| /* |
| ** |
| ** File: fmopl.c -- software implementation of FM sound generator |
| ** |
| ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development |
| ** |
| ** Version 0.37a |
| ** |
| */ |
| |
| /* |
| preliminary : |
| Problem : |
| note: |
| */ |
| |
| /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <math.h> |
| //#include "driver.h" /* use M.A.M.E. */ |
| #include "fmopl.h" |
| #ifndef PI |
| #define PI 3.14159265358979323846 |
| #endif |
| |
| /* -------------------- for debug --------------------- */ |
| /* #define OPL_OUTPUT_LOG */ |
| #ifdef OPL_OUTPUT_LOG |
| static FILE *opl_dbg_fp = NULL; |
| static FM_OPL *opl_dbg_opl[16]; |
| static int opl_dbg_maxchip,opl_dbg_chip; |
| #endif |
| |
| /* -------------------- preliminary define section --------------------- */ |
| /* attack/decay rate time rate */ |
| #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ |
| #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ |
| |
| #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ |
| |
| #define FREQ_BITS 24 /* frequency turn */ |
| |
| /* counter bits = 20 , octerve 7 */ |
| #define FREQ_RATE (1<<(FREQ_BITS-20)) |
| #define TL_BITS (FREQ_BITS+2) |
| |
| /* final output shift , limit minimum and maximum */ |
| #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ |
| #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) |
| #define OPL_MINOUT (-0x8000<<OPL_OUTSB) |
| |
| /* -------------------- quality selection --------------------- */ |
| |
| /* sinwave entries */ |
| /* used static memory = SIN_ENT * 4 (byte) */ |
| #define SIN_ENT 2048 |
| |
| /* output level entries (envelope,sinwave) */ |
| /* envelope counter lower bits */ |
| #define ENV_BITS 16 |
| /* envelope output entries */ |
| #define EG_ENT 4096 |
| /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ |
| /* used static memory = EG_ENT*4 (byte) */ |
| |
| #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ |
| #define EG_DED EG_OFF |
| #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ |
| #define EG_AED EG_DST |
| #define EG_AST 0 /* ATTACK START */ |
| |
| #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ |
| |
| /* LFO table entries */ |
| #define VIB_ENT 512 |
| #define VIB_SHIFT (32-9) |
| #define AMS_ENT 512 |
| #define AMS_SHIFT (32-9) |
| |
| #define VIB_RATE 256 |
| |
| /* -------------------- local defines , macros --------------------- */ |
| |
| /* register number to channel number , slot offset */ |
| #define SLOT1 0 |
| #define SLOT2 1 |
| |
| /* envelope phase */ |
| #define ENV_MOD_RR 0x00 |
| #define ENV_MOD_DR 0x01 |
| #define ENV_MOD_AR 0x02 |
| |
| /* -------------------- tables --------------------- */ |
| static const int slot_array[32]= |
| { |
| 0, 2, 4, 1, 3, 5,-1,-1, |
| 6, 8,10, 7, 9,11,-1,-1, |
| 12,14,16,13,15,17,-1,-1, |
| -1,-1,-1,-1,-1,-1,-1,-1 |
| }; |
| |
| /* key scale level */ |
| /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ |
| #define DV (EG_STEP/2) |
| static const uint32_t KSL_TABLE[8*16]= |
| { |
| /* OCT 0 */ |
| 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
| 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
| 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
| 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
| /* OCT 1 */ |
| 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
| 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
| 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, |
| 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, |
| /* OCT 2 */ |
| 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, |
| 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, |
| 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, |
| 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, |
| /* OCT 3 */ |
| 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, |
| 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, |
| 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, |
| 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, |
| /* OCT 4 */ |
| 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, |
| 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, |
| 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, |
