| #ifndef QEMU_H |
| #define QEMU_H |
| |
| #include "hostdep.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| |
| #undef DEBUG_REMAP |
| |
| #include "exec/user/abitypes.h" |
| |
| #include "exec/user/thunk.h" |
| #include "syscall_defs.h" |
| #include "target_syscall.h" |
| #include "exec/gdbstub.h" |
| |
| /* This is the size of the host kernel's sigset_t, needed where we make |
| * direct system calls that take a sigset_t pointer and a size. |
| */ |
| #define SIGSET_T_SIZE (_NSIG / 8) |
| |
| /* This struct is used to hold certain information about the image. |
| * Basically, it replicates in user space what would be certain |
| * task_struct fields in the kernel |
| */ |
| struct image_info { |
| abi_ulong load_bias; |
| abi_ulong load_addr; |
| abi_ulong start_code; |
| abi_ulong end_code; |
| abi_ulong start_data; |
| abi_ulong end_data; |
| abi_ulong start_brk; |
| abi_ulong brk; |
| abi_ulong reserve_brk; |
| abi_ulong start_mmap; |
| abi_ulong start_stack; |
| abi_ulong stack_limit; |
| abi_ulong entry; |
| abi_ulong code_offset; |
| abi_ulong data_offset; |
| abi_ulong saved_auxv; |
| abi_ulong auxv_len; |
| abi_ulong arg_start; |
| abi_ulong arg_end; |
| abi_ulong arg_strings; |
| abi_ulong env_strings; |
| abi_ulong file_string; |
| uint32_t elf_flags; |
| int personality; |
| abi_ulong alignment; |
| |
| /* The fields below are used in FDPIC mode. */ |
| abi_ulong loadmap_addr; |
| uint16_t nsegs; |
| void *loadsegs; |
| abi_ulong pt_dynamic_addr; |
| abi_ulong interpreter_loadmap_addr; |
| abi_ulong interpreter_pt_dynamic_addr; |
| struct image_info *other_info; |
| |
| /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */ |
| uint32_t note_flags; |
| |
| #ifdef TARGET_MIPS |
| int fp_abi; |
| int interp_fp_abi; |
| #endif |
| }; |
| |
| #ifdef TARGET_I386 |
| /* Information about the current linux thread */ |
| struct vm86_saved_state { |
| uint32_t eax; /* return code */ |
| uint32_t ebx; |
| uint32_t ecx; |
| uint32_t edx; |
| uint32_t esi; |
| uint32_t edi; |
| uint32_t ebp; |
| uint32_t esp; |
| uint32_t eflags; |
| uint32_t eip; |
| uint16_t cs, ss, ds, es, fs, gs; |
| }; |
| #endif |
| |
| #if defined(TARGET_ARM) && defined(TARGET_ABI32) |
| /* FPU emulator */ |
| #include "nwfpe/fpa11.h" |
| #endif |
| |
| #define MAX_SIGQUEUE_SIZE 1024 |
| |
| struct emulated_sigtable { |
| int pending; /* true if signal is pending */ |
| target_siginfo_t info; |
| }; |
| |
| /* NOTE: we force a big alignment so that the stack stored after is |
| aligned too */ |
| typedef struct TaskState { |
| pid_t ts_tid; /* tid (or pid) of this task */ |
| #ifdef TARGET_ARM |
| # ifdef TARGET_ABI32 |
| /* FPA state */ |
| FPA11 fpa; |
| # endif |
| #endif |
| #if defined(TARGET_ARM) || defined(TARGET_RISCV) |
| int swi_errno; |
| #endif |
| #if defined(TARGET_I386) && !defined(TARGET_X86_64) |
| abi_ulong target_v86; |
| struct vm86_saved_state vm86_saved_regs; |
| struct target_vm86plus_struct vm86plus; |
| uint32_t v86flags; |
| uint32_t v86mask; |
| #endif |
| abi_ulong child_tidptr; |
| #ifdef TARGET_M68K |
| abi_ulong tp_value; |
| #endif |
| #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV) |
| /* Extra fields for semihosted binaries. */ |
| abi_ulong heap_base; |
| abi_ulong heap_limit; |
| #endif |
| abi_ulong stack_base; |
| int used; /* non zero if used */ |
| struct image_info *info; |
| struct linux_binprm *bprm; |
| |
| struct emulated_sigtable sync_signal; |
| struct emulated_sigtable sigtab[TARGET_NSIG]; |
| /* This thread's signal mask, as requested by the guest program. |
| * The actual signal mask of this thread may differ: |
| * + we don't let SIGSEGV and SIGBUS be blocked while running guest code |
| * + sometimes we block all signals to avoid races |
| */ |
| sigset_t signal_mask; |
| /* The signal mask imposed by a guest sigsuspend syscall, if we are |
| * currently in the middle of such a syscall |
| */ |
| sigset_t sigsuspend_mask; |
| /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */ |
| int in_sigsuspend; |
| |
| /* Nonzero if process_pending_signals() needs to do something (either |
| * handle a pending signal or unblock signals). |
| * This flag is written from a signal handler so should be accessed via |
| * the qatomic_read() and qatomic_set() functions. (It is not accessed |
| * from multiple threads.) |
| */ |
| int signal_pending; |
| |
| /* This thread's sigaltstack, if it has one */ |
| struct target_sigaltstack sigaltstack_used; |
| } __attribute__((aligned(16))) TaskState; |
| |
| extern char *exec_path; |
| void init_task_state(TaskState *ts); |
