALIDATE_GATE 0 |
| #endif |
| |
| #ifdef DEBUG_TB_FLUSH |
| #define DEBUG_TB_FLUSH_GATE 1 |
| #else |
| #define DEBUG_TB_FLUSH_GATE 0 |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* TB consistency checks only implemented for usermode emulation. */ |
| #undef DEBUG_TB_CHECK |
| #endif |
| |
| #ifdef DEBUG_TB_CHECK |
| #define DEBUG_TB_CHECK_GATE 1 |
| #else |
| #define DEBUG_TB_CHECK_GATE 0 |
| #endif |
| |
| /* Access to the various translations structures need to be serialised via locks |
| * for consistency. |
| * In user-mode emulation access to the memory related structures are protected |
| * with mmap_lock. |
| * In !user-mode we use per-page locks. |
| */ |
| #ifdef CONFIG_SOFTMMU |
| #define assert_memory_lock() |
| #else |
| #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) |
| #endif |
| |
| #define SMC_BITMAP_USE_THRESHOLD 10 |
| |
| typedef struct PageDesc { |
| /* list of TBs intersecting this ram page */ |
| uintptr_t first_tb; |
| #ifdef CONFIG_SOFTMMU |
| /* in order to optimize self modifying code, we count the number |
| of lookups we do to a given page to use a bitmap */ |
| unsigned long *code_bitmap; |
| unsigned int code_write_count; |
| #else |
| unsigned long flags; |
| #endif |
| #ifndef CONFIG_USER_ONLY |
| QemuSpin lock; |
| #endif |
| } PageDesc; |
| |
| /** |
| * struct page_entry - page descriptor entry |
| * @pd: pointer to the &struct PageDesc of the page this entry represents |
| * @index: page index of the page |
| * @locked: whether the page is locked |
| * |
| * This struct helps us keep track of the locked state of a page, without |
| * bloating &struct PageDesc. |
| * |
| * A page lock protects accesses to all fields of &struct PageDesc. |
| * |
| * See also: &struct page_collection. |
| */ |
| struct page_entry { |
| PageDesc *pd; |
| tb_page_addr_t index; |
| bool locked; |
| }; |
| |
| /** |
| * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) |
| * @tree: Binary search tree (BST) of the pages, with key == page index |
| * @max: Pointer to the page in @tree with the highest page index |
| * |
| * To avoid deadlock we lock pages in ascending order of page index. |
| * When operating on a set of pages, we need to keep track of them so that |
| * we can lock them in order and also unlock them later. For this we collect |
| * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the |
| * @tree implementation we use does not provide an O(1) operation to obtain the |
| * highest-ranked element, we use @max to keep track of the inserted page |
| * with the highest index. This is valuable because if a page is not in |
| * the tree and its index is higher than @max's, then we can lock it |
| * without breaking the locking order rule. |
| * |
| * Note on naming: 'struct page_set' would be shorter, but we already have a few |
| * page_set_*() helpers, so page_collection is used instead to avoid confusion. |
| * |
| * See also: page_collection_lock(). |
| */ |
| struct page_collection { |
| GTree *tree; |
| struct page_entry *max; |
| }; |
| |
| /* list iterators for lists of tagged pointers in TranslationBlock */ |
| #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ |
| for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ |
| tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ |
| tb = (TranslationBlock *)((uintptr_t)tb & ~1)) |
| |
| #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ |
| TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) |
| |
| #define TB_FOR_EACH_JMP(head_tb, tb, n) \ |
| TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) |
| |
| /* |
| * In system mode we want L1_MAP to be based on ram offsets, |
| * while in user mode we want it to be based on virtual addresses. |
| * |
| * TODO: For user mode, see the caveat re host vs guest virtual |
| * address spaces near GUEST_ADDR_MAX. |
| */ |
| #if !defined(CONFIG_USER_ONLY) |
| #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS |
| # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS |
| #else |
| # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS |
| #endif |
| #else |
| # define L1_MAP_ADDR_SPACE_BITS MIN(HOST_LONG_BITS, TARGET_ABI_BITS) |
| #endif |
| |
| /* Size of the L2 (and L3, etc) page tables. */ |
| #define V_L2_BITS 10 |
| #define V_L2_SIZE (1 << V_L2_BITS) |
| |
| /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ |
| QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > |
| sizeof_field(TranslationBlock, trace_vcpu_dstate) |
| * BITS_PER_BYTE); |
| |
| /* |
| * L1 Mapping properties |
| */ |
| static int v_l1_size; |
| static int v_l1_shift; |
| static int v_l2_levels; |
| |
| /* The bottom level has pointers to PageDesc, and is indexed by |
| * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. |
| */ |
| #define V_L1_MIN_BITS 4 |
| #define V_L1_MAX_BITS (V_L2_BITS + 3) |
| #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) |
| |
| static void *l1_map[V_L1_MAX_SIZE]; |
| |
| /* code generation context */ |
| TCGContext tcg_init_ctx; |
| __thread TCGContext *tcg_ctx; |
| TBContext tb_ctx; |
| bool parallel_cpus; |
| |
| static void page_table_config_init(void) |
| { |
| uint32_t v_l1_bits; |
| |
| assert(TARGET_PAGE_BITS); |
| /* The bits remaining after N lower levels of page tables. */ |
| v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; |
| if (v_l1_bits < V_L1_MIN_BITS) { |
| v_l1_bits += V_L2_BITS; |
| } |
| |
| v_l1_size = 1 << v_l1_bits; |
| v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; |
| v_l2_levels = v_l1_shift / V_L2_BITS - 1; |
| |
| assert(v_l1_bits <= V_L1_MAX_BITS); |
| assert(v_l1_shift % V_L2_BITS == 0); |
| assert(v_l2_levels >= 0); |
| } |
| |
| void cpu_gen_init(void) |
| { |
| tcg_context_init(&tcg_init_ctx); |
| } |
| |
| /* Encode VAL as a signed leb128 sequence at P. |
| Return P incremented past the encoded value. */ |
| static uint8_t *encode_sleb128(uint8_t *p, target_long val) |
| { |
| int more, byte; |
| |
| do { |
| byte = val & 0x7f; |
| val >>= 7; |
| more = !((val == 0 && (byte & 0x40) == 0) |
| || (val == -1 && (byte & 0x40) != 0)); |
| if (more) { |
| byte |= 0x80; |
| } |
| *p++ = byte; |
| } while (more); |
| |
| return p; |
| } |
| |
| /* Decode a signed leb128 sequence at *PP; increment *PP past the |
| decoded value. Return the decoded value. */ |
| static target_long decode_sleb128(uint8_t **pp) |
| { |
| uint8_t *p = *pp; |
| target_long val = 0; |
| int byte, shift = 0; |
| |
| do { |
| byte = *p++; |
| val |= (target_ulong)(byte & 0x7f) << shift; |
| shift += 7; |
| } while (byte & 0x80); |
| if (shift < TARGET_LONG_BITS && (byte & 0x40)) { |
| val |= -(target_ulong)1 << shift; |
| } |
| |
| *pp = p; |
| return val; |
| } |
| |
| /* Encode the data collected about the instructions while compiling TB. |
| Place the data at BLOCK, and return the number of bytes consumed. |
| |
| The logical table consists of TARGET_INSN_START_WORDS target_ulong's, |
| which come from the target's insn_start data, followed by a uintptr_t |
| which comes from the host pc of the end of the code implementing the insn. |
| |
| Each line of the table is encoded as sleb128 deltas from the previous |
| line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. |
| That is, the first column is seeded with the guest pc, the last column |
| with the host pc, and the middle columns with zeros. */ |
| |
| static int encode_search(TranslationBlock *tb, uint8_t *block) |
| { |
| uint8_t *highwater = tcg_ctx->code_gen_highwater; |
| uint8_t *p = block; |
| int i, j, n; |
| |
| for (i = 0, n = tb->icount; i < n; ++i) { |
| target_ulong prev; |
| |
| for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { |
| if (i == 0) { |
| prev = (j == 0 ? tb->pc : 0); |
| } else { |
| prev = tcg_ctx->gen_insn_data[i - 1][j]; |
| } |
| p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); |
| } |
| prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); |
| p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); |
| |
| /* Test for (pending) buffer overflow. The assumption is that any |
| one row beginning below the high water mark cannot overrun |
| the buffer completely. Thus we can test for overflow after |
| encoding a row without having to check during encoding. */ |
| if (unlikely(p > highwater)) { |
| return -1; |
| } |
| } |
| |
| return p - block; |
| } |
| |
| /* The cpu state corresponding to 'searched_pc' is restored. |
| * When reset_icount is true, current TB will be interrupted and |
| * icount should be recalculated. |
| */ |
| static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, |
| uintptr_t searched_pc, bool reset_icount) |
| { |
| target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; |
| uintptr_t host_pc = (uintptr_t)tb->tc.ptr; |
| CPUArchState *env = cpu->env_ptr; |
| uint8_t *p = tb->tc.ptr + tb->tc.size; |
| int i, j, num_insns = tb->icount; |
| #ifdef CONFIG_PROFILER |
| TCGProfile *prof = &tcg_ctx->prof; |
| int64_t ti = profile_getclock(); |
| #endif |
| |
| searched_pc -= GETPC_ADJ; |
| |
| if (searched_pc < host_pc) { |
| return -1; |
| } |
| |
| /* Reconstruct the stored insn data while looking for the point at |
| which the end of the insn exceeds the searched_pc. */ |
| for (i = 0; i < num_insns; ++i) { |
| for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { |
| data[j] += decode_sleb128(&p); |
| } |
| host_pc += decode_sleb128(&p); |
| if (host_pc > searched_pc) { |
