| /* |
| * ARM GICv3 emulation: Distributor |
| * |
| * Copyright (c) 2015 Huawei. |
| * Copyright (c) 2016 Linaro Limited. |
| * Written by Shlomo Pongratz, Peter Maydell |
| * |
| * This code is licensed under the GPL, version 2 or (at your option) |
| * any later version. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "trace.h" |
| #include "gicv3_internal.h" |
| |
| /* The GICD_NSACR registers contain a two bit field for each interrupt which |
| * allows the guest to give NonSecure code access to registers controlling |
| * Secure interrupts: |
| * 0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI) |
| * 0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR |
| * 0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER, |
| * and w/o to CLRSPI_NSR |
| * 0b11: as 0b10, and also r/w to IROUTER and ITARGETSR |
| * |
| * Given a (multiple-of-32) interrupt number, these mask functions return |
| * a mask word where each bit is 1 if the NSACR settings permit access |
| * to the interrupt. The mask returned can then be ORed with the GICD_GROUP |
| * word for this set of interrupts to give an overall mask. |
| */ |
| |
| typedef uint32_t maskfn(GICv3State *s, int irq); |
| |
| static uint32_t mask_nsacr_ge1(GICv3State *s, int irq) |
| { |
| /* Return a mask where each bit is set if the NSACR field is >= 1 */ |
| uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1]; |
| |
| raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16]; |
| raw_nsacr = (raw_nsacr >> 1) | raw_nsacr; |
| return half_unshuffle64(raw_nsacr); |
| } |
| |
| static uint32_t mask_nsacr_ge2(GICv3State *s, int irq) |
| { |
| /* Return a mask where each bit is set if the NSACR field is >= 2 */ |
| uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1]; |
| |
| raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16]; |
| raw_nsacr = raw_nsacr >> 1; |
| return half_unshuffle64(raw_nsacr); |
| } |
| |
| /* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register, |
| * but it would be implemented using: |
| * raw_nsacr = (raw_nsacr >> 1) & raw_nsacr; |
| */ |
| |
| static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs, |
| maskfn *maskfn, int irq) |
| { |
| /* Return a 32-bit mask which should be applied for this set of 32 |
| * interrupts; each bit is 1 if access is permitted by the |
| * combination of attrs.secure, GICD_GROUPR and GICD_NSACR. |
| */ |
| uint32_t mask; |
| |
| if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { |
| /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI |
| * unless the NSACR bits permit access. |
| */ |
| mask = *gic_bmp_ptr32(s->group, irq); |
| if (maskfn) { |
| mask |= maskfn(s, irq); |
| } |
| return mask; |
| } |
| return 0xFFFFFFFFU; |
| } |
| |
| static int gicd_ns_access(GICv3State *s, int irq) |
| { |
| /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the |
| * specified interrupt. |
| */ |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return 0; |
| } |
| return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2); |
| } |
| |
| static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs, |
| uint32_t *bmp, |
| maskfn *maskfn, |
| int offset, uint32_t val) |
| { |
| /* Helper routine to implement writing to a "set-bitmap" register |
| * (GICD_ISENABLER, GICD_ISPENDR, etc). |
| * Semantics implemented here: |
| * RAZ/WI for SGIs, PPIs, unimplemented IRQs |
| * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. |
| * Writing 1 means "set bit in bitmap"; writing 0 is ignored. |
| * offset should be the offset in bytes of the register from the start |
| * of its group. |
| */ |
| int irq = offset * 8; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return; |
| } |
| val &= mask_group_and_nsacr(s, attrs, maskfn, irq); |
| *gic_bmp_ptr32(bmp, irq) |= val; |
| gicv3_update(s, irq, 32); |
| } |
| |
| static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs, |
| uint32_t *bmp, |
| maskfn *maskfn, |
| int offset, uint32_t val) |
| { |
| /* Helper routine to implement writing to a "clear-bitmap" register |
| * (GICD_ICENABLER, GICD_ICPENDR, etc). |
| * Semantics implemented here: |
| * RAZ/WI for SGIs, PPIs, unimplemented IRQs |
| * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. |
| * Writing 1 means "clear bit in bitmap"; writing 0 is ignored. |
| * offset should be the offset in bytes of the register from the start |
| * of its group. |
| */ |
| int irq = offset * 8; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return; |
| } |
| val &= mask_group_and_nsacr(s, attrs, maskfn, irq); |
