blob: 87b56243262ef36a9b60073655feb0e72b250491 [file] [log] [blame]
/*
* QEMU Apple Sound Chip emulation
*
* Apple Sound Chip (ASC) 344S0063
* Enhanced Apple Sound Chip (EASC) 343S1063
*
* Copyright (c) 2012-2018 Laurent Vivier <laurent@vivier.eu>
* Copyright (c) 2022 Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/timer.h"
#include "hw/sysbus.h"
#include "hw/irq.h"
#include "audio/audio.h"
#include "hw/audio/asc.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "trace.h"
/*
* Linux doesn't provide information about ASC, see arch/m68k/mac/macboing.c
* and arch/m68k/include/asm/mac_asc.h
*
* best information is coming from MAME:
* https://github.com/mamedev/mame/blob/master/src/devices/sound/asc.h
* https://github.com/mamedev/mame/blob/master/src/devices/sound/asc.cpp
* Emulation by R. Belmont
* or MESS:
* http://mess.redump.net/mess/driver_info/easc
*
* 0x800: VERSION
* 0x801: MODE
* 1=FIFO mode,
* 2=wavetable mode
* 0x802: CONTROL
* bit 0=analog or PWM output,
* 1=stereo/mono,
* 7=processing time exceeded
* 0x803: FIFO MODE
* bit 7=clear FIFO,
* bit 1="non-ROM companding",
* bit 0="ROM companding")
* 0x804: FIFO IRQ STATUS
* bit 0=ch A 1/2 full,
* 1=ch A full,
* 2=ch B 1/2 full,
* 3=ch B full)
* 0x805: WAVETABLE CONTROL
* bits 0-3 wavetables 0-3 start
* 0x806: VOLUME
* bits 2-4 = 3 bit internal ASC volume,
* bits 5-7 = volume control sent to Sony sound chip
* 0x807: CLOCK RATE
* 0 = Mac 22257 Hz,
* 1 = undefined,
* 2 = 22050 Hz,
* 3 = 44100 Hz
* 0x80a: PLAY REC A
* 0x80f: TEST
* bits 6-7 = digital test,
* bits 4-5 = analog test
* 0x810: WAVETABLE 0 PHASE
* big-endian 9.15 fixed-point, only 24 bits valid
* 0x814: WAVETABLE 0 INCREMENT
* big-endian 9.15 fixed-point, only 24 bits valid
* 0x818: WAVETABLE 1 PHASE
* 0x81C: WAVETABLE 1 INCREMENT
* 0x820: WAVETABLE 2 PHASE
* 0x824: WAVETABLE 2 INCREMENT
* 0x828: WAVETABLE 3 PHASE
* 0x82C: WAVETABLE 3 INCREMENT
* 0x830: UNKNOWN START
* NetBSD writes Wavetable data here (are there more
* wavetables/channels than we know about?)
* 0x857: UNKNOWN END
*/
#define ASC_SIZE 0x2000
enum {
ASC_VERSION = 0x00,
ASC_MODE = 0x01,
ASC_CONTROL = 0x02,
ASC_FIFOMODE = 0x03,
ASC_FIFOIRQ = 0x04,
ASC_WAVECTRL = 0x05,
ASC_VOLUME = 0x06,
ASC_CLOCK = 0x07,
ASC_PLAYRECA = 0x0a,
ASC_TEST = 0x0f,
ASC_WAVETABLE = 0x10
};
#define ASC_FIFO_STATUS_HALF_FULL 1
#define ASC_FIFO_STATUS_FULL_EMPTY 2
#define ASC_EXTREGS_FIFOCTRL 0x8
#define ASC_EXTREGS_INTCTRL 0x9
#define ASC_EXTREGS_CDXA_DECOMP_FILT 0x10
#define ASC_FIFO_CYCLE_TIME ((NANOSECONDS_PER_SECOND / ASC_FREQ) * \
0x400)
static void asc_raise_irq(ASCState *s)
{
qemu_set_irq(s->irq, 1);
}
static void asc_lower_irq(ASCState *s)
{
qemu_set_irq(s->irq, 0);
}
static uint8_t asc_fifo_get(ASCFIFOState *fs)
{
ASCState *s = container_of(fs, ASCState, fifos[fs->index]);
bool fifo_half_irq_enabled = fs->extregs[ASC_EXTREGS_INTCTRL] & 1;
uint8_t val;
assert(fs->cnt);
val = fs->fifo[fs->rptr];
trace_asc_fifo_get('A' + fs->index, fs->rptr, fs->cnt, val);
fs->rptr++;
fs->rptr &= 0x3ff;