| void task_settid(TaskState *); |
| void stop_all_tasks(void); |
| extern const char *qemu_uname_release; |
| extern unsigned long mmap_min_addr; |
| |
| /* ??? See if we can avoid exposing so much of the loader internals. */ |
| |
| /* Read a good amount of data initially, to hopefully get all the |
| program headers loaded. */ |
| #define BPRM_BUF_SIZE 1024 |
| |
| /* |
| * This structure is used to hold the arguments that are |
| * used when loading binaries. |
| */ |
| struct linux_binprm { |
| char buf[BPRM_BUF_SIZE] __attribute__((aligned)); |
| abi_ulong p; |
| int fd; |
| int e_uid, e_gid; |
| int argc, envc; |
| char **argv; |
| char **envp; |
| char * filename; /* Name of binary */ |
| int (*core_dump)(int, const CPUArchState *); /* coredump routine */ |
| }; |
| |
| typedef struct IOCTLEntry IOCTLEntry; |
| |
| typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp, |
| int fd, int cmd, abi_long arg); |
| |
| struct IOCTLEntry { |
| int target_cmd; |
| unsigned int host_cmd; |
| const char *name; |
| int access; |
| do_ioctl_fn *do_ioctl; |
| const argtype arg_type[5]; |
| }; |
| |
| extern IOCTLEntry ioctl_entries[]; |
| |
| #define IOC_R 0x0001 |
| #define IOC_W 0x0002 |
| #define IOC_RW (IOC_R | IOC_W) |
| |
| void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); |
| abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, |
| abi_ulong stringp, int push_ptr); |
| int loader_exec(int fdexec, const char *filename, char **argv, char **envp, |
| struct target_pt_regs * regs, struct image_info *infop, |
| struct linux_binprm *); |
| |
| /* Returns true if the image uses the FDPIC ABI. If this is the case, |
| * we have to provide some information (loadmap, pt_dynamic_info) such |
| * that the program can be relocated adequately. This is also useful |
| * when handling signals. |
| */ |
| int info_is_fdpic(struct image_info *info); |
| |
| uint32_t get_elf_eflags(int fd); |
| int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); |
| int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); |
| |
| abi_long memcpy_to_target(abi_ulong dest, const void *src, |
| unsigned long len); |
| void target_set_brk(abi_ulong new_brk); |
| abi_long do_brk(abi_ulong new_brk); |
| void syscall_init(void); |
| abi_long do_syscall(void *cpu_env, int num, abi_long arg1, |
| abi_long arg2, abi_long arg3, abi_long arg4, |
| abi_long arg5, abi_long arg6, abi_long arg7, |
| abi_long arg8); |
| extern __thread CPUState *thread_cpu; |
| void cpu_loop(CPUArchState *env); |
| const char *target_strerror(int err); |
| int get_osversion(void); |
| void init_qemu_uname_release(void); |
| void fork_start(void); |
| void fork_end(int child); |
| |
| /** |
| * probe_guest_base: |
| * @image_name: the executable being loaded |
| * @loaddr: the lowest fixed address in the executable |
| * @hiaddr: the highest fixed address in the executable |
| * |
| * Creates the initial guest address space in the host memory space. |
| * |
| * If @loaddr == 0, then no address in the executable is fixed, |
| * i.e. it is fully relocatable. In that case @hiaddr is the size |
| * of the executable. |
| * |
| * This function will not return if a valid value for guest_base |
| * cannot be chosen. On return, the executable loader can expect |
| * |
| * target_mmap(loaddr, hiaddr - loaddr, ...) |
| * |
| * to succeed. |
| */ |
| void probe_guest_base(const char *image_name, |
| abi_ulong loaddr, abi_ulong hiaddr); |
| |
| #include "qemu/log.h" |
| |
| /* safe_syscall.S */ |
| |
| /** |
| * safe_syscall: |
| * @int number: number of system call to make |
| * ...: arguments to the system call |
| * |
| * Call a system call if guest signal not pending. |
| * This has the same API as the libc syscall() function, except that it |
| * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending. |
| * |
| * Returns: the system call result, or -1 with an error code in errno |
| * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing |
| * with any of the host errno values.) |
| */ |
| |
| /* A guide to using safe_syscall() to handle interactions between guest |
| * syscalls and guest signals: |
| * |
| * Guest syscalls come in two flavours: |
| * |
| * (1) Non-interruptible syscalls |
| * |
| * These are guest syscalls that never get interrupted by signals and |
| * so never return EINTR. They can be implemented straightforwardly in |
| * QEMU: just make sure that if the implementation code has to make any |
| * blocking calls that those calls are retried if they return EINTR. |
| * It's also OK to implement these with safe_syscall, though it will be |