| goto found; |
| } |
| } |
| return -1; |
| |
| found: |
| if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { |
| assert(use_icount); |
| /* Reset the cycle counter to the start of the block |
| and shift if to the number of actually executed instructions */ |
| cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; |
| } |
| restore_state_to_opc(env, tb, data); |
| |
| #ifdef CONFIG_PROFILER |
| atomic_set(&prof->restore_time, |
| prof->restore_time + profile_getclock() - ti); |
| atomic_set(&prof->restore_count, prof->restore_count + 1); |
| #endif |
| return 0; |
| } |
| |
| void tb_destroy(TranslationBlock *tb) |
| { |
| qemu_spin_destroy(&tb->jmp_lock); |
| } |
| |
| bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) |
| { |
| TranslationBlock *tb; |
| bool r = false; |
| uintptr_t check_offset; |
| |
| /* The host_pc has to be in the region of current code buffer. If |
| * it is not we will not be able to resolve it here. The two cases |
| * where host_pc will not be correct are: |
| * |
| * - fault during translation (instruction fetch) |
| * - fault from helper (not using GETPC() macro) |
| * |
| * Either way we need return early as we can't resolve it here. |
| * |
| * We are using unsigned arithmetic so if host_pc < |
| * tcg_init_ctx.code_gen_buffer check_offset will wrap to way |
| * above the code_gen_buffer_size |
| */ |
| check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; |
| |
| if (check_offset < tcg_init_ctx.code_gen_buffer_size) { |
| tb = tcg_tb_lookup(host_pc); |
| if (tb) { |
| cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); |
| if (tb_cflags(tb) & CF_NOCACHE) { |
| /* one-shot translation, invalidate it immediately */ |
| tb_phys_invalidate(tb, -1); |
| tcg_tb_remove(tb); |
| tb_destroy(tb); |
| } |
| r = true; |
| } |
| } |
| |
| return r; |
| } |
| |
| static void page_init(void) |
| { |
| page_size_init(); |
| page_table_config_init(); |
| |
| #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
| { |
| #ifdef HAVE_KINFO_GETVMMAP |
| struct kinfo_vmentry *freep; |
| int i, cnt; |
| |
| freep = kinfo_getvmmap(getpid(), &cnt); |
| if (freep) { |
| mmap_lock(); |
| for (i = 0; i < cnt; i++) { |
| unsigned long startaddr, endaddr; |
| |
| startaddr = freep[i].kve_start; |
| endaddr = freep[i].kve_end; |
| if (h2g_valid(startaddr)) { |
| startaddr = h2g(startaddr) & TARGET_PAGE_MASK; |
| |
| if (h2g_valid(endaddr)) { |
| endaddr = h2g(endaddr); |
| page_set_flags(startaddr, endaddr, PAGE_RESERVED); |
| } else { |
| #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS |
| endaddr = ~0ul; |
| page_set_flags(startaddr, endaddr, PAGE_RESERVED); |
| #endif |
| } |
| } |
| } |
| free(freep); |
| mmap_unlock(); |
| } |
| #else |
| FILE *f; |
| |
| last_brk = (unsigned long)sbrk(0); |
| |
| f = fopen("/compat/linux/proc/self/maps", "r"); |
| if (f) { |
| mmap_lock(); |
| |
| do { |
| unsigned long startaddr, endaddr; |
| int n; |
| |
| n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); |
| |
| if (n == 2 && h2g_valid(startaddr)) { |
| startaddr = h2g(startaddr) & TARGET_PAGE_MASK; |
| |
| if (h2g_valid(endaddr)) { |
| endaddr = h2g(endaddr); |
| } else { |
| endaddr = ~0ul; |
| } |
| page_set_flags(startaddr, endaddr, PAGE_RESERVED); |
| } |
| } while (!feof(f)); |
| |
| fclose(f); |
| mmap_unlock(); |
| } |
| #endif |
| } |
| #endif |
| } |
| |
| static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) |
| { |
| PageDesc *pd; |
| void **lp; |
| int i; |
| |
| /* Level 1. Always allocated. */ |
| lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); |
| |
| /* Level 2..N-1. */ |
| for (i = v_l2_levels; i > 0; i--) { |
| void **p = atomic_rcu_read(lp); |
| |
| if (p == NULL) { |
| void *existing; |
| |
| if (!alloc) { |
| return NULL; |
| } |
| p = g_new0(void *, V_L2_SIZE); |
| existing = atomic_cmpxchg(lp, NULL, p); |
| if (unlikely(existing)) { |
| g_free(p); |
| p = existing; |
| } |
| } |
| |
| lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); |
| } |
| |
| pd = atomic_rcu_read(lp); |
| if (pd == NULL) { |
| void *existing; |
| |
| if (!alloc) { |
| return NULL; |
| } |
| pd = g_new0(PageDesc, V_L2_SIZE); |
| #ifndef CONFIG_USER_ONLY |
| { |
| int i; |
| |
| for (i = 0; i < V_L2_SIZE; i++) { |
| qemu_spin_init(&pd[i].lock); |
| } |
| } |
| #endif |
| existing = atomic_cmpxchg(lp, NULL, pd); |
| if (unlikely(existing)) { |
| #ifndef CONFIG_USER_ONLY |
| { |
| int i; |
| |
| for (i = 0; i < V_L2_SIZE; i++) { |
| qemu_spin_destroy(&pd[i].lock); |
| } |
| } |
| #endif |
| g_free(pd); |
| pd = existing; |
| } |
| } |
| |
| return pd + (index & (V_L2_SIZE - 1)); |
| } |
| |
| static inline PageDesc *page_find(tb_page_addr_t index) |
| { |
| return page_find_alloc(index, 0); |
| } |
| |
| static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, |
| PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); |
| |
| /* In user-mode page locks aren't used; mmap_lock is enough */ |
| #ifdef CONFIG_USER_ONLY |
| |
| #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) |
| |
| static inline void page_lock(PageDesc *pd) |
| { } |
| |
| static inline void page_unlock(PageDesc *pd) |
| { } |
| |
| static inline void page_lock_tb(const TranslationBlock *tb) |
| { } |
| |
| static inline void page_unlock_tb(const TranslationBlock *tb) |
| { } |
| |
| struct page_collection * |
| page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) |
| { |
| return NULL; |
| } |
| |
| void page_collection_unlock(struct page_collection *set) |
| { } |
| #else /* !CONFIG_USER_ONLY */ |
| |
| #ifdef CONFIG_DEBUG_TCG |
| |
| static __thread GHashTable *ht_pages_locked_debug; |
| |
| static void ht_pages_locked_debug_init(void) |
| { |
| if (ht_pages_locked_debug) { |
| return; |
| } |
| ht_pages_locked_debug = g_hash_table_new(NULL, NULL); |
| } |
| |
| static bool page_is_locked(const PageDesc *pd) |
| { |
| PageDesc *found; |
| |
| ht_pages_locked_debug_init(); |
| found = g_hash_table_lookup(ht_pages_locked_debug, pd); |
| return !!found; |
| } |
| |
| static void page_lock__debug(PageDesc *pd) |
| { |
| ht_pages_locked_debug_init(); |
| g_assert(!page_is_locked(pd)); |
| g_hash_table_insert(ht_pages_locked_debug, pd, pd); |
| } |
| |
| static void page_unlock__debug(const PageDesc *pd) |
| { |
| bool removed; |
| |
| ht_pages_locked_debug_init(); |
| g_assert(page_is_locked(pd)); |
| removed = g_hash_table_remove(ht_pages_locked_debug, pd); |
| g_assert(removed); |
| } |
| |
| static void |
| do_assert_page_locked(const PageDesc *pd, const char *file, int line) |
| { |
| if (unlikely(!page_is_locked(pd))) { |
| error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", |
| pd, file, line); |
| abort(); |
| } |
| } |
| |
| #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) |
| |
| void assert_no_pages_locked(void) |
| { |
| ht_pages_locked_debug_init(); |
| g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); |
| } |
| |
| #else /* !CONFIG_DEBUG_TCG */ |
| |
| #define assert_page_locked(pd) |
| |
| static inline void page_lock__debug(const PageDesc *pd) |
| { |
| } |
| |
| static inline void page_unlock__debug(const PageDesc *pd) |
| { |
| } |
| |
| #endif /* CONFIG_DEBUG_TCG */ |
| |
| static inline void page_lock(PageDesc *pd) |
| { |
| page_lock__debug(pd); |
| qemu_spin_lock(&pd->lock); |
| } |
| |
| static inline void page_unlock(PageDesc *pd) |
| { |
| qemu_spin_unlock(&pd->lock); |
| page_unlock__debug(pd); |
| } |
| |
| /* lock the page(s) of a TB in the correct acquisition order */ |
| static inline void page_lock_tb(const TranslationBlock *tb) |
| { |
| page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); |
| } |
| |
| static inline void page_unlock_tb(const TranslationBlock *tb) |
| { |
| PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); |
| |
| page_unlock(p1); |
| if (unlikely(tb->page_addr[1] != -1)) { |
| PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); |
| |
| if (p2 != p1) { |
| page_unlock(p2); |
| } |
| } |
| } |
| |
| static inline struct page_entry * |
| page_entry_new(PageDesc *pd, tb_page_addr_t index) |
| { |
| struct page_entry *pe = g_malloc(sizeof(*pe)); |
| |
| pe->index = index; |
| pe->pd = pd; |
| pe->locked = false; |
| return pe; |
| } |
| |
| static void page_entry_destroy(gpointer p) |
| { |
| struct page_entry *pe = p; |
| |
| g_assert(pe->locked); |
| page_unlock(pe->pd); |
| g_free(pe); |
| } |
| |
| /* returns false on success */ |
| static bool page_entry_trylock(struct page_entry *pe) |
| { |
| bool busy; |
| |
| busy = qemu_spin_trylock(&pe->pd->lock); |
| if (!busy) { |
| g_assert(!pe->locked); |
| pe->locked = true; |
| page_lock__debug(pe->pd); |
| } |
| return busy; |
| } |
| |
| static void do_page_entry_lock(struct page_entry *pe) |
| { |
| page_lock(pe->pd); |
| g_assert(!pe->locked); |
| pe->locked = true; |
| } |
| |
| static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) |
| { |
| struct page_entry *pe = value; |
| |
| do_page_entry_lock(pe); |
| return FALSE; |
| } |
| |
| static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) |
| { |
| struct page_entry *pe = value; |
| |
| if (pe->locked) { |
| pe->locked = false; |
| page_unlock(pe->pd); |
| } |
| return FALSE; |
| } |
| |
| /* |
| * Trylock a page, and if successful, add the page to a collection. |
| * Returns true ("busy") if the page could not be locked; false otherwise. |
| */ |
| static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) |
