blob: 281152d338f46d13a1daca641f6a166336f9eaab [file] [log] [blame]
/*
* virtio-iommu device
*
* Copyright (c) 2020 Red Hat, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/iov.h"
#include "hw/qdev-properties.h"
#include "hw/virtio/virtio.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "standard-headers/linux/virtio_ids.h"
#include "hw/virtio/virtio-bus.h"
#include "hw/virtio/virtio-access.h"
#include "hw/virtio/virtio-iommu.h"
#include "hw/pci/pci_bus.h"
#include "hw/pci/pci.h"
/* Max size */
#define VIOMMU_DEFAULT_QUEUE_SIZE 256
#define VIOMMU_PROBE_SIZE 512
typedef struct VirtIOIOMMUDomain {
uint32_t id;
bool bypass;
GTree *mappings;
QLIST_HEAD(, VirtIOIOMMUEndpoint) endpoint_list;
} VirtIOIOMMUDomain;
typedef struct VirtIOIOMMUEndpoint {
uint32_t id;
VirtIOIOMMUDomain *domain;
IOMMUMemoryRegion *iommu_mr;
QLIST_ENTRY(VirtIOIOMMUEndpoint) next;
} VirtIOIOMMUEndpoint;
typedef struct VirtIOIOMMUInterval {
uint64_t low;
uint64_t high;
} VirtIOIOMMUInterval;
typedef struct VirtIOIOMMUMapping {
uint64_t phys_addr;
uint32_t flags;
} VirtIOIOMMUMapping;
static inline uint16_t virtio_iommu_get_bdf(IOMMUDevice *dev)
{
return PCI_BUILD_BDF(pci_bus_num(dev->bus), dev->devfn);
}
static bool virtio_iommu_device_bypassed(IOMMUDevice *sdev)
{
uint32_t sid;
bool bypassed;
VirtIOIOMMU *s = sdev->viommu;
VirtIOIOMMUEndpoint *ep;
sid = virtio_iommu_get_bdf(sdev);
qemu_rec_mutex_lock(&s->mutex);
/* need to check bypass before system reset */
if (!s->endpoints) {
bypassed = s->config.bypass;
goto unlock;
}
ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(sid));
if (!ep || !ep->domain) {
bypassed = s->config.bypass;
} else {
bypassed = ep->domain->bypass;
}
unlock:
qemu_rec_mutex_unlock(&s->mutex);
return bypassed;
}
/* Return whether the device is using IOMMU translation. */
static bool virtio_iommu_switch_address_space(IOMMUDevice *sdev)
{
bool use_remapping;
assert(sdev);
use_remapping = !virtio_iommu_device_bypassed(sdev);
trace_virtio_iommu_switch_address_space(pci_bus_num(sdev->bus),
PCI_SLOT(sdev->devfn),
PCI_FUNC(sdev->devfn),
use_remapping);
/* Turn off first then on the other */
if (use_remapping) {
memory_region_set_enabled(&sdev->bypass_mr, false);
memory_region_set_enabled(MEMORY_REGION(&sdev->iommu_mr), true);
} else {
memory_region_set_enabled(MEMORY_REGION(&sdev->iommu_mr), false);
memory_region_set_enabled(&sdev->bypass_mr, true);
}
return use_remapping;
}
static void virtio_iommu_switch_address_space_all(VirtIOIOMMU *s)
{
GHashTableIter iter;
IOMMUPciBus *iommu_pci_bus;
int i;
g_hash_table_iter_init(&iter, s->as_by_busptr);
while (g_hash_table_iter_next(&iter, NULL, (void **)&iommu_pci_bus)) {
for (i = 0; i < PCI_DEVFN_MAX; i++) {
if (!iommu_pci_bus->pbdev[i]) {
continue;
}
virtio_iommu_switch_address_space(iommu_pci_bus->pbdev[i]);
}
}
}
/**
* The bus number is used for lookup when SID based operations occur.
* In that case we lazily populate the IOMMUPciBus array from the bus hash
* table. At the time the IOMMUPciBus is created (iommu_find_add_as), the bus
* numbers may not be always initialized yet.
*/
static IOMMUPciBus *iommu_find_iommu_pcibus(VirtIOIOMMU *s, uint8_t bus_num)
{
IOMMUPciBus *iommu_pci_bus = s->iommu_pcibus_by_bus_num[bus_num];
if (!iommu_pci_bus) {
GHashTableIter iter;
g_hash_table_iter_init(&iter, s->as_by_busptr);
while (g_hash_table_iter_next(&iter, NULL, (void **)&iommu_pci_bus)) {
if (pci_bus_num(iommu_pci_bus->bus) == bus_num) {
s->iommu_pcibus_by_bus_num[bus_num] = iommu_pci_bus;
return iommu_pci_bus;
}
}
return NULL;
}
return iommu_pci_bus;
}
static IOMMUMemoryRegion *virtio_iommu_mr(VirtIOIOMMU *s, uint32_t sid)
{
uint8_t bus_n, devfn;
IOMMUPciBus *iommu_pci_bus;
IOMMUDevice *dev;
bus_n = PCI_BUS_NUM(sid);
iommu_pci_bus = iommu_find_iommu_pcibus(s, bus_n);
if (iommu_pci_bus) {
devfn = sid & (PCI_DEVFN_MAX - 1);
dev = iommu_pci_bus->pbdev[devfn];
if (dev) {
return &dev->iommu_mr;
}
}
return NULL;
}
static gint interval_cmp(gconstpointer a, gconstpointer b, gpointer user_data)
{
VirtIOIOMMUInterval *inta = (VirtIOIOMMUInterval *)a;
VirtIOIOMMUInterval *intb = (VirtIOIOMMUInterval *)b;
if (inta->high < intb->low) {
return -1;
} else if (intb->high < inta->low) {
return 1;
} else {
return 0;
}
}
static void virtio_iommu_notify_map(IOMMUMemoryRegion *mr, hwaddr virt_start,
hwaddr virt_end, hwaddr paddr,
uint32_t flags)
{
IOMMUTLBEvent event;
IOMMUAccessFlags perm = IOMMU_ACCESS_FLAG(flags & VIRTIO_IOMMU_MAP_F_READ,
flags & VIRTIO_IOMMU_MAP_F_WRITE);
if (!(mr->iommu_notify_flags & IOMMU_NOTIFIER_MAP) ||
(flags & VIRTIO_IOMMU_MAP_F_MMIO) || !perm) {
return;
}
trace_virtio_iommu_notify_map(mr->parent_obj.name, virt_start, virt_end,
paddr, perm);
event.type = IOMMU_NOTIFIER_MAP;
event.entry.target_as = &address_space_memory;
event.entry.addr_mask = virt_end - virt_start;
event.entry.iova = virt_start;
