| /* |
| * coroutine queues and locks |
| * |
| * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| * The lock-free mutex implementation is based on OSv |
| * (core/lfmutex.cc, include/lockfree/mutex.hh). |
| * Copyright (C) 2013 Cloudius Systems, Ltd. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "qemu/coroutine.h" |
| #include "qemu/coroutine_int.h" |
| #include "qemu/processor.h" |
| #include "qemu/queue.h" |
| #include "block/aio.h" |
| #include "trace.h" |
| |
| void qemu_co_queue_init(CoQueue *queue) |
| { |
| QSIMPLEQ_INIT(&queue->entries); |
| } |
| |
| void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock) |
| { |
| Coroutine *self = qemu_coroutine_self(); |
| QSIMPLEQ_INSERT_TAIL(&queue->entries, self, co_queue_next); |
| |
| if (lock) { |
| qemu_lockable_unlock(lock); |
| } |
| |
| /* There is no race condition here. Other threads will call |
| * aio_co_schedule on our AioContext, which can reenter this |
| * coroutine but only after this yield and after the main loop |
| * has gone through the next iteration. |
| */ |
| qemu_coroutine_yield(); |
| assert(qemu_in_coroutine()); |
| |
| /* TODO: OSv implements wait morphing here, where the wakeup |
| * primitive automatically places the woken coroutine on the |
| * mutex's queue. This avoids the thundering herd effect. |
| * This could be implemented for CoMutexes, but not really for |
| * other cases of QemuLockable. |
| */ |
| if (lock) { |
| qemu_lockable_lock(lock); |
| } |
| } |
| |
| /** |
| * qemu_co_queue_run_restart: |
| * |
| * Enter each coroutine that was previously marked for restart by |
| * qemu_co_queue_next() or qemu_co_queue_restart_all(). This function is |
| * invoked by the core coroutine code when the current coroutine yields or |
| * terminates. |
| */ |
| void qemu_co_queue_run_restart(Coroutine *co) |
| { |
| Coroutine *next; |
| QSIMPLEQ_HEAD(, Coroutine) tmp_queue_wakeup = |
| QSIMPLEQ_HEAD_INITIALIZER(tmp_queue_wakeup); |
| |
| trace_qemu_co_queue_run_restart(co); |
| |
| /* Because "co" has yielded, any coroutine that we wakeup can resume it. |
| * If this happens and "co" terminates, co->co_queue_wakeup becomes |
| * invalid memory. Therefore, use a temporary queue and do not touch |
| * the "co" coroutine as soon as you enter another one. |
| * |
| * In its turn resumed "co" can populate "co_queue_wakeup" queue with |
| * new coroutines to be woken up. The caller, who has resumed "co", |
| * will be responsible for traversing the same queue, which may cause |
| * a different wakeup order but not any missing wakeups. |
| */ |
| QSIMPLEQ_CONCAT(&tmp_queue_wakeup, &co->co_queue_wakeup); |
| |
| while ((next = QSIMPLEQ_FIRST(&tmp_queue_wakeup))) { |
| QSIMPLEQ_REMOVE_HEAD(&tmp_queue_wakeup, co_queue_next); |
| qemu_coroutine_enter(next); |
| } |
| } |
| |
| static bool qemu_co_queue_do_restart(CoQueue *queue, bool single) |
| { |
| Coroutine *next; |
| |
| if (QSIMPLEQ_EMPTY(&queue->entries)) { |
| return false; |
| } |
| |
| while ((next = QSIMPLEQ_FIRST(&queue->entries)) != NULL) { |
| QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next); |
| aio_co_wake(next); |
| if (single) { |
| break; |
| } |
| } |
| return true; |
| } |
| |
| bool coroutine_fn qemu_co_queue_next(CoQueue *queue) |