| 10.875/DV,11.250/DV,11.625/DV,12.000/DV, |
| /* OCT 5 */ |
| 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, |
| 9.000/DV,10.125/DV,10.875/DV,11.625/DV, |
| 12.000/DV,12.750/DV,13.125/DV,13.500/DV, |
| 13.875/DV,14.250/DV,14.625/DV,15.000/DV, |
| /* OCT 6 */ |
| 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, |
| 12.000/DV,13.125/DV,13.875/DV,14.625/DV, |
| 15.000/DV,15.750/DV,16.125/DV,16.500/DV, |
| 16.875/DV,17.250/DV,17.625/DV,18.000/DV, |
| /* OCT 7 */ |
| 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, |
| 15.000/DV,16.125/DV,16.875/DV,17.625/DV, |
| 18.000/DV,18.750/DV,19.125/DV,19.500/DV, |
| 19.875/DV,20.250/DV,20.625/DV,21.000/DV |
| }; |
| #undef DV |
| |
| /* sustain lebel table (3db per step) */ |
| /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ |
| #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST |
| static const int32_t SL_TABLE[16]={ |
| SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), |
| SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) |
| }; |
| #undef SC |
| |
| #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ |
| /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ |
| /* TL_TABLE[ 0 to TL_MAX ] : plus section */ |
| /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ |
| static int32_t *TL_TABLE; |
| |
| /* pointers to TL_TABLE with sinwave output offset */ |
| static int32_t **SIN_TABLE; |
| |
| /* LFO table */ |
| static int32_t *AMS_TABLE; |
| static int32_t *VIB_TABLE; |
| |
| /* envelope output curve table */ |
| /* attack + decay + OFF */ |
| static int32_t *ENV_CURVE; |
| |
| /* multiple table */ |
| #define ML 2 |
| static const uint32_t MUL_TABLE[16]= { |
| /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ |
| 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, |
| 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML |
| }; |
| #undef ML |
| |
| /* dummy attack / decay rate ( when rate == 0 ) */ |
| static int32_t RATE_0[16]= |
| {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
| |
| /* -------------------- static state --------------------- */ |
| |
| /* lock level of common table */ |
| static int num_lock = 0; |
| |
| /* work table */ |
| static void *cur_chip = NULL; /* current chip point */ |
| /* currenct chip state */ |
| /* static OPLSAMPLE *bufL,*bufR; */ |
| static OPL_CH *S_CH; |
| static OPL_CH *E_CH; |
| static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; |
| |
| static int32_t outd[1]; |
| static int32_t ams; |
| static int32_t vib; |
| static int32_t *ams_table; |
| static int32_t *vib_table; |
| static int32_t amsIncr; |
| static int32_t vibIncr; |
| static int32_t feedback2; /* connect for SLOT 2 */ |
| |
| /* log output level */ |
| #define LOG_ERR 3 /* ERROR */ |
| #define LOG_WAR 2 /* WARNING */ |
| #define LOG_INF 1 /* INFORMATION */ |
| |
| //#define LOG_LEVEL LOG_INF |
| #define LOG_LEVEL LOG_ERR |
| |
| //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x |
| #define LOG(n,x) |
| |
| /* --------------------- subroutines --------------------- */ |
| |
| static inline int Limit( int val, int max, int min ) { |
| if ( val > max ) |
| val = max; |
| else if ( val < min ) |
| val = min; |
| |
| return val; |
| } |
| |
| /* status set and IRQ handling */ |
| static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag) |
| { |
| /* set status flag */ |
| OPL->status |= flag; |
| if(!(OPL->status & 0x80)) |
| { |
| if(OPL->status & OPL->statusmask) |
| { /* IRQ on */ |
| OPL->status |= 0x80; |
| } |
| } |
| } |
| |
| /* status reset and IRQ handling */ |
| static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag) |
| { |
| /* reset status flag */ |
| OPL->status &=~flag; |
| if((OPL->status & 0x80)) |
| { |
| if (!(OPL->status & OPL->statusmask) ) |
| { |
| OPL->status &= 0x7f; |
| } |
| } |
| } |
| |
| /* IRQ mask set */ |
| static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) |
| { |
| OPL->statusmask = flag; |
| /* IRQ handling check */ |
| OPL_STATUS_SET(OPL,0); |
| OPL_STATUS_RESET(OPL,0); |
| } |
| |
| /* ----- key on ----- */ |
| static inline void OPL_KEYON(OPL_SLOT *SLOT) |
| { |
| /* sin wave restart */ |
| SLOT->Cnt = 0; |