event.entry.perm = perm;
event.entry.translated_addr = paddr;
memory_region_notify_iommu(mr, 0, event);
}
static void virtio_iommu_notify_unmap(IOMMUMemoryRegion *mr, hwaddr virt_start,
hwaddr virt_end)
{
IOMMUTLBEvent event;
uint64_t delta = virt_end - virt_start;
if (!(mr->iommu_notify_flags & IOMMU_NOTIFIER_UNMAP)) {
return;
}
trace_virtio_iommu_notify_unmap(mr->parent_obj.name, virt_start, virt_end);
event.type = IOMMU_NOTIFIER_UNMAP;
event.entry.target_as = &address_space_memory;
event.entry.perm = IOMMU_NONE;
event.entry.translated_addr = 0;
event.entry.addr_mask = delta;
event.entry.iova = virt_start;
if (delta == UINT64_MAX) {
memory_region_notify_iommu(mr, 0, event);
}
while (virt_start != virt_end + 1) {
uint64_t mask = dma_aligned_pow2_mask(virt_start, virt_end, 64);
event.entry.addr_mask = mask;
event.entry.iova = virt_start;
memory_region_notify_iommu(mr, 0, event);
virt_start += mask + 1;
}
}
static gboolean virtio_iommu_notify_unmap_cb(gpointer key, gpointer value,
gpointer data)
{
VirtIOIOMMUInterval *interval = (VirtIOIOMMUInterval *) key;
IOMMUMemoryRegion *mr = (IOMMUMemoryRegion *) data;
virtio_iommu_notify_unmap(mr, interval->low, interval->high);
return false;
}
static gboolean virtio_iommu_notify_map_cb(gpointer key, gpointer value,
gpointer data)
{
VirtIOIOMMUMapping *mapping = (VirtIOIOMMUMapping *) value;
VirtIOIOMMUInterval *interval = (VirtIOIOMMUInterval *) key;
IOMMUMemoryRegion *mr = (IOMMUMemoryRegion *) data;
virtio_iommu_notify_map(mr, interval->low, interval->high,
mapping->phys_addr, mapping->flags);
return false;
}
static void virtio_iommu_detach_endpoint_from_domain(VirtIOIOMMUEndpoint *ep)
{
VirtIOIOMMUDomain *domain = ep->domain;
IOMMUDevice *sdev = container_of(ep->iommu_mr, IOMMUDevice, iommu_mr);
if (!ep->domain) {
return;
}
g_tree_foreach(domain->mappings, virtio_iommu_notify_unmap_cb,
ep->iommu_mr);
QLIST_REMOVE(ep, next);
ep->domain = NULL;
virtio_iommu_switch_address_space(sdev);
}
static VirtIOIOMMUEndpoint *virtio_iommu_get_endpoint(VirtIOIOMMU *s,
uint32_t ep_id)
{
VirtIOIOMMUEndpoint *ep;
IOMMUMemoryRegion *mr;
ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(ep_id));
if (ep) {
return ep;
}
mr = virtio_iommu_mr(s, ep_id);
if (!mr) {
return NULL;
}
ep = g_malloc0(sizeof(*ep));
ep->id = ep_id;
ep->iommu_mr = mr;
trace_virtio_iommu_get_endpoint(ep_id);
g_tree_insert(s->endpoints, GUINT_TO_POINTER(ep_id), ep);
return ep;
}
static void virtio_iommu_put_endpoint(gpointer data)
{
VirtIOIOMMUEndpoint *ep = (VirtIOIOMMUEndpoint *)data;
if (ep->domain) {
virtio_iommu_detach_endpoint_from_domain(ep);
}
trace_virtio_iommu_put_endpoint(ep->id);
g_free(ep);
}
static VirtIOIOMMUDomain *virtio_iommu_get_domain(VirtIOIOMMU *s,
uint32_t domain_id,
bool bypass)
{
VirtIOIOMMUDomain *domain;
domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id));
if (domain) {
if (domain->bypass != bypass) {
return NULL;
}
return domain;
}
domain = g_malloc0(sizeof(*domain));
domain->id = domain_id;
domain->mappings = g_tree_new_full((GCompareDataFunc)interval_cmp,
NULL, (GDestroyNotify)g_free,
(GDestroyNotify)g_free);
domain->bypass = bypass;
g_tree_insert(s->domains, GUINT_TO_POINTER(domain_id), domain);
QLIST_INIT(&domain->endpoint_list);
trace_virtio_iommu_get_domain(domain_id);
return domain;
}
static void virtio_iommu_put_domain(gpointer data)
{
VirtIOIOMMUDomain *domain = (VirtIOIOMMUDomain *)data;
VirtIOIOMMUEndpoint *iter, *tmp;
QLIST_FOREACH_SAFE(iter, &domain->endpoint_list, next, tmp) {
virtio_iommu_detach_endpoint_from_domain(iter);
}
g_tree_destroy(domain->mappings);
trace_virtio_iommu_put_domain(domain->id);
g_free(domain);
}
static AddressSpace *virtio_iommu_find_add_as(PCIBus *bus, void *opaque,
int devfn)
{
VirtIOIOMMU *s = opaque;
IOMMUPciBus *sbus = g_hash_table_lookup(s->as_by_busptr, bus);
static uint32_t mr_index;
IOMMUDevice *sdev;
if (!sbus) {
sbus = g_malloc0(sizeof(IOMMUPciBus) +
sizeof(IOMMUDevice *) * PCI_DEVFN_MAX);
sbus->bus = bus;
g_hash_table_insert(s->as_by_busptr, bus, sbus);
}
sdev = sbus->pbdev[devfn];
if (!sdev) {
char *name = g_strdup_printf("%s-%d-%d",
TYPE_VIRTIO_IOMMU_MEMORY_REGION,
mr_index++, devfn);
sdev = sbus->pbdev[devfn] = g_new0(IOMMUDevice, 1);
sdev->viommu = s;
sdev->bus = bus;
sdev->devfn = devfn;
trace_virtio_iommu_init_iommu_mr(name);
memory_region_init(&sdev->root, OBJECT(s), name, UINT64_MAX);
address_space_init(&sdev->as, &sdev->root, TYPE_VIRTIO_IOMMU);
/*
* Build the IOMMU disabled container with aliases to the
* shared MRs. Note that aliasing to a shared memory region
* could help the memory API to detect same FlatViews so we
* can have devices to share the same FlatView when in bypass
* mode. (either by not configuring virtio-iommu driver or with
* "iommu=pt"). It will greatly reduce the total number of
* FlatViews of the system hence VM runs faster.