| *gic_bmp_ptr32(bmp, irq) &= ~val; |
| gicv3_update(s, irq, 32); |
| } |
| |
| static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs, |
| uint32_t *bmp, |
| maskfn *maskfn, |
| int offset) |
| { |
| /* Helper routine to implement reading a "set/clear-bitmap" register |
| * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc). |
| * Semantics implemented here: |
| * RAZ/WI for SGIs, PPIs, unimplemented IRQs |
| * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. |
| * offset should be the offset in bytes of the register from the start |
| * of its group. |
| */ |
| int irq = offset * 8; |
| uint32_t val; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return 0; |
| } |
| val = *gic_bmp_ptr32(bmp, irq); |
| if (bmp == s->pending) { |
| /* The PENDING register is a special case -- for level triggered |
| * interrupts, the PENDING state is the logical OR of the state of |
| * the PENDING latch with the input line level. |
| */ |
| uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq); |
| uint32_t level = *gic_bmp_ptr32(s->level, irq); |
| val |= (~edge & level); |
| } |
| val &= mask_group_and_nsacr(s, attrs, maskfn, irq); |
| return val; |
| } |
| |
| static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq) |
| { |
| /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt, |
| * honouring security state (these are RAZ/WI for Group 0 or Secure |
| * Group 1 interrupts). |
| */ |
| uint32_t prio; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return 0; |
| } |
| |
| prio = s->gicd_ipriority[irq]; |
| |
| if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { |
| if (!gicv3_gicd_group_test(s, irq)) { |
| /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ |
| return 0; |
| } |
| /* NS view of the interrupt priority */ |
| prio = (prio << 1) & 0xff; |
| } |
| return prio; |
| } |
| |
| static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq, |
| uint8_t value) |
| { |
| /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, |
| * honouring security state (these are RAZ/WI for Group 0 or Secure |
| * Group 1 interrupts). |
| */ |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return; |
| } |
| |
| if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { |
| if (!gicv3_gicd_group_test(s, irq)) { |
| /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ |
| return; |
| } |
| /* NS view of the interrupt priority */ |
| value = 0x80 | (value >> 1); |
| } |
| s->gicd_ipriority[irq] = value; |
| } |
| |
| static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq) |
| { |
| /* Read the value of GICD_IROUTER<n> for the specified interrupt, |
| * honouring security state. |
| */ |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return 0; |
| } |
| |
| if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { |
| /* RAZ/WI for NS accesses to secure interrupts */ |
| if (!gicv3_gicd_group_test(s, irq)) { |
| if (gicd_ns_access(s, irq) != 3) { |
| return 0; |
| } |
| } |
| } |
| |
| return s->gicd_irouter[irq]; |
| } |
| |
| static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq, |
| uint64_t val) |
| { |
| /* Write the value of GICD_IROUTER<n> for the specified interrupt, |
| * honouring security state. |
| */ |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return; |
| } |
| |
| if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { |
| /* RAZ/WI for NS accesses to secure interrupts */ |
| if (!gicv3_gicd_group_test(s, irq)) { |
| if (gicd_ns_access(s, irq) != 3) { |
| return; |
| } |
| } |
| } |
| |
| s->gicd_irouter[irq] = val; |
| gicv3_cache_target_cpustate(s, irq); |
| gicv3_update(s, irq, 1); |
| } |
| |
| /** |
| * gicd_readb |
| * gicd_readw |
| * gicd_readl |
| * gicd_readq |
| * gicd_writeb |
| * gicd_writew |
| * gicd_writel |
| * gicd_writeq |
| * |
| * Return %true if the operation succeeded, %false otherwise. |
| */ |
| |
| static bool gicd_readb(GICv3State *s, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| /* Most GICv3 distributor registers do not support byte accesses. */ |
| switch (offset) { |
| case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: |
| case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: |
| case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: |
| /* This GIC implementation always has affinity routing enabled, |
| * so these registers are all RAZ/WI. |
| */ |
| return true; |
| case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: |