| { |
| tb_page_addr_t index = addr >> TARGET_PAGE_BITS; |
| struct page_entry *pe; |
| PageDesc *pd; |
| |
| pe = g_tree_lookup(set->tree, &index); |
| if (pe) { |
| return false; |
| } |
| |
| pd = page_find(index); |
| if (pd == NULL) { |
| return false; |
| } |
| |
| pe = page_entry_new(pd, index); |
| g_tree_insert(set->tree, &pe->index, pe); |
| |
| /* |
| * If this is either (1) the first insertion or (2) a page whose index |
| * is higher than any other so far, just lock the page and move on. |
| */ |
| if (set->max == NULL || pe->index > set->max->index) { |
| set->max = pe; |
| do_page_entry_lock(pe); |
| return false; |
| } |
| /* |
| * Try to acquire out-of-order lock; if busy, return busy so that we acquire |
| * locks in order. |
| */ |
| return page_entry_trylock(pe); |
| } |
| |
| static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) |
| { |
| tb_page_addr_t a = *(const tb_page_addr_t *)ap; |
| tb_page_addr_t b = *(const tb_page_addr_t *)bp; |
| |
| if (a == b) { |
| return 0; |
| } else if (a < b) { |
| return -1; |
| } |
| return 1; |
| } |
| |
| /* |
| * Lock a range of pages ([@start,@end[) as well as the pages of all |
| * intersecting TBs. |
| * Locking order: acquire locks in ascending order of page index. |
| */ |
| struct page_collection * |
| page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) |
| { |
| struct page_collection *set = g_malloc(sizeof(*set)); |
| tb_page_addr_t index; |
| PageDesc *pd; |
| |
| start >>= TARGET_PAGE_BITS; |
| end >>= TARGET_PAGE_BITS; |
| g_assert(start <= end); |
| |
| set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, |
| page_entry_destroy); |
| set->max = NULL; |
| assert_no_pages_locked(); |
| |
| retry: |
| g_tree_foreach(set->tree, page_entry_lock, NULL); |
| |
| for (index = start; index <= end; index++) { |
| TranslationBlock *tb; |
| int n; |
| |
| pd = page_find(index); |
| if (pd == NULL) { |
| continue; |
| } |
| if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { |
| g_tree_foreach(set->tree, page_entry_unlock, NULL); |
| goto retry; |
| } |
| assert_page_locked(pd); |
| PAGE_FOR_EACH_TB(pd, tb, n) { |
| if (page_trylock_add(set, tb->page_addr[0]) || |
| (tb->page_addr[1] != -1 && |
| page_trylock_add(set, tb->page_addr[1]))) { |
| /* drop all locks, and reacquire in order */ |
| g_tree_foreach(set->tree, page_entry_unlock, NULL); |
| goto retry; |
| } |
| } |
| } |
| return set; |
| } |
| |
| void page_collection_unlock(struct page_collection *set) |
| { |
| /* entries are unlocked and freed via page_entry_destroy */ |
| g_tree_destroy(set->tree); |
| g_free(set); |
| } |
| |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, |
| PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) |
| { |
| PageDesc *p1, *p2; |
| tb_page_addr_t page1; |
| tb_page_addr_t page2; |
| |
| assert_memory_lock(); |
| g_assert(phys1 != -1); |
| |
| page1 = phys1 >> TARGET_PAGE_BITS; |
| page2 = phys2 >> TARGET_PAGE_BITS; |
| |
| p1 = page_find_alloc(page1, alloc); |
| if (ret_p1) { |
| *ret_p1 = p1; |
| } |
| if (likely(phys2 == -1)) { |
| page_lock(p1); |
| return; |
| } else if (page1 == page2) { |
| page_lock(p1); |
| if (ret_p2) { |
| *ret_p2 = p1; |
| } |
| return; |
| } |
| p2 = page_find_alloc(page2, alloc); |
| if (ret_p2) { |
| *ret_p2 = p2; |
| } |
| if (page1 < page2) { |
| page_lock(p1); |
| page_lock(p2); |
| } else { |
| page_lock(p2); |
| page_lock(p1); |
| } |
| } |
| |
| /* Minimum size of the code gen buffer. This number is randomly chosen, |
| but not so small that we can't have a fair number of TB's live. */ |
| #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) |
| |
| /* Maximum size of the code gen buffer we'd like to use. Unless otherwise |
| indicated, this is constrained by the range of direct branches on the |
| host cpu, as used by the TCG implementation of goto_tb. */ |
| #if defined(__x86_64__) |
| # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) |
| #elif defined(__sparc__) |
| # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) |
| #elif defined(__powerpc64__) |
| # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) |
| #elif defined(__powerpc__) |
| # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB) |
| #elif defined(__aarch64__) |
| # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) |
| #elif defined(__s390x__) |
| /* We have a +- 4GB range on the branches; leave some slop. */ |
| # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB) |
| #elif defined(__mips__) |
| /* We have a 256MB branch region, but leave room to make sure the |
| main executable is also within that region. */ |
| # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB) |
| #else |
| # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) |
| #endif |
| |
| #if TCG_TARGET_REG_BITS == 32 |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * For user mode on smaller 32 bit systems we may run into trouble |
| * allocating big chunks of data in the right place. On these systems |
| * we utilise a static code generation buffer directly in the binary. |
| */ |
| #define USE_STATIC_CODE_GEN_BUFFER |
| #endif |
| #else /* TCG_TARGET_REG_BITS == 64 */ |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * As user-mode emulation typically means running multiple instances |
| * of the translator don't go too nuts with our default code gen |
| * buffer lest we make things too hard for the OS. |
| */ |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB) |
| #else |
| /* |
| * We expect most system emulation to run one or two guests per host. |
| * Users running large scale system emulation may want to tweak their |
| * runtime setup via the tb-size control on the command line. |
| */ |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB) |
| #endif |
| #endif |
| |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE \ |
| (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ |
| ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) |
| |
| static inline size_t size_code_gen_buffer(size_t tb_size) |
| { |
| /* Size the buffer. */ |
| if (tb_size == 0) { |
| tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; |
| } |
| if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { |
| tb_size = MIN_CODE_GEN_BUFFER_SIZE; |
| } |
| if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { |
| tb_size = MAX_CODE_GEN_BUFFER_SIZE; |
| } |
| return tb_size; |
| } |
| |
| #ifdef __mips__ |
| /* In order to use J and JAL within the code_gen_buffer, we require |
| that the buffer not cross a 256MB boundary. */ |
| static inline bool cross_256mb(void *addr, size_t size) |
| { |
| return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; |
| } |
| |
| /* We weren't able to allocate a buffer without crossing that boundary, |
| so make do with the larger portion of the buffer that doesn't cross. |
| Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ |
| static inline void *split_cross_256mb(void *buf1, size_t size1) |
| { |
| void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); |
| size_t size2 = buf1 + size1 - buf2; |
| |
| size1 = buf2 - buf1; |
| if (size1 < size2) { |
| size1 = size2; |
| buf1 = buf2; |
| } |
| |
| tcg_ctx->code_gen_buffer_size = size1; |
| return buf1; |
| } |
| #endif |
| |
| #ifdef USE_STATIC_CODE_GEN_BUFFER |
| static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] |
| __attribute__((aligned(CODE_GEN_ALIGN))); |
| |
| static inline void *alloc_code_gen_buffer(void) |
| { |
| void *buf = static_code_gen_buffer; |
| void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); |
| size_t size; |
| |
| /* page-align the beginning and end of the buffer */ |
| buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); |
| end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); |
| |
| size = end - buf; |
| |
| /* Honor a command-line option limiting the size of the buffer. */ |
| if (size > tcg_ctx->code_gen_buffer_size) { |
| size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, |
| qemu_real_host_page_size); |
| } |
| tcg_ctx->code_gen_buffer_size = size; |
| |
| #ifdef __mips__ |
| if (cross_256mb(buf, size)) { |
| buf = split_cross_256mb(buf, size); |
| size = tcg_ctx->code_gen_buffer_size; |
| } |
| #endif |
| |
| if (qemu_mprotect_rwx(buf, size)) { |
| abort(); |
| } |
| qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); |
| |
| return buf; |
| } |
| #elif defined(_WIN32) |
| static inline void *alloc_code_gen_buffer(void) |
| { |
| size_t size = tcg_ctx->code_gen_buffer_size; |
| return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, |
| PAGE_EXECUTE_READWRITE); |
| } |
| #else |
| static inline void *alloc_code_gen_buffer(void) |
| { |
| int prot = PROT_WRITE | PROT_READ | PROT_EXEC; |
| int flags = MAP_PRIVATE | MAP_ANONYMOUS; |
| size_t size = tcg_ctx->code_gen_buffer_size; |
| void *buf; |
| |
| buf = mmap(NULL, size, prot, flags, -1, 0); |
| if (buf == MAP_FAILED) { |
| return NULL; |
| } |
| |
| #ifdef __mips__ |
| if (cross_256mb(buf, size)) { |
| /* |
| * Try again, with the original still mapped, to avoid re-acquiring |
| * the same 256mb crossing. |
| */ |
| size_t size2; |
| void *buf2 = mmap(NULL, size, prot, flags, -1, 0); |
| switch ((int)(buf2 != MAP_FAILED)) { |
| case 1: |
| if (!cross_256mb(buf2, size)) { |
| /* Success! Use the new buffer. */ |
| munmap(buf, size); |
| break; |
| } |
| /* Failure. Work with what we had. */ |