*/
memory_region_init_alias(&sdev->bypass_mr, OBJECT(s),
"system", get_system_memory(), 0,
memory_region_size(get_system_memory()));
memory_region_init_iommu(&sdev->iommu_mr, sizeof(sdev->iommu_mr),
TYPE_VIRTIO_IOMMU_MEMORY_REGION,
OBJECT(s), name,
UINT64_MAX);
/*
* Hook both the containers under the root container, we
* switch between iommu & bypass MRs by enable/disable
* corresponding sub-containers
*/
memory_region_add_subregion_overlap(&sdev->root, 0,
MEMORY_REGION(&sdev->iommu_mr),
0);
memory_region_add_subregion_overlap(&sdev->root, 0,
&sdev->bypass_mr, 0);
virtio_iommu_switch_address_space(sdev);
g_free(name);
}
return &sdev->as;
}
static int virtio_iommu_attach(VirtIOIOMMU *s,
struct virtio_iommu_req_attach *req)
{
uint32_t domain_id = le32_to_cpu(req->domain);
uint32_t ep_id = le32_to_cpu(req->endpoint);
uint32_t flags = le32_to_cpu(req->flags);
VirtIOIOMMUDomain *domain;
VirtIOIOMMUEndpoint *ep;
IOMMUDevice *sdev;
trace_virtio_iommu_attach(domain_id, ep_id);
if (flags & ~VIRTIO_IOMMU_ATTACH_F_BYPASS) {
return VIRTIO_IOMMU_S_INVAL;
}
ep = virtio_iommu_get_endpoint(s, ep_id);
if (!ep) {
return VIRTIO_IOMMU_S_NOENT;
}
if (ep->domain) {
VirtIOIOMMUDomain *previous_domain = ep->domain;
/*
* the device is already attached to a domain,
* detach it first
*/
virtio_iommu_detach_endpoint_from_domain(ep);
if (QLIST_EMPTY(&previous_domain->endpoint_list)) {
g_tree_remove(s->domains, GUINT_TO_POINTER(previous_domain->id));
}
}
domain = virtio_iommu_get_domain(s, domain_id,
flags & VIRTIO_IOMMU_ATTACH_F_BYPASS);
if (!domain) {
/* Incompatible bypass flag */
return VIRTIO_IOMMU_S_INVAL;
}
QLIST_INSERT_HEAD(&domain->endpoint_list, ep, next);
ep->domain = domain;
sdev = container_of(ep->iommu_mr, IOMMUDevice, iommu_mr);
virtio_iommu_switch_address_space(sdev);
/* Replay domain mappings on the associated memory region */
g_tree_foreach(domain->mappings, virtio_iommu_notify_map_cb,
ep->iommu_mr);
return VIRTIO_IOMMU_S_OK;
}
static int virtio_iommu_detach(VirtIOIOMMU *s,
struct virtio_iommu_req_detach *req)
{
uint32_t domain_id = le32_to_cpu(req->domain);
uint32_t ep_id = le32_to_cpu(req->endpoint);
VirtIOIOMMUDomain *domain;
VirtIOIOMMUEndpoint *ep;
trace_virtio_iommu_detach(domain_id, ep_id);
ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(ep_id));
if (!ep) {
return VIRTIO_IOMMU_S_NOENT;
}
domain = ep->domain;
if (!domain || domain->id != domain_id) {
return VIRTIO_IOMMU_S_INVAL;
}
virtio_iommu_detach_endpoint_from_domain(ep);
if (QLIST_EMPTY(&domain->endpoint_list)) {
g_tree_remove(s->domains, GUINT_TO_POINTER(domain->id));
}
return VIRTIO_IOMMU_S_OK;
}
static int virtio_iommu_map(VirtIOIOMMU *s,
struct virtio_iommu_req_map *req)
{
uint32_t domain_id = le32_to_cpu(req->domain);
uint64_t phys_start = le64_to_cpu(req->phys_start);
uint64_t virt_start = le64_to_cpu(req->virt_start);
uint64_t virt_end = le64_to_cpu(req->virt_end);
uint32_t flags = le32_to_cpu(req->flags);
VirtIOIOMMUDomain *domain;
VirtIOIOMMUInterval *interval;
VirtIOIOMMUMapping *mapping;
VirtIOIOMMUEndpoint *ep;
if (flags & ~VIRTIO_IOMMU_MAP_F_MASK) {
return VIRTIO_IOMMU_S_INVAL;
}
domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id));
if (!domain) {
return VIRTIO_IOMMU_S_NOENT;
}
if (domain->bypass) {
return VIRTIO_IOMMU_S_INVAL;
}
interval = g_malloc0(sizeof(*interval));
interval->low = virt_start;
interval->high = virt_end;
mapping = g_tree_lookup(domain->mappings, (gpointer)interval);
if (mapping) {
g_free(interval);
return VIRTIO_IOMMU_S_INVAL;
}
trace_virtio_iommu_map(domain_id, virt_start, virt_end, phys_start, flags);
mapping = g_malloc0(sizeof(*mapping));
mapping->phys_addr = phys_start;
mapping->flags = flags;
g_tree_insert(domain->mappings, interval, mapping);
QLIST_FOREACH(ep, &domain->endpoint_list, next) {
virtio_iommu_notify_map(ep->iommu_mr, virt_start, virt_end, phys_start,
flags);
}
return VIRTIO_IOMMU_S_OK;
}
static int virtio_iommu_unmap(VirtIOIOMMU *s,
struct virtio_iommu_req_unmap *req)
{
uint32_t domain_id = le32_to_cpu(req->domain);
uint64_t virt_start = le64_to_cpu(req->virt_start);
uint64_t virt_end = le64_to_cpu(req->virt_end);
VirtIOIOMMUMapping *iter_val;
VirtIOIOMMUInterval interval, *iter_key;
VirtIOIOMMUDomain *domain;
VirtIOIOMMUEndpoint *ep;
int ret = VIRTIO_IOMMU_S_OK;
trace_virtio_iommu_unmap(domain_id, virt_start, virt_end);
domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id));
if (!domain) {
return VIRTIO_IOMMU_S_NOENT;
}
if (domain->bypass) {
return VIRTIO_IOMMU_S_INVAL;
}
interval.low = virt_start;
interval.high = virt_end;
while (g_tree_lookup_extended(domain->mappings, &interval,
(void **)&iter_key, (void**)&iter_val)) {
uint64_t current_low = iter_key->low;
uint64_t current_high = iter_key->high;
if (interval.low <= current_low && interval.high >= current_high) {
QLIST_FOREACH(ep, &domain->endpoint_list, next) {
virtio_iommu_notify_unmap(ep->iommu_mr, current_low,
current_high);
}
g_tree_remove(domain->mappings, iter_key);
trace_virtio_iommu_unmap_done(domain_id, current_low, current_high);
} else {
ret = VIRTIO_IOMMU_S_RANGE;
break;
}
}
return ret;
}
static ssize_t virtio_iommu_fill_resv_mem_prop(VirtIOIOMMU *s, uint32_t ep,
uint8_t *buf, size_t free)
{
struct virtio_iommu_probe_resv_mem prop = {};
size_t size = sizeof(prop), length = size - sizeof(prop.head), total;
int i;
total = size * s->nb_reserved_regions;
if (total > free) {
return -ENOSPC;
}
for (i = 0; i < s->nb_reserved_regions; i++) {
unsigned subtype = s->reserved_regions[i].type;
assert(subtype == VIRTIO_IOMMU_RESV_MEM_T_RESERVED ||
subtype == VIRTIO_IOMMU_RESV_MEM_T_MSI);
prop.head.type = cpu_to_le16(VIRTIO_IOMMU_PROBE_T_RESV_MEM);
prop.head.length = cpu_to_le16(length);
prop.subtype = subtype;
prop.start = cpu_to_le64(s->reserved_regions[i].low);
prop.end = cpu_to_le64(s->reserved_regions[i].high);
memcpy(buf, &prop, size);
trace_virtio_iommu_fill_resv_property(ep, prop.subtype,
prop.start, prop.end);
buf += size;
}
return total;
}
/**
* virtio_iommu_probe - Fill the probe request buffer with
* the properties the device is able to return
*/
static int virtio_iommu_probe(VirtIOIOMMU *s,
struct virtio_iommu_req_probe *req,
uint8_t *buf)
{
uint32_t ep_id = le32_to_cpu(req->endpoint);
size_t free = VIOMMU_PROBE_SIZE;
ssize_t count;
if (!virtio_iommu_mr(s, ep_id)) {
return VIRTIO_IOMMU_S_NOENT;
}
count = virtio_iommu_fill_resv_mem_prop(s, ep_id, buf, free);
if (count < 0) {
return VIRTIO_IOMMU_S_INVAL;
}
buf += count;
free -= count;
return VIRTIO_IOMMU_S_OK;
}
static int virtio_iommu_iov_to_req(struct iovec *iov,
unsigned int iov_cnt,
void *req, size_t payload_sz)
{
size_t sz = iov_to_buf(iov, iov_cnt, 0, req, payload_sz);
if (unlikely(sz != payload_sz)) {
return VIRTIO_IOMMU_S_INVAL;
}
return 0;
}
#define virtio_iommu_handle_req(__req) \
static int virtio_iommu_handle_ ## __req(VirtIOIOMMU *s, \
struct iovec *iov, \
unsigned int iov_cnt) \
{ \
struct virtio_iommu_req_ ## __req req; \
int ret = virtio_iommu_iov_to_req(iov, iov_cnt, &req, \
sizeof(req) - sizeof(struct virtio_iommu_req_tail));\
\
return ret ? ret : virtio_iommu_ ## __req(s, &req); \
}
virtio_iommu_handle_req(attach)
virtio_iommu_handle_req(detach)
virtio_iommu_handle_req(map)
virtio_iommu_handle_req(unmap)
static int virtio_iommu_handle_probe(VirtIOIOMMU *s,
struct iovec *iov,
unsigned int iov_cnt,
uint8_t *buf)
{
struct virtio_iommu_req_probe req;
int ret = virtio_iommu_iov_to_req(iov, iov_cnt, &req, sizeof(req));
return ret ? ret : virtio_iommu_probe(s, &req, buf);
}
static void virtio_iommu_handle_command(VirtIODevice *vdev, VirtQueue *vq)
{
VirtIOIOMMU *s = VIRTIO_IOMMU(vdev);
struct virtio_iommu_req_head head;
struct virtio_iommu_req_tail tail = {};
size_t output_size = sizeof(tail), sz;
VirtQueueElement *elem;
unsigned int iov_cnt;
struct iovec *iov;
void *buf = NULL;
for (;;) {
elem = virtqueue_pop(vq, sizeof(VirtQueueElement));
if (!elem) {
return;
}
if (iov_size(elem->in_sg, elem->in_num) < sizeof(tail) ||
iov_size(elem->out_sg, elem->out_num) < sizeof(head)) {
virtio_error(vdev, "virtio-iommu bad head/tail size");
virtqueue_detach_element(vq, elem, 0);
g_free(elem);
break;
}
iov_cnt = elem->out_num;
iov = elem->out_sg;
sz = iov_to_buf(iov, iov_cnt, 0, &head, sizeof(head));
if (unlikely(sz != sizeof(head))) {
tail.status = VIRTIO_IOMMU_S_DEVERR;
goto out;
}
qemu_rec_mutex_lock(&s->mutex);
switch (head.type) {
case VIRTIO_IOMMU_T_ATTACH:
tail.status = virtio_iommu_handle_attach(s, iov, iov_cnt);
break;
case VIRTIO_IOMMU_T_DETACH:
tail.status = virtio_iommu_handle_detach(s, iov, iov_cnt);
break;
case VIRTIO_IOMMU_T_MAP:
tail.status = virtio_iommu_handle_map(s, iov, iov_cnt);