| *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool gicd_writeb(GICv3State *s, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| /* Most GICv3 distributor registers do not support byte accesses. */ |
| switch (offset) { |
| case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: |
| case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: |
| case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: |
| /* This GIC implementation always has affinity routing enabled, |
| * so these registers are all RAZ/WI. |
| */ |
| return true; |
| case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: |
| { |
| int irq = offset - GICD_IPRIORITYR; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return true; |
| } |
| gicd_write_ipriorityr(s, attrs, irq, value); |
| gicv3_update(s, irq, 1); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| static bool gicd_readw(GICv3State *s, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR |
| * support 16 bit accesses, and those registers are all part of the |
| * optional message-based SPI feature which this GIC does not currently |
| * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are |
| * reserved. |
| */ |
| return false; |
| } |
| |
| static bool gicd_writew(GICv3State *s, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR |
| * support 16 bit accesses, and those registers are all part of the |
| * optional message-based SPI feature which this GIC does not currently |
| * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are |
| * reserved. |
| */ |
| return false; |
| } |
| |
| static bool gicd_readl(GICv3State *s, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| /* Almost all GICv3 distributor registers are 32-bit. |
| * Note that WO registers must return an UNKNOWN value on reads, |
| * not an abort. |
| */ |
| |
| switch (offset) { |
| case GICD_CTLR: |
| if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { |
| /* The NS view of the GICD_CTLR sees only certain bits: |
| * + bit [31] (RWP) is an alias of the Secure bit [31] |
| * + bit [4] (ARE_NS) is an alias of Secure bit [5] |
| * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if |
| * NS affinity routing is enabled, otherwise RES0 |
| * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if |
| * NS affinity routing is not enabled, otherwise RES0 |
| * Since for QEMU affinity routing is always enabled |
| * for both S and NS this means that bits [4] and [5] are |
| * both always 1, and we can simply make the NS view |
| * be bits 31, 4 and 1 of the S view. |
| */ |
| *data = s->gicd_ctlr & (GICD_CTLR_ARE_S | |
| GICD_CTLR_EN_GRP1NS | |
| GICD_CTLR_RWP); |
| } else { |
| *data = s->gicd_ctlr; |
| } |
| return true; |
| case GICD_TYPER: |
| { |
| /* For this implementation: |
| * No1N == 1 (1-of-N SPI interrupts not supported) |
| * A3V == 1 (non-zero values of Affinity level 3 supported) |
| * IDbits == 0xf (we support 16-bit interrupt identifiers) |
| * DVIS == 1 (Direct virtual LPI injection supported) if GICv4 |
| * LPIS == 1 (LPIs are supported if affinity routing is enabled) |
| * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated |
| * by GICD_TYPER.IDbits) |
| * MBIS == 0 (message-based SPIs not supported) |
| * SecurityExtn == 1 if security extns supported |
| * CPUNumber == 0 since for us ARE is always 1 |
| * ITLinesNumber == (((max SPI IntID + 1) / 32) - 1) |
| */ |
| int itlinesnumber = (s->num_irq / 32) - 1; |
| /* |
| * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and |
| * "security extensions not supported" always implies DS == 1, |
| * so we only need to check the DS bit. |
| */ |
| bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS); |
| bool dvis = s->revision >= 4; |
| |
| *data = (1 << 25) | (1 << 24) | (dvis << 18) | (sec_extn << 10) | |
| (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) | |
| (0xf << 19) | itlinesnumber; |
| return true; |
| } |
| case GICD_IIDR: |
| /* We claim to be an ARM r0p0 with a zero ProductID. |
| * This is the same as an r0p0 GIC-500. |
| */ |
| *data = gicv3_iidr(); |
| return true; |
| case GICD_STATUSR: |
| /* RAZ/WI for us (this is an optional register and our implementation |
| * does not track RO/WO/reserved violations to report them to the guest) |
| */ |
| *data = 0; |
| return true; |
| case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: |
| { |
| int irq; |
| |
| if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { |
| *data = 0; |
| return true; |
| } |
| /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ |
| irq = (offset - GICD_IGROUPR) * 8; |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| *data = 0; |