| /* set attack */ |
| SLOT->evm = ENV_MOD_AR; |
| SLOT->evs = SLOT->evsa; |
| SLOT->evc = EG_AST; |
| SLOT->eve = EG_AED; |
| } |
| /* ----- key off ----- */ |
| static inline void OPL_KEYOFF(OPL_SLOT *SLOT) |
| { |
| if( SLOT->evm > ENV_MOD_RR) |
| { |
| /* set envelope counter from envleope output */ |
| SLOT->evm = ENV_MOD_RR; |
| if( !(SLOT->evc&EG_DST) ) |
| //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; |
| SLOT->evc = EG_DST; |
| SLOT->eve = EG_DED; |
| SLOT->evs = SLOT->evsr; |
| } |
| } |
| |
| /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ |
| /* return : envelope output */ |
| static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT ) |
| { |
| /* calcrate envelope generator */ |
| if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) |
| { |
| switch( SLOT->evm ){ |
| case ENV_MOD_AR: /* ATTACK -> DECAY1 */ |
| /* next DR */ |
| SLOT->evm = ENV_MOD_DR; |
| SLOT->evc = EG_DST; |
| SLOT->eve = SLOT->SL; |
| SLOT->evs = SLOT->evsd; |
| break; |
| case ENV_MOD_DR: /* DECAY -> SL or RR */ |
| SLOT->evc = SLOT->SL; |
| SLOT->eve = EG_DED; |
| if(SLOT->eg_typ) |
| { |
| SLOT->evs = 0; |
| } |
| else |
| { |
| SLOT->evm = ENV_MOD_RR; |
| SLOT->evs = SLOT->evsr; |
| } |
| break; |
| case ENV_MOD_RR: /* RR -> OFF */ |
| SLOT->evc = EG_OFF; |
| SLOT->eve = EG_OFF+1; |
| SLOT->evs = 0; |
| break; |
| } |
| } |
| /* calcrate envelope */ |
| return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); |
| } |
| |
| /* set algorithm connection */ |
| static void set_algorithm( OPL_CH *CH) |
| { |
| int32_t *carrier = &outd[0]; |
| CH->connect1 = CH->CON ? carrier : &feedback2; |
| CH->connect2 = carrier; |
| } |
| |
| /* ---------- frequency counter for operater update ---------- */ |
| static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) |
| { |
| int ksr; |
| |
| /* frequency step counter */ |
| SLOT->Incr = CH->fc * SLOT->mul; |
| ksr = CH->kcode >> SLOT->KSR; |
| |
| if( SLOT->ksr != ksr ) |
| { |
| SLOT->ksr = ksr; |
| /* attack , decay rate recalcration */ |
| SLOT->evsa = SLOT->AR[ksr]; |
| SLOT->evsd = SLOT->DR[ksr]; |
| SLOT->evsr = SLOT->RR[ksr]; |
| } |
| SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); |
| } |
| |
| /* set multi,am,vib,EG-TYP,KSR,mul */ |
| static inline void set_mul(FM_OPL *OPL,int slot,int v) |
| { |
| OPL_CH *CH = &OPL->P_CH[slot/2]; |
| OPL_SLOT *SLOT = &CH->SLOT[slot&1]; |
| |
| SLOT->mul = MUL_TABLE[v&0x0f]; |
| SLOT->KSR = (v&0x10) ? 0 : 2; |
| SLOT->eg_typ = (v&0x20)>>5; |
| SLOT->vib = (v&0x40); |
| SLOT->ams = (v&0x80); |
| CALC_FCSLOT(CH,SLOT); |
| } |
| |
| /* set ksl & tl */ |
| static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v) |
| { |
| OPL_CH *CH = &OPL->P_CH[slot/2]; |
| OPL_SLOT *SLOT = &CH->SLOT[slot&1]; |
| int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ |
| |
| SLOT->ksl = ksl ? 3-ksl : 31; |
| SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ |
| |
| if( !(OPL->mode&0x80) ) |
| { /* not CSM latch total level */ |
| SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); |
| } |
| } |
| |
| /* set attack rate & decay rate */ |
| static inline void set_ar_dr(FM_OPL *OPL,int slot,int v) |
| { |
| OPL_CH *CH = &OPL->P_CH[slot/2]; |
| OPL_SLOT *SLOT = &CH->SLOT[slot&1]; |
| int ar = v>>4; |
| int dr = v&0x0f; |
| |
| SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; |
| SLOT->evsa = SLOT->AR[SLOT->ksr]; |
| if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; |
| |
| SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; |
| SLOT->evsd = SLOT->DR[SLOT->ksr]; |
| if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; |
| } |
| |
| /* set sustain level & release rate */ |
| static inline void set_sl_rr(FM_OPL *OPL,int slot,int v) |
| { |
| OPL_CH *CH = &OPL->P_CH[slot/2]; |
| OPL_SLOT *SLOT = &CH->SLOT[slot&1]; |
| int sl = v>>4; |
| int rr = v & 0x0f; |
| |
| SLOT->SL = SL_TABLE[sl]; |
| if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; |
| SLOT->RR = &OPL->DR_TABLE[rr<<2]; |
| SLOT->evsr = SLOT->RR[SLOT->ksr]; |
| if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; |
| } |
| |
| /* operator output calcrator */ |
| #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] |
