| /* |
| * Alpha emulation cpu helpers for qemu. |
| * |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "fpu/softfloat-types.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/qemu-print.h" |
| |
| |
| #define CONVERT_BIT(X, SRC, DST) \ |
| (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC)) |
| |
| uint64_t cpu_alpha_load_fpcr(CPUAlphaState *env) |
| { |
| return (uint64_t)env->fpcr << 32; |
| } |
| |
| void cpu_alpha_store_fpcr(CPUAlphaState *env, uint64_t val) |
| { |
| static const uint8_t rm_map[] = { |
| [FPCR_DYN_NORMAL >> FPCR_DYN_SHIFT] = float_round_nearest_even, |
| [FPCR_DYN_CHOPPED >> FPCR_DYN_SHIFT] = float_round_to_zero, |
| [FPCR_DYN_MINUS >> FPCR_DYN_SHIFT] = float_round_down, |
| [FPCR_DYN_PLUS >> FPCR_DYN_SHIFT] = float_round_up, |
| }; |
| |
| uint32_t fpcr = val >> 32; |
| uint32_t t = 0; |
| |
| /* Record the raw value before adjusting for linux-user. */ |
| env->fpcr = fpcr; |
| |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * Override some of these bits with the contents of ENV->SWCR. |
| * In system mode, some of these would trap to the kernel, at |
| * which point the kernel's handler would emulate and apply |
| * the software exception mask. |
| */ |
| uint32_t soft_fpcr = alpha_ieee_swcr_to_fpcr(env->swcr) >> 32; |
| fpcr |= soft_fpcr & (FPCR_STATUS_MASK | FPCR_DNZ); |
| |
| /* |
| * The IOV exception is disabled by the kernel with SWCR_TRAP_ENABLE_INV, |
| * which got mapped by alpha_ieee_swcr_to_fpcr to FPCR_INVD. |
| * Add FPCR_IOV to fpcr_exc_enable so that it is handled identically. |
| */ |
| t |= CONVERT_BIT(soft_fpcr, FPCR_INVD, FPCR_IOV); |
| #endif |
| |
| t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE); |
| t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF); |
| t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF); |
| t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE); |
| t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV); |
| |
| env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK; |
| |
| env->fpcr_dyn_round = rm_map[(fpcr & FPCR_DYN_MASK) >> FPCR_DYN_SHIFT]; |
| env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0; |
| |
| t = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ); |
| #ifdef CONFIG_USER_ONLY |
| t |= (env->swcr & SWCR_MAP_UMZ) != 0; |
| #endif |
| env->fpcr_flush_to_zero = t; |
| } |
| |
| uint64_t helper_load_fpcr(CPUAlphaState *env) |
| { |
| return cpu_alpha_load_fpcr(env); |
| } |
| |
| void helper_store_fpcr(CPUAlphaState *env, uint64_t val) |
| { |
| cpu_alpha_store_fpcr(env, val); |
| } |
| |
| static uint64_t *cpu_alpha_addr_gr(CPUAlphaState *env, unsigned reg) |
| { |
| #ifndef CONFIG_USER_ONLY |
| if (env->flags & ENV_FLAG_PAL_MODE) { |
| if (reg >= 8 && reg <= 14) { |
| return &env->shadow[reg - 8]; |
| } else if (reg == 25) { |
| return &env->shadow[7]; |
| } |
| } |
| #endif |
| return &env->ir[reg]; |
| } |
| |
| uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg) |
| { |
| return *cpu_alpha_addr_gr(env, reg); |
| } |
| |
| void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val) |
| { |
| *cpu_alpha_addr_gr(env, reg) = val; |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| bool alpha_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| |
| cs->exception_index = EXCP_MMFAULT; |
| cpu->env.trap_arg0 = address; |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| #else |
