| /* |
| * i386 emulator main execution loop |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include "config.h" |
| #ifdef TARGET_I386 |
| #include "exec-i386.h" |
| #endif |
| #ifdef TARGET_ARM |
| #include "exec-arm.h" |
| #endif |
| |
| #include "disas.h" |
| |
| //#define DEBUG_EXEC |
| //#define DEBUG_SIGNAL |
| |
| #if defined(TARGET_ARM) |
| /* XXX: unify with i386 target */ |
| void cpu_loop_exit(void) |
| { |
| longjmp(env->jmp_env, 1); |
| } |
| #endif |
| |
| /* main execution loop */ |
| |
| int cpu_exec(CPUState *env1) |
| { |
| int saved_T0, saved_T1, saved_T2; |
| CPUState *saved_env; |
| #ifdef reg_EAX |
| int saved_EAX; |
| #endif |
| #ifdef reg_ECX |
| int saved_ECX; |
| #endif |
| #ifdef reg_EDX |
| int saved_EDX; |
| #endif |
| #ifdef reg_EBX |
| int saved_EBX; |
| #endif |
| #ifdef reg_ESP |
| int saved_ESP; |
| #endif |
| #ifdef reg_EBP |
| int saved_EBP; |
| #endif |
| #ifdef reg_ESI |
| int saved_ESI; |
| #endif |
| #ifdef reg_EDI |
| int saved_EDI; |
| #endif |
| #ifdef __sparc__ |
| int saved_i7, tmp_T0; |
| #endif |
| int code_gen_size, ret; |
| void (*gen_func)(void); |
| TranslationBlock *tb, **ptb; |
| uint8_t *tc_ptr, *cs_base, *pc; |
| unsigned int flags; |
| |
| /* first we save global registers */ |
| saved_T0 = T0; |
| saved_T1 = T1; |
| saved_T2 = T2; |
| saved_env = env; |
| env = env1; |
| #ifdef __sparc__ |
| /* we also save i7 because longjmp may not restore it */ |
| asm volatile ("mov %%i7, %0" : "=r" (saved_i7)); |
| #endif |
| |
| #if defined(TARGET_I386) |
| #ifdef reg_EAX |
| saved_EAX = EAX; |
| EAX = env->regs[R_EAX]; |
| #endif |
| #ifdef reg_ECX |
| saved_ECX = ECX; |
| ECX = env->regs[R_ECX]; |
| #endif |
| #ifdef reg_EDX |
| saved_EDX = EDX; |
| EDX = env->regs[R_EDX]; |
| #endif |
| #ifdef reg_EBX |
| saved_EBX = EBX; |
| EBX = env->regs[R_EBX]; |
| #endif |
| #ifdef reg_ESP |
| saved_ESP = ESP; |
| ESP = env->regs[R_ESP]; |
| #endif |
| #ifdef reg_EBP |
| saved_EBP = EBP; |
| EBP = env->regs[R_EBP]; |
| #endif |
| #ifdef reg_ESI |
| saved_ESI = ESI; |
| ESI = env->regs[R_ESI]; |
| #endif |
| #ifdef reg_EDI |
| saved_EDI = EDI; |
| EDI = env->regs[R_EDI]; |
| #endif |
| |
| /* put eflags in CPU temporary format */ |
| CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| DF = 1 - (2 * ((env->eflags >> 10) & 1)); |
| CC_OP = CC_OP_EFLAGS; |
| env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| #elif defined(TARGET_ARM) |
| { |
| unsigned int psr; |
| psr = env->cpsr; |
| env->CF = (psr >> 29) & 1; |
| env->NZF = (psr & 0xc0000000) ^ 0x40000000; |
| env->VF = (psr << 3) & 0x80000000; |
| env->cpsr = psr & ~0xf0000000; |
| } |
| #else |
| #error unsupported target CPU |
| #endif |
| env->interrupt_request = 0; |
| env->exception_index = -1; |
| |
| /* prepare setjmp context for exception handling */ |
| for(;;) { |
| if (setjmp(env->jmp_env) == 0) { |
| /* if an exception is pending, we execute it here */ |
| if (env->exception_index >= 0) { |
| if (env->exception_index >= EXCP_INTERRUPT) { |
| /* exit request from the cpu execution loop */ |
| ret = env->exception_index; |
| break; |
| } else if (env->user_mode_only) { |
| /* if user mode only, we simulate a fake exception |
| which will be hanlded outside the cpu execution |
| loop */ |
| #if defined(TARGET_I386) |
| do_interrupt_user(env->exception_index, |
| env->exception_is_int, |
| env->error_code, |
| env->exception_next_eip); |
| #endif |
| ret = env->exception_index; |
| break; |