| * a little less efficient if a signal is delivered at the 'wrong' moment. |
| * |
| * Some non-interruptible syscalls need to be handled using block_signals() |
| * to block signals for the duration of the syscall. This mainly applies |
| * to code which needs to modify the data structures used by the |
| * host_signal_handler() function and the functions it calls, including |
| * all syscalls which change the thread's signal mask. |
| * |
| * (2) Interruptible syscalls |
| * |
| * These are guest syscalls that can be interrupted by signals and |
| * for which we need to either return EINTR or arrange for the guest |
| * syscall to be restarted. This category includes both syscalls which |
| * always restart (and in the kernel return -ERESTARTNOINTR), ones |
| * which only restart if there is no handler (kernel returns -ERESTARTNOHAND |
| * or -ERESTART_RESTARTBLOCK), and the most common kind which restart |
| * if the handler was registered with SA_RESTART (kernel returns |
| * -ERESTARTSYS). System calls which are only interruptible in some |
| * situations (like 'open') also need to be handled this way. |
| * |
| * Here it is important that the host syscall is made |
| * via this safe_syscall() function, and *not* via the host libc. |
| * If the host libc is used then the implementation will appear to work |
| * most of the time, but there will be a race condition where a |
| * signal could arrive just before we make the host syscall inside libc, |
| * and then then guest syscall will not correctly be interrupted. |
| * Instead the implementation of the guest syscall can use the safe_syscall |
| * function but otherwise just return the result or errno in the usual |
| * way; the main loop code will take care of restarting the syscall |
| * if appropriate. |
| * |
| * (If the implementation needs to make multiple host syscalls this is |
| * OK; any which might really block must be via safe_syscall(); for those |
| * which are only technically blocking (ie which we know in practice won't |
| * stay in the host kernel indefinitely) it's OK to use libc if necessary. |
| * You must be able to cope with backing out correctly if some safe_syscall |
| * you make in the implementation returns either -TARGET_ERESTARTSYS or |
| * EINTR though.) |
| * |
| * block_signals() cannot be used for interruptible syscalls. |
| * |
| * |
| * How and why the safe_syscall implementation works: |
| * |
| * The basic setup is that we make the host syscall via a known |
| * section of host native assembly. If a signal occurs, our signal |
| * handler checks the interrupted host PC against the addresse of that |
| * known section. If the PC is before or at the address of the syscall |
| * instruction then we change the PC to point at a "return |
| * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler |
| * (causing the safe_syscall() call to immediately return that value). |
| * Then in the main.c loop if we see this magic return value we adjust |
| * the guest PC to wind it back to before the system call, and invoke |
| * the guest signal handler as usual. |
| * |
| * This winding-back will happen in two cases: |
| * (1) signal came in just before we took the host syscall (a race); |
| * in this case we'll take the guest signal and have another go |
| * at the syscall afterwards, and this is indistinguishable for the |
| * guest from the timing having been different such that the guest |
| * signal really did win the race |
| * (2) signal came in while the host syscall was blocking, and the |
| * host kernel decided the syscall should be restarted; |
| * in this case we want to restart the guest syscall also, and so |
| * rewinding is the right thing. (Note that "restart" semantics mean |
| * "first call the signal handler, then reattempt the syscall".) |
| * The other situation to consider is when a signal came in while the |
| * host syscall was blocking, and the host kernel decided that the syscall |
| * should not be restarted; in this case QEMU's host signal handler will |
| * be invoked with the PC pointing just after the syscall instruction, |
| * with registers indicating an EINTR return; the special code in the |
| * handler will not kick in, and we will return EINTR to the guest as |
| * we should. |
| * |
| * Notice that we can leave the host kernel to make the decision for |
| * us about whether to do a restart of the syscall or not; we do not |
| * need to check SA_RESTART flags in QEMU or distinguish the various |
| * kinds of restartability. |
| */ |
| #ifdef HAVE_SAFE_SYSCALL |