break;
case VIRTIO_IOMMU_T_UNMAP:
tail.status = virtio_iommu_handle_unmap(s, iov, iov_cnt);
break;
case VIRTIO_IOMMU_T_PROBE:
{
struct virtio_iommu_req_tail *ptail;
output_size = s->config.probe_size + sizeof(tail);
buf = g_malloc0(output_size);
ptail = (struct virtio_iommu_req_tail *)
(buf + s->config.probe_size);
ptail->status = virtio_iommu_handle_probe(s, iov, iov_cnt, buf);
break;
}
default:
tail.status = VIRTIO_IOMMU_S_UNSUPP;
}
qemu_rec_mutex_unlock(&s->mutex);
out:
sz = iov_from_buf(elem->in_sg, elem->in_num, 0,
buf ? buf : &tail, output_size);
assert(sz == output_size);
virtqueue_push(vq, elem, sz);
virtio_notify(vdev, vq);
g_free(elem);
g_free(buf);
buf = NULL;
}
}
static void virtio_iommu_report_fault(VirtIOIOMMU *viommu, uint8_t reason,
int flags, uint32_t endpoint,
uint64_t address)
{
VirtIODevice *vdev = &viommu->parent_obj;
VirtQueue *vq = viommu->event_vq;
struct virtio_iommu_fault fault;
VirtQueueElement *elem;
size_t sz;
memset(&fault, 0, sizeof(fault));
fault.reason = reason;
fault.flags = cpu_to_le32(flags);
fault.endpoint = cpu_to_le32(endpoint);
fault.address = cpu_to_le64(address);
elem = virtqueue_pop(vq, sizeof(VirtQueueElement));
if (!elem) {
error_report_once(
"no buffer available in event queue to report event");
return;
}
if (iov_size(elem->in_sg, elem->in_num) < sizeof(fault)) {
virtio_error(vdev, "error buffer of wrong size");
virtqueue_detach_element(vq, elem, 0);
g_free(elem);
return;
}
sz = iov_from_buf(elem->in_sg, elem->in_num, 0,
&fault, sizeof(fault));
assert(sz == sizeof(fault));
trace_virtio_iommu_report_fault(reason, flags, endpoint, address);
virtqueue_push(vq, elem, sz);
virtio_notify(vdev, vq);
g_free(elem);
}
static IOMMUTLBEntry virtio_iommu_translate(IOMMUMemoryRegion *mr, hwaddr addr,
IOMMUAccessFlags flag,
int iommu_idx)
{
IOMMUDevice *sdev = container_of(mr, IOMMUDevice, iommu_mr);
VirtIOIOMMUInterval interval, *mapping_key;
VirtIOIOMMUMapping *mapping_value;
VirtIOIOMMU *s = sdev->viommu;
bool read_fault, write_fault;
VirtIOIOMMUEndpoint *ep;
uint32_t sid, flags;
bool bypass_allowed;
bool found;
int i;
interval.low = addr;
interval.high = addr + 1;
IOMMUTLBEntry entry = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = addr,
.addr_mask = (1 << ctz32(s->config.page_size_mask)) - 1,
.perm = IOMMU_NONE,
};
bypass_allowed = s->config.bypass;
sid = virtio_iommu_get_bdf(sdev);
trace_virtio_iommu_translate(mr->parent_obj.name, sid, addr, flag);
qemu_rec_mutex_lock(&s->mutex);
ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(sid));
if (bypass_allowed)
assert(ep && ep->domain && !ep->domain->bypass);
if (!ep) {
if (!bypass_allowed) {
error_report_once("%s sid=%d is not known!!", __func__, sid);
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_UNKNOWN,
VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
} else {
entry.perm = flag;
}
goto unlock;
}
for (i = 0; i < s->nb_reserved_regions; i++) {
ReservedRegion *reg = &s->reserved_regions[i];
if (addr >= reg->low && addr <= reg->high) {
switch (reg->type) {
case VIRTIO_IOMMU_RESV_MEM_T_MSI:
entry.perm = flag;
break;
case VIRTIO_IOMMU_RESV_MEM_T_RESERVED:
default:
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_MAPPING,
VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
break;
}
goto unlock;
}
}
if (!ep->domain) {
if (!bypass_allowed) {
error_report_once("%s %02x:%02x.%01x not attached to any domain",
__func__, PCI_BUS_NUM(sid),
PCI_SLOT(sid), PCI_FUNC(sid));
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_DOMAIN,
VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
} else {
entry.perm = flag;
}
goto unlock;
} else if (ep->domain->bypass) {
entry.perm = flag;
goto unlock;
}
found = g_tree_lookup_extended(ep->domain->mappings, (gpointer)(&interval),
(void **)&mapping_key,
(void **)&mapping_value);
if (!found) {
error_report_once("%s no mapping for 0x%"PRIx64" for sid=%d",
__func__, addr, sid);
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_MAPPING,
VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
goto unlock;
}
read_fault = (flag & IOMMU_RO) &&
!(mapping_value->flags & VIRTIO_IOMMU_MAP_F_READ);
write_fault = (flag & IOMMU_WO) &&
!(mapping_value->flags & VIRTIO_IOMMU_MAP_F_WRITE);
flags = read_fault ? VIRTIO_IOMMU_FAULT_F_READ : 0;
flags |= write_fault ? VIRTIO_IOMMU_FAULT_F_WRITE : 0;