| } else { |
| #if defined(TARGET_I386) |
| /* simulate a real cpu exception. On i386, it can |
| trigger new exceptions, but we do not handle |
| double or triple faults yet. */ |
| do_interrupt(env->exception_index, |
| env->exception_is_int, |
| env->error_code, |
| env->exception_next_eip); |
| #endif |
| } |
| env->exception_index = -1; |
| } |
| #if defined(TARGET_I386) |
| /* if hardware interrupt pending, we execute it */ |
| if (env->hard_interrupt_request && |
| (env->eflags & IF_MASK)) { |
| int intno; |
| intno = cpu_x86_get_pic_interrupt(env); |
| if (loglevel) { |
| fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); |
| } |
| do_interrupt(intno, 0, 0, 0); |
| env->hard_interrupt_request = 0; |
| } |
| #endif |
| T0 = 0; /* force lookup of first TB */ |
| for(;;) { |
| #ifdef __sparc__ |
| /* g1 can be modified by some libc? functions */ |
| tmp_T0 = T0; |
| #endif |
| if (env->interrupt_request) { |
| env->exception_index = EXCP_INTERRUPT; |
| cpu_loop_exit(); |
| } |
| #ifdef DEBUG_EXEC |
| if (loglevel) { |
| #if defined(TARGET_I386) |
| /* restore flags in standard format */ |
| env->regs[R_EAX] = EAX; |
| env->regs[R_EBX] = EBX; |
| env->regs[R_ECX] = ECX; |
| env->regs[R_EDX] = EDX; |
| env->regs[R_ESI] = ESI; |
| env->regs[R_EDI] = EDI; |
| env->regs[R_EBP] = EBP; |
| env->regs[R_ESP] = ESP; |
| env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
| cpu_x86_dump_state(env, logfile, 0); |
| env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| #elif defined(TARGET_ARM) |
| cpu_arm_dump_state(env, logfile, 0); |
| #else |
| #error unsupported target CPU |
| #endif |
| } |
| #endif |
| /* we compute the CPU state. We assume it will not |
| change during the whole generated block. */ |
| #if defined(TARGET_I386) |
| flags = (env->segs[R_CS].flags & DESC_B_MASK) |
| >> (DESC_B_SHIFT - GEN_FLAG_CODE32_SHIFT); |
| flags |= (env->segs[R_SS].flags & DESC_B_MASK) |
| >> (DESC_B_SHIFT - GEN_FLAG_SS32_SHIFT); |
| flags |= (((unsigned long)env->segs[R_DS].base | |
| (unsigned long)env->segs[R_ES].base | |
| (unsigned long)env->segs[R_SS].base) != 0) << |
| GEN_FLAG_ADDSEG_SHIFT; |
| if (!(env->eflags & VM_MASK)) { |
| flags |= (env->segs[R_CS].selector & 3) << GEN_FLAG_CPL_SHIFT; |
| } else { |
| /* NOTE: a dummy CPL is kept */ |
| flags |= (1 << GEN_FLAG_VM_SHIFT); |
| flags |= (3 << GEN_FLAG_CPL_SHIFT); |
| } |
| flags |= (env->eflags & (IOPL_MASK | TF_MASK)); |
| cs_base = env->segs[R_CS].base; |
| pc = cs_base + env->eip; |
| #elif defined(TARGET_ARM) |
| flags = 0; |
| cs_base = 0; |
| pc = (uint8_t *)env->regs[15]; |
| #else |
| #error unsupported CPU |
| #endif |
| tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, |
| flags); |
| if (!tb) { |
| spin_lock(&tb_lock); |
| /* if no translated code available, then translate it now */ |
| tb = tb_alloc((unsigned long)pc); |
| if (!tb) { |
| /* flush must be done */ |
| tb_flush(); |
| /* cannot fail at this point */ |
| tb = tb_alloc((unsigned long)pc); |
| /* don't forget to invalidate previous TB info */ |
| ptb = &tb_hash[tb_hash_func((unsigned long)pc)]; |
| T0 = 0; |
| } |
| tc_ptr = code_gen_ptr; |
| tb->tc_ptr = tc_ptr; |
| tb->cs_base = (unsigned long)cs_base; |
| tb->flags = flags; |
| ret = cpu_gen_code(tb, CODE_GEN_MAX_SIZE, &code_gen_size); |
| #if defined(TARGET_I386) |
| /* XXX: suppress that, this is incorrect */ |
| /* if invalid instruction, signal it */ |
| if (ret != 0) { |