| munmap(buf2, size); |
| /* fallthru */ |
| default: |
| /* Split the original buffer. Free the smaller half. */ |
| buf2 = split_cross_256mb(buf, size); |
| size2 = tcg_ctx->code_gen_buffer_size; |
| if (buf == buf2) { |
| munmap(buf + size2, size - size2); |
| } else { |
| munmap(buf, size - size2); |
| } |
| size = size2; |
| break; |
| } |
| buf = buf2; |
| } |
| #endif |
| |
| /* Request large pages for the buffer. */ |
| qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); |
| |
| return buf; |
| } |
| #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ |
| |
| static inline void code_gen_alloc(size_t tb_size) |
| { |
| tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); |
| tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); |
| if (tcg_ctx->code_gen_buffer == NULL) { |
| fprintf(stderr, "Could not allocate dynamic translator buffer\n"); |
| exit(1); |
| } |
| } |
| |
| static bool tb_cmp(const void *ap, const void *bp) |
| { |
| const TranslationBlock *a = ap; |
| const TranslationBlock *b = bp; |
| |
| return a->pc == b->pc && |
| a->cs_base == b->cs_base && |
| a->flags == b->flags && |
| (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && |
| a->trace_vcpu_dstate == b->trace_vcpu_dstate && |
| a->page_addr[0] == b->page_addr[0] && |
| a->page_addr[1] == b->page_addr[1]; |
| } |
| |
| static void tb_htable_init(void) |
| { |
| unsigned int mode = QHT_MODE_AUTO_RESIZE; |
| |
| qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); |
| } |
| |
| /* Must be called before using the QEMU cpus. 'tb_size' is the size |
| (in bytes) allocated to the translation buffer. Zero means default |
| size. */ |
| void tcg_exec_init(unsigned long tb_size) |
| { |
| tcg_allowed = true; |
| cpu_gen_init(); |
| page_init(); |
| tb_htable_init(); |
| code_gen_alloc(tb_size); |
| #if defined(CONFIG_SOFTMMU) |
| /* There's no guest base to take into account, so go ahead and |
| initialize the prologue now. */ |
| tcg_prologue_init(tcg_ctx); |
| #endif |
| } |
| |
| /* call with @p->lock held */ |
| static inline void invalidate_page_bitmap(PageDesc *p) |
| { |
| assert_page_locked(p); |
| #ifdef CONFIG_SOFTMMU |
| g_free(p->code_bitmap); |
| p->code_bitmap = NULL; |
| p->code_write_count = 0; |
| #endif |
| } |
| |
| /* Set to NULL all the 'first_tb' fields in all PageDescs. */ |
| static void page_flush_tb_1(int level, void **lp) |
| { |
| int i; |
| |
| if (*lp == NULL) { |
| return; |
| } |
| if (level == 0) { |
| PageDesc *pd = *lp; |
| |
| for (i = 0; i < V_L2_SIZE; ++i) { |
| page_lock(&pd[i]); |
| pd[i].first_tb = (uintptr_t)NULL; |
| invalidate_page_bitmap(pd + i); |
| page_unlock(&pd[i]); |
| } |
| } else { |
| void **pp = *lp; |
| |
| for (i = 0; i < V_L2_SIZE; ++i) { |
| page_flush_tb_1(level - 1, pp + i); |
| } |
| } |
| } |
| |
| static void page_flush_tb(void) |
| { |
| int i, l1_sz = v_l1_size; |
| |
| for (i = 0; i < l1_sz; i++) { |
| page_flush_tb_1(v_l2_levels, l1_map + i); |
| } |
| } |
| |
| static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) |
| { |
| const TranslationBlock *tb = value; |
| size_t *size = data; |
| |
| *size += tb->tc.size; |
| return false; |
| } |
| |
| /* flush all the translation blocks */ |
| static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) |
| { |
| bool did_flush = false; |
| |
| mmap_lock(); |
| /* If it is already been done on request of another CPU, |
| * just retry. |
| */ |
| if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { |
| goto done; |
| } |
| did_flush = true; |
| |
| if (DEBUG_TB_FLUSH_GATE) { |
| size_t nb_tbs = tcg_nb_tbs(); |
| size_t host_size = 0; |
| |
| tcg_tb_foreach(tb_host_size_iter, &host_size); |
| printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", |
| tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); |
| } |
| |
| CPU_FOREACH(cpu) { |
| cpu_tb_jmp_cache_clear(cpu); |
| } |
| |
| qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); |
| page_flush_tb(); |
| |
| tcg_region_reset_all(); |
| /* XXX: flush processor icache at this point if cache flush is |
| expensive */ |
| atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); |
| |
| done: |
| mmap_unlock(); |
| if (did_flush) { |
| qemu_plugin_flush_cb(); |
| } |
| } |
| |
| void tb_flush(CPUState *cpu) |
| { |
| if (tcg_enabled()) { |
| unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); |
| |
| if (cpu_in_exclusive_context(cpu)) { |
| do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); |
| } else { |
| async_safe_run_on_cpu(cpu, do_tb_flush, |
| RUN_ON_CPU_HOST_INT(tb_flush_count)); |
| } |
| } |
| } |
| |
| /* |
| * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, |
| * so in order to prevent bit rot we compile them unconditionally in user-mode, |
| * and let the optimizer get rid of them by wrapping their user-only callers |
| * with if (DEBUG_TB_CHECK_GATE). |
| */ |
| #ifdef CONFIG_USER_ONLY |
| |
| static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) |
| { |
| TranslationBlock *tb = p; |
| target_ulong addr = *(target_ulong *)userp; |
| |
| if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { |
| printf("ERROR invalidate: address=" TARGET_FMT_lx |
| " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); |
| } |
| } |
| |
| /* verify that all the pages have correct rights for code |
| * |
| * Called with mmap_lock held. |
| */ |
| static void tb_invalidate_check(target_ulong address) |
| { |
| address &= TARGET_PAGE_MASK; |
| qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); |
| } |
| |
| static void do_tb_page_check(void *p, uint32_t hash, void *userp) |
| { |
| TranslationBlock *tb = p; |
| int flags1, flags2; |
| |
| flags1 = page_get_flags(tb->pc); |
| flags2 = page_get_flags(tb->pc + tb->size - 1); |
| if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { |
| printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", |
| (long)tb->pc, tb->size, flags1, flags2); |
| } |
| } |
| |
| /* verify that all the pages have correct rights for code */ |
| static void tb_page_check(void) |
| { |
| qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); |
| } |
| |
| #endif /* CONFIG_USER_ONLY */ |
| |
| /* |
| * user-mode: call with mmap_lock held |
| * !user-mode: call with @pd->lock held |
| */ |
| static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) |
| { |
| TranslationBlock *tb1; |
| uintptr_t *pprev; |
| unsigned int n1; |
| |
| assert_page_locked(pd); |
| pprev = &pd->first_tb; |
| PAGE_FOR_EACH_TB(pd, tb1, n1) { |
| if (tb1 == tb) { |
| *pprev = tb1->page_next[n1]; |
| return; |
| } |
| pprev = &tb1->page_next[n1]; |
| } |
| g_assert_not_reached(); |
| } |
| |
| /* remove @orig from its @n_orig-th jump list */ |
| static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) |
| { |
| uintptr_t ptr, ptr_locked; |
| TranslationBlock *dest; |
| TranslationBlock *tb; |
| uintptr_t *pprev; |
| int n; |
| |
| /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ |
| ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); |
| dest = (TranslationBlock *)(ptr & ~1); |
| if (dest == NULL) { |
| return; |
| } |
| |
| qemu_spin_lock(&dest->jmp_lock); |
| /* |
| * While acquiring the lock, the jump might have been removed if the |
| * destination TB was invalidated; check again. |
| */ |
| ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); |
| if (ptr_locked != ptr) { |
| qemu_spin_unlock(&dest->jmp_lock); |
| /* |
| * The only possibility is that the jump was unlinked via |
| * tb_jump_unlink(dest). Seeing here another destination would be a bug, |
| * because we set the LSB above. |
| */ |
| g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); |
| return; |
| } |
| /* |
| * We first acquired the lock, and since the destination pointer matches, |
| * we know for sure that @orig is in the jmp list. |
| */ |
| pprev = &dest->jmp_list_head; |
| TB_FOR_EACH_JMP(dest, tb, n) { |
| if (tb == orig && n == n_orig) { |
| *pprev = tb->jmp_list_next[n]; |
| /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ |
| qemu_spin_unlock(&dest->jmp_lock); |
| return; |
| } |
| pprev = &tb->jmp_list_next[n]; |
| } |
| g_assert_not_reached(); |
| } |
| |
| /* reset the jump entry 'n' of a TB so that it is not chained to |
| another TB */ |
| static inline void tb_reset_jump(TranslationBlock *tb, int n) |
| { |
| uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); |
| tb_set_jmp_target(tb, n, addr); |
| } |
| |
| /* remove any jumps to the TB */ |
| static inline void tb_jmp_unlink(TranslationBlock *dest) |
| { |
| TranslationBlock *tb; |
| int n; |
| |
| qemu_spin_lock(&dest->jmp_lock); |
| |
| TB_FOR_EACH_JMP(dest, tb, n) { |
| tb_reset_jump(tb, n); |
| atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); |
| /* No need to clear the list entry; setting the dest ptr is enough */ |
| } |
| dest->jmp_list_head = (uintptr_t)NULL; |
| |
| qemu_spin_unlock(&dest->jmp_lock); |
| } |
| |
| /* |
| * In user-mode, call with mmap_lock held. |
| * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' |
| * locks held. |
| */ |
| static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) |
| { |
| CPUState *cpu; |
| PageDesc *p; |
| uint32_t h; |
| tb_page_addr_t phys_pc; |
| |
| assert_memory_lock(); |
| |
| /* make sure no further incoming jumps will be chained to this TB */ |
| qemu_spin_lock(&tb->jmp_lock); |
| atomic_set(&tb->cflags, tb->cflags | CF_INVALID); |
| qemu_spin_unlock(&tb->jmp_lock); |
| |