| /* Returns the OSF/1 entMM failure indication, or -1 on success. */ |
| static int get_physical_address(CPUAlphaState *env, target_ulong addr, |
| int prot_need, int mmu_idx, |
| target_ulong *pphys, int *pprot) |
| { |
| CPUState *cs = env_cpu(env); |
| target_long saddr = addr; |
| target_ulong phys = 0; |
| target_ulong L1pte, L2pte, L3pte; |
| target_ulong pt, index; |
| int prot = 0; |
| int ret = MM_K_ACV; |
| |
| /* Handle physical accesses. */ |
| if (mmu_idx == MMU_PHYS_IDX) { |
| phys = addr; |
| prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| ret = -1; |
| goto exit; |
| } |
| |
| /* Ensure that the virtual address is properly sign-extended from |
| the last implemented virtual address bit. */ |
| if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) { |
| goto exit; |
| } |
| |
| /* Translate the superpage. */ |
| /* ??? When we do more than emulate Unix PALcode, we'll need to |
| determine which KSEG is actually active. */ |
| if (saddr < 0 && ((saddr >> 41) & 3) == 2) { |
| /* User-space cannot access KSEG addresses. */ |
| if (mmu_idx != MMU_KERNEL_IDX) { |
| goto exit; |
| } |
| |
| /* For the benefit of the Typhoon chipset, move bit 40 to bit 43. |
| We would not do this if the 48-bit KSEG is enabled. */ |
| phys = saddr & ((1ull << 40) - 1); |
| phys |= (saddr & (1ull << 40)) << 3; |
| |
| prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| ret = -1; |
| goto exit; |
| } |
| |
| /* Interpret the page table exactly like PALcode does. */ |
| |
| pt = env->ptbr; |
| |
| /* TODO: rather than using ldq_phys() to read the page table we should |
| * use address_space_ldq() so that we can handle the case when |
| * the page table read gives a bus fault, rather than ignoring it. |
| * For the existing code the zero data that ldq_phys will return for |
| * an access to invalid memory will result in our treating the page |
| * table as invalid, which may even be the right behaviour. |
| */ |
| |
| /* L1 page table read. */ |
| index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff; |
| L1pte = ldq_phys(cs->as, pt + index*8); |
| |
| if (unlikely((L1pte & PTE_VALID) == 0)) { |
| ret = MM_K_TNV; |
| goto exit; |
| } |
| if (unlikely((L1pte & PTE_KRE) == 0)) { |
| goto exit; |
| } |
| pt = L1pte >> 32 << TARGET_PAGE_BITS; |
| |
| /* L2 page table read. */ |
| index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff; |
| L2pte = ldq_phys(cs->as, pt + index*8); |
| |
| if (unlikely((L2pte & PTE_VALID) == 0)) { |
| ret = MM_K_TNV; |
| goto exit; |
| } |
| if (unlikely((L2pte & PTE_KRE) == 0)) { |
| goto exit; |
| } |
| pt = L2pte >> 32 << TARGET_PAGE_BITS; |
| |
| /* L3 page table read. */ |
| index = (addr >> TARGET_PAGE_BITS) & 0x3ff; |
| L3pte = ldq_phys(cs->as, pt + index*8); |
| |
| phys = L3pte >> 32 << TARGET_PAGE_BITS; |
| if (unlikely((L3pte & PTE_VALID) == 0)) { |
| ret = MM_K_TNV; |
| goto exit; |
| } |
| |
| #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4 |
| # error page bits out of date |
| #endif |
| |
| /* Check access violations. */ |
| if (L3pte & (PTE_KRE << mmu_idx)) { |
| prot |= PAGE_READ | PAGE_EXEC; |
| } |
| if (L3pte & (PTE_KWE << mmu_idx)) { |
| prot |= PAGE_WRITE; |
| } |
| if (unlikely((prot & prot_need) == 0 && prot_need)) { |
| goto exit; |
| } |
| |
| /* Check fault-on-operation violations. */ |
| prot &= ~(L3pte >> 1); |
| ret = -1; |
| if (unlikely((prot & prot_need) == 0)) { |
