| /* |
| * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support |
| * |
| * Copyright (c) 2005 Fabrice Bellard |
| * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "crypto/aes.h" |
| #include "crypto/aes-round.h" |
| #include "crypto/clmul.h" |
| |
| #if SHIFT == 0 |
| #define Reg MMXReg |
| #define XMM_ONLY(...) |
| #define B(n) MMX_B(n) |
| #define W(n) MMX_W(n) |
| #define L(n) MMX_L(n) |
| #define Q(n) MMX_Q(n) |
| #define SUFFIX _mmx |
| #else |
| #define Reg ZMMReg |
| #define XMM_ONLY(...) __VA_ARGS__ |
| #define B(n) ZMM_B(n) |
| #define W(n) ZMM_W(n) |
| #define L(n) ZMM_L(n) |
| #define Q(n) ZMM_Q(n) |
| #if SHIFT == 1 |
| #define SUFFIX _xmm |
| #else |
| #define SUFFIX _ymm |
| #endif |
| #endif |
| |
| #define LANE_WIDTH (SHIFT ? 16 : 8) |
| #define PACK_WIDTH (LANE_WIDTH / 2) |
| |
| #if SHIFT == 0 |
| #define FPSRL(x, c) ((x) >> shift) |
| #define FPSRAW(x, c) ((int16_t)(x) >> shift) |
| #define FPSRAL(x, c) ((int32_t)(x) >> shift) |
| #define FPSLL(x, c) ((x) << shift) |
| #endif |
| |
| void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift; |
| if (c->Q(0) > 15) { |
| for (int i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } else { |
| shift = c->B(0); |
| for (int i = 0; i < 4 << SHIFT; i++) { |
| d->W(i) = FPSRL(s->W(i), shift); |
| } |
| } |
| } |
| |
| void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift; |
| if (c->Q(0) > 15) { |
| for (int i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } else { |
| shift = c->B(0); |
| for (int i = 0; i < 4 << SHIFT; i++) { |
| d->W(i) = FPSLL(s->W(i), shift); |
| } |
| } |
| } |
| |
| void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift; |
| if (c->Q(0) > 15) { |
| shift = 15; |
| } else { |
| shift = c->B(0); |
| } |
| for (int i = 0; i < 4 << SHIFT; i++) { |
| d->W(i) = FPSRAW(s->W(i), shift); |
| } |
| } |
| |
| void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift; |
| if (c->Q(0) > 31) { |
| for (int i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } else { |
| shift = c->B(0); |
| for (int i = 0; i < 2 << SHIFT; i++) { |
| d->L(i) = FPSRL(s->L(i), shift); |
| } |
| } |
| } |
| |
| void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift; |
| if (c->Q(0) > 31) { |
| for (int i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } else { |
| shift = c->B(0); |
| for (int i = 0; i < 2 << SHIFT; i++) { |
| d->L(i) = FPSLL(s->L(i), shift); |
| } |
| } |
| } |
| |
| void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift; |
| if (c->Q(0) > 31) { |
| shift = 31; |
| } else { |
| shift = c->B(0); |
| } |
| for (int i = 0; i < 2 << SHIFT; i++) { |
| d->L(i) = FPSRAL(s->L(i), shift); |
| } |
| } |
| |
| void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift; |
| if (c->Q(0) > 63) { |
| for (int i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } else { |
| shift = c->B(0); |
| for (int i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = FPSRL(s->Q(i), shift); |
| } |
| } |
| } |
| |
| void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift; |
| if (c->Q(0) > 63) { |
| for (int i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } else { |
| shift = c->B(0); |
| for (int i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = FPSLL(s->Q(i), shift); |
| } |
| } |
| } |
| |
| #if SHIFT >= 1 |
| void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift, i, j; |
| |
| shift = c->L(0); |
| if (shift > 16) { |
| shift = 16; |
| } |
| for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) { |
| for (i = 0; i < 16 - shift; i++) { |
| d->B(j + i) = s->B(j + i + shift); |
| } |
| for (i = 16 - shift; i < 16; i++) { |
| d->B(j + i) = 0; |
| } |
| } |
| } |
| |
| void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c) |
| { |
| int shift, i, j; |
| |
| shift = c->L(0); |
| if (shift > 16) { |
| shift = 16; |
| } |
| for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) { |
| for (i = 15; i >= shift; i--) { |
| d->B(j + i) = s->B(j + i - shift); |
| } |
| for (i = 0; i < shift; i++) { |
| d->B(j + i) = 0; |
| } |
| } |
| } |
| #endif |
| |
| #define SSE_HELPER_1(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| int n = num; \ |
| for (int i = 0; i < n; i++) { \ |
| d->elem(i) = F(s->elem(i)); \ |
| } \ |
| } |
| |
| #define SSE_HELPER_2(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \ |
| { \ |
| int n = num; \ |
| for (int i = 0; i < n; i++) { \ |
| d->elem(i) = F(v->elem(i), s->elem(i)); \ |
| } \ |
| } |
| |
| #define SSE_HELPER_B(name, F) \ |
| SSE_HELPER_2(name, B, 8 << SHIFT, F) |
| |
| #define SSE_HELPER_W(name, F) \ |
| SSE_HELPER_2(name, W, 4 << SHIFT, F) |
| |
| #define SSE_HELPER_L(name, F) \ |
| SSE_HELPER_2(name, L, 2 << SHIFT, F) |
| |
| #define SSE_HELPER_Q(name, F) \ |
| SSE_HELPER_2(name, Q, 1 << SHIFT, F) |
| |
| #if SHIFT == 0 |
| static inline int satub(int x) |
| { |
| if (x < 0) { |
| return 0; |
| } else if (x > 255) { |
| return 255; |
| } else { |
| return x; |
| } |
| } |
| |
| static inline int satuw(int x) |
| { |
| if (x < 0) { |
| return 0; |
| } else if (x > 65535) { |
| return 65535; |
| } else { |
| return x; |
| } |
| } |
| |
| static inline int satsb(int x) |
| { |
| if (x < -128) { |
| return -128; |
| } else if (x > 127) { |
| return 127; |
| } else { |
| return x; |
| } |
| } |
| |
| static inline int satsw(int x) |
| { |
| if (x < -32768) { |
| return -32768; |
| } else if (x > 32767) { |
| return 32767; |
| } else { |
| return x; |
| } |
| } |
| |
| #define FADD(a, b) ((a) + (b)) |
| #define FADDUB(a, b) satub((a) + (b)) |
| #define FADDUW(a, b) satuw((a) + (b)) |
| #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) |
| #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) |
| |
| #define FSUB(a, b) ((a) - (b)) |
| #define FSUBUB(a, b) satub((a) - (b)) |
| #define FSUBUW(a, b) satuw((a) - (b)) |
| #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) |
| #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) |
| #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) |
| #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) |
| #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) |
| #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) |
| |
| #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16) |
| #define FMULHUW(a, b) ((a) * (b) >> 16) |
| #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16) |
| |
| #define FAVG(a, b) (((a) + (b) + 1) >> 1) |
| #endif |
| |
| SSE_HELPER_W(helper_pmulhuw, FMULHUW) |
| SSE_HELPER_W(helper_pmulhw, FMULHW) |
| |
| #if SHIFT == 0 |
| void glue(helper_pmulhrw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| d->W(0) = FMULHRW(d->W(0), s->W(0)); |
| d->W(1) = FMULHRW(d->W(1), s->W(1)); |
| d->W(2) = FMULHRW(d->W(2), s->W(2)); |
| d->W(3) = FMULHRW(d->W(3), s->W(3)); |
| } |
| #endif |
| |
| SSE_HELPER_B(helper_pavgb, FAVG) |
| SSE_HELPER_W(helper_pavgw, FAVG) |
| |
| void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| |
| for (i = 0; i < (1 << SHIFT); i++) { |
| d->Q(i) = (uint64_t)s->L(i * 2) * (uint64_t)v->L(i * 2); |
| } |
| } |
| |
| void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| |
| for (i = 0; i < (2 << SHIFT); i++) { |
| d->L(i) = (int16_t)s->W(2 * i) * (int16_t)v->W(2 * i) + |
| (int16_t)s->W(2 * i + 1) * (int16_t)v->W(2 * i + 1); |
| } |
| } |
| |
| #if SHIFT == 0 |
| static inline int abs1(int a) |
| { |
| if (a < 0) { |
| return -a; |
| } else { |
| return a; |
| } |
| } |
| #endif |
| void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| |
| for (i = 0; i < (1 << SHIFT); i++) { |
| unsigned int val = 0; |
| val += abs1(v->B(8 * i + 0) - s->B(8 * i + 0)); |
| val += abs1(v->B(8 * i + 1) - s->B(8 * i + 1)); |
| val += abs1(v->B(8 * i + 2) - s->B(8 * i + 2)); |
| val += abs1(v->B(8 * i + 3) - s->B(8 * i + 3)); |
| val += abs1(v->B(8 * i + 4) - s->B(8 * i + 4)); |
| val += abs1(v->B(8 * i + 5) - s->B(8 * i + 5)); |
| val += abs1(v->B(8 * i + 6) - s->B(8 * i + 6)); |
| val += abs1(v->B(8 * i + 7) - s->B(8 * i + 7)); |
| d->Q(i) = val; |
| } |
| } |
| |
| #if SHIFT < 2 |
| void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| target_ulong a0) |
| { |
| int i; |
| |
| for (i = 0; i < (8 << SHIFT); i++) { |
| if (s->B(i) & 0x80) { |
| cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC()); |
| } |
| } |
| } |
| #endif |
| |
| #define SHUFFLE4(F, a, b, offset) do { \ |