| /* The core part of this function is implemented in assembly */ |
| extern long safe_syscall_base(int *pending, long number, ...); |
| |
| #define safe_syscall(...) \ |
| ({ \ |
| long ret_; \ |
| int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \ |
| ret_ = safe_syscall_base(psp_, __VA_ARGS__); \ |
| if (is_error(ret_)) { \ |
| errno = -ret_; \ |
| ret_ = -1; \ |
| } \ |
| ret_; \ |
| }) |
| |
| #else |
| |
| /* Fallback for architectures which don't yet provide a safe-syscall assembly |
| * fragment; note that this is racy! |
| * This should go away when all host architectures have been updated. |
| */ |
| #define safe_syscall syscall |
| |
| #endif |
| |
| /* syscall.c */ |
| int host_to_target_waitstatus(int status); |
| |
| /* strace.c */ |
| void print_syscall(void *cpu_env, int num, |
| abi_long arg1, abi_long arg2, abi_long arg3, |
| abi_long arg4, abi_long arg5, abi_long arg6); |
| void print_syscall_ret(void *cpu_env, int num, abi_long ret, |
| abi_long arg1, abi_long arg2, abi_long arg3, |
| abi_long arg4, abi_long arg5, abi_long arg6); |
| /** |
| * print_taken_signal: |
| * @target_signum: target signal being taken |
| * @tinfo: target_siginfo_t which will be passed to the guest for the signal |
| * |
| * Print strace output indicating that this signal is being taken by the guest, |
| * in a format similar to: |
| * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} --- |
| */ |
| void print_taken_signal(int target_signum, const target_siginfo_t *tinfo); |
| |
| /* signal.c */ |
| void process_pending_signals(CPUArchState *cpu_env); |
| void signal_init(void); |
| int queue_signal(CPUArchState *env, int sig, int si_type, |
| target_siginfo_t *info); |
| void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); |
| void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); |
| int target_to_host_signal(int sig); |
| int host_to_target_signal(int sig); |
| long do_sigreturn(CPUArchState *env); |
| long do_rt_sigreturn(CPUArchState *env); |
| abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); |
| int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset); |
| abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx, |
| abi_ulong unew_ctx, abi_long ctx_size); |
| /** |
| * block_signals: block all signals while handling this guest syscall |
| * |
| * Block all signals, and arrange that the signal mask is returned to |
| * its correct value for the guest before we resume execution of guest code. |
| * If this function returns non-zero, then the caller should immediately |
| * return -TARGET_ERESTARTSYS to the main loop, which will take the pending |
| * signal and restart execution of the syscall. |
| * If block_signals() returns zero, then the caller can continue with |
| * emulation of the system call knowing that no signals can be taken |
| * (and therefore that no race conditions will result). |
| * This should only be called once, because if it is called a second time |
| * it will always return non-zero. (Think of it like a mutex that can't |
| * be recursively locked.) |
| * Signals will be unblocked again by process_pending_signals(). |
| * |
| * Return value: non-zero if there was a pending signal, zero if not. |
| */ |
| int block_signals(void); /* Returns non zero if signal pending */ |
| |
| #ifdef TARGET_I386 |
| /* vm86.c */ |
| void save_v86_state(CPUX86State *env); |
| void handle_vm86_trap(CPUX86State *env, int trapno); |
| void handle_vm86_fault(CPUX86State *env); |
| int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); |
| #elif defined(TARGET_SPARC64) |
| void sparc64_set_context(CPUSPARCState *env); |
| void sparc64_get_context(CPUSPARCState *env); |
| #endif |
| |
| /* mmap.c */ |
| int target_mprotect(abi_ulong start, abi_ulong len, int prot); |
| abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, |
| int flags, int fd, abi_ulong offset); |
| int target_munmap(abi_ulong start, abi_ulong len); |
| abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, |
| abi_ulong new_size, unsigned long flags, |
| abi_ulong new_addr); |
| extern unsigned long last_brk; |
| extern abi_ulong mmap_next_start; |
| abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong); |
| void mmap_fork_start(void); |
| void mmap_fork_end(int child); |
| |
| /* main.c */ |
| extern unsigned long guest_stack_size; |
| |
| /* user access */ |
| |
| #define VERIFY_READ PAGE_READ |
| #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) |
| |
| static inline bool access_ok_untagged(int type, abi_ulong addr, abi_ulong size) |
| { |
| if (size == 0 |