| /* ---------- calcrate one of channel ---------- */ |
| static inline void OPL_CALC_CH( OPL_CH *CH ) |
| { |
| uint32_t env_out; |
| OPL_SLOT *SLOT; |
| |
| feedback2 = 0; |
| /* SLOT 1 */ |
| SLOT = &CH->SLOT[SLOT1]; |
| env_out=OPL_CALC_SLOT(SLOT); |
| if( env_out < EG_ENT-1 ) |
| { |
| /* PG */ |
| if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); |
| else SLOT->Cnt += SLOT->Incr; |
| /* connectoion */ |
| if(CH->FB) |
| { |
| int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; |
| CH->op1_out[1] = CH->op1_out[0]; |
| *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); |
| } |
| else |
| { |
| *CH->connect1 += OP_OUT(SLOT,env_out,0); |
| } |
| }else |
| { |
| CH->op1_out[1] = CH->op1_out[0]; |
| CH->op1_out[0] = 0; |
| } |
| /* SLOT 2 */ |
| SLOT = &CH->SLOT[SLOT2]; |
| env_out=OPL_CALC_SLOT(SLOT); |
| if( env_out < EG_ENT-1 ) |
| { |
| /* PG */ |
| if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); |
| else SLOT->Cnt += SLOT->Incr; |
| /* connectoion */ |
| outd[0] += OP_OUT(SLOT,env_out, feedback2); |
| } |
| } |
| |
| /* ---------- calcrate rhythm block ---------- */ |
| #define WHITE_NOISE_db 6.0 |
| static inline void OPL_CALC_RH( OPL_CH *CH ) |
| { |
| uint32_t env_tam,env_sd,env_top,env_hh; |
| int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); |
| int32_t tone8; |
| |
| OPL_SLOT *SLOT; |
| int env_out; |
| |
| /* BD : same as FM serial mode and output level is large */ |
| feedback2 = 0; |
| /* SLOT 1 */ |
| SLOT = &CH[6].SLOT[SLOT1]; |
| env_out=OPL_CALC_SLOT(SLOT); |
| if( env_out < EG_ENT-1 ) |
| { |
| /* PG */ |
| if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); |
| else SLOT->Cnt += SLOT->Incr; |
| /* connectoion */ |
| if(CH[6].FB) |
| { |
| int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; |
| CH[6].op1_out[1] = CH[6].op1_out[0]; |
| feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); |
| } |
| else |
| { |
| feedback2 = OP_OUT(SLOT,env_out,0); |
| } |
| }else |
| { |
| feedback2 = 0; |
| CH[6].op1_out[1] = CH[6].op1_out[0]; |
| CH[6].op1_out[0] = 0; |
| } |
| /* SLOT 2 */ |
| SLOT = &CH[6].SLOT[SLOT2]; |
| env_out=OPL_CALC_SLOT(SLOT); |
| if( env_out < EG_ENT-1 ) |
| { |
| /* PG */ |
| if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); |
| else SLOT->Cnt += SLOT->Incr; |
| /* connectoion */ |
| outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; |
| } |
| |
| // SD (17) = mul14[fnum7] + white noise |
| // TAM (15) = mul15[fnum8] |
| // TOP (18) = fnum6(mul18[fnum8]+whitenoise) |
| // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise |
| env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; |
| env_tam=OPL_CALC_SLOT(SLOT8_1); |
| env_top=OPL_CALC_SLOT(SLOT8_2); |
| env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; |
| |
| /* PG */ |
| if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); |
| else SLOT7_1->Cnt += 2*SLOT7_1->Incr; |
| if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); |
| else SLOT7_2->Cnt += (CH[7].fc*8); |
| if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); |
| else SLOT8_1->Cnt += SLOT8_1->Incr; |
| if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); |
| else SLOT8_2->Cnt += (CH[8].fc*48); |
| |
| tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); |
| |
| /* SD */ |
| if( env_sd < EG_ENT-1 ) |
| outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; |
| /* TAM */ |
| if( env_tam < EG_ENT-1 ) |
| outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; |
| /* TOP-CY */ |
| if( env_top < EG_ENT-1 ) |
| outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; |
| /* HH */ |
| if( env_hh < EG_ENT-1 ) |
| outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; |
| } |
| |
| /* ----------- initialize time tabls ----------- */ |
| static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) |
| { |
| int i; |
| double rate; |
| |
| /* make attack rate & decay rate tables */ |
| for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; |
| for (i = 4;i <= 60;i++){ |
| rate = OPL->freqbase; /* frequency rate */ |
| if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ |
| rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ |
| rate *= (double)(EG_ENT<<ENV_BITS); |
| OPL->AR_TABLE[i] = rate / ARRATE; |
| OPL->DR_TABLE[i] = rate / DRRATE; |
| } |
| for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++) |
| { |
| OPL->AR_TABLE[i] = EG_AED-1; |
| OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; |
| } |
| #if 0 |
| for (i = 0;i < 64 ;i++){ /* make for overflow area */ |
| LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, |
| ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), |
| ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); |
| } |
| #endif |
| } |
| |
| /* ---------- generic table initialize ---------- */ |
| static int OPLOpenTable( void ) |
| { |
| int s,t; |
| double rate; |
| int i,j; |
| double pom; |
| |
| /* allocate dynamic tables */ |
| if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL) |
| return 0; |
| if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL) |
| { |
| free(TL_TABLE); |
| return 0; |
| } |
| if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL) |
| { |
| free(TL_TABLE); |
| free(SIN_TABLE); |
| return 0; |
| } |
| if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL) |
| { |
| free(TL_TABLE); |
| free(SIN_TABLE); |
| free(AMS_TABLE); |
| return 0; |
| } |
| ENV_CURVE = g_new(int32_t, 2 * EG_ENT + 1); |
| /* make total level table */ |
| for (t = 0;t < EG_ENT-1 ;t++){ |
| rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ |
| TL_TABLE[ t] = (int)rate; |
| TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; |
| /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ |
| } |
| /* fill volume off area */ |
| for ( t = EG_ENT-1; t < TL_MAX ;t++){ |
| TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; |
| } |
| |
| /* make sinwave table (total level offet) */ |
| /* degree 0 = degree 180 = off */ |
| SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; |
| for (s = 1;s <= SIN_ENT/4;s++){ |
| pom = sin(2*PI*s/SIN_ENT); /* sin */ |
| pom = 20*log10(1/pom); /* decibel */ |
| j = pom / EG_STEP; /* TL_TABLE steps */ |
| |
| /* degree 0 - 90 , degree 180 - 90 : plus section */ |
| SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; |
| /* degree 180 - 270 , degree 360 - 270 : minus section */ |
| SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; |
| /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ |
| } |
| for (s = 0;s < SIN_ENT;s++) |
| { |
| SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; |
| SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; |
| SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; |
| } |
| |
| /* envelope counter -> envelope output table */ |
| for (i=0; i<EG_ENT; i++) |
| { |
| /* ATTACK curve */ |
| pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; |
| /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ |
| ENV_CURVE[i] = (int)pom; |
| /* DECAY ,RELEASE curve */ |
| ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; |
| } |
| /* off */ |
| ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; |
| /* make LFO ams table */ |
| for (i=0; i<AMS_ENT; i++) |
| { |
| pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ |
| AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ |
| AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ |
| } |
| /* make LFO vibrate table */ |
| for (i=0; i<VIB_ENT; i++) |
| { |
| /* 100cent = 1seminote = 6% ?? */ |
| pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ |
| VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ |
| VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ |
| /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ |
| } |
| return 1; |
| } |
| |
| |
| static void OPLCloseTable( void ) |
| { |
| g_free(ENV_CURVE); |
| free(TL_TABLE); |
| free(SIN_TABLE); |
| free(AMS_TABLE); |
| free(VIB_TABLE); |
| } |
| |
| /* CSM Key Control */ |
| static inline void CSMKeyControll(OPL_CH *CH) |
| { |
| OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; |
| OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; |
| /* all key off */ |
| OPL_KEYOFF(slot1); |
| OPL_KEYOFF(slot2); |
| /* total level latch */ |
| slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); |
| slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); |
| /* key on */ |