| r0 = a->F((order & 3) + offset); \ |
| r1 = a->F(((order >> 2) & 3) + offset); \ |
| r2 = b->F(((order >> 4) & 3) + offset); \ |
| r3 = b->F(((order >> 6) & 3) + offset); \ |
| d->F(offset) = r0; \ |
| d->F(offset + 1) = r1; \ |
| d->F(offset + 2) = r2; \ |
| d->F(offset + 3) = r3; \ |
| } while (0) |
| |
| #if SHIFT == 0 |
| void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order) |
| { |
| uint16_t r0, r1, r2, r3; |
| |
| SHUFFLE4(W, s, s, 0); |
| } |
| #else |
| void glue(helper_shufps, SUFFIX)(Reg *d, Reg *v, Reg *s, int order) |
| { |
| uint32_t r0, r1, r2, r3; |
| int i; |
| |
| for (i = 0; i < 2 << SHIFT; i += 4) { |
| SHUFFLE4(L, v, s, i); |
| } |
| } |
| |
| void glue(helper_shufpd, SUFFIX)(Reg *d, Reg *v, Reg *s, int order) |
| { |
| uint64_t r0, r1; |
| int i; |
| |
| for (i = 0; i < 1 << SHIFT; i += 2) { |
| r0 = v->Q(((order & 1) & 1) + i); |
| r1 = s->Q(((order >> 1) & 1) + i); |
| d->Q(i) = r0; |
| d->Q(i + 1) = r1; |
| order >>= 2; |
| } |
| } |
| |
| void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order) |
| { |
| uint32_t r0, r1, r2, r3; |
| int i; |
| |
| for (i = 0; i < 2 << SHIFT; i += 4) { |
| SHUFFLE4(L, s, s, i); |
| } |
| } |
| |
| void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order) |
| { |
| uint16_t r0, r1, r2, r3; |
| int i, j; |
| |
| for (i = 0, j = 1; j < 1 << SHIFT; i += 8, j += 2) { |
| SHUFFLE4(W, s, s, i); |
| d->Q(j) = s->Q(j); |
| } |
| } |
| |
| void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order) |
| { |
| uint16_t r0, r1, r2, r3; |
| int i, j; |
| |
| for (i = 4, j = 0; j < 1 << SHIFT; i += 8, j += 2) { |
| d->Q(j) = s->Q(j); |
| SHUFFLE4(W, s, s, i); |
| } |
| } |
| #endif |
| |
| #if SHIFT >= 1 |
| /* FPU ops */ |
| /* XXX: not accurate */ |
| |
| #define SSE_HELPER_P(name, F) \ |
| void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env, \ |
| Reg *d, Reg *v, Reg *s) \ |
| { \ |
| int i; \ |
| for (i = 0; i < 2 << SHIFT; i++) { \ |
| d->ZMM_S(i) = F(32, v->ZMM_S(i), s->ZMM_S(i)); \ |
| } \ |
| } \ |
| \ |
| void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env, \ |
| Reg *d, Reg *v, Reg *s) \ |
| { \ |
| int i; \ |
| for (i = 0; i < 1 << SHIFT; i++) { \ |
| d->ZMM_D(i) = F(64, v->ZMM_D(i), s->ZMM_D(i)); \ |
| } \ |
| } |
| |
| #if SHIFT == 1 |
| |
| #define SSE_HELPER_S(name, F) \ |
| SSE_HELPER_P(name, F) \ |
| \ |
| void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *v, Reg *s)\ |
| { \ |
| int i; \ |
| d->ZMM_S(0) = F(32, v->ZMM_S(0), s->ZMM_S(0)); \ |
| for (i = 1; i < 2 << SHIFT; i++) { \ |
| d->ZMM_L(i) = v->ZMM_L(i); \ |
| } \ |
| } \ |
| \ |
| void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *v, Reg *s)\ |
| { \ |
| int i; \ |
| d->ZMM_D(0) = F(64, v->ZMM_D(0), s->ZMM_D(0)); \ |
| for (i = 1; i < 1 << SHIFT; i++) { \ |
| d->ZMM_Q(i) = v->ZMM_Q(i); \ |
| } \ |
| } |
| |
| #else |
| |
| #define SSE_HELPER_S(name, F) SSE_HELPER_P(name, F) |
| |
| #endif |
| |
| #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) |
| #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) |
| #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) |
| #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) |
| |
| /* Note that the choice of comparison op here is important to get the |
| * special cases right: for min and max Intel specifies that (-0,0), |
| * (NaN, anything) and (anything, NaN) return the second argument. |
| */ |
| #define FPU_MIN(size, a, b) \ |
| (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)) |
| #define FPU_MAX(size, a, b) \ |
| (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)) |
| |
| SSE_HELPER_S(add, FPU_ADD) |
| SSE_HELPER_S(sub, FPU_SUB) |
| SSE_HELPER_S(mul, FPU_MUL) |
| SSE_HELPER_S(div, FPU_DIV) |
| SSE_HELPER_S(min, FPU_MIN) |
| SSE_HELPER_S(max, FPU_MAX) |
| |
| void glue(helper_sqrtps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| for (i = 0; i < 2 << SHIFT; i++) { |
| d->ZMM_S(i) = float32_sqrt(s->ZMM_S(i), &env->sse_status); |
| } |
| } |
| |
| void glue(helper_sqrtpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| for (i = 0; i < 1 << SHIFT; i++) { |
| d->ZMM_D(i) = float64_sqrt(s->ZMM_D(i), &env->sse_status); |
| } |
| } |
| |
| #if SHIFT == 1 |
| void helper_sqrtss(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| d->ZMM_S(0) = float32_sqrt(s->ZMM_S(0), &env->sse_status); |
| for (i = 1; i < 2 << SHIFT; i++) { |
| d->ZMM_L(i) = v->ZMM_L(i); |
| } |
| } |
| |
| void helper_sqrtsd(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| d->ZMM_D(0) = float64_sqrt(s->ZMM_D(0), &env->sse_status); |
| for (i = 1; i < 1 << SHIFT; i++) { |
| d->ZMM_Q(i) = v->ZMM_Q(i); |
| } |
| } |
| #endif |
| |
| /* float to float conversions */ |
| void glue(helper_cvtps2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| for (i = 1 << SHIFT; --i >= 0; ) { |
| d->ZMM_D(i) = float32_to_float64(s->ZMM_S(i), &env->sse_status); |
| } |
| } |
| |
| void glue(helper_cvtpd2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| for (i = 0; i < 1 << SHIFT; i++) { |
| d->ZMM_S(i) = float64_to_float32(s->ZMM_D(i), &env->sse_status); |
| } |
| for (i >>= 1; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } |
| |
| #if SHIFT >= 1 |
| void glue(helper_cvtph2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| |
| for (i = 2 << SHIFT; --i >= 0; ) { |
| d->ZMM_S(i) = float16_to_float32(s->ZMM_H(i), true, &env->sse_status); |
| } |
| } |
| |
| void glue(helper_cvtps2ph, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, int mode) |
| { |
| int i; |
| FloatRoundMode prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| set_x86_rounding_mode(mode & 3, &env->sse_status); |
| } |
| |
| for (i = 0; i < 2 << SHIFT; i++) { |
| d->ZMM_H(i) = float32_to_float16(s->ZMM_S(i), true, &env->sse_status); |
| } |
| for (i >>= 2; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| #endif |
| |
| #if SHIFT == 1 |
| void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status); |
| for (i = 1; i < 1 << SHIFT; i++) { |
| d->ZMM_Q(i) = v->ZMM_Q(i); |
| } |
| } |
| |
| void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); |
| for (i = 1; i < 2 << SHIFT; i++) { |
| d->ZMM_L(i) = v->ZMM_L(i); |
| } |
| } |
| #endif |
| |
| /* integer to float */ |
| void glue(helper_cvtdq2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| for (i = 0; i < 2 << SHIFT; i++) { |
| d->ZMM_S(i) = int32_to_float32(s->ZMM_L(i), &env->sse_status); |
| } |
| } |
| |
| void glue(helper_cvtdq2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int i; |
| for (i = 1 << SHIFT; --i >= 0; ) { |
| int32_t l = s->ZMM_L(i); |
| d->ZMM_D(i) = int32_to_float64(l, &env->sse_status); |
| } |
| } |
| |
| #if SHIFT == 1 |
| void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s) |
| { |
| d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); |
| d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); |
| } |
| |
| void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s) |
| { |
| d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); |
| d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); |
| } |
| |
| void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val) |
| { |
| d->ZMM_S(0) = int32_to_float32(val, &env->sse_status); |
| } |
| |
| void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val) |
| { |
| d->ZMM_D(0) = int32_to_float64(val, &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val) |
| { |
| d->ZMM_S(0) = int64_to_float32(val, &env->sse_status); |
| } |
| |
| void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val) |
| { |
| d->ZMM_D(0) = int64_to_float64(val, &env->sse_status); |
| } |
| #endif |
| |
| #endif |
| |
| /* float to integer */ |
| |
| #if SHIFT == 1 |
| /* |
| * x86 mandates that we return the indefinite integer value for the result |
| * of any float-to-integer conversion that raises the 'invalid' exception. |
| * Wrap the softfloat functions to get this behaviour. |
| */ |
| #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \ |
| static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \ |
| { \ |
| int oldflags, newflags; \ |
| RETTYPE r; \ |
| \ |
| oldflags = get_float_exception_flags(s); \ |
| set_float_exception_flags(0, s); \ |
| r = FN(a, s); \ |
| newflags = get_float_exception_flags(s); \ |
| if (newflags & float_flag_invalid) { \ |
| r = INDEFVALUE; \ |
| } \ |
| set_float_exception_flags(newflags | oldflags, s); \ |