| /* remove the TB from the hash list */ |
| phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); |
| h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, |
| tb->trace_vcpu_dstate); |
| if (!(tb->cflags & CF_NOCACHE) && |
| !qht_remove(&tb_ctx.htable, tb, h)) { |
| return; |
| } |
| |
| /* remove the TB from the page list */ |
| if (rm_from_page_list) { |
| p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); |
| tb_page_remove(p, tb); |
| invalidate_page_bitmap(p); |
| if (tb->page_addr[1] != -1) { |
| p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); |
| tb_page_remove(p, tb); |
| invalidate_page_bitmap(p); |
| } |
| } |
| |
| /* remove the TB from the hash list */ |
| h = tb_jmp_cache_hash_func(tb->pc); |
| CPU_FOREACH(cpu) { |
| if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { |
| atomic_set(&cpu->tb_jmp_cache[h], NULL); |
| } |
| } |
| |
| /* suppress this TB from the two jump lists */ |
| tb_remove_from_jmp_list(tb, 0); |
| tb_remove_from_jmp_list(tb, 1); |
| |
| /* suppress any remaining jumps to this TB */ |
| tb_jmp_unlink(tb); |
| |
| atomic_set(&tcg_ctx->tb_phys_invalidate_count, |
| tcg_ctx->tb_phys_invalidate_count + 1); |
| } |
| |
| static void tb_phys_invalidate__locked(TranslationBlock *tb) |
| { |
| do_tb_phys_invalidate(tb, true); |
| } |
| |
| /* invalidate one TB |
| * |
| * Called with mmap_lock held in user-mode. |
| */ |
| void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) |
| { |
| if (page_addr == -1 && tb->page_addr[0] != -1) { |
| page_lock_tb(tb); |
| do_tb_phys_invalidate(tb, true); |
| page_unlock_tb(tb); |
| } else { |
| do_tb_phys_invalidate(tb, false); |
| } |
| } |
| |
| #ifdef CONFIG_SOFTMMU |
| /* call with @p->lock held */ |
| static void build_page_bitmap(PageDesc *p) |
| { |
| int n, tb_start, tb_end; |
| TranslationBlock *tb; |
| |
| assert_page_locked(p); |
| p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); |
| |
| PAGE_FOR_EACH_TB(p, tb, n) { |
| /* NOTE: this is subtle as a TB may span two physical pages */ |
| if (n == 0) { |
| /* NOTE: tb_end may be after the end of the page, but |
| it is not a problem */ |
| tb_start = tb->pc & ~TARGET_PAGE_MASK; |
| tb_end = tb_start + tb->size; |
| if (tb_end > TARGET_PAGE_SIZE) { |
| tb_end = TARGET_PAGE_SIZE; |
| } |
| } else { |
| tb_start = 0; |
| tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); |
| } |
| bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); |
| } |
| } |
| #endif |
| |
| /* add the tb in the target page and protect it if necessary |
| * |
| * Called with mmap_lock held for user-mode emulation. |
| * Called with @p->lock held in !user-mode. |
| */ |
| static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, |
| unsigned int n, tb_page_addr_t page_addr) |
| { |
| #ifndef CONFIG_USER_ONLY |
| bool page_already_protected; |
| #endif |
| |
| assert_page_locked(p); |
| |
| tb->page_addr[n] = page_addr; |
| tb->page_next[n] = p->first_tb; |
| #ifndef CONFIG_USER_ONLY |
| page_already_protected = p->first_tb != (uintptr_t)NULL; |
| #endif |
| p->first_tb = (uintptr_t)tb | n; |
| invalidate_page_bitmap(p); |
| |
| #if defined(CONFIG_USER_ONLY) |
| if (p->flags & PAGE_WRITE) { |
| target_ulong addr; |
| PageDesc *p2; |
| int prot; |
| |
| /* force the host page as non writable (writes will have a |
| page fault + mprotect overhead) */ |
| page_addr &= qemu_host_page_mask; |
| prot = 0; |
| for (addr = page_addr; addr < page_addr + qemu_host_page_size; |
| addr += TARGET_PAGE_SIZE) { |
| |
| p2 = page_find(addr >> TARGET_PAGE_BITS); |
| if (!p2) { |
| continue; |
| } |
| prot |= p2->flags; |
| p2->flags &= ~PAGE_WRITE; |
| } |
| mprotect(g2h(page_addr), qemu_host_page_size, |
| (prot & PAGE_BITS) & ~PAGE_WRITE); |
| if (DEBUG_TB_INVALIDATE_GATE) { |
| printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); |
| } |
| } |
| #else |
| /* if some code is already present, then the pages are already |
| protected. So we handle the case where only the first TB is |
| allocated in a physical page */ |
| if (!page_already_protected) { |
| tlb_protect_code(page_addr); |
| } |
| #endif |
| } |
| |
| /* add a new TB and link it to the physical page tables. phys_page2 is |
| * (-1) to indicate that only one page contains the TB. |
| * |
| * Called with mmap_lock held for user-mode emulation. |
| * |
| * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. |
| * Note that in !user-mode, another thread might have already added a TB |
| * for the same block of guest code that @tb corresponds to. In that case, |
| * the caller should discard the original @tb, and use instead the returned TB. |
| */ |
| static TranslationBlock * |
| tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, |
| tb_page_addr_t phys_page2) |
| { |
| PageDesc *p; |
| PageDesc *p2 = NULL; |
| |
| assert_memory_lock(); |
| |
| if (phys_pc == -1) { |
| /* |
| * If the TB is not associated with a physical RAM page then |
| * it must be a temporary one-insn TB, and we have nothing to do |
| * except fill in the page_addr[] fields. |
| */ |
| assert(tb->cflags & CF_NOCACHE); |
| tb->page_addr[0] = tb->page_addr[1] = -1; |
| return tb; |
| } |
| |
| /* |
| * Add the TB to the page list, acquiring first the pages's locks. |
| * We keep the locks held until after inserting the TB in the hash table, |
| * so that if the insertion fails we know for sure that the TBs are still |
| * in the page descriptors. |
| * Note that inserting into the hash table first isn't an option, since |
| * we can only insert TBs that are fully initialized. |
| */ |
| page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); |
| tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); |
| if (p2) { |
| tb_page_add(p2, tb, 1, phys_page2); |
| } else { |
| tb->page_addr[1] = -1; |
| } |
| |
| if (!(tb->cflags & CF_NOCACHE)) { |
| void *existing_tb = NULL; |
| uint32_t h; |
| |
| /* add in the hash table */ |
| h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, |
| tb->trace_vcpu_dstate); |
| qht_insert(&tb_ctx.htable, tb, h, &existing_tb); |
| |
| /* remove TB from the page(s) if we couldn't insert it */ |
| if (unlikely(existing_tb)) { |
| tb_page_remove(p, tb); |
| invalidate_page_bitmap(p); |
| if (p2) { |
| tb_page_remove(p2, tb); |
| invalidate_page_bitmap(p2); |
| } |
| tb = existing_tb; |
| } |
| } |
| |
| if (p2 && p2 != p) { |
| page_unlock(p2); |
| } |
| page_unlock(p); |
| |
| #ifdef CONFIG_USER_ONLY |
| if (DEBUG_TB_CHECK_GATE) { |
| tb_page_check(); |
| } |
| #endif |
| return tb; |
| } |
| |
| /* Called with mmap_lock held for user mode emulation. */ |
| TranslationBlock *tb_gen_code(CPUState *cpu, |
| target_ulong pc, target_ulong cs_base, |
| uint32_t flags, int cflags) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| TranslationBlock *tb, *existing_tb; |
| tb_page_addr_t phys_pc, phys_page2; |
| target_ulong virt_page2; |
| tcg_insn_unit *gen_code_buf; |
| int gen_code_size, search_size, max_insns; |
| #ifdef CONFIG_PROFILER |
| TCGProfile *prof = &tcg_ctx->prof; |
| int64_t ti; |
| #endif |
| |
| assert_memory_lock(); |
| |
| phys_pc = get_page_addr_code(env, pc); |
| |
| if (phys_pc == -1) { |
| /* Generate a temporary TB with 1 insn in it */ |
| cflags &= ~CF_COUNT_MASK; |
| cflags |= CF_NOCACHE | 1; |
| } |
| |
| cflags &= ~CF_CLUSTER_MASK; |
| cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; |
| |
| max_insns = cflags & CF_COUNT_MASK; |
| if (max_insns == 0) { |
| max_insns = CF_COUNT_MASK; |
| } |
| if (max_insns > TCG_MAX_INSNS) { |
| max_insns = TCG_MAX_INSNS; |
| } |
| if (cpu->singlestep_enabled || singlestep) { |
| max_insns = 1; |
| } |
| |
| buffer_overflow: |
| tb = tcg_tb_alloc(tcg_ctx); |
| if (unlikely(!tb)) { |
| /* flush must be done */ |
| tb_flush(cpu); |
| mmap_unlock(); |
| /* Make the execution loop process the flush as soon as possible. */ |
| cpu->exception_index = EXCP_INTERRUPT; |
| cpu_loop_exit(cpu); |
| } |
| |
| gen_code_buf = tcg_ctx->code_gen_ptr; |
| tb->tc.ptr = gen_code_buf; |
| tb->pc = pc; |
| tb->cs_base = cs_base; |
| tb->flags = flags; |
| tb->cflags = cflags; |
| tb->orig_tb = NULL; |
| tb->trace_vcpu_dstate = *cpu->trace_dstate; |
| tcg_ctx->tb_cflags = cflags; |
| tb_overflow: |
| |
| #ifdef CONFIG_PROFILER |
| /* includes aborted translations because of exceptions */ |
| atomic_set(&prof->tb_count1, prof->tb_count1 + 1); |
| ti = profile_getclock(); |
| #endif |
| |
| tcg_func_start(tcg_ctx); |
| |
| tcg_ctx->cpu = env_cpu(env); |
| gen_intermediate_code(cpu, tb, max_insns); |
| tcg_ctx->cpu = NULL; |
| |
| trace_translate_block(tb, tb->pc, tb->tc.ptr); |
| |
| /* generate machine code */ |
| tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; |
| tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; |
| tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; |
| if (TCG_TARGET_HAS_direct_jump) { |
| tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; |
| tcg_ctx->tb_jmp_target_addr = NULL; |
| } else { |
| tcg_ctx->tb_jmp_insn_offset = NULL; |
| tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; |
| } |
| |
| #ifdef CONFIG_PROFILER |
| atomic_set(&prof->tb_count, prof->tb_count + 1); |
| atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); |
| ti = profile_getclock(); |
| #endif |
| |
| gen_code_size = tcg_gen_code(tcg_ctx, tb); |
| if (unlikely(gen_code_size < 0)) { |
| switch (gen_code_size) { |
| case -1: |
| /* |