| CH->op1_out[0] = CH->op1_out[1] = 0; |
| OPL_KEYON(slot1); |
| OPL_KEYON(slot2); |
| } |
| |
| /* ---------- opl initialize ---------- */ |
| static void OPL_initialize(FM_OPL *OPL) |
| { |
| int fn; |
| |
| /* frequency base */ |
| OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; |
| /* Timer base time */ |
| OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); |
| /* make time tables */ |
| init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); |
| /* make fnumber -> increment counter table */ |
| for( fn=0 ; fn < 1024 ; fn++ ) |
| { |
| OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; |
| } |
| /* LFO freq.table */ |
| OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; |
| OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; |
| } |
| |
| /* ---------- write a OPL registers ---------- */ |
| static void OPLWriteReg(FM_OPL *OPL, int r, int v) |
| { |
| OPL_CH *CH; |
| int slot; |
| int block_fnum; |
| |
| switch(r&0xe0) |
| { |
| case 0x00: /* 00-1f:control */ |
| switch(r&0x1f) |
| { |
| case 0x01: |
| /* wave selector enable */ |
| OPL->wavesel = v&0x20; |
| if(!OPL->wavesel) |
| { |
| /* preset compatible mode */ |
| int c; |
| for(c=0;c<OPL->max_ch;c++) |
| { |
| OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; |
| OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; |
| } |
| } |
| return; |
| case 0x02: /* Timer 1 */ |
| OPL->T[0] = (256-v)*4; |
| break; |
| case 0x03: /* Timer 2 */ |
| OPL->T[1] = (256-v)*16; |
| return; |
| case 0x04: /* IRQ clear / mask and Timer enable */ |
| if(v&0x80) |
| { /* IRQ flag clear */ |
| OPL_STATUS_RESET(OPL,0x7f); |
| } |
| else |
| { /* set IRQ mask ,timer enable*/ |
| uint8_t st1 = v&1; |
| uint8_t st2 = (v>>1)&1; |
| /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ |
| OPL_STATUS_RESET(OPL,v&0x78); |
| OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); |
| /* timer 2 */ |
| if(OPL->st[1] != st2) |
| { |
| double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; |
| OPL->st[1] = st2; |
| if (OPL->TimerHandler) { |
| (OPL->TimerHandler)(OPL->TimerParam, 1, interval); |
| } |
| } |
| /* timer 1 */ |
| if(OPL->st[0] != st1) |
| { |
| double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; |
| OPL->st[0] = st1; |
| if (OPL->TimerHandler) { |
| (OPL->TimerHandler)(OPL->TimerParam, 0, interval); |
| } |
| } |
| } |
| return; |
| } |
| break; |
| case 0x20: /* am,vib,ksr,eg type,mul */ |
| slot = slot_array[r&0x1f]; |
| if(slot == -1) return; |
| set_mul(OPL,slot,v); |
| return; |
| case 0x40: |
| slot = slot_array[r&0x1f]; |
| if(slot == -1) return; |
| set_ksl_tl(OPL,slot,v); |
| return; |
| case 0x60: |
| slot = slot_array[r&0x1f]; |
| if(slot == -1) return; |
| set_ar_dr(OPL,slot,v); |
| return; |
| case 0x80: |
| slot = slot_array[r&0x1f]; |
| if(slot == -1) return; |
| set_sl_rr(OPL,slot,v); |
| return; |
| case 0xa0: |
| switch(r) |
| { |
| case 0xbd: |
| /* amsep,vibdep,r,bd,sd,tom,tc,hh */ |
| { |
| uint8_t rkey = OPL->rhythm^v; |
| OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; |
| OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; |
| OPL->rhythm = v&0x3f; |
| if(OPL->rhythm&0x20) |
| { |
| #if 0 |
| usrintf_showmessage("OPL Rhythm mode select"); |
| #endif |
| /* BD key on/off */ |
| if(rkey&0x10) |
| { |
| if(v&0x10) |
| { |
| OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; |
| OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); |
| OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); |
| } |
| else |
| { |
| OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); |
| OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); |
| } |
| } |
| /* SD key on/off */ |
| if(rkey&0x08) |
| { |
| if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); |
| else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); |
| }/* TAM key on/off */ |
| if(rkey&0x04) |
| { |
| if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); |
| else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); |
| } |
| /* TOP-CY key on/off */ |
| if(rkey&0x02) |
| { |
| if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); |
| else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); |