| return true; |
| } |
| *data = *gic_bmp_ptr32(s->group, irq); |
| return true; |
| } |
| case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: |
| *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, |
| offset - GICD_ISENABLER); |
| return true; |
| case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: |
| *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, |
| offset - GICD_ICENABLER); |
| return true; |
| case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: |
| *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, |
| offset - GICD_ISPENDR); |
| return true; |
| case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: |
| *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, |
| offset - GICD_ICPENDR); |
| return true; |
| case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: |
| *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, |
| offset - GICD_ISACTIVER); |
| return true; |
| case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: |
| *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, |
| offset - GICD_ICACTIVER); |
| return true; |
| case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: |
| { |
| int i, irq = offset - GICD_IPRIORITYR; |
| uint32_t value = 0; |
| |
| for (i = irq + 3; i >= irq; i--) { |
| value <<= 8; |
| value |= gicd_read_ipriorityr(s, attrs, i); |
| } |
| *data = value; |
| return true; |
| } |
| case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: |
| /* RAZ/WI since affinity routing is always enabled */ |
| *data = 0; |
| return true; |
| case GICD_ICFGR ... GICD_ICFGR + 0xff: |
| { |
| /* Here only the even bits are used; odd bits are RES0 */ |
| int irq = (offset - GICD_ICFGR) * 4; |
| uint32_t value = 0; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| *data = 0; |
| return true; |
| } |
| |
| /* Since our edge_trigger bitmap is one bit per irq, we only need |
| * half of the 32-bit word, which we can then spread out |
| * into the odd bits. |
| */ |
| value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f); |
| value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f); |
| value = extract32(value, (irq & 0x1f) ? 16 : 0, 16); |
| value = half_shuffle32(value) << 1; |
| *data = value; |
| return true; |
| } |
| case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: |
| { |
| int irq; |
| |
| if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| *data = 0; |
| return true; |
| } |
| /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ |
| irq = (offset - GICD_IGRPMODR) * 8; |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| *data = 0; |
| return true; |
| } |
| *data = *gic_bmp_ptr32(s->grpmod, irq); |
| return true; |
| } |
| case GICD_NSACR ... GICD_NSACR + 0xff: |
| { |
| /* Two bits per interrupt */ |
| int irq = (offset - GICD_NSACR) * 4; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| *data = 0; |
| return true; |
| } |
| |
| if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| *data = 0; |
| return true; |
| } |
| |
| *data = s->gicd_nsacr[irq / 16]; |
| return true; |
| } |
| case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: |
| case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: |
| /* RAZ/WI since affinity routing is always enabled */ |
| *data = 0; |
| return true; |
| case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: |
| { |
| uint64_t r; |
| int irq = (offset - GICD_IROUTER) / 8; |
| |
| r = gicd_read_irouter(s, attrs, irq); |
| if (offset & 7) { |
| *data = r >> 32; |
| } else { |
| *data = (uint32_t)r; |
| } |
| return true; |
| } |
| case GICD_IDREGS ... GICD_IDREGS + 0x2f: |
| /* ID registers */ |
| *data = gicv3_idreg(s, offset - GICD_IDREGS, GICV3_PIDR0_DIST); |
| return true; |
| case GICD_SGIR: |
| /* WO registers, return unknown value */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest read from WO register at offset " |
| HWADDR_FMT_plx "\n", __func__, offset); |
| *data = 0; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool gicd_writel(GICv3State *s, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| /* Almost all GICv3 distributor registers are 32-bit. Note that |
| * RO registers must ignore writes, not abort. |
| */ |
| |
| switch (offset) { |
| case GICD_CTLR: |
| { |
| uint32_t mask; |
| /* GICv3 5.3.20 */ |
| if (s->gicd_ctlr & GICD_CTLR_DS) { |
| /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI, |
| * ARE is RAO/WI (affinity routing always on), and only |
| * bits 0 and 1 (group enables) are writable. |
| */ |
| mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS; |