| return r; \ |
| } |
| |
| WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN) |
| WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN) |
| WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN) |
| WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN) |
| WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN) |
| WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN) |
| WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN) |
| WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN) |
| #endif |
| |
| void glue(helper_cvtps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| int i; |
| for (i = 0; i < 2 << SHIFT; i++) { |
| d->ZMM_L(i) = x86_float32_to_int32(s->ZMM_S(i), &env->sse_status); |
| } |
| } |
| |
| void glue(helper_cvtpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| int i; |
| for (i = 0; i < 1 << SHIFT; i++) { |
| d->ZMM_L(i) = x86_float64_to_int32(s->ZMM_D(i), &env->sse_status); |
| } |
| for (i >>= 1; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } |
| |
| #if SHIFT == 1 |
| void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) |
| { |
| d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); |
| d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); |
| } |
| |
| void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) |
| { |
| d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); |
| d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); |
| } |
| |
| int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status); |
| } |
| #endif |
| #endif |
| |
| /* float to integer truncated */ |
| void glue(helper_cvttps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| int i; |
| for (i = 0; i < 2 << SHIFT; i++) { |
| d->ZMM_L(i) = x86_float32_to_int32_round_to_zero(s->ZMM_S(i), |
| &env->sse_status); |
| } |
| } |
| |
| void glue(helper_cvttpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| int i; |
| for (i = 0; i < 1 << SHIFT; i++) { |
| d->ZMM_L(i) = x86_float64_to_int32_round_to_zero(s->ZMM_D(i), |
| &env->sse_status); |
| } |
| for (i >>= 1; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| } |
| } |
| |
| #if SHIFT == 1 |
| void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) |
| { |
| d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); |
| d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); |
| } |
| |
| void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) |
| { |
| d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); |
| d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); |
| } |
| |
| int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); |
| } |
| |
| #ifdef TARGET_X86_64 |
| int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status); |
| } |
| |
| int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s) |
| { |
| return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status); |
| } |
| #endif |
| #endif |
| |
| void glue(helper_rsqrtps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| uint8_t old_flags = get_float_exception_flags(&env->sse_status); |
| int i; |
| for (i = 0; i < 2 << SHIFT; i++) { |
| d->ZMM_S(i) = float32_div(float32_one, |
| float32_sqrt(s->ZMM_S(i), &env->sse_status), |
| &env->sse_status); |
| } |
| set_float_exception_flags(old_flags, &env->sse_status); |
| } |
| |
| #if SHIFT == 1 |
| void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *v, ZMMReg *s) |
| { |
| uint8_t old_flags = get_float_exception_flags(&env->sse_status); |
| int i; |
| d->ZMM_S(0) = float32_div(float32_one, |
| float32_sqrt(s->ZMM_S(0), &env->sse_status), |
| &env->sse_status); |
| set_float_exception_flags(old_flags, &env->sse_status); |
| for (i = 1; i < 2 << SHIFT; i++) { |
| d->ZMM_L(i) = v->ZMM_L(i); |
| } |
| } |
| #endif |
| |
| void glue(helper_rcpps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| uint8_t old_flags = get_float_exception_flags(&env->sse_status); |
| int i; |
| for (i = 0; i < 2 << SHIFT; i++) { |
| d->ZMM_S(i) = float32_div(float32_one, s->ZMM_S(i), &env->sse_status); |
| } |
| set_float_exception_flags(old_flags, &env->sse_status); |
| } |
| |
| #if SHIFT == 1 |
| void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *v, ZMMReg *s) |
| { |
| uint8_t old_flags = get_float_exception_flags(&env->sse_status); |
| int i; |
| d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); |
| for (i = 1; i < 2 << SHIFT; i++) { |
| d->ZMM_L(i) = v->ZMM_L(i); |
| } |
| set_float_exception_flags(old_flags, &env->sse_status); |
| } |
| #endif |
| |
| #if SHIFT == 1 |
| static inline uint64_t helper_extrq(uint64_t src, int shift, int len) |
| { |
| uint64_t mask; |
| |
| if (len == 0) { |
| mask = ~0LL; |
| } else { |
| mask = (1ULL << len) - 1; |
| } |
| return (src >> shift) & mask; |
| } |
| |
| void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1) & 63, s->ZMM_B(0) & 63); |
| } |
| |
| void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length) |
| { |
| d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length); |
| } |
| |
| static inline uint64_t helper_insertq(uint64_t dest, uint64_t src, int shift, int len) |
| { |
| uint64_t mask; |
| |
| if (len == 0) { |
| mask = ~0ULL; |
| } else { |
| mask = (1ULL << len) - 1; |
| } |
| return (dest & ~(mask << shift)) | ((src & mask) << shift); |
| } |
| |
| void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) |
| { |
| d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), s->ZMM_Q(0), s->ZMM_B(9) & 63, s->ZMM_B(8) & 63); |
| } |
| |
| void helper_insertq_i(CPUX86State *env, ZMMReg *d, ZMMReg *s, int index, int length) |
| { |
| d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), s->ZMM_Q(0), index, length); |
| } |
| #endif |
| |
| #define SSE_HELPER_HPS(name, F) \ |
| void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \ |
| { \ |
| float32 r[2 << SHIFT]; \ |
| int i, j, k; \ |
| for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) { \ |
| for (i = j = 0; j < 4; i++, j += 2) { \ |
| r[i + k] = F(v->ZMM_S(j + k), v->ZMM_S(j + k + 1), &env->sse_status); \ |
| } \ |
| for (j = 0; j < 4; i++, j += 2) { \ |
| r[i + k] = F(s->ZMM_S(j + k), s->ZMM_S(j + k + 1), &env->sse_status); \ |
| } \ |
| } \ |
| for (i = 0; i < 2 << SHIFT; i++) { \ |
| d->ZMM_S(i) = r[i]; \ |
| } \ |
| } |
| |
| SSE_HELPER_HPS(haddps, float32_add) |
| SSE_HELPER_HPS(hsubps, float32_sub) |
| |
| #define SSE_HELPER_HPD(name, F) \ |
| void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \ |
| { \ |
| float64 r[1 << SHIFT]; \ |
| int i, j, k; \ |
| for (k = 0; k < 1 << SHIFT; k += LANE_WIDTH / 8) { \ |
| for (i = j = 0; j < 2; i++, j += 2) { \ |
| r[i + k] = F(v->ZMM_D(j + k), v->ZMM_D(j + k + 1), &env->sse_status); \ |
| } \ |
| for (j = 0; j < 2; i++, j += 2) { \ |
| r[i + k] = F(s->ZMM_D(j + k), s->ZMM_D(j + k + 1), &env->sse_status); \ |
| } \ |
| } \ |
| for (i = 0; i < 1 << SHIFT; i++) { \ |
| d->ZMM_D(i) = r[i]; \ |
| } \ |
| } |
| |
| SSE_HELPER_HPD(haddpd, float64_add) |
| SSE_HELPER_HPD(hsubpd, float64_sub) |
| |
| void glue(helper_addsubps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| for (i = 0; i < 2 << SHIFT; i += 2) { |
| d->ZMM_S(i) = float32_sub(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status); |
| d->ZMM_S(i+1) = float32_add(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status); |
| } |
| } |
| |
| void glue(helper_addsubpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| for (i = 0; i < 1 << SHIFT; i += 2) { |
| d->ZMM_D(i) = float64_sub(v->ZMM_D(i), s->ZMM_D(i), &env->sse_status); |
| d->ZMM_D(i+1) = float64_add(v->ZMM_D(i+1), s->ZMM_D(i+1), &env->sse_status); |
| } |
| } |
| |
| #define SSE_HELPER_CMP_P(name, F, C) \ |
| void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env, \ |
| Reg *d, Reg *v, Reg *s) \ |
| { \ |
| int i; \ |
| for (i = 0; i < 2 << SHIFT; i++) { \ |
| d->ZMM_L(i) = C(F(32, v->ZMM_S(i), s->ZMM_S(i))) ? -1 : 0; \ |
| } \ |
| } \ |
| \ |
| void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env, \ |
| Reg *d, Reg *v, Reg *s) \ |
| { \ |
| int i; \ |
| for (i = 0; i < 1 << SHIFT; i++) { \ |
| d->ZMM_Q(i) = C(F(64, v->ZMM_D(i), s->ZMM_D(i))) ? -1 : 0; \ |
| } \ |
| } |
| |
| #if SHIFT == 1 |
| #define SSE_HELPER_CMP(name, F, C) \ |
| SSE_HELPER_CMP_P(name, F, C) \ |
| void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *v, Reg *s) \ |
| { \ |
| int i; \ |