| } |
| /* HH key on/off */ |
| if(rkey&0x01) |
| { |
| if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); |
| else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); |
| } |
| } |
| } |
| return; |
| } |
| /* keyon,block,fnum */ |
| if( (r&0x0f) > 8) return; |
| CH = &OPL->P_CH[r&0x0f]; |
| if(!(r&0x10)) |
| { /* a0-a8 */ |
| block_fnum = (CH->block_fnum&0x1f00) | v; |
| } |
| else |
| { /* b0-b8 */ |
| int keyon = (v>>5)&1; |
| block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); |
| if(CH->keyon != keyon) |
| { |
| if( (CH->keyon=keyon) ) |
| { |
| CH->op1_out[0] = CH->op1_out[1] = 0; |
| OPL_KEYON(&CH->SLOT[SLOT1]); |
| OPL_KEYON(&CH->SLOT[SLOT2]); |
| } |
| else |
| { |
| OPL_KEYOFF(&CH->SLOT[SLOT1]); |
| OPL_KEYOFF(&CH->SLOT[SLOT2]); |
| } |
| } |
| } |
| /* update */ |
| if(CH->block_fnum != block_fnum) |
| { |
| int blockRv = 7-(block_fnum>>10); |
| int fnum = block_fnum&0x3ff; |
| CH->block_fnum = block_fnum; |
| |
| CH->ksl_base = KSL_TABLE[block_fnum>>6]; |
| CH->fc = OPL->FN_TABLE[fnum]>>blockRv; |
| CH->kcode = CH->block_fnum>>9; |
| if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; |
| CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); |
| CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); |
| } |
| return; |
| case 0xc0: |
| /* FB,C */ |
| if( (r&0x0f) > 8) return; |
| CH = &OPL->P_CH[r&0x0f]; |
| { |
| int feedback = (v>>1)&7; |
| CH->FB = feedback ? (8+1) - feedback : 0; |
| CH->CON = v&1; |
| set_algorithm(CH); |
| } |
| return; |
| case 0xe0: /* wave type */ |
| slot = slot_array[r&0x1f]; |
| if(slot == -1) return; |
| CH = &OPL->P_CH[slot/2]; |
| if(OPL->wavesel) |
| { |
| /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ |
| CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; |
| } |
| return; |
| } |
| } |
| |
| /* lock/unlock for common table */ |
| static int OPL_LockTable(void) |
| { |
| num_lock++; |
| if(num_lock>1) return 0; |
| /* first time */ |
| cur_chip = NULL; |
| /* allocate total level table (128kb space) */ |
| if( !OPLOpenTable() ) |
| { |
| num_lock--; |
| return -1; |
| } |
| return 0; |
| } |
| |
| static void OPL_UnLockTable(void) |
| { |
| if(num_lock) num_lock--; |
| if(num_lock) return; |
| /* last time */ |
| cur_chip = NULL; |
| OPLCloseTable(); |
| } |
| |
| /*******************************************************************************/ |
| /* YM3812 local section */ |
| /*******************************************************************************/ |
| |
| /* ---------- update one of chip ----------- */ |
| void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length) |
| { |
| int i; |
| int data; |
| int16_t *buf = buffer; |
| uint32_t amsCnt = OPL->amsCnt; |
| uint32_t vibCnt = OPL->vibCnt; |
| uint8_t rhythm = OPL->rhythm&0x20; |
| OPL_CH *CH,*R_CH; |
| |
| if( (void *)OPL != cur_chip ){ |
| cur_chip = (void *)OPL; |
| /* channel pointers */ |
| S_CH = OPL->P_CH; |
| E_CH = &S_CH[9]; |
| /* rhythm slot */ |
| SLOT7_1 = &S_CH[7].SLOT[SLOT1]; |
| SLOT7_2 = &S_CH[7].SLOT[SLOT2]; |
| SLOT8_1 = &S_CH[8].SLOT[SLOT1]; |
| SLOT8_2 = &S_CH[8].SLOT[SLOT2]; |
| /* LFO state */ |
| amsIncr = OPL->amsIncr; |
| vibIncr = OPL->vibIncr; |
| ams_table = OPL->ams_table; |
| vib_table = OPL->vib_table; |
| } |
| R_CH = rhythm ? &S_CH[6] : E_CH; |
| for( i=0; i < length ; i++ ) |
| { |
| /* channel A channel B channel C */ |
| /* LFO */ |
| ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; |
| vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; |
| outd[0] = 0; |
| /* FM part */ |
| for(CH=S_CH ; CH < R_CH ; CH++) |
| OPL_CALC_CH(CH); |
| /* Rythn part */ |
| if(rhythm) |
| OPL_CALC_RH(S_CH); |
| /* limit check */ |
| data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); |
| /* store to sound buffer */ |
| buf[i] = data >> OPL_OUTSB; |
| } |
| |
| OPL->amsCnt = amsCnt; |
| OPL->vibCnt = vibCnt; |
| #ifdef OPL_OUTPUT_LOG |
| if(opl_dbg_fp) |
| { |
| for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) |
| if( opl_dbg_opl[opl_dbg_chip] == OPL) break; |
| fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); |
| } |
| #endif |
| } |
| |
| /* ---------- reset one of chip ---------- */ |