| /* NOTE: the tb is allocated but not linked, so we |
| can leave it */ |
| spin_unlock(&tb_lock); |
| raise_exception(EXCP06_ILLOP); |
| } |
| #endif |
| *ptb = tb; |
| tb->hash_next = NULL; |
| tb_link(tb); |
| code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
| spin_unlock(&tb_lock); |
| } |
| #ifdef DEBUG_EXEC |
| if (loglevel) { |
| fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n", |
| (long)tb->tc_ptr, (long)tb->pc, |
| lookup_symbol((void *)tb->pc)); |
| } |
| #endif |
| #ifdef __sparc__ |
| T0 = tmp_T0; |
| #endif |
| /* see if we can patch the calling TB. XXX: remove TF test */ |
| if (T0 != 0 |
| #if defined(TARGET_I386) |
| && !(env->eflags & TF_MASK) |
| #endif |
| ) { |
| spin_lock(&tb_lock); |
| tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb); |
| spin_unlock(&tb_lock); |
| } |
| tc_ptr = tb->tc_ptr; |
| env->current_tb = tb; |
| /* execute the generated code */ |
| gen_func = (void *)tc_ptr; |
| #if defined(__sparc__) |
| __asm__ __volatile__("call %0\n\t" |
| "mov %%o7,%%i0" |
| : /* no outputs */ |
| : "r" (gen_func) |
| : "i0", "i1", "i2", "i3", "i4", "i5"); |
| #elif defined(__arm__) |
| asm volatile ("mov pc, %0\n\t" |
| ".global exec_loop\n\t" |
| "exec_loop:\n\t" |
| : /* no outputs */ |
| : "r" (gen_func) |
| : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14"); |
| #else |
| gen_func(); |
| #endif |
| env->current_tb = NULL; |
| } |
| } else { |
| } |
| } /* for(;;) */ |
| |
| |
| #if defined(TARGET_I386) |
| /* restore flags in standard format */ |
| env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
| |
| /* restore global registers */ |
| #ifdef reg_EAX |
| EAX = saved_EAX; |
| #endif |
| #ifdef reg_ECX |
| ECX = saved_ECX; |
| #endif |
| #ifdef reg_EDX |
| EDX = saved_EDX; |
| #endif |
| #ifdef reg_EBX |
| EBX = saved_EBX; |
| #endif |
| #ifdef reg_ESP |
| ESP = saved_ESP; |
| #endif |
| #ifdef reg_EBP |
| EBP = saved_EBP; |
| #endif |
| #ifdef reg_ESI |
| ESI = saved_ESI; |
| #endif |
| #ifdef reg_EDI |
| EDI = saved_EDI; |
| #endif |
| #elif defined(TARGET_ARM) |
| { |
| int ZF; |
| ZF = (env->NZF == 0); |
| env->cpsr = env->cpsr | (env->NZF & 0x80000000) | (ZF << 30) | |
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3); |
| } |
| #else |
| #error unsupported target CPU |
| #endif |
| #ifdef __sparc__ |
| asm volatile ("mov %0, %%i7" : : "r" (saved_i7)); |
| #endif |
| T0 = saved_T0; |
| T1 = saved_T1; |
| T2 = saved_T2; |
| env = saved_env; |
| return ret; |
| } |
| |
| #if defined(TARGET_I386) |
| |
| void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| if (env->eflags & VM_MASK) { |
| SegmentCache *sc; |
| selector &= 0xffff; |
| sc = &env->segs[seg_reg]; |
| /* NOTE: in VM86 mode, limit and flags are never reloaded, |
| so we must load them here */ |
| sc->base = (void *)(selector << 4); |
| sc->limit = 0xffff; |
| sc->flags = 0; |
| sc->selector = selector; |
| } else { |
| load_seg(seg_reg, selector, 0); |
| } |
| env = saved_env; |
| } |
| |
| void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| |
| helper_fsave(ptr, data32); |
| |
| env = saved_env; |
| } |
| |
| void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| |
| helper_frstor(ptr, data32); |
| |
| env = saved_env; |
| } |
| |
| #endif /* TARGET_I386 */ |
| |
| #undef EAX |
| #undef ECX |
| #undef EDX |
| #undef EBX |
| #undef ESP |
| #undef EBP |
| #undef ESI |
| #undef EDI |
| #undef EIP |
| #include <signal.h> |
| #include <sys/ucontext.h> |
| |
| #if defined(TARGET_I386) |