| d->ZMM_L(0) = C(F(32, v->ZMM_S(0), s->ZMM_S(0))) ? -1 : 0; \ |
| for (i = 1; i < 2 << SHIFT; i++) { \ |
| d->ZMM_L(i) = v->ZMM_L(i); \ |
| } \ |
| } \ |
| \ |
| void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *v, Reg *s) \ |
| { \ |
| int i; \ |
| d->ZMM_Q(0) = C(F(64, v->ZMM_D(0), s->ZMM_D(0))) ? -1 : 0; \ |
| for (i = 1; i < 1 << SHIFT; i++) { \ |
| d->ZMM_Q(i) = v->ZMM_Q(i); \ |
| } \ |
| } |
| |
| static inline bool FPU_EQU(FloatRelation x) |
| { |
| return (x == float_relation_equal || x == float_relation_unordered); |
| } |
| static inline bool FPU_GE(FloatRelation x) |
| { |
| return (x == float_relation_equal || x == float_relation_greater); |
| } |
| #define FPU_EQ(x) (x == float_relation_equal) |
| #define FPU_LT(x) (x == float_relation_less) |
| #define FPU_LE(x) (x <= float_relation_equal) |
| #define FPU_GT(x) (x == float_relation_greater) |
| #define FPU_UNORD(x) (x == float_relation_unordered) |
| /* We must make sure we evaluate the argument in case it is a signalling NAN */ |
| #define FPU_FALSE(x) (x == float_relation_equal && 0) |
| |
| #define FPU_CMPQ(size, a, b) \ |
| float ## size ## _compare_quiet(a, b, &env->sse_status) |
| #define FPU_CMPS(size, a, b) \ |
| float ## size ## _compare(a, b, &env->sse_status) |
| |
| #else |
| #define SSE_HELPER_CMP(name, F, C) SSE_HELPER_CMP_P(name, F, C) |
| #endif |
| |
| SSE_HELPER_CMP(cmpeq, FPU_CMPQ, FPU_EQ) |
| SSE_HELPER_CMP(cmplt, FPU_CMPS, FPU_LT) |
| SSE_HELPER_CMP(cmple, FPU_CMPS, FPU_LE) |
| SSE_HELPER_CMP(cmpunord, FPU_CMPQ, FPU_UNORD) |
| SSE_HELPER_CMP(cmpneq, FPU_CMPQ, !FPU_EQ) |
| SSE_HELPER_CMP(cmpnlt, FPU_CMPS, !FPU_LT) |
| SSE_HELPER_CMP(cmpnle, FPU_CMPS, !FPU_LE) |
| SSE_HELPER_CMP(cmpord, FPU_CMPQ, !FPU_UNORD) |
| |
| SSE_HELPER_CMP(cmpequ, FPU_CMPQ, FPU_EQU) |
| SSE_HELPER_CMP(cmpnge, FPU_CMPS, !FPU_GE) |
| SSE_HELPER_CMP(cmpngt, FPU_CMPS, !FPU_GT) |
| SSE_HELPER_CMP(cmpfalse, FPU_CMPQ, FPU_FALSE) |
| SSE_HELPER_CMP(cmpnequ, FPU_CMPQ, !FPU_EQU) |
| SSE_HELPER_CMP(cmpge, FPU_CMPS, FPU_GE) |
| SSE_HELPER_CMP(cmpgt, FPU_CMPS, FPU_GT) |
| SSE_HELPER_CMP(cmptrue, FPU_CMPQ, !FPU_FALSE) |
| |
| SSE_HELPER_CMP(cmpeqs, FPU_CMPS, FPU_EQ) |
| SSE_HELPER_CMP(cmpltq, FPU_CMPQ, FPU_LT) |
| SSE_HELPER_CMP(cmpleq, FPU_CMPQ, FPU_LE) |
| SSE_HELPER_CMP(cmpunords, FPU_CMPS, FPU_UNORD) |
| SSE_HELPER_CMP(cmpneqq, FPU_CMPS, !FPU_EQ) |
| SSE_HELPER_CMP(cmpnltq, FPU_CMPQ, !FPU_LT) |
| SSE_HELPER_CMP(cmpnleq, FPU_CMPQ, !FPU_LE) |
| SSE_HELPER_CMP(cmpords, FPU_CMPS, !FPU_UNORD) |
| |
| SSE_HELPER_CMP(cmpequs, FPU_CMPS, FPU_EQU) |
| SSE_HELPER_CMP(cmpngeq, FPU_CMPQ, !FPU_GE) |
| SSE_HELPER_CMP(cmpngtq, FPU_CMPQ, !FPU_GT) |
| SSE_HELPER_CMP(cmpfalses, FPU_CMPS, FPU_FALSE) |
| SSE_HELPER_CMP(cmpnequs, FPU_CMPS, !FPU_EQU) |
| SSE_HELPER_CMP(cmpgeq, FPU_CMPQ, FPU_GE) |
| SSE_HELPER_CMP(cmpgtq, FPU_CMPQ, FPU_GT) |
| SSE_HELPER_CMP(cmptrues, FPU_CMPS, !FPU_FALSE) |
| |
| #undef SSE_HELPER_CMP |
| |
| #if SHIFT == 1 |
| static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; |
| |
| void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s) |
| { |
| FloatRelation ret; |
| float32 s0, s1; |
| |
| s0 = d->ZMM_S(0); |
| s1 = s->ZMM_S(0); |
| ret = float32_compare_quiet(s0, s1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| } |
| |
| void helper_comiss(CPUX86State *env, Reg *d, Reg *s) |
| { |
| FloatRelation ret; |
| float32 s0, s1; |
| |
| s0 = d->ZMM_S(0); |
| s1 = s->ZMM_S(0); |
| ret = float32_compare(s0, s1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| } |
| |
| void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s) |
| { |
| FloatRelation ret; |
| float64 d0, d1; |
| |
| d0 = d->ZMM_D(0); |
| d1 = s->ZMM_D(0); |
| ret = float64_compare_quiet(d0, d1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| } |
| |
| void helper_comisd(CPUX86State *env, Reg *d, Reg *s) |
| { |
| FloatRelation ret; |
| float64 d0, d1; |
| |
| d0 = d->ZMM_D(0); |
| d1 = s->ZMM_D(0); |
| ret = float64_compare(d0, d1, &env->sse_status); |
| CC_SRC = comis_eflags[ret + 1]; |
| } |
| #endif |
| |
| uint32_t glue(helper_movmskps, SUFFIX)(CPUX86State *env, Reg *s) |
| { |
| uint32_t mask; |
| int i; |
| |
| mask = 0; |
| for (i = 0; i < 2 << SHIFT; i++) { |
| mask |= (s->ZMM_L(i) >> (31 - i)) & (1 << i); |
| } |
| return mask; |
| } |
| |
| uint32_t glue(helper_movmskpd, SUFFIX)(CPUX86State *env, Reg *s) |
| { |
| uint32_t mask; |
| int i; |
| |
| mask = 0; |
| for (i = 0; i < 1 << SHIFT; i++) { |
| mask |= (s->ZMM_Q(i) >> (63 - i)) & (1 << i); |
| } |
| return mask; |
| } |
| |
| #endif |
| |
| #define PACK_HELPER_B(name, F) \ |
| void glue(helper_pack ## name, SUFFIX)(CPUX86State *env, \ |
| Reg *d, Reg *v, Reg *s) \ |
| { \ |
| uint8_t r[PACK_WIDTH * 2]; \ |
| int j, k; \ |
| for (j = 0; j < 4 << SHIFT; j += PACK_WIDTH) { \ |
| for (k = 0; k < PACK_WIDTH; k++) { \ |
| r[k] = F((int16_t)v->W(j + k)); \ |
| } \ |
| for (k = 0; k < PACK_WIDTH; k++) { \ |
| r[PACK_WIDTH + k] = F((int16_t)s->W(j + k)); \ |
| } \ |
| for (k = 0; k < PACK_WIDTH * 2; k++) { \ |
| d->B(2 * j + k) = r[k]; \ |
| } \ |
| } \ |
| } |
| |
| PACK_HELPER_B(sswb, satsb) |
| PACK_HELPER_B(uswb, satub) |
| |
| void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| uint16_t r[PACK_WIDTH]; |
| int j, k; |
| |
| for (j = 0; j < 2 << SHIFT; j += PACK_WIDTH / 2) { |
| for (k = 0; k < PACK_WIDTH / 2; k++) { |
| r[k] = satsw(v->L(j + k)); |
| } |
| for (k = 0; k < PACK_WIDTH / 2; k++) { |
| r[PACK_WIDTH / 2 + k] = satsw(s->L(j + k)); |
| } |
| for (k = 0; k < PACK_WIDTH; k++) { |
| d->W(2 * j + k) = r[k]; |
| } |
| } |
| } |
| |
| #define UNPCK_OP(base_name, base) \ |
| \ |
| void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\ |
| Reg *d, Reg *v, Reg *s) \ |
| { \ |
| uint8_t r[PACK_WIDTH * 2]; \ |
| int j, i; \ |
| \ |
| for (j = 0; j < 8 << SHIFT; ) { \ |
| int k = j + base * PACK_WIDTH; \ |
| for (i = 0; i < PACK_WIDTH; i++) { \ |
| r[2 * i] = v->B(k + i); \ |
| r[2 * i + 1] = s->B(k + i); \ |
| } \ |
| for (i = 0; i < PACK_WIDTH * 2; i++, j++) { \ |
| d->B(j) = r[i]; \ |
| } \ |
| } \ |
| } \ |
| \ |
| void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\ |
| Reg *d, Reg *v, Reg *s) \ |
| { \ |
| uint16_t r[PACK_WIDTH]; \ |
| int j, i; \ |
| \ |
| for (j = 0; j < 4 << SHIFT; ) { \ |
| int k = j + base * PACK_WIDTH / 2; \ |
| for (i = 0; i < PACK_WIDTH / 2; i++) { \ |
| r[2 * i] = v->W(k + i); \ |
| r[2 * i + 1] = s->W(k + i); \ |
| } \ |
| for (i = 0; i < PACK_WIDTH; i++, j++) { \ |
| d->W(j) = r[i]; \ |
| } \ |
| } \ |
| } \ |
| \ |
| void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\ |
| Reg *d, Reg *v, Reg *s) \ |
| { \ |
| uint32_t r[PACK_WIDTH / 2]; \ |
| int j, i; \ |
| \ |
| for (j = 0; j < 2 << SHIFT; ) { \ |
| int k = j + base * PACK_WIDTH / 4; \ |
| for (i = 0; i < PACK_WIDTH / 4; i++) { \ |
| r[2 * i] = v->L(k + i); \ |
| r[2 * i + 1] = s->L(k + i); \ |
| } \ |
| for (i = 0; i < PACK_WIDTH / 2; i++, j++) { \ |
| d->L(j) = r[i]; \ |
| } \ |
| } \ |
| } \ |
| \ |
| XMM_ONLY( \ |
| void glue(helper_punpck ## base_name ## qdq, SUFFIX)( \ |
| CPUX86State *env, Reg *d, Reg *v, Reg *s) \ |
| { \ |
| uint64_t r[2]; \ |
| int i; \ |
| \ |
| for (i = 0; i < 1 << SHIFT; i += 2) { \ |
| r[0] = v->Q(base + i); \ |
| r[1] = s->Q(base + i); \ |
| d->Q(i) = r[0]; \ |
| d->Q(i + 1) = r[1]; \ |
| } \ |
| } \ |
| ) |
| |
| UNPCK_OP(l, 0) |
| UNPCK_OP(h, 1) |
| |
| #undef PACK_WIDTH |
| #undef PACK_HELPER_B |
| #undef UNPCK_OP |
| |
| |
| /* 3DNow! float ops */ |
| #if SHIFT == 0 |
| void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); |
| d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); |
| } |
| |
| void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); |
| d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); |
| } |
| |
| void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); |
| d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), |
| &env->mmx_status)); |
| d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), |
| &env->mmx_status)); |
| } |
| |
| void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| float32 r; |
| |
| r = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| d->MMX_S(0) = r; |
| } |
| |
| void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), |
| &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), |
| &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), |