| ? !guest_addr_valid_untagged(addr) |
| : !guest_range_valid_untagged(addr, size)) { |
| return false; |
| } |
| return page_check_range((target_ulong)addr, size, type) == 0; |
| } |
| |
| static inline bool access_ok(CPUState *cpu, int type, |
| abi_ulong addr, abi_ulong size) |
| { |
| return access_ok_untagged(type, cpu_untagged_addr(cpu, addr), size); |
| } |
| |
| /* NOTE __get_user and __put_user use host pointers and don't check access. |
| These are usually used to access struct data members once the struct has |
| been locked - usually with lock_user_struct. */ |
| |
| /* |
| * Tricky points: |
| * - Use __builtin_choose_expr to avoid type promotion from ?:, |
| * - Invalid sizes result in a compile time error stemming from |
| * the fact that abort has no parameters. |
| * - It's easier to use the endian-specific unaligned load/store |
| * functions than host-endian unaligned load/store plus tswapN. |
| * - The pragmas are necessary only to silence a clang false-positive |
| * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 . |
| * - gcc has bugs in its _Pragma() support in some versions, eg |
| * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only |
| * include the warning-suppression pragmas for clang |
| */ |
| #if defined(__clang__) && __has_warning("-Waddress-of-packed-member") |
| #define PRAGMA_DISABLE_PACKED_WARNING \ |
| _Pragma("GCC diagnostic push"); \ |
| _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"") |
| |
| #define PRAGMA_REENABLE_PACKED_WARNING \ |
| _Pragma("GCC diagnostic pop") |
| |
| #else |
| #define PRAGMA_DISABLE_PACKED_WARNING |
| #define PRAGMA_REENABLE_PACKED_WARNING |
| #endif |
| |
| #define __put_user_e(x, hptr, e) \ |
| do { \ |
| PRAGMA_DISABLE_PACKED_WARNING; \ |
| (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ |
| __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ |
| __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ |
| __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ |
| ((hptr), (x)), (void)0); \ |
| PRAGMA_REENABLE_PACKED_WARNING; \ |
| } while (0) |
| |
| #define __get_user_e(x, hptr, e) \ |
| do { \ |
| PRAGMA_DISABLE_PACKED_WARNING; \ |
| ((x) = (typeof(*hptr))( \ |
| __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ |
| __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ |
| __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ |
| __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ |
| (hptr)), (void)0); \ |
| PRAGMA_REENABLE_PACKED_WARNING; \ |
| } while (0) |
| |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| # define __put_user(x, hptr) __put_user_e(x, hptr, be) |
| # define __get_user(x, hptr) __get_user_e(x, hptr, be) |
| #else |
| # define __put_user(x, hptr) __put_user_e(x, hptr, le) |
| # define __get_user(x, hptr) __get_user_e(x, hptr, le) |
| #endif |
| |
| /* put_user()/get_user() take a guest address and check access */ |
| /* These are usually used to access an atomic data type, such as an int, |
| * that has been passed by address. These internally perform locking |
| * and unlocking on the data type. |
| */ |
| #define put_user(x, gaddr, target_type) \ |
| ({ \ |
| abi_ulong __gaddr = (gaddr); \ |
| target_type *__hptr; \ |
| abi_long __ret = 0; \ |
| if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ |
| __put_user((x), __hptr); \ |
| unlock_user(__hptr, __gaddr, sizeof(target_type)); \ |
| } else \ |
| __ret = -TARGET_EFAULT; \ |
| __ret; \ |
| }) |
| |
| #define get_user(x, gaddr, target_type) \ |
| ({ \ |
| abi_ulong __gaddr = (gaddr); \ |
| target_type *__hptr; \ |
| abi_long __ret = 0; \ |
| if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ |
| __get_user((x), __hptr); \ |
| unlock_user(__hptr, __gaddr, 0); \ |
| } else { \ |
| /* avoid warning */ \ |
| (x) = 0; \ |
| __ret = -TARGET_EFAULT; \ |
| } \ |
| __ret; \ |
| }) |
| |
| #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) |
| #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) |
| #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) |
| #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) |
| #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) |
| #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) |
| #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) |
| #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) |
| #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) |
| #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) |
| |
| #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) |
| #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) |