| ret = (prot_need & PAGE_EXEC ? MM_K_FOE : |
| prot_need & PAGE_WRITE ? MM_K_FOW : |
| prot_need & PAGE_READ ? MM_K_FOR : -1); |
| } |
| |
| exit: |
| *pphys = phys; |
| *pprot = prot; |
| return ret; |
| } |
| |
| hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| target_ulong phys; |
| int prot, fail; |
| |
| fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot); |
| return (fail >= 0 ? -1 : phys); |
| } |
| |
| bool alpha_cpu_tlb_fill(CPUState *cs, vaddr addr, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| CPUAlphaState *env = &cpu->env; |
| target_ulong phys; |
| int prot, fail; |
| |
| fail = get_physical_address(env, addr, 1 << access_type, |
| mmu_idx, &phys, &prot); |
| if (unlikely(fail >= 0)) { |
| if (probe) { |
| return false; |
| } |
| cs->exception_index = EXCP_MMFAULT; |
| env->trap_arg0 = addr; |
| env->trap_arg1 = fail; |
| env->trap_arg2 = (access_type == MMU_DATA_LOAD ? 0ull : |
| access_type == MMU_DATA_STORE ? 1ull : |
| /* access_type == MMU_INST_FETCH */ -1ull); |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| |
| tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, |
| prot, mmu_idx, TARGET_PAGE_SIZE); |
| return true; |
| } |
| |
| void alpha_cpu_do_interrupt(CPUState *cs) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| CPUAlphaState *env = &cpu->env; |
| int i = cs->exception_index; |
| |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| static int count; |
| const char *name = "<unknown>"; |
| |
| switch (i) { |
| case EXCP_RESET: |
| name = "reset"; |
| break; |
| case EXCP_MCHK: |
| name = "mchk"; |
| break; |
| case EXCP_SMP_INTERRUPT: |
| name = "smp_interrupt"; |
| break; |
| case EXCP_CLK_INTERRUPT: |
| name = "clk_interrupt"; |
| break; |
| case EXCP_DEV_INTERRUPT: |
| name = "dev_interrupt"; |
| break; |
| case EXCP_MMFAULT: |
| name = "mmfault"; |
| break; |
| case EXCP_UNALIGN: |
| name = "unalign"; |
| break; |
| case EXCP_OPCDEC: |
| name = "opcdec"; |
| break; |
| case EXCP_ARITH: |
| name = "arith"; |
| break; |
| case EXCP_FEN: |
| name = "fen"; |
| break; |
| case EXCP_CALL_PAL: |
| name = "call_pal"; |
| break; |
| } |
| qemu_log("INT %6d: %s(%#x) cpu=%d pc=%016" |
| PRIx64 " sp=%016" PRIx64 "\n", |
| ++count, name, env->error_code, cs->cpu_index, |
| env->pc, env->ir[IR_SP]); |
| } |
| |
| cs->exception_index = -1; |
| |
| switch (i) { |
| case EXCP_RESET: |
| i = 0x0000; |
| break; |
| case EXCP_MCHK: |
| i = 0x0080; |
| break; |
| case EXCP_SMP_INTERRUPT: |
| i = 0x0100; |
| break; |
| case EXCP_CLK_INTERRUPT: |
| i = 0x0180; |
| break; |
| case EXCP_DEV_INTERRUPT: |
| i = 0x0200; |
| break; |
| case EXCP_MMFAULT: |
| i = 0x0280; |
| break; |
| case EXCP_UNALIGN: |
| i = 0x0300; |
| break; |
| case EXCP_OPCDEC: |
| i = 0x0380; |
| break; |
| case EXCP_ARITH: |
| i = 0x0400; |
| break; |
| case EXCP_FEN: |
| i = 0x0480; |
| break; |
| case EXCP_CALL_PAL: |
| i = env->error_code; |
| /* There are 64 entry points for both privileged and unprivileged, |
| with bit 0x80 indicating unprivileged. Each entry point gets |
| 64 bytes to do its job. */ |
| if (i & 0x80) { |
| i = 0x2000 + (i - 0x80) * 64; |
| } else { |
| i = 0x1000 + i * 64; |
| } |
| break; |
| default: |
| cpu_abort(cs, "Unhandled CPU exception"); |
| } |
| |
| /* Remember where the exception happened. Emulate real hardware in |
| that the low bit of the PC indicates PALmode. */ |