| &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), |
| &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), |
| &env->mmx_status) ? -1 : 0; |
| d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), |
| &env->mmx_status) ? -1 : 0; |
| } |
| |
| void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) { |
| d->MMX_S(0) = s->MMX_S(0); |
| } |
| if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) { |
| d->MMX_S(1) = s->MMX_S(1); |
| } |
| } |
| |
| void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) { |
| d->MMX_S(0) = s->MMX_S(0); |
| } |
| if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) { |
| d->MMX_S(1) = s->MMX_S(1); |
| } |
| } |
| |
| void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| float32 r; |
| |
| r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| d->MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| d->MMX_S(0) = r; |
| } |
| |
| void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| float32 r; |
| |
| r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); |
| d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); |
| d->MMX_S(0) = r; |
| } |
| |
| void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = d->MMX_S(0); |
| } |
| |
| void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; |
| d->MMX_S(1) = float32_div(float32_one, |
| float32_sqrt(d->MMX_S(1), &env->mmx_status), |
| &env->mmx_status); |
| d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; |
| d->MMX_L(0) = d->MMX_L(1); |
| } |
| |
| void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); |
| d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); |
| } |
| |
| void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s) |
| { |
| uint32_t r; |
| |
| r = s->MMX_L(0); |
| d->MMX_L(0) = s->MMX_L(1); |
| d->MMX_L(1) = r; |
| } |
| #endif |
| |
| /* SSSE3 op helpers */ |
| void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| #if SHIFT == 0 |
| uint8_t r[8]; |
| |
| for (i = 0; i < 8; i++) { |
| r[i] = (s->B(i) & 0x80) ? 0 : (v->B(s->B(i) & 7)); |
| } |
| for (i = 0; i < 8; i++) { |
| d->B(i) = r[i]; |
| } |
| #else |
| uint8_t r[8 << SHIFT]; |
| |
| for (i = 0; i < 8 << SHIFT; i++) { |
| int j = i & ~0xf; |
| r[i] = (s->B(i) & 0x80) ? 0 : v->B(j | (s->B(i) & 0xf)); |
| } |
| for (i = 0; i < 8 << SHIFT; i++) { |
| d->B(i) = r[i]; |
| } |
| #endif |
| } |
| |
| #define SSE_HELPER_HW(name, F) \ |
| void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \ |
| { \ |
| uint16_t r[4 << SHIFT]; \ |
| int i, j, k; \ |
| for (k = 0; k < 4 << SHIFT; k += LANE_WIDTH / 2) { \ |
| for (i = j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \ |
| r[i + k] = F(v->W(j + k), v->W(j + k + 1)); \ |
| } \ |
| for (j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \ |
| r[i + k] = F(s->W(j + k), s->W(j + k + 1)); \ |
| } \ |
| } \ |
| for (i = 0; i < 4 << SHIFT; i++) { \ |
| d->W(i) = r[i]; \ |
| } \ |
| } |
| |
| #define SSE_HELPER_HL(name, F) \ |
| void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \ |
| { \ |
| uint32_t r[2 << SHIFT]; \ |
| int i, j, k; \ |
| for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) { \ |
| for (i = j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \ |
| r[i + k] = F(v->L(j + k), v->L(j + k + 1)); \ |
| } \ |
| for (j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \ |
| r[i + k] = F(s->L(j + k), s->L(j + k + 1)); \ |
| } \ |
| } \ |
| for (i = 0; i < 2 << SHIFT; i++) { \ |
| d->L(i) = r[i]; \ |
| } \ |
| } |
| |
| SSE_HELPER_HW(phaddw, FADD) |
| SSE_HELPER_HW(phsubw, FSUB) |
| SSE_HELPER_HW(phaddsw, FADDSW) |
| SSE_HELPER_HW(phsubsw, FSUBSW) |
| SSE_HELPER_HL(phaddd, FADD) |
| SSE_HELPER_HL(phsubd, FSUB) |
| |
| #undef SSE_HELPER_HW |
| #undef SSE_HELPER_HL |
| |
| void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| for (i = 0; i < 4 << SHIFT; i++) { |
| d->W(i) = satsw((int8_t)s->B(i * 2) * (uint8_t)v->B(i * 2) + |
| (int8_t)s->B(i * 2 + 1) * (uint8_t)v->B(i * 2 + 1)); |
| } |
| } |
| |
| #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15) |
| SSE_HELPER_W(helper_pmulhrsw, FMULHRSW) |
| |
| #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d) |
| #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d) |
| #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d) |
| SSE_HELPER_B(helper_psignb, FSIGNB) |
| SSE_HELPER_W(helper_psignw, FSIGNW) |
| SSE_HELPER_L(helper_psignd, FSIGNL) |
| |
| void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, |
| uint32_t imm) |
| { |
| int i; |
| |
| /* XXX could be checked during translation */ |
| if (imm >= (SHIFT ? 32 : 16)) { |
| for (i = 0; i < (1 << SHIFT); i++) { |
| d->Q(i) = 0; |
| } |
| } else { |
| int shift = imm * 8; |
| #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0) |
| #if SHIFT == 0 |
| d->Q(0) = SHR(s->Q(0), shift - 0) | |
| SHR(v->Q(0), shift - 64); |
| #else |
| for (i = 0; i < (1 << SHIFT); i += 2) { |
| uint64_t r0, r1; |
| |
| r0 = SHR(s->Q(i), shift - 0) | |
| SHR(s->Q(i + 1), shift - 64) | |
| SHR(v->Q(i), shift - 128) | |
| SHR(v->Q(i + 1), shift - 192); |
| r1 = SHR(s->Q(i), shift + 64) | |
| SHR(s->Q(i + 1), shift - 0) | |
| SHR(v->Q(i), shift - 64) | |
| SHR(v->Q(i + 1), shift - 128); |
| d->Q(i) = r0; |
| d->Q(i + 1) = r1; |
| } |
| #endif |
| #undef SHR |
| } |
| } |
| |
| #if SHIFT >= 1 |
| |
| #define SSE_HELPER_V(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, \ |
| Reg *m) \ |
| { \ |
| int i; \ |
| for (i = 0; i < num; i++) { \ |
| d->elem(i) = F(v->elem(i), s->elem(i), m->elem(i)); \ |
| } \ |
| } |
| |
| #define SSE_HELPER_I(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, \ |
| uint32_t imm) \ |
| { \ |
| int i; \ |
| for (i = 0; i < num; i++) { \ |
| int j = i & 7; \ |
| d->elem(i) = F(v->elem(i), s->elem(i), (imm >> j) & 1); \ |
| } \ |
| } |
| |
| /* SSE4.1 op helpers */ |
| #define FBLENDVB(v, s, m) ((m & 0x80) ? s : v) |
| #define FBLENDVPS(v, s, m) ((m & 0x80000000) ? s : v) |
| #define FBLENDVPD(v, s, m) ((m & 0x8000000000000000LL) ? s : v) |
| SSE_HELPER_V(helper_pblendvb, B, 8 << SHIFT, FBLENDVB) |
| SSE_HELPER_V(helper_blendvps, L, 2 << SHIFT, FBLENDVPS) |
| SSE_HELPER_V(helper_blendvpd, Q, 1 << SHIFT, FBLENDVPD) |
| |
| void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| uint64_t zf = 0, cf = 0; |
| int i; |
| |
| for (i = 0; i < 1 << SHIFT; i++) { |
| zf |= (s->Q(i) & d->Q(i)); |
| cf |= (s->Q(i) & ~d->Q(i)); |
| } |
| CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C); |
| } |
| |
| #define FMOVSLDUP(i) s->L((i) & ~1) |
| #define FMOVSHDUP(i) s->L((i) | 1) |
| #define FMOVDLDUP(i) s->Q((i) & ~1) |
| |
| #define SSE_HELPER_F(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ |
| { \ |
| int n = num; \ |
| for (int i = n; --i >= 0; ) { \ |
| d->elem(i) = F(i); \ |
| } \ |
| } |
| |
| #if SHIFT > 0 |
| SSE_HELPER_F(helper_pmovsxbw, W, 4 << SHIFT, (int8_t) s->B) |
| SSE_HELPER_F(helper_pmovsxbd, L, 2 << SHIFT, (int8_t) s->B) |
| SSE_HELPER_F(helper_pmovsxbq, Q, 1 << SHIFT, (int8_t) s->B) |
| SSE_HELPER_F(helper_pmovsxwd, L, 2 << SHIFT, (int16_t) s->W) |
| SSE_HELPER_F(helper_pmovsxwq, Q, 1 << SHIFT, (int16_t) s->W) |
| SSE_HELPER_F(helper_pmovsxdq, Q, 1 << SHIFT, (int32_t) s->L) |
| SSE_HELPER_F(helper_pmovzxbw, W, 4 << SHIFT, s->B) |
| SSE_HELPER_F(helper_pmovzxbd, L, 2 << SHIFT, s->B) |
| SSE_HELPER_F(helper_pmovzxbq, Q, 1 << SHIFT, s->B) |
| SSE_HELPER_F(helper_pmovzxwd, L, 2 << SHIFT, s->W) |
| SSE_HELPER_F(helper_pmovzxwq, Q, 1 << SHIFT, s->W) |
| SSE_HELPER_F(helper_pmovzxdq, Q, 1 << SHIFT, s->L) |
| SSE_HELPER_F(helper_pmovsldup, L, 2 << SHIFT, FMOVSLDUP) |
| SSE_HELPER_F(helper_pmovshdup, L, 2 << SHIFT, FMOVSHDUP) |
| SSE_HELPER_F(helper_pmovdldup, Q, 1 << SHIFT, FMOVDLDUP) |
| #endif |
| |
| void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| |
| for (i = 0; i < 1 << SHIFT; i++) { |
| d->Q(i) = (int64_t)(int32_t) v->L(2 * i) * (int32_t) s->L(2 * i); |
| } |
| } |
| |
| void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| uint16_t r[8]; |
| int i, j, k; |
| |
| for (i = 0, j = 0; i <= 2 << SHIFT; i += 8, j += 4) { |
| r[0] = satuw(v->L(j)); |
| r[1] = satuw(v->L(j + 1)); |
| r[2] = satuw(v->L(j + 2)); |
| r[3] = satuw(v->L(j + 3)); |
| r[4] = satuw(s->L(j)); |
| r[5] = satuw(s->L(j + 1)); |
| r[6] = satuw(s->L(j + 2)); |
| r[7] = satuw(s->L(j + 3)); |
| for (k = 0; k < 8; k++) { |
| d->W(i + k) = r[k]; |
| } |
| } |
| } |