| |
| /* 'pc' is the host PC at which the exception was raised. 'address' is |
| the effective address of the memory exception. 'is_write' is 1 if a |
| write caused the exception and otherwise 0'. 'old_set' is the |
| signal set which should be restored */ |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(address)) { |
| return 1; |
| } |
| /* see if it is an MMU fault */ |
| ret = cpu_x86_handle_mmu_fault(env, address, is_write); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc); |
| } |
| #if 0 |
| printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", |
| env->eip, env->cr[2], env->error_code); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| raise_exception_err(EXCP0E_PAGE, env->error_code); |
| /* never comes here */ |
| return 1; |
| } |
| |
| #elif defined(TARGET_ARM) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set) |
| { |
| /* XXX: do more */ |
| return 0; |
| } |
| #else |
| #error unsupported target CPU |
| #endif |
| |
| #if defined(__i386__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| |
| #ifndef REG_EIP |
| /* for glibc 2.1 */ |
| #define REG_EIP EIP |
| #define REG_ERR ERR |
| #define REG_TRAPNO TRAPNO |
| #endif |
| pc = uc->uc_mcontext.gregs[REG_EIP]; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? |
| (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, |
| &uc->uc_sigmask); |
| } |
| |
| #elif defined(__powerpc) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| struct pt_regs *regs = uc->uc_mcontext.regs; |
| unsigned long pc; |
| int is_write; |
| |
| pc = regs->nip; |
| is_write = 0; |
| #if 0 |
| /* ppc 4xx case */ |
| if (regs->dsisr & 0x00800000) |
| is_write = 1; |
| #else |
| if (regs->trap != 0x400 && (regs->dsisr & 0x02000000)) |
| is_write = 1; |
| #endif |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, &uc->uc_sigmask); |
| } |
| |
| #elif defined(__alpha__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| uint32_t *pc = uc->uc_mcontext.sc_pc; |
| uint32_t insn = *pc; |
| int is_write = 0; |
| |
| /* XXX: need kernel patch to get write flag faster */ |
| switch (insn >> 26) { |
| case 0x0d: // stw |
| case 0x0e: // stb |
| case 0x0f: // stq_u |
| case 0x24: // stf |
| case 0x25: // stg |
| case 0x26: // sts |
| case 0x27: // stt |
| case 0x2c: // stl |
| case 0x2d: // stq |
| case 0x2e: // stl_c |
| case 0x2f: // stq_c |
| is_write = 1; |
| } |
| |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, &uc->uc_sigmask); |
| } |
| #elif defined(__sparc__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| uint32_t *regs = (uint32_t *)(info + 1); |
| void *sigmask = (regs + 20); |
| unsigned long pc; |
| int is_write; |
| uint32_t insn; |
| |
| /* XXX: is there a standard glibc define ? */ |
| pc = regs[1]; |
| /* XXX: need kernel patch to get write flag faster */ |
| is_write = 0; |
| insn = *(uint32_t *)pc; |
| if ((insn >> 30) == 3) { |
| switch((insn >> 19) & 0x3f) { |
| case 0x05: // stb |
| case 0x06: // sth |
| case 0x04: // st |
| case 0x07: // std |
| case 0x24: // stf |
| case 0x27: // stdf |
| case 0x25: // stfsr |
| is_write = 1; |
| break; |
| } |
| } |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, sigmask); |
| } |
| |
| #elif defined(__arm__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = uc->uc_mcontext.gregs[R15]; |
| /* XXX: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask); |
| } |
| |
| #else |
| |
| #error host CPU specific signal handler needed |
| |
| #endif |