if (flags) {
error_report_once("%s permission error on 0x%"PRIx64"(%d): allowed=%d",
__func__, addr, flag, mapping_value->flags);
flags |= VIRTIO_IOMMU_FAULT_F_ADDRESS;
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_MAPPING,
flags | VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
goto unlock;
}
entry.translated_addr = addr - mapping_key->low + mapping_value->phys_addr;
entry.perm = flag;
trace_virtio_iommu_translate_out(addr, entry.translated_addr, sid);
unlock:
qemu_rec_mutex_unlock(&s->mutex);
return entry;
}
static void virtio_iommu_get_config(VirtIODevice *vdev, uint8_t *config_data)
{
VirtIOIOMMU *dev = VIRTIO_IOMMU(vdev);
struct virtio_iommu_config *dev_config = &dev->config;
struct virtio_iommu_config *out_config = (void *)config_data;
out_config->page_size_mask = cpu_to_le64(dev_config->page_size_mask);
out_config->input_range.start = cpu_to_le64(dev_config->input_range.start);
out_config->input_range.end = cpu_to_le64(dev_config->input_range.end);
out_config->domain_range.start = cpu_to_le32(dev_config->domain_range.start);
out_config->domain_range.end = cpu_to_le32(dev_config->domain_range.end);
out_config->probe_size = cpu_to_le32(dev_config->probe_size);
out_config->bypass = dev_config->bypass;
trace_virtio_iommu_get_config(dev_config->page_size_mask,
dev_config->input_range.start,
dev_config->input_range.end,
dev_config->domain_range.start,
dev_config->domain_range.end,
dev_config->probe_size,
dev_config->bypass);
}
static void virtio_iommu_set_config(VirtIODevice *vdev,
const uint8_t *config_data)
{
VirtIOIOMMU *dev = VIRTIO_IOMMU(vdev);
struct virtio_iommu_config *dev_config = &dev->config;
const struct virtio_iommu_config *in_config = (void *)config_data;
if (in_config->bypass != dev_config->bypass) {
if (!virtio_vdev_has_feature(vdev, VIRTIO_IOMMU_F_BYPASS_CONFIG)) {
virtio_error(vdev, "cannot set config.bypass");
return;
} else if (in_config->bypass != 0 && in_config->bypass != 1) {
virtio_error(vdev, "invalid config.bypass value '%u'",
in_config->bypass);
return;
}
dev_config->bypass = in_config->bypass;
virtio_iommu_switch_address_space_all(dev);
}
trace_virtio_iommu_set_config(in_config->bypass);
}
static uint64_t virtio_iommu_get_features(VirtIODevice *vdev, uint64_t f,
Error **errp)
{
VirtIOIOMMU *dev = VIRTIO_IOMMU(vdev);
f |= dev->features;
trace_virtio_iommu_get_features(f);
return f;
}
static gint int_cmp(gconstpointer a, gconstpointer b, gpointer user_data)
{
guint ua = GPOINTER_TO_UINT(a);
guint ub = GPOINTER_TO_UINT(b);
return (ua > ub) - (ua < ub);
}
static gboolean virtio_iommu_remap(gpointer key, gpointer value, gpointer data)
{
VirtIOIOMMUMapping *mapping = (VirtIOIOMMUMapping *) value;
VirtIOIOMMUInterval *interval = (VirtIOIOMMUInterval *) key;
IOMMUMemoryRegion *mr = (IOMMUMemoryRegion *) data;
trace_virtio_iommu_remap(mr->parent_obj.name, interval->low, interval->high,
mapping->phys_addr);
virtio_iommu_notify_map(mr, interval->low, interval->high,
mapping->phys_addr, mapping->flags);
return false;
}
static void virtio_iommu_replay(IOMMUMemoryRegion *mr, IOMMUNotifier *n)
{
IOMMUDevice *sdev = container_of(mr, IOMMUDevice, iommu_mr);
VirtIOIOMMU *s = sdev->viommu;
uint32_t sid;
VirtIOIOMMUEndpoint *ep;
sid = virtio_iommu_get_bdf(sdev);
qemu_rec_mutex_lock(&s->mutex);
if (!s->endpoints) {
goto unlock;
}
ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(sid));
if (!ep || !ep->domain) {
goto unlock;
}
g_tree_foreach(ep->domain->mappings, virtio_iommu_remap, mr);
unlock:
qemu_rec_mutex_unlock(&s->mutex);
}
static int virtio_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu_mr,
IOMMUNotifierFlag old,
IOMMUNotifierFlag new,
Error **errp)
{
if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
error_setg(errp, "Virtio-iommu does not support dev-iotlb yet");
return -EINVAL;
}
if (old == IOMMU_NOTIFIER_NONE) {
trace_virtio_iommu_notify_flag_add(iommu_mr->parent_obj.name);
} else if (new == IOMMU_NOTIFIER_NONE) {
trace_virtio_iommu_notify_flag_del(iommu_mr->parent_obj.name);
}
return 0;
}
/*
* The default mask (TARGET_PAGE_MASK) is the smallest supported guest granule,
* for example 0xfffffffffffff000. When an assigned device has page size
* restrictions due to the hardware IOMMU configuration, apply this restriction
* to the mask.