| |
| #if SHIFT == 1 |
| void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| int idx = 0; |
| |
| if (s->W(1) < s->W(idx)) { |
| idx = 1; |
| } |
| if (s->W(2) < s->W(idx)) { |
| idx = 2; |
| } |
| if (s->W(3) < s->W(idx)) { |
| idx = 3; |
| } |
| if (s->W(4) < s->W(idx)) { |
| idx = 4; |
| } |
| if (s->W(5) < s->W(idx)) { |
| idx = 5; |
| } |
| if (s->W(6) < s->W(idx)) { |
| idx = 6; |
| } |
| if (s->W(7) < s->W(idx)) { |
| idx = 7; |
| } |
| |
| d->W(0) = s->W(idx); |
| d->W(1) = idx; |
| d->L(1) = 0; |
| d->Q(1) = 0; |
| } |
| #endif |
| |
| void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t mode) |
| { |
| uint8_t old_flags = get_float_exception_flags(&env->sse_status); |
| signed char prev_rounding_mode; |
| int i; |
| |
| prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| set_x86_rounding_mode(mode & 3, &env->sse_status); |
| } |
| |
| for (i = 0; i < 2 << SHIFT; i++) { |
| d->ZMM_S(i) = float32_round_to_int(s->ZMM_S(i), &env->sse_status); |
| } |
| |
| if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { |
| set_float_exception_flags(get_float_exception_flags(&env->sse_status) & |
| ~float_flag_inexact, |
| &env->sse_status); |
| } |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| |
| void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t mode) |
| { |
| uint8_t old_flags = get_float_exception_flags(&env->sse_status); |
| signed char prev_rounding_mode; |
| int i; |
| |
| prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| set_x86_rounding_mode(mode & 3, &env->sse_status); |
| } |
| |
| for (i = 0; i < 1 << SHIFT; i++) { |
| d->ZMM_D(i) = float64_round_to_int(s->ZMM_D(i), &env->sse_status); |
| } |
| |
| if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { |
| set_float_exception_flags(get_float_exception_flags(&env->sse_status) & |
| ~float_flag_inexact, |
| &env->sse_status); |
| } |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| |
| #if SHIFT == 1 |
| void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, |
| uint32_t mode) |
| { |
| uint8_t old_flags = get_float_exception_flags(&env->sse_status); |
| signed char prev_rounding_mode; |
| int i; |
| |
| prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| set_x86_rounding_mode(mode & 3, &env->sse_status); |
| } |
| |
| d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); |
| for (i = 1; i < 2 << SHIFT; i++) { |
| d->ZMM_L(i) = v->ZMM_L(i); |
| } |
| |
| if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { |
| set_float_exception_flags(get_float_exception_flags(&env->sse_status) & |
| ~float_flag_inexact, |
| &env->sse_status); |
| } |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| |
| void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, |
| uint32_t mode) |
| { |
| uint8_t old_flags = get_float_exception_flags(&env->sse_status); |
| signed char prev_rounding_mode; |
| int i; |
| |
| prev_rounding_mode = env->sse_status.float_rounding_mode; |
| if (!(mode & (1 << 2))) { |
| set_x86_rounding_mode(mode & 3, &env->sse_status); |
| } |
| |
| d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); |
| for (i = 1; i < 1 << SHIFT; i++) { |
| d->ZMM_Q(i) = v->ZMM_Q(i); |
| } |
| |
| if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { |
| set_float_exception_flags(get_float_exception_flags(&env->sse_status) & |
| ~float_flag_inexact, |
| &env->sse_status); |
| } |
| env->sse_status.float_rounding_mode = prev_rounding_mode; |
| } |
| #endif |
| |
| #define FBLENDP(v, s, m) (m ? s : v) |
| SSE_HELPER_I(helper_blendps, L, 2 << SHIFT, FBLENDP) |
| SSE_HELPER_I(helper_blendpd, Q, 1 << SHIFT, FBLENDP) |
| SSE_HELPER_I(helper_pblendw, W, 4 << SHIFT, FBLENDP) |
| |
| void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, |
| uint32_t mask) |
| { |
| float32 prod1, prod2, temp2, temp3, temp4; |
| int i; |
| |
| for (i = 0; i < 2 << SHIFT; i += 4) { |
| /* |
| * We must evaluate (A+B)+(C+D), not ((A+B)+C)+D |
| * to correctly round the intermediate results |
| */ |
| if (mask & (1 << 4)) { |
| prod1 = float32_mul(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status); |
| } else { |
| prod1 = float32_zero; |
| } |
| if (mask & (1 << 5)) { |
| prod2 = float32_mul(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status); |
| } else { |
| prod2 = float32_zero; |
| } |
| temp2 = float32_add(prod1, prod2, &env->sse_status); |
| if (mask & (1 << 6)) { |
| prod1 = float32_mul(v->ZMM_S(i+2), s->ZMM_S(i+2), &env->sse_status); |
| } else { |
| prod1 = float32_zero; |
| } |
| if (mask & (1 << 7)) { |
| prod2 = float32_mul(v->ZMM_S(i+3), s->ZMM_S(i+3), &env->sse_status); |
| } else { |
| prod2 = float32_zero; |
| } |
| temp3 = float32_add(prod1, prod2, &env->sse_status); |
| temp4 = float32_add(temp2, temp3, &env->sse_status); |
| |
| d->ZMM_S(i) = (mask & (1 << 0)) ? temp4 : float32_zero; |
| d->ZMM_S(i+1) = (mask & (1 << 1)) ? temp4 : float32_zero; |
| d->ZMM_S(i+2) = (mask & (1 << 2)) ? temp4 : float32_zero; |
| d->ZMM_S(i+3) = (mask & (1 << 3)) ? temp4 : float32_zero; |
| } |
| } |
| |
| #if SHIFT == 1 |
| /* Oddly, there is no ymm version of dppd */ |
| void glue(helper_dppd, SUFFIX)(CPUX86State *env, |
| Reg *d, Reg *v, Reg *s, uint32_t mask) |
| { |
| float64 prod1, prod2, temp2; |
| |
| if (mask & (1 << 4)) { |
| prod1 = float64_mul(v->ZMM_D(0), s->ZMM_D(0), &env->sse_status); |
| } else { |
| prod1 = float64_zero; |
| } |
| if (mask & (1 << 5)) { |
| prod2 = float64_mul(v->ZMM_D(1), s->ZMM_D(1), &env->sse_status); |
| } else { |
| prod2 = float64_zero; |
| } |
| temp2 = float64_add(prod1, prod2, &env->sse_status); |
| d->ZMM_D(0) = (mask & (1 << 0)) ? temp2 : float64_zero; |
| d->ZMM_D(1) = (mask & (1 << 1)) ? temp2 : float64_zero; |
| } |
| #endif |
| |
| void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, |
| uint32_t offset) |
| { |
| int i, j; |
| uint16_t r[8]; |
| |
| for (j = 0; j < 4 << SHIFT; ) { |
| int s0 = (j * 2) + ((offset & 3) << 2); |
| int d0 = (j * 2) + ((offset & 4) << 0); |
| for (i = 0; i < LANE_WIDTH / 2; i++, d0++) { |
| r[i] = 0; |
| r[i] += abs1(v->B(d0 + 0) - s->B(s0 + 0)); |
| r[i] += abs1(v->B(d0 + 1) - s->B(s0 + 1)); |
| r[i] += abs1(v->B(d0 + 2) - s->B(s0 + 2)); |
| r[i] += abs1(v->B(d0 + 3) - s->B(s0 + 3)); |
| } |
| for (i = 0; i < LANE_WIDTH / 2; i++, j++) { |
| d->W(j) = r[i]; |
| } |
| offset >>= 3; |
| } |
| } |
| |
| /* SSE4.2 op helpers */ |
| #if SHIFT == 1 |
| static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl) |
| { |
| target_long val, limit; |
| |
| /* Presence of REX.W is indicated by a bit higher than 7 set */ |
| if (ctrl >> 8) { |
| val = (target_long)env->regs[reg]; |
| } else { |
| val = (int32_t)env->regs[reg]; |
| } |
| if (ctrl & 1) { |
| limit = 8; |
| } else { |
| limit = 16; |
| } |
| if ((val > limit) || (val < -limit)) { |
| return limit; |
| } |
| return abs1(val); |
| } |
| |
| static inline int pcmp_ilen(Reg *r, uint8_t ctrl) |
| { |
| int val = 0; |
| |
| if (ctrl & 1) { |
| while (val < 8 && r->W(val)) { |
| val++; |
| } |
| } else { |
| while (val < 16 && r->B(val)) { |
| val++; |
| } |
| } |
| |
| return val; |
| } |
| |
| static inline int pcmp_val(Reg *r, uint8_t ctrl, int i) |
| { |
| switch ((ctrl >> 0) & 3) { |
| case 0: |
| return r->B(i); |
| case 1: |
| return r->W(i); |
| case 2: |
| return (int8_t)r->B(i); |
| case 3: |
| default: |
| return (int16_t)r->W(i); |
| } |
| } |
| |
| static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s, |
| uint8_t ctrl, int valids, int validd) |
| { |
| unsigned int res = 0; |
| int v; |
| int j, i; |
| int upper = (ctrl & 1) ? 7 : 15; |
| |
| valids--; |
| validd--; |
| |
| CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0); |
| |
| switch ((ctrl >> 2) & 3) { |
| case 0: |
| for (j = valids; j >= 0; j--) { |
| res <<= 1; |
| v = pcmp_val(s, ctrl, j); |
| for (i = validd; i >= 0; i--) { |
| res |= (v == pcmp_val(d, ctrl, i)); |
| } |
| } |
| break; |
| case 1: |
| for (j = valids; j >= 0; j--) { |
| res <<= 1; |
| v = pcmp_val(s, ctrl, j); |
| for (i = ((validd - 1) | 1); i >= 0; i -= 2) { |
| res |= (pcmp_val(d, ctrl, i - 0) >= v && |
| pcmp_val(d, ctrl, i - 1) <= v); |
| } |
| } |
| break; |
| case 2: |
| res = (1 << (upper - MAX(valids, validd))) - 1; |
| res <<= MAX(valids, validd) - MIN(valids, validd); |
| for (i = MIN(valids, validd); i >= 0; i--) { |
| res <<= 1; |
| v = pcmp_val(s, ctrl, i); |
