| /* |
| * SH4 emulation |
| * |
| * Copyright (c) 2005 Samuel Tardieu |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "fpu/softfloat.h" |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr, |
| MMUAccessType access_type, |
| int mmu_idx, uintptr_t retaddr) |
| { |
| cpu_env(cs)->tea = addr; |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| case MMU_DATA_LOAD: |
| cs->exception_index = 0x0e0; |
| break; |
| case MMU_DATA_STORE: |
| cs->exception_index = 0x100; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| |
| #endif |
| |
| void helper_ldtlb(CPUSH4State *env) |
| { |
| #ifdef CONFIG_USER_ONLY |
| cpu_abort(env_cpu(env), "Unhandled ldtlb"); |
| #else |
| cpu_load_tlb(env); |
| #endif |
| } |
| |
| static inline G_NORETURN |
| void raise_exception(CPUSH4State *env, int index, |
| uintptr_t retaddr) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = index; |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| |
| void helper_raise_illegal_instruction(CPUSH4State *env) |
| { |
| raise_exception(env, 0x180, 0); |
| } |
| |
| void helper_raise_slot_illegal_instruction(CPUSH4State *env) |
| { |
| raise_exception(env, 0x1a0, 0); |
| } |
| |
| void helper_raise_fpu_disable(CPUSH4State *env) |
| { |
| raise_exception(env, 0x800, 0); |
| } |
| |
| void helper_raise_slot_fpu_disable(CPUSH4State *env) |
| { |
| raise_exception(env, 0x820, 0); |
| } |
| |
| void helper_sleep(CPUSH4State *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->halted = 1; |
| env->in_sleep = 1; |
| raise_exception(env, EXCP_HLT, 0); |
| } |
| |
| void helper_trapa(CPUSH4State *env, uint32_t tra) |
| { |
| env->tra = tra << 2; |
| raise_exception(env, 0x160, 0); |
| } |
| |
| void helper_exclusive(CPUSH4State *env) |
| { |
| /* We do not want cpu_restore_state to run. */ |
| cpu_loop_exit_atomic(env_cpu(env), 0); |
| } |
| |
| void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value) |
| { |
| if (cpu_sh4_is_cached (env, address)) |
| { |
| memory_content *r = g_new(memory_content, 1); |
| |
| r->address = address; |
| r->value = value; |
| r->next = NULL; |
| |
| *(env->movcal_backup_tail) = r; |
| env->movcal_backup_tail = &(r->next); |
| } |
| } |
| |
| void helper_discard_movcal_backup(CPUSH4State *env) |
| { |
| memory_content *current = env->movcal_backup; |
| |
| while(current) |
| { |
| memory_content *next = current->next; |
| g_free(current); |
| env->movcal_backup = current = next; |
| if (current == NULL) |
| env->movcal_backup_tail = &(env->movcal_backup); |
| } |
| } |
| |
| void helper_ocbi(CPUSH4State *env, uint32_t address) |
| { |
| memory_content **current = &(env->movcal_backup); |
| while (*current) |
| { |
| uint32_t a = (*current)->address; |
| if ((a & ~0x1F) == (address & ~0x1F)) |
| { |
| memory_content *next = (*current)->next; |
| cpu_stl_data(env, a, (*current)->value); |
| |
| if (next == NULL) |
| { |
| env->movcal_backup_tail = current; |
| } |
| |
| g_free(*current); |
| *current = next; |
| break; |
| } |
| } |
| } |
| |
| void helper_macl(CPUSH4State *env, int32_t arg0, int32_t arg1) |
| { |
| const int64_t min = -(1ll << 47); |
| const int64_t max = (1ll << 47) - 1; |
| int64_t mul = (int64_t)arg0 * arg1; |
| int64_t mac = env->mac; |
| int64_t res; |
| |
| if (!(env->sr & (1u << SR_S))) { |
| res = mac + mul; |
| } else if (sadd64_overflow(mac, mul, &res)) { |
| res = mac < 0 ? min : max; |
| } else { |
| res = MIN(MAX(res, min), max); |
| } |
| |
| env->mac = res; |
| } |
| |
| void helper_macw(CPUSH4State *env, int32_t arg0, int32_t arg1) |
| { |
| /* Inputs are already sign-extended from 16 bits. */ |
| int32_t mul = arg0 * arg1; |
| |
| if (env->sr & (1u << SR_S)) { |
| /* |
| * In saturation arithmetic mode, the accumulator is 32-bit |
| * with carry. MACH is not considered during the addition |
| * operation nor the 32-bit saturation logic. |
| */ |
| int32_t res, macl = env->macl; |
| |
| if (sadd32_overflow(macl, mul, &res)) { |
| res = macl < 0 ? INT32_MIN : INT32_MAX; |
| /* If overflow occurs, the MACH register is set to 1. */ |
| env->mach = 1; |
| } |
| env->macl = res; |
| } else { |
| /* In non-saturation arithmetic mode, the accumulator is 64-bit */ |
| env->mac += mul; |
| } |
| } |
| |
| void helper_ld_fpscr(CPUSH4State *env, uint32_t val) |
| { |
| env->fpscr = val & FPSCR_MASK; |
| if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) { |
| set_float_rounding_mode(float_round_to_zero, &env->fp_status); |
| } else { |
| set_float_rounding_mode(float_round_nearest_even, &env->fp_status); |
| } |
| set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status); |
| } |
| |
| static void update_fpscr(CPUSH4State *env, uintptr_t retaddr) |
| { |
| int xcpt, cause, enable; |
| |
| xcpt = get_float_exception_flags(&env->fp_status); |
| |
| /* Clear the cause entries */ |
| env->fpscr &= ~FPSCR_CAUSE_MASK; |
| |
| if (unlikely(xcpt)) { |
| if (xcpt & float_flag_invalid) { |
| env->fpscr |= FPSCR_CAUSE_V; |
| } |
| if (xcpt & float_flag_divbyzero) { |
| env->fpscr |= FPSCR_CAUSE_Z; |
| } |
| if (xcpt & float_flag_overflow) { |
| env->fpscr |= FPSCR_CAUSE_O; |
| } |
| if (xcpt & float_flag_underflow) { |
| env->fpscr |= FPSCR_CAUSE_U; |
| } |
| if (xcpt & float_flag_inexact) { |
| env->fpscr |= FPSCR_CAUSE_I; |
| } |
| |
| /* Accumulate in flag entries */ |
| env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK) |
| >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT); |
| |
| /* Generate an exception if enabled */ |
| cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT; |
| enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT; |
| if (cause & enable) { |
| raise_exception(env, 0x120, retaddr); |
| } |
| } |
| } |
| |
| float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float32_add(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float64_add(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1) |
| { |
| int relation; |
| |
| set_float_exception_flags(0, &env->fp_status); |
| relation = float32_compare(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return relation == float_relation_equal; |
| } |
| |
| uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1) |
| { |
| int relation; |
| |
| set_float_exception_flags(0, &env->fp_status); |
| relation = float64_compare(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return relation == float_relation_equal; |
| } |
| |
| uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1) |
| { |
| int relation; |
| |
| set_float_exception_flags(0, &env->fp_status); |
| relation = float32_compare(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return relation == float_relation_greater; |
| } |
| |
| uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1) |
| { |
| int relation; |
| |
| set_float_exception_flags(0, &env->fp_status); |
| relation = float64_compare(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return relation == float_relation_greater; |
| } |
| |
| float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0) |
| { |
| float64 ret; |
| set_float_exception_flags(0, &env->fp_status); |
| ret = float32_to_float64(t0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return ret; |
| } |
| |
| float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0) |
| { |
| float32 ret; |
| set_float_exception_flags(0, &env->fp_status); |
| ret = float64_to_float32(t0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return ret; |
| } |
| |
| float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float32_div(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float64_div(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float32 helper_float_FT(CPUSH4State *env, uint32_t t0) |
| { |
| float32 ret; |
| set_float_exception_flags(0, &env->fp_status); |
| ret = int32_to_float32(t0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return ret; |
| } |
| |
| float64 helper_float_DT(CPUSH4State *env, uint32_t t0) |
| { |
| float64 ret; |
| set_float_exception_flags(0, &env->fp_status); |
| ret = int32_to_float64(t0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return ret; |
| } |
| |
| float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float32_mul(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float64_mul(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float32_sqrt(t0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float64_sqrt(t0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float32 helper_fsrra_FT(CPUSH4State *env, float32 t0) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| /* "Approximate" 1/sqrt(x) via actual computation. */ |
| t0 = float32_sqrt(t0, &env->fp_status); |
| t0 = float32_div(float32_one, t0, &env->fp_status); |
| /* |
| * Since this is supposed to be an approximation, an imprecision |
| * exception is required. One supposes this also follows the usual |
| * IEEE rule that other exceptions take precedence. |
| */ |
| if (get_float_exception_flags(&env->fp_status) == 0) { |
| set_float_exception_flags(float_flag_inexact, &env->fp_status); |
| } |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float32_sub(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| t0 = float64_sub(t0, t1, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return t0; |
| } |
| |
| uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0) |
| { |
| uint32_t ret; |
| set_float_exception_flags(0, &env->fp_status); |
| ret = float32_to_int32_round_to_zero(t0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return ret; |
| } |
| |
| uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0) |
| { |
| uint32_t ret; |
| set_float_exception_flags(0, &env->fp_status); |
| ret = float64_to_int32_round_to_zero(t0, &env->fp_status); |
| update_fpscr(env, GETPC()); |
| return ret; |
| } |
| |
| void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n) |
| { |
| int bank, i; |
| float32 r, p; |
| |
| bank = (env->sr & FPSCR_FR) ? 16 : 0; |
| r = float32_zero; |
| set_float_exception_flags(0, &env->fp_status); |
| |
| for (i = 0 ; i < 4 ; i++) { |
| p = float32_mul(env->fregs[bank + m + i], |
| env->fregs[bank + n + i], |
| &env->fp_status); |
| r = float32_add(r, p, &env->fp_status); |
| } |
| update_fpscr(env, GETPC()); |
| |
| env->fregs[bank + n + 3] = r; |
| } |
| |
| void helper_ftrv(CPUSH4State *env, uint32_t n) |
| { |
| int bank_matrix, bank_vector; |
| int i, j; |
| float32 r[4]; |
| float32 p; |
| |
| bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16; |
| bank_vector = (env->sr & FPSCR_FR) ? 16 : 0; |
| set_float_exception_flags(0, &env->fp_status); |
| for (i = 0 ; i < 4 ; i++) { |
| r[i] = float32_zero; |
| for (j = 0 ; j < 4 ; j++) { |
| p = float32_mul(env->fregs[bank_matrix + 4 * j + i], |
| env->fregs[bank_vector + j], |
| &env->fp_status); |
| r[i] = float32_add(r[i], p, &env->fp_status); |
| } |
| } |
| update_fpscr(env, GETPC()); |
| |
| for (i = 0 ; i < 4 ; i++) { |
| env->fregs[bank_vector + i] = r[i]; |
| } |
| } |