*/
static int virtio_iommu_set_page_size_mask(IOMMUMemoryRegion *mr,
uint64_t new_mask,
Error **errp)
{
IOMMUDevice *sdev = container_of(mr, IOMMUDevice, iommu_mr);
VirtIOIOMMU *s = sdev->viommu;
uint64_t cur_mask = s->config.page_size_mask;
trace_virtio_iommu_set_page_size_mask(mr->parent_obj.name, cur_mask,
new_mask);
if ((cur_mask & new_mask) == 0) {
error_setg(errp, "virtio-iommu page mask 0x%"PRIx64
" is incompatible with mask 0x%"PRIx64, cur_mask, new_mask);
return -1;
}
/*
* After the machine is finalized, we can't change the mask anymore. If by
* chance the hotplugged device supports the same granule, we can still
* accept it. Having a different masks is possible but the guest will use
* sub-optimal block sizes, so warn about it.
*/
if (phase_check(PHASE_MACHINE_READY)) {
int new_granule = ctz64(new_mask);
int cur_granule = ctz64(cur_mask);
if (new_granule != cur_granule) {
error_setg(errp, "virtio-iommu page mask 0x%"PRIx64
" is incompatible with mask 0x%"PRIx64, cur_mask,
new_mask);
return -1;
} else if (new_mask != cur_mask) {
warn_report("virtio-iommu page mask 0x%"PRIx64
" does not match 0x%"PRIx64, cur_mask, new_mask);
}
return 0;
}
s->config.page_size_mask &= new_mask;
return 0;
}
static void virtio_iommu_system_reset(void *opaque)
{
VirtIOIOMMU *s = opaque;
trace_virtio_iommu_system_reset();
/*
* config.bypass is sticky across device reset, but should be restored on
* system reset
*/
s->config.bypass = s->boot_bypass;
virtio_iommu_switch_address_space_all(s);
}
static void virtio_iommu_device_realize(DeviceState *dev, Error **errp)
{
VirtIODevice *vdev = VIRTIO_DEVICE(dev);
VirtIOIOMMU *s = VIRTIO_IOMMU(dev);
virtio_init(vdev, VIRTIO_ID_IOMMU, sizeof(struct virtio_iommu_config));
memset(s->iommu_pcibus_by_bus_num, 0, sizeof(s->iommu_pcibus_by_bus_num));
s->req_vq = virtio_add_queue(vdev, VIOMMU_DEFAULT_QUEUE_SIZE,
virtio_iommu_handle_command);
s->event_vq = virtio_add_queue(vdev, VIOMMU_DEFAULT_QUEUE_SIZE, NULL);
/*
* config.bypass is needed to get initial address space early, such as
* in vfio realize
*/
s->config.bypass = s->boot_bypass;
s->config.page_size_mask = TARGET_PAGE_MASK;
s->config.input_range.end = UINT64_MAX;
s->config.domain_range.end = UINT32_MAX;
s->config.probe_size = VIOMMU_PROBE_SIZE;
virtio_add_feature(&s->features, VIRTIO_RING_F_EVENT_IDX);
virtio_add_feature(&s->features, VIRTIO_RING_F_INDIRECT_DESC);
virtio_add_feature(&s->features, VIRTIO_F_VERSION_1);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_INPUT_RANGE);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_DOMAIN_RANGE);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_MAP_UNMAP);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_MMIO);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_PROBE);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_BYPASS_CONFIG);
qemu_rec_mutex_init(&s->mutex);
s->as_by_busptr = g_hash_table_new_full(NULL, NULL, NULL, g_free);
if (s->primary_bus) {
pci_setup_iommu(s->primary_bus, virtio_iommu_find_add_as, s);
} else {
error_setg(errp, "VIRTIO-IOMMU is not attached to any PCI bus!");
}
qemu_register_reset(virtio_iommu_system_reset, s);
}
static void virtio_iommu_device_unrealize(DeviceState *dev)
{
VirtIODevice *vdev = VIRTIO_DEVICE(dev);
VirtIOIOMMU *s = VIRTIO_IOMMU(dev);
qemu_unregister_reset(virtio_iommu_system_reset, s);
g_hash_table_destroy(s->as_by_busptr);
if (s->domains) {
g_tree_destroy(s->domains);
}
if (s->endpoints) {
g_tree_destroy(s->endpoints);
}
qemu_rec_mutex_destroy(&s->mutex);
virtio_delete_queue(s->req_vq);
virtio_delete_queue(s->event_vq);
virtio_cleanup(vdev);
}
static void virtio_iommu_device_reset(VirtIODevice *vdev)
{
VirtIOIOMMU *s = VIRTIO_IOMMU(vdev);
trace_virtio_iommu_device_reset();
if (s->domains) {
g_tree_destroy(s->domains);
}
if (s->endpoints) {
g_tree_destroy(s->endpoints);
}
s->domains = g_tree_new_full((GCompareDataFunc)int_cmp,
NULL, NULL, virtio_iommu_put_domain);
s->endpoints = g_tree_new_full((GCompareDataFunc)int_cmp,
NULL, NULL, virtio_iommu_put_endpoint);
}
static void virtio_iommu_set_status(VirtIODevice *vdev, uint8_t status)
{
trace_virtio_iommu_device_status(status);
}
static void virtio_iommu_instance_init(Object *obj)
{
}
#define VMSTATE_INTERVAL \
{ \
.name = "interval", \
.version_id = 1, \
.minimum_version_id = 1, \
.fields = (VMStateField[]) { \
VMSTATE_UINT64(low, VirtIOIOMMUInterval), \