| res |= (v == pcmp_val(d, ctrl, i)); |
| } |
| break; |
| case 3: |
| if (validd == -1) { |
| res = (2 << upper) - 1; |
| break; |
| } |
| for (j = valids == upper ? valids : valids - validd; j >= 0; j--) { |
| res <<= 1; |
| v = 1; |
| for (i = MIN(valids - j, validd); i >= 0; i--) { |
| v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i)); |
| } |
| res |= v; |
| } |
| break; |
| } |
| |
| switch ((ctrl >> 4) & 3) { |
| case 1: |
| res ^= (2 << upper) - 1; |
| break; |
| case 3: |
| res ^= (1 << (valids + 1)) - 1; |
| break; |
| } |
| |
| if (res) { |
| CC_SRC |= CC_C; |
| } |
| if (res & 1) { |
| CC_SRC |= CC_O; |
| } |
| |
| return res; |
| } |
| |
| void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| unsigned int res = pcmpxstrx(env, d, s, ctrl, |
| pcmp_elen(env, R_EDX, ctrl), |
| pcmp_elen(env, R_EAX, ctrl)); |
| |
| if (res) { |
| env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); |
| } else { |
| env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); |
| } |
| } |
| |
| void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| int i; |
| unsigned int res = pcmpxstrx(env, d, s, ctrl, |
| pcmp_elen(env, R_EDX, ctrl), |
| pcmp_elen(env, R_EAX, ctrl)); |
| |
| if ((ctrl >> 6) & 1) { |
| if (ctrl & 1) { |
| for (i = 0; i < 8; i++, res >>= 1) { |
| env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; |
| } |
| } else { |
| for (i = 0; i < 16; i++, res >>= 1) { |
| env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; |
| } |
| } |
| } else { |
| env->xmm_regs[0].Q(1) = 0; |
| env->xmm_regs[0].Q(0) = res; |
| } |
| } |
| |
| void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| unsigned int res = pcmpxstrx(env, d, s, ctrl, |
| pcmp_ilen(s, ctrl), |
| pcmp_ilen(d, ctrl)); |
| |
| if (res) { |
| env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); |
| } else { |
| env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); |
| } |
| } |
| |
| void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| int i; |
| unsigned int res = pcmpxstrx(env, d, s, ctrl, |
| pcmp_ilen(s, ctrl), |
| pcmp_ilen(d, ctrl)); |
| |
| if ((ctrl >> 6) & 1) { |
| if (ctrl & 1) { |
| for (i = 0; i < 8; i++, res >>= 1) { |
| env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; |
| } |
| } else { |
| for (i = 0; i < 16; i++, res >>= 1) { |
| env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; |
| } |
| } |
| } else { |
| env->xmm_regs[0].Q(1) = 0; |
| env->xmm_regs[0].Q(0) = res; |
| } |
| } |
| |
| #define CRCPOLY 0x1edc6f41 |
| #define CRCPOLY_BITREV 0x82f63b78 |
| target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len) |
| { |
| target_ulong crc = (msg & ((target_ulong) -1 >> |
| (TARGET_LONG_BITS - len))) ^ crc1; |
| |
| while (len--) { |
| crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0); |
| } |
| |
| return crc; |
| } |
| |
| #endif |
| |
| void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, |
| uint32_t ctrl) |
| { |
| int a_idx = (ctrl & 1) != 0; |
| int b_idx = (ctrl & 16) != 0; |
| |
| for (int i = 0; i < SHIFT; i++) { |
| uint64_t a = v->Q(2 * i + a_idx); |
| uint64_t b = s->Q(2 * i + b_idx); |
| Int128 *r = (Int128 *)&d->ZMM_X(i); |
| |
| *r = clmul_64(a, b); |
| } |
| } |
| |
| void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| for (int i = 0; i < SHIFT; i++) { |
| AESState *ad = (AESState *)&d->ZMM_X(i); |
| AESState *st = (AESState *)&v->ZMM_X(i); |
| AESState *rk = (AESState *)&s->ZMM_X(i); |
| |
| aesdec_ISB_ISR_IMC_AK(ad, st, rk, false); |
| } |
| } |
| |
| void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| for (int i = 0; i < SHIFT; i++) { |
| AESState *ad = (AESState *)&d->ZMM_X(i); |
| AESState *st = (AESState *)&v->ZMM_X(i); |
| AESState *rk = (AESState *)&s->ZMM_X(i); |
| |
| aesdec_ISB_ISR_AK(ad, st, rk, false); |
| } |
| } |
| |
| void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| for (int i = 0; i < SHIFT; i++) { |
| AESState *ad = (AESState *)&d->ZMM_X(i); |
| AESState *st = (AESState *)&v->ZMM_X(i); |
| AESState *rk = (AESState *)&s->ZMM_X(i); |
| |
| aesenc_SB_SR_MC_AK(ad, st, rk, false); |
| } |
| } |
| |
| void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| for (int i = 0; i < SHIFT; i++) { |
| AESState *ad = (AESState *)&d->ZMM_X(i); |
| AESState *st = (AESState *)&v->ZMM_X(i); |
| AESState *rk = (AESState *)&s->ZMM_X(i); |
| |
| aesenc_SB_SR_AK(ad, st, rk, false); |
| } |
| } |
| |
| #if SHIFT == 1 |
| void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| AESState *ad = (AESState *)&d->ZMM_X(0); |
| AESState *st = (AESState *)&s->ZMM_X(0); |
| |
| aesdec_IMC(ad, st, false); |
| } |
| |
| void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, |
| uint32_t ctrl) |
| { |
| int i; |
| Reg tmp = *s; |
| |
| for (i = 0 ; i < 4 ; i++) { |
| d->B(i) = AES_sbox[tmp.B(i + 4)]; |
| d->B(i + 8) = AES_sbox[tmp.B(i + 12)]; |
| } |
| d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl; |
| d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl; |
| } |
| #endif |
| #endif |
| |
| #if SHIFT >= 1 |
| void glue(helper_vpermilpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| uint64_t r0, r1; |
| int i; |
| |
| for (i = 0; i < 1 << SHIFT; i += 2) { |
| r0 = v->Q(i + ((s->Q(i) >> 1) & 1)); |
| r1 = v->Q(i + ((s->Q(i+1) >> 1) & 1)); |
| d->Q(i) = r0; |
| d->Q(i+1) = r1; |
| } |
| } |
| |
| void glue(helper_vpermilps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| uint32_t r0, r1, r2, r3; |
| int i; |
| |
| for (i = 0; i < 2 << SHIFT; i += 4) { |
| r0 = v->L(i + (s->L(i) & 3)); |
| r1 = v->L(i + (s->L(i+1) & 3)); |
| r2 = v->L(i + (s->L(i+2) & 3)); |
| r3 = v->L(i + (s->L(i+3) & 3)); |
| d->L(i) = r0; |
| d->L(i+1) = r1; |
| d->L(i+2) = r2; |
| d->L(i+3) = r3; |
| } |
| } |
| |
| void glue(helper_vpermilpd_imm, SUFFIX)(Reg *d, Reg *s, uint32_t order) |
| { |
| uint64_t r0, r1; |
| int i; |
| |
| for (i = 0; i < 1 << SHIFT; i += 2) { |
| r0 = s->Q(i + ((order >> 0) & 1)); |
| r1 = s->Q(i + ((order >> 1) & 1)); |
| d->Q(i) = r0; |
| d->Q(i+1) = r1; |
| |
| order >>= 2; |
| } |
| } |
| |
| void glue(helper_vpermilps_imm, SUFFIX)(Reg *d, Reg *s, uint32_t order) |
| { |
| uint32_t r0, r1, r2, r3; |
| int i; |
| |
| for (i = 0; i < 2 << SHIFT; i += 4) { |
| r0 = s->L(i + ((order >> 0) & 3)); |
| r1 = s->L(i + ((order >> 2) & 3)); |
| r2 = s->L(i + ((order >> 4) & 3)); |
| r3 = s->L(i + ((order >> 6) & 3)); |
| d->L(i) = r0; |
| d->L(i+1) = r1; |
| d->L(i+2) = r2; |
| d->L(i+3) = r3; |
| } |
| } |
| |
| #if SHIFT == 1 |
| #define FPSRLVD(x, c) (c < 32 ? ((x) >> c) : 0) |
| #define FPSRLVQ(x, c) (c < 64 ? ((x) >> c) : 0) |
| #define FPSRAVD(x, c) ((int32_t)(x) >> (c < 32 ? c : 31)) |
| #define FPSRAVQ(x, c) ((int64_t)(x) >> (c < 64 ? c : 63)) |
| #define FPSLLVD(x, c) (c < 32 ? ((x) << c) : 0) |
| #define FPSLLVQ(x, c) (c < 64 ? ((x) << c) : 0) |
| #endif |
| |
| SSE_HELPER_L(helper_vpsrlvd, FPSRLVD) |
| SSE_HELPER_L(helper_vpsravd, FPSRAVD) |
| SSE_HELPER_L(helper_vpsllvd, FPSLLVD) |
| |
| SSE_HELPER_Q(helper_vpsrlvq, FPSRLVQ) |
| SSE_HELPER_Q(helper_vpsravq, FPSRAVQ) |
| SSE_HELPER_Q(helper_vpsllvq, FPSLLVQ) |
| |
| void glue(helper_vtestps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| uint32_t zf = 0, cf = 0; |
| int i; |
| |
| for (i = 0; i < 2 << SHIFT; i++) { |
| zf |= (s->L(i) & d->L(i)); |
| cf |= (s->L(i) & ~d->L(i)); |
| } |
| CC_SRC = ((zf >> 31) ? 0 : CC_Z) | ((cf >> 31) ? 0 : CC_C); |
| } |
| |
| void glue(helper_vtestpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) |
| { |
| uint64_t zf = 0, cf = 0; |
| int i; |
| |
| for (i = 0; i < 1 << SHIFT; i++) { |
| zf |= (s->Q(i) & d->Q(i)); |
| cf |= (s->Q(i) & ~d->Q(i)); |
| } |
| CC_SRC = ((zf >> 63) ? 0 : CC_Z) | ((cf >> 63) ? 0 : CC_C); |
| } |
| |
| void glue(helper_vpmaskmovd_st, SUFFIX)(CPUX86State *env, |
| Reg *v, Reg *s, target_ulong a0) |
| { |
| int i; |
| |
| for (i = 0; i < (2 << SHIFT); i++) { |
| if (v->L(i) >> 31) { |
| cpu_stl_data_ra(env, a0 + i * 4, s->L(i), GETPC()); |
| } |
| } |
| } |
| |
| void glue(helper_vpmaskmovq_st, SUFFIX)(CPUX86State *env, |
| Reg *v, Reg *s, target_ulong a0) |
| { |
| int i; |
| |
| for (i = 0; i < (1 << SHIFT); i++) { |
| if (v->Q(i) >> 63) { |
| cpu_stq_data_ra(env, a0 + i * 8, s->Q(i), GETPC()); |
| } |
| } |
| } |
| |
| void glue(helper_vpmaskmovd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| |
| for (i = 0; i < (2 << SHIFT); i++) { |