| * Overflow of code_gen_buffer, or the current slice of it. |
| * |
| * TODO: We don't need to re-do gen_intermediate_code, nor |
| * should we re-do the tcg optimization currently hidden |
| * inside tcg_gen_code. All that should be required is to |
| * flush the TBs, allocate a new TB, re-initialize it per |
| * above, and re-do the actual code generation. |
| */ |
| goto buffer_overflow; |
| |
| case -2: |
| /* |
| * The code generated for the TranslationBlock is too large. |
| * The maximum size allowed by the unwind info is 64k. |
| * There may be stricter constraints from relocations |
| * in the tcg backend. |
| * |
| * Try again with half as many insns as we attempted this time. |
| * If a single insn overflows, there's a bug somewhere... |
| */ |
| max_insns = tb->icount; |
| assert(max_insns > 1); |
| max_insns /= 2; |
| goto tb_overflow; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); |
| if (unlikely(search_size < 0)) { |
| goto buffer_overflow; |
| } |
| tb->tc.size = gen_code_size; |
| |
| #ifdef CONFIG_PROFILER |
| atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); |
| atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); |
| atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); |
| atomic_set(&prof->search_out_len, prof->search_out_len + search_size); |
| #endif |
| |
| #ifdef DEBUG_DISAS |
| if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && |
| qemu_log_in_addr_range(tb->pc)) { |
| FILE *logfile = qemu_log_lock(); |
| int code_size, data_size = 0; |
| g_autoptr(GString) note = g_string_new("[tb header & initial instruction]"); |
| size_t chunk_start = 0; |
| int insn = 0; |
| qemu_log("OUT: [size=%d]\n", gen_code_size); |
| if (tcg_ctx->data_gen_ptr) { |
| code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; |
| data_size = gen_code_size - code_size; |
| } else { |
| code_size = gen_code_size; |
| } |
| |
| /* Dump header and the first instruction */ |
| chunk_start = tcg_ctx->gen_insn_end_off[insn]; |
| log_disas(tb->tc.ptr, chunk_start, note->str); |
| |
| /* |
| * Dump each instruction chunk, wrapping up empty chunks into |
| * the next instruction. The whole array is offset so the |
| * first entry is the beginning of the 2nd instruction. |
| */ |
| while (insn <= tb->icount && chunk_start < code_size) { |
| size_t chunk_end = tcg_ctx->gen_insn_end_off[insn]; |
| if (chunk_end > chunk_start) { |
| g_string_printf(note, "[guest addr: " TARGET_FMT_lx "]", |
| tcg_ctx->gen_insn_data[insn][0]); |
| log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start, |
| note->str); |
| chunk_start = chunk_end; |
| } |
| insn++; |
| } |
| |
| /* Finally dump any data we may have after the block */ |
| if (data_size) { |
| int i; |
| qemu_log(" data: [size=%d]\n", data_size); |
| for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { |
| if (sizeof(tcg_target_ulong) == 8) { |
| qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", |
| (uintptr_t)tcg_ctx->data_gen_ptr + i, |
| *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); |
| } else { |
| qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", |
| (uintptr_t)tcg_ctx->data_gen_ptr + i, |
| *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); |
| } |
| } |
| } |
| qemu_log("\n"); |
| qemu_log_flush(); |
| qemu_log_unlock(logfile); |
| } |
| #endif |
| |
| atomic_set(&tcg_ctx->code_gen_ptr, (void *) |
| ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, |
| CODE_GEN_ALIGN)); |
| |
| /* init jump list */ |
| qemu_spin_init(&tb->jmp_lock); |
| tb->jmp_list_head = (uintptr_t)NULL; |
| tb->jmp_list_next[0] = (uintptr_t)NULL; |
| tb->jmp_list_next[1] = (uintptr_t)NULL; |
| tb->jmp_dest[0] = (uintptr_t)NULL; |
| tb->jmp_dest[1] = (uintptr_t)NULL; |
| |
| /* init original jump addresses which have been set during tcg_gen_code() */ |
| if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { |
| tb_reset_jump(tb, 0); |
| } |
| if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { |
| tb_reset_jump(tb, 1); |
| } |
| |
| /* check next page if needed */ |
| virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
| phys_page2 = -1; |
| if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
| phys_page2 = get_page_addr_code(env, virt_page2); |
| } |
| /* |
| * No explicit memory barrier is required -- tb_link_page() makes the |
| * TB visible in a consistent state. |
| */ |
| existing_tb = tb_link_page(tb, phys_pc, phys_page2); |
| /* if the TB already exists, discard what we just translated */ |
| if (unlikely(existing_tb != tb)) { |
| uintptr_t orig_aligned = (uintptr_t)gen_code_buf; |
| |
| orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); |
| atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); |
| tb_destroy(tb); |
| return existing_tb; |
| } |
| tcg_tb_insert(tb); |
| return tb; |
| } |
| |
| /* |
| * @p must be non-NULL. |
| * user-mode: call with mmap_lock held. |
| * !user-mode: call with all @pages locked. |
| */ |
| static void |
| tb_invalidate_phys_page_range__locked(struct page_collection *pages, |
| PageDesc *p, tb_page_addr_t start, |
| tb_page_addr_t end, |
| uintptr_t retaddr) |
| { |
| TranslationBlock *tb; |
| tb_page_addr_t tb_start, tb_end; |
| int n; |
| #ifdef TARGET_HAS_PRECISE_SMC |
| CPUState *cpu = current_cpu; |
| CPUArchState *env = NULL; |
| bool current_tb_not_found = retaddr != 0; |
| bool current_tb_modified = false; |
| TranslationBlock *current_tb = NULL; |
| target_ulong current_pc = 0; |
| target_ulong current_cs_base = 0; |
| uint32_t current_flags = 0; |
| #endif /* TARGET_HAS_PRECISE_SMC */ |
| |
| assert_page_locked(p); |
| |
| #if defined(TARGET_HAS_PRECISE_SMC) |
| if (cpu != NULL) { |
| env = cpu->env_ptr; |
| } |
| #endif |
| |
| /* we remove all the TBs in the range [start, end[ */ |
| /* XXX: see if in some cases it could be faster to invalidate all |
| the code */ |
| PAGE_FOR_EACH_TB(p, tb, n) { |
| assert_page_locked(p); |
| /* NOTE: this is subtle as a TB may span two physical pages */ |
| if (n == 0) { |
| /* NOTE: tb_end may be after the end of the page, but |
| it is not a problem */ |
| tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); |
| tb_end = tb_start + tb->size; |
| } else { |
| tb_start = tb->page_addr[1]; |
| tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); |
| } |
| if (!(tb_end <= start || tb_start >= end)) { |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb_not_found) { |
| current_tb_not_found = false; |
| /* now we have a real cpu fault */ |
| current_tb = tcg_tb_lookup(retaddr); |
| } |
| if (current_tb == tb && |
| (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { |
| /* |
| * If we are modifying the current TB, we must stop |
| * its execution. We could be more precise by checking |
| * that the modification is after the current PC, but it |
| * would require a specialized function to partially |
| * restore the CPU state. |
| */ |
| current_tb_modified = true; |
| cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); |
| cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
| ¤t_flags); |
| } |
| #endif /* TARGET_HAS_PRECISE_SMC */ |
| tb_phys_invalidate__locked(tb); |
| } |
| } |
| #if !defined(CONFIG_USER_ONLY) |
| /* if no code remaining, no need to continue to use slow writes */ |
| if (!p->first_tb) { |
| invalidate_page_bitmap(p); |
| tlb_unprotect_code(start); |
| } |
| #endif |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb_modified) { |
| page_collection_unlock(pages); |
| /* Force execution of one insn next time. */ |
| cpu->cflags_next_tb = 1 | curr_cflags(); |
| mmap_unlock(); |
| cpu_loop_exit_noexc(cpu); |
| } |
| #endif |
| } |
| |
| /* |
| * Invalidate all TBs which intersect with the target physical address range |
| * [start;end[. NOTE: start and end must refer to the *same* physical page. |
| * 'is_cpu_write_access' should be true if called from a real cpu write |
| * access: the virtual CPU will exit the current TB if code is modified inside |
| * this TB. |
| * |
| * Called with mmap_lock held for user-mode emulation |
| */ |
| void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) |
| { |
| struct page_collection *pages; |
| PageDesc *p; |
| |
| assert_memory_lock(); |
| |
| p = page_find(start >> TARGET_PAGE_BITS); |
| if (p == NULL) { |
| return; |
| } |
| pages = page_collection_lock(start, end); |
| tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); |
| page_collection_unlock(pages); |
| } |
| |
| /* |
| * Invalidate all TBs which intersect with the target physical address range |
| * [start;end[. NOTE: start and end may refer to *different* physical pages. |
| * 'is_cpu_write_access' should be true if called from a real cpu write |
| * access: the virtual CPU will exit the current TB if code is modified inside |
| * this TB. |
| * |
| * Called with mmap_lock held for user-mode emulation. |
| */ |
| #ifdef CONFIG_SOFTMMU |
| void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) |
| #else |
| void tb_invalidate_phys_range(target_ulong start, target_ulong end) |
| #endif |
| { |
| struct page_collection *pages; |
| tb_page_addr_t next; |
| |
| assert_memory_lock(); |
| |
| pages = page_collection_lock(start, end); |
| for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; |
| start < end; |
| start = next, next += TARGET_PAGE_SIZE) { |
| PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); |
| tb_page_addr_t bound = MIN(next, end); |
| |
| if (pd == NULL) { |