VMSTATE_UINT64(high, VirtIOIOMMUInterval), \
VMSTATE_END_OF_LIST() \
} \
}
#define VMSTATE_MAPPING \
{ \
.name = "mapping", \
.version_id = 1, \
.minimum_version_id = 1, \
.fields = (VMStateField[]) { \
VMSTATE_UINT64(phys_addr, VirtIOIOMMUMapping),\
VMSTATE_UINT32(flags, VirtIOIOMMUMapping), \
VMSTATE_END_OF_LIST() \
}, \
}
static const VMStateDescription vmstate_interval_mapping[2] = {
VMSTATE_MAPPING, /* value */
VMSTATE_INTERVAL /* key */
};
static int domain_preload(void *opaque)
{
VirtIOIOMMUDomain *domain = opaque;
domain->mappings = g_tree_new_full((GCompareDataFunc)interval_cmp,
NULL, g_free, g_free);
return 0;
}
static const VMStateDescription vmstate_endpoint = {
.name = "endpoint",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(id, VirtIOIOMMUEndpoint),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_domain = {
.name = "domain",
.version_id = 2,
.minimum_version_id = 2,
.pre_load = domain_preload,
.fields = (VMStateField[]) {
VMSTATE_UINT32(id, VirtIOIOMMUDomain),
VMSTATE_GTREE_V(mappings, VirtIOIOMMUDomain, 1,
vmstate_interval_mapping,
VirtIOIOMMUInterval, VirtIOIOMMUMapping),
VMSTATE_QLIST_V(endpoint_list, VirtIOIOMMUDomain, 1,
vmstate_endpoint, VirtIOIOMMUEndpoint, next),
VMSTATE_BOOL_V(bypass, VirtIOIOMMUDomain, 2),
VMSTATE_END_OF_LIST()
}
};
static gboolean reconstruct_endpoints(gpointer key, gpointer value,
gpointer data)
{
VirtIOIOMMU *s = (VirtIOIOMMU *)data;
VirtIOIOMMUDomain *d = (VirtIOIOMMUDomain *)value;
VirtIOIOMMUEndpoint *iter;
IOMMUMemoryRegion *mr;
QLIST_FOREACH(iter, &d->endpoint_list, next) {
mr = virtio_iommu_mr(s, iter->id);
assert(mr);
iter->domain = d;
iter->iommu_mr = mr;
g_tree_insert(s->endpoints, GUINT_TO_POINTER(iter->id), iter);
}
return false; /* continue the domain traversal */
}
static int iommu_post_load(void *opaque, int version_id)
{
VirtIOIOMMU *s = opaque;
g_tree_foreach(s->domains, reconstruct_endpoints, s);
/*
* Memory regions are dynamically turned on/off depending on
* 'config.bypass' and attached domain type if there is. After
* migration, we need to make sure the memory regions are
* still correct.
*/
virtio_iommu_switch_address_space_all(s);
return 0;
}
static const VMStateDescription vmstate_virtio_iommu_device = {
.name = "virtio-iommu-device",
.minimum_version_id = 2,
.version_id = 2,
.post_load = iommu_post_load,
.fields = (VMStateField[]) {
VMSTATE_GTREE_DIRECT_KEY_V(domains, VirtIOIOMMU, 2,
&vmstate_domain, VirtIOIOMMUDomain),
VMSTATE_UINT8_V(config.bypass, VirtIOIOMMU, 2),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_virtio_iommu = {
.name = "virtio-iommu",
.minimum_version_id = 2,
.priority = MIG_PRI_IOMMU,
.version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_VIRTIO_DEVICE,
VMSTATE_END_OF_LIST()
},
};
static Property virtio_iommu_properties[] = {
DEFINE_PROP_LINK("primary-bus", VirtIOIOMMU, primary_bus, "PCI", PCIBus *),
DEFINE_PROP_BOOL("boot-bypass", VirtIOIOMMU, boot_bypass, true),
DEFINE_PROP_END_OF_LIST(),
};
static void virtio_iommu_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass);
device_class_set_props(dc, virtio_iommu_properties);
dc->vmsd = &vmstate_virtio_iommu;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
vdc->realize = virtio_iommu_device_realize;
vdc->unrealize = virtio_iommu_device_unrealize;
vdc->reset = virtio_iommu_device_reset;
vdc->get_config = virtio_iommu_get_config;
vdc->set_config = virtio_iommu_set_config;
vdc->get_features = virtio_iommu_get_features;
vdc->set_status = virtio_iommu_set_status;
vdc->vmsd = &vmstate_virtio_iommu_device;
}
static void virtio_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = virtio_iommu_translate;
imrc->replay = virtio_iommu_replay;
imrc->notify_flag_changed = virtio_iommu_notify_flag_changed;
imrc->iommu_set_page_size_mask = virtio_iommu_set_page_size_mask;
}
static const TypeInfo virtio_iommu_info = {
.name = TYPE_VIRTIO_IOMMU,
.parent = TYPE_VIRTIO_DEVICE,
.instance_size = sizeof(VirtIOIOMMU),
.instance_init = virtio_iommu_instance_init,
.class_init = virtio_iommu_class_init,
};
static const TypeInfo virtio_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_VIRTIO_IOMMU_MEMORY_REGION,
.class_init = virtio_iommu_memory_region_class_init,
};
static void virtio_register_types(void)
{
type_register_static(&virtio_iommu_info);
type_register_static(&virtio_iommu_memory_region_info);
}
type_init(virtio_register_types)