| env->exc_addr = env->pc | (env->flags & ENV_FLAG_PAL_MODE); |
| |
| /* Continue execution at the PALcode entry point. */ |
| env->pc = env->palbr + i; |
| |
| /* Switch to PALmode. */ |
| env->flags |= ENV_FLAG_PAL_MODE; |
| } |
| |
| bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| CPUAlphaState *env = &cpu->env; |
| int idx = -1; |
| |
| /* We never take interrupts while in PALmode. */ |
| if (env->flags & ENV_FLAG_PAL_MODE) { |
| return false; |
| } |
| |
| /* Fall through the switch, collecting the highest priority |
| interrupt that isn't masked by the processor status IPL. */ |
| /* ??? This hard-codes the OSF/1 interrupt levels. */ |
| switch ((env->flags >> ENV_FLAG_PS_SHIFT) & PS_INT_MASK) { |
| case 0 ... 3: |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| idx = EXCP_DEV_INTERRUPT; |
| } |
| /* FALLTHRU */ |
| case 4: |
| if (interrupt_request & CPU_INTERRUPT_TIMER) { |
| idx = EXCP_CLK_INTERRUPT; |
| } |
| /* FALLTHRU */ |
| case 5: |
| if (interrupt_request & CPU_INTERRUPT_SMP) { |
| idx = EXCP_SMP_INTERRUPT; |
| } |
| /* FALLTHRU */ |
| case 6: |
| if (interrupt_request & CPU_INTERRUPT_MCHK) { |
| idx = EXCP_MCHK; |
| } |
| } |
| if (idx >= 0) { |
| cs->exception_index = idx; |
| env->error_code = 0; |
| alpha_cpu_do_interrupt(cs); |
| return true; |
| } |
| return false; |
| } |
| |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| void alpha_cpu_dump_state(CPUState *cs, FILE *f, int flags) |
| { |
| static const char linux_reg_names[31][4] = { |
| "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", |
| "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp", |
| "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", |
| "t10", "t11", "ra", "t12", "at", "gp", "sp" |
| }; |
| AlphaCPU *cpu = ALPHA_CPU(cs); |
| CPUAlphaState *env = &cpu->env; |
| int i; |
| |
| qemu_fprintf(f, "PC " TARGET_FMT_lx " PS %02x\n", |
| env->pc, extract32(env->flags, ENV_FLAG_PS_SHIFT, 8)); |
| for (i = 0; i < 31; i++) { |
| qemu_fprintf(f, "%-8s" TARGET_FMT_lx "%c", |
| linux_reg_names[i], cpu_alpha_load_gr(env, i), |
| (i % 3) == 2 ? '\n' : ' '); |
| } |
| |
| qemu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n", |
| env->lock_addr, env->lock_value); |
| |
| if (flags & CPU_DUMP_FPU) { |
| for (i = 0; i < 31; i++) { |
| qemu_fprintf(f, "f%-7d%016" PRIx64 "%c", i, env->fir[i], |
| (i % 3) == 2 ? '\n' : ' '); |
| } |
| qemu_fprintf(f, "fpcr %016" PRIx64 "\n", cpu_alpha_load_fpcr(env)); |
| } |
| qemu_fprintf(f, "\n"); |
| } |
| |
| /* This should only be called from translate, via gen_excp. |
| We expect that ENV->PC has already been updated. */ |
| void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = excp; |
| env->error_code = error; |
| cpu_loop_exit(cs); |
| } |
| |
| /* This may be called from any of the helpers to set up EXCEPTION_INDEX. */ |
| void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr, |
| int excp, int error) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = excp; |
| env->error_code = error; |
| if (retaddr) { |
| cpu_restore_state(cs, retaddr, true); |
| /* Floating-point exceptions (our only users) point to the next PC. */ |
| env->pc += 4; |
| } |
| cpu_loop_exit(cs); |
| } |
| |
| void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr, |
| int exc, uint64_t mask) |
| { |
| env->trap_arg0 = exc; |
| env->trap_arg1 = mask; |
| dynamic_excp(env, retaddr, EXCP_ARITH, 0); |
| } |