| continue; |
| } |
| tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); |
| } |
| page_collection_unlock(pages); |
| } |
| |
| #ifdef CONFIG_SOFTMMU |
| /* len must be <= 8 and start must be a multiple of len. |
| * Called via softmmu_template.h when code areas are written to with |
| * iothread mutex not held. |
| * |
| * Call with all @pages in the range [@start, @start + len[ locked. |
| */ |
| void tb_invalidate_phys_page_fast(struct page_collection *pages, |
| tb_page_addr_t start, int len, |
| uintptr_t retaddr) |
| { |
| PageDesc *p; |
| |
| assert_memory_lock(); |
| |
| p = page_find(start >> TARGET_PAGE_BITS); |
| if (!p) { |
| return; |
| } |
| |
| assert_page_locked(p); |
| if (!p->code_bitmap && |
| ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { |
| build_page_bitmap(p); |
| } |
| if (p->code_bitmap) { |
| unsigned int nr; |
| unsigned long b; |
| |
| nr = start & ~TARGET_PAGE_MASK; |
| b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); |
| if (b & ((1 << len) - 1)) { |
| goto do_invalidate; |
| } |
| } else { |
| do_invalidate: |
| tb_invalidate_phys_page_range__locked(pages, p, start, start + len, |
| retaddr); |
| } |
| } |
| #else |
| /* Called with mmap_lock held. If pc is not 0 then it indicates the |
| * host PC of the faulting store instruction that caused this invalidate. |
| * Returns true if the caller needs to abort execution of the current |
| * TB (because it was modified by this store and the guest CPU has |
| * precise-SMC semantics). |
| */ |
| static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) |
| { |
| TranslationBlock *tb; |
| PageDesc *p; |
| int n; |
| #ifdef TARGET_HAS_PRECISE_SMC |
| TranslationBlock *current_tb = NULL; |
| CPUState *cpu = current_cpu; |
| CPUArchState *env = NULL; |
| int current_tb_modified = 0; |
| target_ulong current_pc = 0; |
| target_ulong current_cs_base = 0; |
| uint32_t current_flags = 0; |
| #endif |
| |
| assert_memory_lock(); |
| |
| addr &= TARGET_PAGE_MASK; |
| p = page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| return false; |
| } |
| |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (p->first_tb && pc != 0) { |
| current_tb = tcg_tb_lookup(pc); |
| } |
| if (cpu != NULL) { |
| env = cpu->env_ptr; |
| } |
| #endif |
| assert_page_locked(p); |
| PAGE_FOR_EACH_TB(p, tb, n) { |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb == tb && |
| (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { |
| /* If we are modifying the current TB, we must stop |
| its execution. We could be more precise by checking |
| that the modification is after the current PC, but it |
| would require a specialized function to partially |
| restore the CPU state */ |
| |
| current_tb_modified = 1; |
| cpu_restore_state_from_tb(cpu, current_tb, pc, true); |
| cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
| ¤t_flags); |
| } |
| #endif /* TARGET_HAS_PRECISE_SMC */ |
| tb_phys_invalidate(tb, addr); |
| } |
| p->first_tb = (uintptr_t)NULL; |
| #ifdef TARGET_HAS_PRECISE_SMC |
| if (current_tb_modified) { |
| /* Force execution of one insn next time. */ |
| cpu->cflags_next_tb = 1 | curr_cflags(); |
| return true; |
| } |
| #endif |
| |
| return false; |
| } |
| #endif |
| |
| /* user-mode: call with mmap_lock held */ |
| void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) |
| { |
| TranslationBlock *tb; |
| |
| assert_memory_lock(); |
| |
| tb = tcg_tb_lookup(retaddr); |
| if (tb) { |
| /* We can use retranslation to find the PC. */ |
| cpu_restore_state_from_tb(cpu, tb, retaddr, true); |
| tb_phys_invalidate(tb, -1); |
| } else { |
| /* The exception probably happened in a helper. The CPU state should |
| have been saved before calling it. Fetch the PC from there. */ |
| CPUArchState *env = cpu->env_ptr; |
| target_ulong pc, cs_base; |
| tb_page_addr_t addr; |
| uint32_t flags; |
| |
| cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); |
| addr = get_page_addr_code(env, pc); |
| if (addr != -1) { |
| tb_invalidate_phys_range(addr, addr + 1); |
| } |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* in deterministic execution mode, instructions doing device I/Os |
| * must be at the end of the TB. |
| * |
| * Called by softmmu_template.h, with iothread mutex not held. |
| */ |
| void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) |
| { |
| #if defined(TARGET_MIPS) || defined(TARGET_SH4) |
| CPUArchState *env = cpu->env_ptr; |
| #endif |
| TranslationBlock *tb; |
| uint32_t n; |
| |
| tb = tcg_tb_lookup(retaddr); |
| if (!tb) { |
| cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", |
| (void *)retaddr); |
| } |
| cpu_restore_state_from_tb(cpu, tb, retaddr, true); |
| |
| /* On MIPS and SH, delay slot instructions can only be restarted if |
| they were already the first instruction in the TB. If this is not |
| the first instruction in a TB then re-execute the preceding |
| branch. */ |
| n = 1; |
| #if defined(TARGET_MIPS) |
| if ((env->hflags & MIPS_HFLAG_BMASK) != 0 |
| && env->active_tc.PC != tb->pc) { |
| env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); |
| cpu_neg(cpu)->icount_decr.u16.low++; |
| env->hflags &= ~MIPS_HFLAG_BMASK; |
| n = 2; |
| } |
| #elif defined(TARGET_SH4) |
| if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 |
| && env->pc != tb->pc) { |
| env->pc -= 2; |
| cpu_neg(cpu)->icount_decr.u16.low++; |
| env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); |
| n = 2; |
| } |
| #endif |
| |
| /* Generate a new TB executing the I/O insn. */ |
| cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; |
| |
| if (tb_cflags(tb) & CF_NOCACHE) { |
| if (tb->orig_tb) { |
| /* Invalidate original TB if this TB was generated in |
| * cpu_exec_nocache() */ |
| tb_phys_invalidate(tb->orig_tb, -1); |
| } |
| tcg_tb_remove(tb); |
| tb_destroy(tb); |
| } |
| |
| /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
| * the first in the TB) then we end up generating a whole new TB and |
| * repeating the fault, which is horribly inefficient. |
| * Better would be to execute just this insn uncached, or generate a |
| * second new TB. |
| */ |
| cpu_loop_exit_noexc(cpu); |
| } |
| |
| static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) |
| { |
| unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); |
| |
| for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { |
| atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); |
| } |
| } |
| |
| void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) |
| { |
| /* Discard jump cache entries for any tb which might potentially |
| overlap the flushed page. */ |
| tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); |
| tb_jmp_cache_clear_page(cpu, addr); |
| } |
| |
| static void print_qht_statistics(struct qht_stats hst) |
| { |
| uint32_t hgram_opts; |
| size_t hgram_bins; |
| char *hgram; |
| |
| if (!hst.head_buckets) { |
| return; |
| } |
| qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", |
| hst.used_head_buckets, hst.head_buckets, |
| (double)hst.used_head_buckets / hst.head_buckets * 100); |
| |
| hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; |
| hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; |
| if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { |
| hgram_opts |= QDIST_PR_NODECIMAL; |
| } |
| hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); |
| qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", |
| qdist_avg(&hst.occupancy) * 100, hgram); |
| g_free(hgram); |
| |
| hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; |
| hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); |
| if (hgram_bins > 10) { |
| hgram_bins = 10; |
| } else { |
| hgram_bins = 0; |
| hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; |
| } |
| hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); |
| qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", |
| qdist_avg(&hst.chain), hgram); |
| g_free(hgram); |
| } |
| |
| struct tb_tree_stats { |
| size_t nb_tbs; |
| size_t host_size; |
| size_t target_size; |
| size_t max_target_size; |
| size_t direct_jmp_count; |
| size_t direct_jmp2_count; |
| size_t cross_page; |
| }; |
| |
| static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) |
| { |
| const TranslationBlock *tb = value; |
| struct tb_tree_stats *tst = data; |
| |
| tst->nb_tbs++; |
| tst->host_size += tb->tc.size; |
| tst->target_size += tb->size; |
| if (tb->size > tst->max_target_size) { |
| tst->max_target_size = tb->size; |
| } |
| if (tb->page_addr[1] != -1) { |
| tst->cross_page++; |
| } |
| if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { |
| tst->direct_jmp_count++; |
| if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { |
| tst->direct_jmp2_count++; |
| } |
| } |
| return false; |
| } |
| |
| void dump_exec_info(void) |
| { |
| struct tb_tree_stats tst = {}; |
| struct qht_stats hst; |
| size_t nb_tbs, flush_full, flush_part, flush_elide; |
| |
| tcg_tb_foreach(tb_tree_stats_iter, &tst); |
| nb_tbs = tst.nb_tbs; |
| /* XXX: avoid using doubles ? */ |
| qemu_printf("Translation buffer state:\n"); |
| /* |
| * Report total code size including the padding and TB structs; |
| * otherwise users might think "-tb-size" is not honoured. |
| * For avg host size we use the precise numbers from tb_tree_stats though. |
| */ |
| qemu_printf("gen code size %zu/%zu\n", |
| tcg_code_size(), tcg_code_capacity()); |
| qemu_printf("TB count %zu\n", nb_tbs); |