| static void OPLResetChip(FM_OPL *OPL) |
| { |
| int c,s; |
| int i; |
| |
| /* reset chip */ |
| OPL->mode = 0; /* normal mode */ |
| OPL_STATUS_RESET(OPL,0x7f); |
| /* reset with register write */ |
| OPLWriteReg(OPL,0x01,0); /* wabesel disable */ |
| OPLWriteReg(OPL,0x02,0); /* Timer1 */ |
| OPLWriteReg(OPL,0x03,0); /* Timer2 */ |
| OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ |
| for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); |
| /* reset operator parameter */ |
| for( c = 0 ; c < OPL->max_ch ; c++ ) |
| { |
| OPL_CH *CH = &OPL->P_CH[c]; |
| /* OPL->P_CH[c].PAN = OPN_CENTER; */ |
| for(s = 0 ; s < 2 ; s++ ) |
| { |
| /* wave table */ |
| CH->SLOT[s].wavetable = &SIN_TABLE[0]; |
| /* CH->SLOT[s].evm = ENV_MOD_RR; */ |
| CH->SLOT[s].evc = EG_OFF; |
| CH->SLOT[s].eve = EG_OFF+1; |
| CH->SLOT[s].evs = 0; |
| } |
| } |
| } |
| |
| /* ---------- Create one of virtual YM3812 ---------- */ |
| /* 'rate' is sampling rate and 'bufsiz' is the size of the */ |
| FM_OPL *OPLCreate(int clock, int rate) |
| { |
| char *ptr; |
| FM_OPL *OPL; |
| int state_size; |
| int max_ch = 9; /* normaly 9 channels */ |
| |
| if( OPL_LockTable() ==-1) return NULL; |
| /* allocate OPL state space */ |
| state_size = sizeof(FM_OPL); |
| state_size += sizeof(OPL_CH)*max_ch; |
| /* allocate memory block */ |
| ptr = malloc(state_size); |
| if(ptr==NULL) return NULL; |
| /* clear */ |
| memset(ptr,0,state_size); |
| OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); |
| OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; |
| /* set channel state pointer */ |
| OPL->clock = clock; |
| OPL->rate = rate; |
| OPL->max_ch = max_ch; |
| /* init grobal tables */ |
| OPL_initialize(OPL); |
| /* reset chip */ |
| OPLResetChip(OPL); |
| #ifdef OPL_OUTPUT_LOG |
| if(!opl_dbg_fp) |
| { |
| opl_dbg_fp = fopen("opllog.opl","wb"); |
| opl_dbg_maxchip = 0; |
| } |
| if(opl_dbg_fp) |
| { |
| opl_dbg_opl[opl_dbg_maxchip] = OPL; |
| fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, |
| type, |
| clock&0xff, |
| (clock/0x100)&0xff, |
| (clock/0x10000)&0xff, |
| (clock/0x1000000)&0xff); |
| opl_dbg_maxchip++; |
| } |
| #endif |
| return OPL; |
| } |
| |
| /* ---------- Destroy one of virtual YM3812 ---------- */ |
| void OPLDestroy(FM_OPL *OPL) |
| { |
| #ifdef OPL_OUTPUT_LOG |
| if(opl_dbg_fp) |
| { |
| fclose(opl_dbg_fp); |
| opl_dbg_fp = NULL; |
| } |
| #endif |
| OPL_UnLockTable(); |
| free(OPL); |
| } |
| |
| /* ---------- Option handlers ---------- */ |
| |
| void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler, |
| void *param) |
| { |
| OPL->TimerHandler = TimerHandler; |
| OPL->TimerParam = param; |
| } |
| |
| /* ---------- YM3812 I/O interface ---------- */ |
| int OPLWrite(FM_OPL *OPL,int a,int v) |
| { |
| if( !(a&1) ) |
| { /* address port */ |
| OPL->address = v & 0xff; |
| } |
| else |
| { /* data port */ |
| #ifdef OPL_OUTPUT_LOG |
| if(opl_dbg_fp) |
| { |
| for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) |
| if( opl_dbg_opl[opl_dbg_chip] == OPL) break; |
| fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); |
| } |
| #endif |
| OPLWriteReg(OPL,OPL->address,v); |
| } |
| return OPL->status>>7; |
| } |
| |
| unsigned char OPLRead(FM_OPL *OPL,int a) |
| { |
| if( !(a&1) ) |
| { /* status port */ |
| return OPL->status & (OPL->statusmask|0x80); |
| } |
| /* data port */ |
| switch(OPL->address) |
| { |
| case 0x05: /* KeyBoard IN */ |
| return 0; |
| #if 0 |
| case 0x0f: /* ADPCM-DATA */ |
| return 0; |
| #endif |
| case 0x19: /* I/O DATA */ |
| return 0; |
| case 0x1a: /* PCM-DATA */ |
| return 0; |
| } |
| return 0; |
| } |
| |
| int OPLTimerOver(FM_OPL *OPL,int c) |
| { |
| if( c ) |
| { /* Timer B */ |
| OPL_STATUS_SET(OPL,0x20); |
| } |
| else |
| { /* Timer A */ |
| OPL_STATUS_SET(OPL,0x40); |
| /* CSM mode key,TL control */ |
| if( OPL->mode & 0x80 ) |
| { /* CSM mode total level latch and auto key on */ |
| int ch; |
| for(ch=0;ch<9;ch++) |
| CSMKeyControll( &OPL->P_CH[ch] ); |
| } |
| } |
| /* reload timer */ |
| if (OPL->TimerHandler) { |
| (OPL->TimerHandler)(OPL->TimerParam, c, |
| (double)OPL->T[c] * OPL->TimerBase); |
| } |
| return OPL->status>>7; |
| } |