| { |
| assert(qemu_in_coroutine()); |
| return qemu_co_queue_do_restart(queue, true); |
| } |
| |
| void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue) |
| { |
| assert(qemu_in_coroutine()); |
| qemu_co_queue_do_restart(queue, false); |
| } |
| |
| bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock) |
| { |
| Coroutine *next; |
| |
| next = QSIMPLEQ_FIRST(&queue->entries); |
| if (!next) { |
| return false; |
| } |
| |
| QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next); |
| if (lock) { |
| qemu_lockable_unlock(lock); |
| } |
| aio_co_wake(next); |
| if (lock) { |
| qemu_lockable_lock(lock); |
| } |
| return true; |
| } |
| |
| bool qemu_co_queue_empty(CoQueue *queue) |
| { |
| return QSIMPLEQ_FIRST(&queue->entries) == NULL; |
| } |
| |
| /* The wait records are handled with a multiple-producer, single-consumer |
| * lock-free queue. There cannot be two concurrent pop_waiter() calls |
| * because pop_waiter() can only be called while mutex->handoff is zero. |
| * This can happen in three cases: |
| * - in qemu_co_mutex_unlock, before the hand-off protocol has started. |
| * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and |
| * not take part in the handoff. |
| * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from |
| * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail |
| * the cmpxchg (it will see either 0 or the next sequence value) and |
| * exit. The next hand-off cannot begin until qemu_co_mutex_lock has |
| * woken up someone. |
| * - in qemu_co_mutex_unlock, if it takes the hand-off token itself. |
| * In this case another iteration starts with mutex->handoff == 0; |
| * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and |
| * qemu_co_mutex_unlock will go back to case (1). |
| * |
| * The following functions manage this queue. |
| */ |
| typedef struct CoWaitRecord { |
| Coroutine *co; |
| QSLIST_ENTRY(CoWaitRecord) next; |
| } CoWaitRecord; |
| |
| static void push_waiter(CoMutex *mutex, CoWaitRecord *w) |
| { |
| w->co = qemu_coroutine_self(); |
| QSLIST_INSERT_HEAD_ATOMIC(&mutex->from_push, w, next); |
| } |
| |
| static void move_waiters(CoMutex *mutex) |
| { |
| QSLIST_HEAD(, CoWaitRecord) reversed; |
| QSLIST_MOVE_ATOMIC(&reversed, &mutex->from_push); |
| while (!QSLIST_EMPTY(&reversed)) { |
| CoWaitRecord *w = QSLIST_FIRST(&reversed); |
| QSLIST_REMOVE_HEAD(&reversed, next); |
| QSLIST_INSERT_HEAD(&mutex->to_pop, w, next); |
| } |
| } |
| |
| static CoWaitRecord *pop_waiter(CoMutex *mutex) |
| { |
| CoWaitRecord *w; |
| |
| if (QSLIST_EMPTY(&mutex->to_pop)) { |
| move_waiters(mutex); |
| if (QSLIST_EMPTY(&mutex->to_pop)) { |
| return NULL; |
| } |
| } |
| w = QSLIST_FIRST(&mutex->to_pop); |
| QSLIST_REMOVE_HEAD(&mutex->to_pop, next); |
| return w; |
| } |
| |
| static bool has_waiters(CoMutex *mutex) |
| { |
| return QSLIST_EMPTY(&mutex->to_pop) || QSLIST_EMPTY(&mutex->from_push); |
| } |
| |
| void qemu_co_mutex_init(CoMutex *mutex) |
| { |
| memset(mutex, 0, sizeof(*mutex)); |
| } |
| |
| static void coroutine_fn qemu_co_mutex_wake(CoMutex *mutex, Coroutine *co) |
| { |
| /* Read co before co->ctx; pairs with smp_wmb() in |
| * qemu_coroutine_enter(). |
| */ |
| smp_read_barrier_depends(); |