| } else { |
| if (attrs.secure) { |
| /* for secure access: |
| * ARE_NS and ARE_S are RAO/WI (affinity routing always on) |
| * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup) |
| * |
| * We can only modify bits[2:0] (the group enables). |
| */ |
| mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL; |
| } else { |
| /* For non secure access ARE_NS is RAO/WI and EnableGrp1 |
| * is RES0. The only writable bit is [1] (EnableGrp1A), which |
| * is an alias of the Secure bit [1]. |
| */ |
| mask = GICD_CTLR_EN_GRP1NS; |
| } |
| } |
| s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask); |
| if (value & mask & GICD_CTLR_DS) { |
| /* We just set DS, so the ARE_NS and EnG1S bits are now RES0. |
| * Note that this is a one-way transition because if DS is set |
| * then it's not writable, so it can only go back to 0 with a |
| * hardware reset. |
| */ |
| s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS); |
| } |
| gicv3_full_update(s); |
| return true; |
| } |
| case GICD_STATUSR: |
| /* RAZ/WI for our implementation */ |
| return true; |
| case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: |
| { |
| int irq; |
| |
| if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { |
| return true; |
| } |
| /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ |
| irq = (offset - GICD_IGROUPR) * 8; |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return true; |
| } |
| *gic_bmp_ptr32(s->group, irq) = value; |
| gicv3_update(s, irq, 32); |
| return true; |
| } |
| case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: |
| gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL, |
| offset - GICD_ISENABLER, value); |
| return true; |
| case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: |
| gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL, |
| offset - GICD_ICENABLER, value); |
| return true; |
| case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: |
| gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, |
| offset - GICD_ISPENDR, value); |
| return true; |
| case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: |
| gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, |
| offset - GICD_ICPENDR, value); |
| return true; |
| case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: |
| gicd_write_set_bitmap_reg(s, attrs, s->active, NULL, |
| offset - GICD_ISACTIVER, value); |
| return true; |
| case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: |
| gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL, |
| offset - GICD_ICACTIVER, value); |
| return true; |
| case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: |
| { |
| int i, irq = offset - GICD_IPRIORITYR; |
| |
| if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) { |
| return true; |
| } |
| |
| for (i = irq; i < irq + 4; i++, value >>= 8) { |
| gicd_write_ipriorityr(s, attrs, i, value); |
| } |
| gicv3_update(s, irq, 4); |
| return true; |
| } |
| case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: |
| /* RAZ/WI since affinity routing is always enabled */ |
| return true; |
| case GICD_ICFGR ... GICD_ICFGR + 0xff: |
| { |
| /* Here only the odd bits are used; even bits are RES0 */ |
| int irq = (offset - GICD_ICFGR) * 4; |
| uint32_t mask, oldval; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return true; |
| } |
| |
| /* Since our edge_trigger bitmap is one bit per irq, our input |
| * 32-bits will compress down into 16 bits which we need |
| * to write into the bitmap. |
| */ |
| value = half_unshuffle32(value >> 1); |
| mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f); |
| if (irq & 0x1f) { |
| value <<= 16; |
| mask &= 0xffff0000U; |
| } else { |
| mask &= 0xffff; |
| } |
| oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f)); |
| value = (oldval & ~mask) | (value & mask); |
| *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value; |
| return true; |
| } |
| case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: |
| { |
| int irq; |
| |
| if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| return true; |
| } |
| /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ |
| irq = (offset - GICD_IGRPMODR) * 8; |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return true; |
| } |
| *gic_bmp_ptr32(s->grpmod, irq) = value; |
| gicv3_update(s, irq, 32); |
| return true; |
| } |
| case GICD_NSACR ... GICD_NSACR + 0xff: |
| { |
| /* Two bits per interrupt */ |
| int irq = (offset - GICD_NSACR) * 4; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return true; |