| qemu_printf("TB avg target size %zu max=%zu bytes\n", |
| nb_tbs ? tst.target_size / nb_tbs : 0, |
| tst.max_target_size); |
| qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", |
| nb_tbs ? tst.host_size / nb_tbs : 0, |
| tst.target_size ? (double)tst.host_size / tst.target_size : 0); |
| qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, |
| nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); |
| qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", |
| tst.direct_jmp_count, |
| nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, |
| tst.direct_jmp2_count, |
| nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); |
| |
| qht_statistics_init(&tb_ctx.htable, &hst); |
| print_qht_statistics(hst); |
| qht_statistics_destroy(&hst); |
| |
| qemu_printf("\nStatistics:\n"); |
| qemu_printf("TB flush count %u\n", |
| atomic_read(&tb_ctx.tb_flush_count)); |
| qemu_printf("TB invalidate count %zu\n", |
| tcg_tb_phys_invalidate_count()); |
| |
| tlb_flush_counts(&flush_full, &flush_part, &flush_elide); |
| qemu_printf("TLB full flushes %zu\n", flush_full); |
| qemu_printf("TLB partial flushes %zu\n", flush_part); |
| qemu_printf("TLB elided flushes %zu\n", flush_elide); |
| tcg_dump_info(); |
| } |
| |
| void dump_opcount_info(void) |
| { |
| tcg_dump_op_count(); |
| } |
| |
| #else /* CONFIG_USER_ONLY */ |
| |
| void cpu_interrupt(CPUState *cpu, int mask) |
| { |
| g_assert(qemu_mutex_iothread_locked()); |
| cpu->interrupt_request |= mask; |
| atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); |
| } |
| |
| /* |
| * Walks guest process memory "regions" one by one |
| * and calls callback function 'fn' for each region. |
| */ |
| struct walk_memory_regions_data { |
| walk_memory_regions_fn fn; |
| void *priv; |
| target_ulong start; |
| int prot; |
| }; |
| |
| static int walk_memory_regions_end(struct walk_memory_regions_data *data, |
| target_ulong end, int new_prot) |
| { |
| if (data->start != -1u) { |
| int rc = data->fn(data->priv, data->start, end, data->prot); |
| if (rc != 0) { |
| return rc; |
| } |
| } |
| |
| data->start = (new_prot ? end : -1u); |
| data->prot = new_prot; |
| |
| return 0; |
| } |
| |
| static int walk_memory_regions_1(struct walk_memory_regions_data *data, |
| target_ulong base, int level, void **lp) |
| { |
| target_ulong pa; |
| int i, rc; |
| |
| if (*lp == NULL) { |
| return walk_memory_regions_end(data, base, 0); |
| } |
| |
| if (level == 0) { |
| PageDesc *pd = *lp; |
| |
| for (i = 0; i < V_L2_SIZE; ++i) { |
| int prot = pd[i].flags; |
| |
| pa = base | (i << TARGET_PAGE_BITS); |
| if (prot != data->prot) { |
| rc = walk_memory_regions_end(data, pa, prot); |
| if (rc != 0) { |
| return rc; |
| } |
| } |
| } |
| } else { |
| void **pp = *lp; |
| |
| for (i = 0; i < V_L2_SIZE; ++i) { |
| pa = base | ((target_ulong)i << |
| (TARGET_PAGE_BITS + V_L2_BITS * level)); |
| rc = walk_memory_regions_1(data, pa, level - 1, pp + i); |
| if (rc != 0) { |
| return rc; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int walk_memory_regions(void *priv, walk_memory_regions_fn fn) |
| { |
| struct walk_memory_regions_data data; |
| uintptr_t i, l1_sz = v_l1_size; |
| |
| data.fn = fn; |
| data.priv = priv; |
| data.start = -1u; |
| data.prot = 0; |
| |
| for (i = 0; i < l1_sz; i++) { |
| target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); |
| int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); |
| if (rc != 0) { |
| return rc; |
| } |
| } |
| |
| return walk_memory_regions_end(&data, 0, 0); |
| } |
| |
| static int dump_region(void *priv, target_ulong start, |
| target_ulong end, unsigned long prot) |
| { |
| FILE *f = (FILE *)priv; |
| |
| (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx |
| " "TARGET_FMT_lx" %c%c%c\n", |
| start, end, end - start, |
| ((prot & PAGE_READ) ? 'r' : '-'), |
| ((prot & PAGE_WRITE) ? 'w' : '-'), |
| ((prot & PAGE_EXEC) ? 'x' : '-')); |
| |
| return 0; |
| } |
| |
| /* dump memory mappings */ |
| void page_dump(FILE *f) |
| { |
| const int length = sizeof(target_ulong) * 2; |
| (void) fprintf(f, "%-*s %-*s %-*s %s\n", |
| length, "start", length, "end", length, "size", "prot"); |
| walk_memory_regions(f, dump_region); |
| } |
| |
| int page_get_flags(target_ulong address) |
| { |
| PageDesc *p; |
| |
| p = page_find(address >> TARGET_PAGE_BITS); |
| if (!p) { |
| return 0; |
| } |
| return p->flags; |
| } |
| |
| /* Modify the flags of a page and invalidate the code if necessary. |
| The flag PAGE_WRITE_ORG is positioned automatically depending |
| on PAGE_WRITE. The mmap_lock should already be held. */ |
| void page_set_flags(target_ulong start, target_ulong end, int flags) |
| { |
| target_ulong addr, len; |
| |
| /* This function should never be called with addresses outside the |
| guest address space. If this assert fires, it probably indicates |
| a missing call to h2g_valid. */ |
| assert(end - 1 <= GUEST_ADDR_MAX); |
| assert(start < end); |
| assert_memory_lock(); |
| |
| start = start & TARGET_PAGE_MASK; |
| end = TARGET_PAGE_ALIGN(end); |
| |
| if (flags & PAGE_WRITE) { |
| flags |= PAGE_WRITE_ORG; |
| } |
| |
| for (addr = start, len = end - start; |
| len != 0; |
| len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { |
| PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); |
| |
| /* If the write protection bit is set, then we invalidate |
| the code inside. */ |
| if (!(p->flags & PAGE_WRITE) && |
| (flags & PAGE_WRITE) && |
| p->first_tb) { |
| tb_invalidate_phys_page(addr, 0); |
| } |
| p->flags = flags; |
| } |
| } |
| |
| int page_check_range(target_ulong start, target_ulong len, int flags) |
| { |
| PageDesc *p; |
| target_ulong end; |
| target_ulong addr; |
| |
| /* This function should never be called with addresses outside the |
| guest address space. If this assert fires, it probably indicates |
| a missing call to h2g_valid. */ |
| #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS |
| assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); |
| #endif |
| |
| if (len == 0) { |
| return 0; |
| } |
| if (start + len - 1 < start) { |
| /* We've wrapped around. */ |
| return -1; |
| } |
| |
| /* must do before we loose bits in the next step */ |
| end = TARGET_PAGE_ALIGN(start + len); |
| start = start & TARGET_PAGE_MASK; |
| |
| for (addr = start, len = end - start; |
| len != 0; |
| len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { |
| p = page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| return -1; |
| } |
| if (!(p->flags & PAGE_VALID)) { |
| return -1; |
| } |
| |
| if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { |
| return -1; |
| } |
| if (flags & PAGE_WRITE) { |
| if (!(p->flags & PAGE_WRITE_ORG)) { |
| return -1; |
| } |
| /* unprotect the page if it was put read-only because it |
| contains translated code */ |
| if (!(p->flags & PAGE_WRITE)) { |
| if (!page_unprotect(addr, 0)) { |
| return -1; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* called from signal handler: invalidate the code and unprotect the |
| * page. Return 0 if the fault was not handled, 1 if it was handled, |
| * and 2 if it was handled but the caller must cause the TB to be |
| * immediately exited. (We can only return 2 if the 'pc' argument is |
| * non-zero.) |
| */ |
| int page_unprotect(target_ulong address, uintptr_t pc) |
| { |
| unsigned int prot; |
| bool current_tb_invalidated; |
| PageDesc *p; |
| target_ulong host_start, host_end, addr; |
| |
| /* Technically this isn't safe inside a signal handler. However we |
| know this only ever happens in a synchronous SEGV handler, so in |
| practice it seems to be ok. */ |
| mmap_lock(); |
| |
| p = page_find(address >> TARGET_PAGE_BITS); |
| if (!p) { |
| mmap_unlock(); |
| return 0; |
| } |
| |
| /* if the page was really writable, then we change its |
| protection back to writable */ |
| if (p->flags & PAGE_WRITE_ORG) { |
| current_tb_invalidated = false; |
| if (p->flags & PAGE_WRITE) { |
| /* If the page is actually marked WRITE then assume this is because |
| * this thread raced with another one which got here first and |
| * set the page to PAGE_WRITE and did the TB invalidate for us. |
| */ |
| #ifdef TARGET_HAS_PRECISE_SMC |
| TranslationBlock *current_tb = tcg_tb_lookup(pc); |
| if (current_tb) { |
| current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; |
| } |
| #endif |
| } else { |
| host_start = address & qemu_host_page_mask; |
| host_end = host_start + qemu_host_page_size; |
| |
| prot = 0; |
| for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { |
| p = page_find(addr >> TARGET_PAGE_BITS); |
| p->flags |= PAGE_WRITE; |
| prot |= p->flags; |
| |
| /* and since the content will be modified, we must invalidate |
| the corresponding translated code. */ |
| current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); |
| #ifdef CONFIG_USER_ONLY |
| if (DEBUG_TB_CHECK_GATE) { |
| tb_invalidate_check(addr); |
| } |
| #endif |
| } |
| mprotect((void *)g2h(host_start), qemu_host_page_size, |
| prot & PAGE_BITS); |
| } |
| mmap_unlock(); |
| /* If current TB was invalidated return to main loop */ |
| return current_tb_invalidated ? 2 : 1; |
| } |
| mmap_unlock(); |
| return 0; |
| } |
| #endif /* CONFIG_USER_ONLY */ |
| |
| /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ |
| void tcg_flush_softmmu_tlb(CPUState *cs) |
| { |
| #ifdef CONFIG_SOFTMMU |
| tlb_flush(cs); |
| #endif |
| } |