| d->L(i) = (v->L(i) >> 31) ? s->L(i) : 0; |
| } |
| } |
| |
| void glue(helper_vpmaskmovq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) |
| { |
| int i; |
| |
| for (i = 0; i < (1 << SHIFT); i++) { |
| d->Q(i) = (v->Q(i) >> 63) ? s->Q(i) : 0; |
| } |
| } |
| |
| void glue(helper_vpgatherdd, SUFFIX)(CPUX86State *env, |
| Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale) |
| { |
| int i; |
| for (i = 0; i < (2 << SHIFT); i++) { |
| if (v->L(i) >> 31) { |
| target_ulong addr = a0 |
| + ((target_ulong)(int32_t)s->L(i) << scale); |
| d->L(i) = cpu_ldl_data_ra(env, addr, GETPC()); |
| } |
| v->L(i) = 0; |
| } |
| } |
| |
| void glue(helper_vpgatherdq, SUFFIX)(CPUX86State *env, |
| Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale) |
| { |
| int i; |
| for (i = 0; i < (1 << SHIFT); i++) { |
| if (v->Q(i) >> 63) { |
| target_ulong addr = a0 |
| + ((target_ulong)(int32_t)s->L(i) << scale); |
| d->Q(i) = cpu_ldq_data_ra(env, addr, GETPC()); |
| } |
| v->Q(i) = 0; |
| } |
| } |
| |
| void glue(helper_vpgatherqd, SUFFIX)(CPUX86State *env, |
| Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale) |
| { |
| int i; |
| for (i = 0; i < (1 << SHIFT); i++) { |
| if (v->L(i) >> 31) { |
| target_ulong addr = a0 |
| + ((target_ulong)(int64_t)s->Q(i) << scale); |
| d->L(i) = cpu_ldl_data_ra(env, addr, GETPC()); |
| } |
| v->L(i) = 0; |
| } |
| for (i /= 2; i < 1 << SHIFT; i++) { |
| d->Q(i) = 0; |
| v->Q(i) = 0; |
| } |
| } |
| |
| void glue(helper_vpgatherqq, SUFFIX)(CPUX86State *env, |
| Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale) |
| { |
| int i; |
| for (i = 0; i < (1 << SHIFT); i++) { |
| if (v->Q(i) >> 63) { |
| target_ulong addr = a0 |
| + ((target_ulong)(int64_t)s->Q(i) << scale); |
| d->Q(i) = cpu_ldq_data_ra(env, addr, GETPC()); |
| } |
| v->Q(i) = 0; |
| } |
| } |
| #endif |
| |
| #if SHIFT >= 2 |
| void helper_vpermdq_ymm(Reg *d, Reg *v, Reg *s, uint32_t order) |
| { |
| uint64_t r0, r1, r2, r3; |
| |
| switch (order & 3) { |
| case 0: |
| r0 = v->Q(0); |
| r1 = v->Q(1); |
| break; |
| case 1: |
| r0 = v->Q(2); |
| r1 = v->Q(3); |
| break; |
| case 2: |
| r0 = s->Q(0); |
| r1 = s->Q(1); |
| break; |
| case 3: |
| r0 = s->Q(2); |
| r1 = s->Q(3); |
| break; |
| default: /* default case added to help the compiler to avoid warnings */ |
| g_assert_not_reached(); |
| } |
| switch ((order >> 4) & 3) { |
| case 0: |
| r2 = v->Q(0); |
| r3 = v->Q(1); |
| break; |
| case 1: |
| r2 = v->Q(2); |
| r3 = v->Q(3); |
| break; |
| case 2: |
| r2 = s->Q(0); |
| r3 = s->Q(1); |
| break; |
| case 3: |
| r2 = s->Q(2); |
| r3 = s->Q(3); |
| break; |
| default: /* default case added to help the compiler to avoid warnings */ |
| g_assert_not_reached(); |
| } |
| d->Q(0) = r0; |
| d->Q(1) = r1; |
| d->Q(2) = r2; |
| d->Q(3) = r3; |
| if (order & 0x8) { |
| d->Q(0) = 0; |
| d->Q(1) = 0; |
| } |
| if (order & 0x80) { |
| d->Q(2) = 0; |
| d->Q(3) = 0; |
| } |
| } |
| |
| void helper_vpermq_ymm(Reg *d, Reg *s, uint32_t order) |
| { |
| uint64_t r0, r1, r2, r3; |
| r0 = s->Q(order & 3); |
| r1 = s->Q((order >> 2) & 3); |
| r2 = s->Q((order >> 4) & 3); |
| r3 = s->Q((order >> 6) & 3); |
| d->Q(0) = r0; |
| d->Q(1) = r1; |
| d->Q(2) = r2; |
| d->Q(3) = r3; |
| } |
| |
| void helper_vpermd_ymm(Reg *d, Reg *v, Reg *s) |
| { |
| uint32_t r[8]; |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| r[i] = s->L(v->L(i) & 7); |
| } |
| for (i = 0; i < 8; i++) { |
| d->L(i) = r[i]; |
| } |
| } |
| #endif |
| |
| /* FMA3 op helpers */ |
| #if SHIFT == 1 |
| #define SSE_HELPER_FMAS(name, elem, F) \ |
| void name(CPUX86State *env, Reg *d, Reg *a, Reg *b, Reg *c, int flags) \ |
| { \ |
| d->elem(0) = F(a->elem(0), b->elem(0), c->elem(0), flags, &env->sse_status); \ |
| } |
| #define SSE_HELPER_FMAP(name, elem, num, F) \ |
| void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *a, Reg *b, Reg *c, \ |
| int flags, int flip) \ |
| { \ |
| int i; \ |
| for (i = 0; i < num; i++) { \ |
| d->elem(i) = F(a->elem(i), b->elem(i), c->elem(i), flags, &env->sse_status); \ |
| flags ^= flip; \ |
| } \ |
| } |
| |
| SSE_HELPER_FMAS(helper_fma4ss, ZMM_S, float32_muladd) |
| SSE_HELPER_FMAS(helper_fma4sd, ZMM_D, float64_muladd) |
| #endif |
| |
| #if SHIFT >= 1 |
| SSE_HELPER_FMAP(helper_fma4ps, ZMM_S, 2 << SHIFT, float32_muladd) |
| SSE_HELPER_FMAP(helper_fma4pd, ZMM_D, 1 << SHIFT, float64_muladd) |
| #endif |
| |
| #if SHIFT == 1 |
| #define SSE_HELPER_SHA1RNDS4(name, F, K) \ |
| void name(Reg *d, Reg *a, Reg *b) \ |
| { \ |
| uint32_t A, B, C, D, E, t, i; \ |
| \ |
| A = a->L(3); \ |
| B = a->L(2); \ |
| C = a->L(1); \ |
| D = a->L(0); \ |
| E = 0; \ |
| \ |
| for (i = 0; i <= 3; i++) { \ |
| t = F(B, C, D) + rol32(A, 5) + b->L(3 - i) + E + K; \ |
| E = D; \ |
| D = C; \ |
| C = rol32(B, 30); \ |
| B = A; \ |
| A = t; \ |
| } \ |
| \ |
| d->L(3) = A; \ |
| d->L(2) = B; \ |
| d->L(1) = C; \ |
| d->L(0) = D; \ |
| } |
| |
| #define SHA1_F0(b, c, d) (((b) & (c)) ^ (~(b) & (d))) |
| #define SHA1_F1(b, c, d) ((b) ^ (c) ^ (d)) |
| #define SHA1_F2(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) |
| |
| SSE_HELPER_SHA1RNDS4(helper_sha1rnds4_f0, SHA1_F0, 0x5A827999) |
| SSE_HELPER_SHA1RNDS4(helper_sha1rnds4_f1, SHA1_F1, 0x6ED9EBA1) |
| SSE_HELPER_SHA1RNDS4(helper_sha1rnds4_f2, SHA1_F2, 0x8F1BBCDC) |
| SSE_HELPER_SHA1RNDS4(helper_sha1rnds4_f3, SHA1_F1, 0xCA62C1D6) |
| |
| void helper_sha1nexte(Reg *d, Reg *a, Reg *b) |
| { |
| d->L(3) = b->L(3) + rol32(a->L(3), 30); |
| d->L(2) = b->L(2); |
| d->L(1) = b->L(1); |
| d->L(0) = b->L(0); |
| } |
| |
| void helper_sha1msg1(Reg *d, Reg *a, Reg *b) |
| { |
| /* These could be overwritten by the first two assignments, save them. */ |
| uint32_t b3 = b->L(3); |
| uint32_t b2 = b->L(2); |
| |
| d->L(3) = a->L(3) ^ a->L(1); |
| d->L(2) = a->L(2) ^ a->L(0); |
| d->L(1) = a->L(1) ^ b3; |
| d->L(0) = a->L(0) ^ b2; |
| } |
| |
| void helper_sha1msg2(Reg *d, Reg *a, Reg *b) |
| { |
| d->L(3) = rol32(a->L(3) ^ b->L(2), 1); |
| d->L(2) = rol32(a->L(2) ^ b->L(1), 1); |
| d->L(1) = rol32(a->L(1) ^ b->L(0), 1); |
| d->L(0) = rol32(a->L(0) ^ d->L(3), 1); |
| } |
| |
| #define SHA256_CH(e, f, g) (((e) & (f)) ^ (~(e) & (g))) |
| #define SHA256_MAJ(a, b, c) (((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))) |
| |
| #define SHA256_RNDS0(w) (ror32((w), 2) ^ ror32((w), 13) ^ ror32((w), 22)) |
| #define SHA256_RNDS1(w) (ror32((w), 6) ^ ror32((w), 11) ^ ror32((w), 25)) |
| #define SHA256_MSGS0(w) (ror32((w), 7) ^ ror32((w), 18) ^ ((w) >> 3)) |
| #define SHA256_MSGS1(w) (ror32((w), 17) ^ ror32((w), 19) ^ ((w) >> 10)) |
| |
| void helper_sha256rnds2(Reg *d, Reg *a, Reg *b, uint32_t wk0, uint32_t wk1) |
| { |
| uint32_t t, AA, EE; |
| |
| uint32_t A = b->L(3); |
| uint32_t B = b->L(2); |
| uint32_t C = a->L(3); |
| uint32_t D = a->L(2); |
| uint32_t E = b->L(1); |
| uint32_t F = b->L(0); |
| uint32_t G = a->L(1); |
| uint32_t H = a->L(0); |
| |
| /* Even round */ |
| t = SHA256_CH(E, F, G) + SHA256_RNDS1(E) + wk0 + H; |
| AA = t + SHA256_MAJ(A, B, C) + SHA256_RNDS0(A); |
| EE = t + D; |
| |
| /* These will be B and F at the end of the odd round */ |
| d->L(2) = AA; |
| d->L(0) = EE; |
| |
| D = C, C = B, B = A, A = AA; |
| H = G, G = F, F = E, E = EE; |
| |
| /* Odd round */ |
| t = SHA256_CH(E, F, G) + SHA256_RNDS1(E) + wk1 + H; |
| AA = t + SHA256_MAJ(A, B, C) + SHA256_RNDS0(A); |
| EE = t + D; |
| |
| d->L(3) = AA; |
| d->L(1) = EE; |
| } |
| |
| void helper_sha256msg1(Reg *d, Reg *a, Reg *b) |
| { |
| /* b->L(0) could be overwritten by the first assignment, save it. */ |
| uint32_t b0 = b->L(0); |
| |
| d->L(0) = a->L(0) + SHA256_MSGS0(a->L(1)); |
| d->L(1) = a->L(1) + SHA256_MSGS0(a->L(2)); |
| d->L(2) = a->L(2) + SHA256_MSGS0(a->L(3)); |
| d->L(3) = a->L(3) + SHA256_MSGS0(b0); |
| } |
| |
| void helper_sha256msg2(Reg *d, Reg *a, Reg *b) |
| { |
| /* Earlier assignments cannot overwrite any of the two operands. */ |
| d->L(0) = a->L(0) + SHA256_MSGS1(b->L(2)); |
| d->L(1) = a->L(1) + SHA256_MSGS1(b->L(3)); |
| /* Yes, this reuses the previously computed values. */ |
| d->L(2) = a->L(2) + SHA256_MSGS1(d->L(0)); |
| d->L(3) = a->L(3) + SHA256_MSGS1(d->L(1)); |
| } |
| #endif |
| |
| #undef SSE_HELPER_S |
| |
| #undef LANE_WIDTH |
| #undef SHIFT |
| #undef XMM_ONLY |
| #undef Reg |
| #undef B |
| #undef W |
| #undef L |
| #undef Q |
| #undef SUFFIX |