| mutex->ctx = co->ctx; |
| aio_co_wake(co); |
| } |
| |
| static void coroutine_fn qemu_co_mutex_lock_slowpath(AioContext *ctx, |
| CoMutex *mutex) |
| { |
| Coroutine *self = qemu_coroutine_self(); |
| CoWaitRecord w; |
| unsigned old_handoff; |
| |
| trace_qemu_co_mutex_lock_entry(mutex, self); |
| w.co = self; |
| push_waiter(mutex, &w); |
| |
| /* This is the "Responsibility Hand-Off" protocol; a lock() picks from |
| * a concurrent unlock() the responsibility of waking somebody up. |
| */ |
| old_handoff = atomic_mb_read(&mutex->handoff); |
| if (old_handoff && |
| has_waiters(mutex) && |
| atomic_cmpxchg(&mutex->handoff, old_handoff, 0) == old_handoff) { |
| /* There can be no concurrent pops, because there can be only |
| * one active handoff at a time. |
| */ |
| CoWaitRecord *to_wake = pop_waiter(mutex); |
| Coroutine *co = to_wake->co; |
| if (co == self) { |
| /* We got the lock ourselves! */ |
| assert(to_wake == &w); |
| mutex->ctx = ctx; |
| return; |
| } |
| |
| qemu_co_mutex_wake(mutex, co); |
| } |
| |
| qemu_coroutine_yield(); |
| trace_qemu_co_mutex_lock_return(mutex, self); |
| } |
| |
| void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex) |
| { |
| AioContext *ctx = qemu_get_current_aio_context(); |
| Coroutine *self = qemu_coroutine_self(); |
| int waiters, i; |
| |
| /* Running a very small critical section on pthread_mutex_t and CoMutex |
| * shows that pthread_mutex_t is much faster because it doesn't actually |
| * go to sleep. What happens is that the critical section is shorter |
| * than the latency of entering the kernel and thus FUTEX_WAIT always |
| * fails. With CoMutex there is no such latency but you still want to |
| * avoid wait and wakeup. So introduce it artificially. |
| */ |
| i = 0; |
| retry_fast_path: |
| waiters = atomic_cmpxchg(&mutex->locked, 0, 1); |
| if (waiters != 0) { |
| while (waiters == 1 && ++i < 1000) { |
| if (atomic_read(&mutex->ctx) == ctx) { |
| break; |
| } |
| if (atomic_read(&mutex->locked) == 0) { |
| goto retry_fast_path; |
| } |
| cpu_relax(); |
| } |
| waiters = atomic_fetch_inc(&mutex->locked); |
| } |
| |
| if (waiters == 0) { |
| /* Uncontended. */ |
| trace_qemu_co_mutex_lock_uncontended(mutex, self); |
| mutex->ctx = ctx; |
| } else { |
| qemu_co_mutex_lock_slowpath(ctx, mutex); |
| } |
| mutex->holder = self; |
| self->locks_held++; |
| } |
| |
| void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex) |
| { |
| Coroutine *self = qemu_coroutine_self(); |
| |
| trace_qemu_co_mutex_unlock_entry(mutex, self); |
| |
| assert(mutex->locked); |
| assert(mutex->holder == self); |
| assert(qemu_in_coroutine()); |
| |
| mutex->ctx = NULL; |
| mutex->holder = NULL; |
| self->locks_held--; |
| if (atomic_fetch_dec(&mutex->locked) == 1) { |
| /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */ |
| return; |
| } |
| |
| for (;;) { |
| CoWaitRecord *to_wake = pop_waiter(mutex); |
| unsigned our_handoff; |
| |
| if (to_wake) { |
| qemu_co_mutex_wake(mutex, to_wake->co); |
| break; |
| } |
| |
| /* Some concurrent lock() is in progress (we know this because |
| * mutex->locked was >1) but it hasn't yet put itself on the wait |
| * queue. Pick a sequence number for the handoff protocol (not 0). |