| } |
| |
| if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| return true; |
| } |
| |
| s->gicd_nsacr[irq / 16] = value; |
| /* No update required as this only affects access permission checks */ |
| return true; |
| } |
| case GICD_SGIR: |
| /* RES0 if affinity routing is enabled */ |
| return true; |
| case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: |
| case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: |
| /* RAZ/WI since affinity routing is always enabled */ |
| return true; |
| case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: |
| { |
| uint64_t r; |
| int irq = (offset - GICD_IROUTER) / 8; |
| |
| if (irq < GIC_INTERNAL || irq >= s->num_irq) { |
| return true; |
| } |
| |
| /* Write half of the 64-bit register */ |
| r = gicd_read_irouter(s, attrs, irq); |
| r = deposit64(r, (offset & 7) ? 32 : 0, 32, value); |
| gicd_write_irouter(s, attrs, irq, r); |
| return true; |
| } |
| case GICD_IDREGS ... GICD_IDREGS + 0x2f: |
| case GICD_TYPER: |
| case GICD_IIDR: |
| /* RO registers, ignore the write */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest write to RO register at offset " |
| HWADDR_FMT_plx "\n", __func__, offset); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool gicd_writeq(GICv3State *s, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| /* Our only 64-bit registers are GICD_IROUTER<n> */ |
| int irq; |
| |
| switch (offset) { |
| case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: |
| irq = (offset - GICD_IROUTER) / 8; |
| gicd_write_irouter(s, attrs, irq, value); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool gicd_readq(GICv3State *s, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| /* Our only 64-bit registers are GICD_IROUTER<n> */ |
| int irq; |
| |
| switch (offset) { |
| case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: |
| irq = (offset - GICD_IROUTER) / 8; |
| *data = gicd_read_irouter(s, attrs, irq); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICv3State *s = (GICv3State *)opaque; |
| bool r; |
| |
| switch (size) { |
| case 1: |
| r = gicd_readb(s, offset, data, attrs); |
| break; |
| case 2: |
| r = gicd_readw(s, offset, data, attrs); |
| break; |
| case 4: |
| r = gicd_readl(s, offset, data, attrs); |
| break; |
| case 8: |
| r = gicd_readq(s, offset, data, attrs); |
| break; |
| default: |
| r = false; |
| break; |
| } |
| |
| if (!r) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest read at offset " HWADDR_FMT_plx |
| " size %u\n", __func__, offset, size); |
| trace_gicv3_dist_badread(offset, size, attrs.secure); |
| /* The spec requires that reserved registers are RAZ/WI; |
| * so use MEMTX_ERROR returns from leaf functions as a way to |
| * trigger the guest-error logging but don't return it to |
| * the caller, or we'll cause a spurious guest data abort. |
| */ |
| *data = 0; |
| } else { |
| trace_gicv3_dist_read(offset, *data, size, attrs.secure); |
| } |
| return MEMTX_OK; |
| } |
| |
| MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICv3State *s = (GICv3State *)opaque; |
| bool r; |
| |
| switch (size) { |
| case 1: |
| r = gicd_writeb(s, offset, data, attrs); |
| break; |
| case 2: |
| r = gicd_writew(s, offset, data, attrs); |
| break; |
| case 4: |
| r = gicd_writel(s, offset, data, attrs); |
| break; |
| case 8: |
| r = gicd_writeq(s, offset, data, attrs); |
| break; |
| default: |
| r = false; |
| break; |
| } |
| |
| if (!r) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest write at offset " HWADDR_FMT_plx |
| " size %u\n", __func__, offset, size); |
| trace_gicv3_dist_badwrite(offset, data, size, attrs.secure); |
| /* The spec requires that reserved registers are RAZ/WI; |
| * so use MEMTX_ERROR returns from leaf functions as a way to |
| * trigger the guest-error logging but don't return it to |
| * the caller, or we'll cause a spurious guest data abort. |
| */ |
| } else { |
| trace_gicv3_dist_write(offset, data, size, attrs.secure); |
| } |
| return MEMTX_OK; |
| } |
| |
| void gicv3_dist_set_irq(GICv3State *s, int irq, int level) |
| { |
| /* Update distributor state for a change in an external SPI input line */ |
| if (level == gicv3_gicd_level_test(s, irq)) { |
| return; |
| } |
| |
| trace_gicv3_dist_set_irq(irq, level); |
| |
| gicv3_gicd_level_replace(s, irq, level); |
| |
| if (level) { |
| /* 0->1 edges latch the pending bit for edge-triggered interrupts */ |
| if (gicv3_gicd_edge_trigger_test(s, irq)) { |
| gicv3_gicd_pending_set(s, irq); |
| } |
| } |
| |
| gicv3_update(s, irq, 1); |
| } |