| #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) |
| #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) |
| #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) |
| #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) |
| #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) |
| #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) |
| #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) |
| #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) |
| |
| /* copy_from_user() and copy_to_user() are usually used to copy data |
| * buffers between the target and host. These internally perform |
| * locking/unlocking of the memory. |
| */ |
| int copy_from_user(void *hptr, abi_ulong gaddr, size_t len); |
| int copy_to_user(abi_ulong gaddr, void *hptr, size_t len); |
| |
| /* Functions for accessing guest memory. The tget and tput functions |
| read/write single values, byteswapping as necessary. The lock_user function |
| gets a pointer to a contiguous area of guest memory, but does not perform |
| any byteswapping. lock_user may return either a pointer to the guest |
| memory, or a temporary buffer. */ |
| |
| /* Lock an area of guest memory into the host. If copy is true then the |
| host area will have the same contents as the guest. */ |
| void *lock_user(int type, abi_ulong guest_addr, size_t len, bool copy); |
| |
| /* Unlock an area of guest memory. The first LEN bytes must be |
| flushed back to guest memory. host_ptr = NULL is explicitly |
| allowed and does nothing. */ |
| #ifndef DEBUG_REMAP |
| static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, size_t len) |
| { } |
| #else |
| void unlock_user(void *host_ptr, abi_ulong guest_addr, long len); |
| #endif |
| |
| /* Return the length of a string in target memory or -TARGET_EFAULT if |
| access error. */ |
| ssize_t target_strlen(abi_ulong gaddr); |
| |
| /* Like lock_user but for null terminated strings. */ |
| void *lock_user_string(abi_ulong guest_addr); |
| |
| /* Helper macros for locking/unlocking a target struct. */ |
| #define lock_user_struct(type, host_ptr, guest_addr, copy) \ |
| (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) |
| #define unlock_user_struct(host_ptr, guest_addr, copy) \ |
| unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) |
| |
| #include <pthread.h> |
| |
| static inline int is_error(abi_long ret) |
| { |
| return (abi_ulong)ret >= (abi_ulong)(-4096); |
| } |
| |
| #if TARGET_ABI_BITS == 32 |
| static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) |
| { |
| #ifdef TARGET_WORDS_BIGENDIAN |
| return ((uint64_t)word0 << 32) | word1; |
| #else |
| return ((uint64_t)word1 << 32) | word0; |
| #endif |
| } |
| #else /* TARGET_ABI_BITS == 32 */ |
| static inline uint64_t target_offset64(uint64_t word0, uint64_t word1) |
| { |
| return word0; |
| } |
| #endif /* TARGET_ABI_BITS != 32 */ |
| |
| void print_termios(void *arg); |
| |
| /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */ |
| #ifdef TARGET_ARM |
| static inline int regpairs_aligned(void *cpu_env, int num) |
| { |
| return ((((CPUARMState *)cpu_env)->eabi) == 1) ; |
| } |
| #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32) |
| static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } |
| #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) |
| /* |
| * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs |
| * of registers which translates to the same as ARM/MIPS, because we start with |
| * r3 as arg1 |
| */ |
| static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } |
| #elif defined(TARGET_SH4) |
| /* SH4 doesn't align register pairs, except for p{read,write}64 */ |
| static inline int regpairs_aligned(void *cpu_env, int num) |
| { |
| switch (num) { |
| case TARGET_NR_pread64: |
| case TARGET_NR_pwrite64: |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| #elif defined(TARGET_XTENSA) |
| static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } |
| #elif defined(TARGET_HEXAGON) |
| static inline int regpairs_aligned(void *cpu_env, int num) { return 1; } |
| #else |
| static inline int regpairs_aligned(void *cpu_env, int num) { return 0; } |
| #endif |
| |
| /** |
| * preexit_cleanup: housekeeping before the guest exits |
| * |
| * env: the CPU state |
| * code: the exit code |
| */ |
| void preexit_cleanup(CPUArchState *env, int code); |
| |
| /* Include target-specific struct and function definitions; |
| * they may need access to the target-independent structures |
| * above, so include them last. |
| */ |
| #include "target_cpu.h" |
| #include "target_structs.h" |
| |
| #endif /* QEMU_H */ |