| */ |
| if (++mutex->sequence == 0) { |
| mutex->sequence = 1; |
| } |
| |
| our_handoff = mutex->sequence; |
| atomic_mb_set(&mutex->handoff, our_handoff); |
| if (!has_waiters(mutex)) { |
| /* The concurrent lock has not added itself yet, so it |
| * will be able to pick our handoff. |
| */ |
| break; |
| } |
| |
| /* Try to do the handoff protocol ourselves; if somebody else has |
| * already taken it, however, we're done and they're responsible. |
| */ |
| if (atomic_cmpxchg(&mutex->handoff, our_handoff, 0) != our_handoff) { |
| break; |
| } |
| } |
| |
| trace_qemu_co_mutex_unlock_return(mutex, self); |
| } |
| |
| void qemu_co_rwlock_init(CoRwlock *lock) |
| { |
| memset(lock, 0, sizeof(*lock)); |
| qemu_co_queue_init(&lock->queue); |
| qemu_co_mutex_init(&lock->mutex); |
| } |
| |
| void qemu_co_rwlock_rdlock(CoRwlock *lock) |
| { |
| Coroutine *self = qemu_coroutine_self(); |
| |
| qemu_co_mutex_lock(&lock->mutex); |
| /* For fairness, wait if a writer is in line. */ |
| while (lock->pending_writer) { |
| qemu_co_queue_wait(&lock->queue, &lock->mutex); |
| } |
| lock->reader++; |
| qemu_co_mutex_unlock(&lock->mutex); |
| |
| /* The rest of the read-side critical section is run without the mutex. */ |
| self->locks_held++; |
| } |
| |
| void qemu_co_rwlock_unlock(CoRwlock *lock) |
| { |
| Coroutine *self = qemu_coroutine_self(); |
| |
| assert(qemu_in_coroutine()); |
| if (!lock->reader) { |
| /* The critical section started in qemu_co_rwlock_wrlock. */ |
| qemu_co_queue_restart_all(&lock->queue); |
| } else { |
| self->locks_held--; |
| |
| qemu_co_mutex_lock(&lock->mutex); |
| lock->reader--; |
| assert(lock->reader >= 0); |
| /* Wakeup only one waiting writer */ |
| if (!lock->reader) { |
| qemu_co_queue_next(&lock->queue); |
| } |
| } |
| qemu_co_mutex_unlock(&lock->mutex); |
| } |
| |
| void qemu_co_rwlock_downgrade(CoRwlock *lock) |
| { |
| Coroutine *self = qemu_coroutine_self(); |
| |
| /* lock->mutex critical section started in qemu_co_rwlock_wrlock or |
| * qemu_co_rwlock_upgrade. |
| */ |
| assert(lock->reader == 0); |
| lock->reader++; |
| qemu_co_mutex_unlock(&lock->mutex); |
| |
| /* The rest of the read-side critical section is run without the mutex. */ |
| self->locks_held++; |
| } |
| |
| void qemu_co_rwlock_wrlock(CoRwlock *lock) |
| { |
| qemu_co_mutex_lock(&lock->mutex); |
| lock->pending_writer++; |
| while (lock->reader) { |
| qemu_co_queue_wait(&lock->queue, &lock->mutex); |
| } |
| lock->pending_writer--; |
| |
| /* The rest of the write-side critical section is run with |
| * the mutex taken, so that lock->reader remains zero. |
| * There is no need to update self->locks_held. |
| */ |
| } |
| |
| void qemu_co_rwlock_upgrade(CoRwlock *lock) |
| { |
| Coroutine *self = qemu_coroutine_self(); |
| |
| qemu_co_mutex_lock(&lock->mutex); |
| assert(lock->reader > 0); |
| lock->reader--; |
| lock->pending_writer++; |
| while (lock->reader) { |
| qemu_co_queue_wait(&lock->queue, &lock->mutex); |
| } |
| lock->pending_writer--; |
| |
| /* The rest of the write-side critical section is run with |
| * the mutex taken, similar to qemu_co_rwlock_wrlock. Do |
| * not account for the lock twice in self->locks_held. |
| */ |
| self->locks_held--; |
| } |