fs->cnt--;
if (fs->cnt <= 0x1ff) {
/* FIFO less than half full */
fs->int_status |= ASC_FIFO_STATUS_HALF_FULL;
} else {
/* FIFO more than half full */
fs->int_status &= ~ASC_FIFO_STATUS_HALF_FULL;
}
if (fs->cnt == 0x1ff && fifo_half_irq_enabled) {
/* Raise FIFO half full IRQ */
asc_raise_irq(s);
}
if (fs->cnt == 0) {
/* Raise FIFO empty IRQ */
fs->int_status |= ASC_FIFO_STATUS_FULL_EMPTY;
asc_raise_irq(s);
}
return val;
}
static int generate_fifo(ASCState *s, int maxsamples)
{
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint8_t *buf = s->mixbuf;
int i, wcount = 0;
while (wcount < maxsamples) {
uint8_t val;
int16_t d, f0, f1;
int32_t t;
int shift, filter;
bool hasdata = false;
for (i = 0; i < 2; i++) {
ASCFIFOState *fs = &s->fifos[i];
switch (fs->extregs[ASC_EXTREGS_FIFOCTRL] & 0x83) {
case 0x82:
/*
* CD-XA BRR mode: decompress 15 bytes into 28 16-bit
* samples
*/
if (!fs->cnt) {
val = 0x80;
break;
}
if (fs->xa_cnt == -1) {
/* Start of packet, get flags */
fs->xa_flags = asc_fifo_get(fs);
fs->xa_cnt = 0;
}
shift = fs->xa_flags & 0xf;
filter = fs->xa_flags >> 4;
f0 = (int8_t)fs->extregs[ASC_EXTREGS_CDXA_DECOMP_FILT +
(filter << 1) + 1];
f1 = (int8_t)fs->extregs[ASC_EXTREGS_CDXA_DECOMP_FILT +
(filter << 1)];
if ((fs->xa_cnt & 1) == 0) {
if (!fs->cnt) {
val = 0x80;
break;
}
fs->xa_val = asc_fifo_get(fs);
d = (fs->xa_val & 0xf) << 12;
} else {
d = (fs->xa_val & 0xf0) << 8;
}
t = (d >> shift) + (((fs->xa_last[0] * f0) +
(fs->xa_last[1] * f1) + 32) >> 6);
if (t < -32768) {
t = -32768;
} else if (t > 32767) {
t = 32767;
}
/*
* CD-XA BRR generates 16-bit signed output, so convert to
* 8-bit before writing to buffer. Does real hardware do the
* same?
*/
val = (uint8_t)(t / 256) ^ 0x80;
hasdata = true;
fs->xa_cnt++;
fs->xa_last[1] = fs->xa_last[0];
fs->xa_last[0] = (int16_t)t;
if (fs->xa_cnt == 28) {
/* End of packet */
fs->xa_cnt = -1;
}
break;
default:
/* fallthrough */
case 0x80:
/* Raw mode */
if (fs->cnt) {
val = asc_fifo_get(fs);
hasdata = true;
} else {
val = 0x80;
}
break;
}
buf[wcount * 2 + i] = val;
}
if (!hasdata) {
break;
}
wcount++;
}
/*
* MacOS (un)helpfully leaves the FIFO engine running even when it has
* finished writing out samples, but still expects the FIFO empty
* interrupts to be generated for each FIFO cycle (without these interrupts
* MacOS will freeze)
*/
if (s->fifos[0].cnt == 0 && s->fifos[1].cnt == 0) {
if (!s->fifo_empty_ns) {
/* FIFO has completed first empty cycle */
s->fifo_empty_ns = now;
} else if (now > (s->fifo_empty_ns + ASC_FIFO_CYCLE_TIME)) {
/* FIFO has completed entire cycle with no data */
s->fifos[0].int_status |= ASC_FIFO_STATUS_HALF_FULL |
ASC_FIFO_STATUS_FULL_EMPTY;
s->fifos[1].int_status |= ASC_FIFO_STATUS_HALF_FULL |
ASC_FIFO_STATUS_FULL_EMPTY;
s->fifo_empty_ns = now;
asc_raise_irq(s);
}
} else {
/* FIFO contains data, reset empty time */
s->fifo_empty_ns = 0;
}
return wcount;
}
static int generate_wavetable(ASCState *s, int maxsamples)
{
uint8_t *buf = s->mixbuf;
int channel, count = 0;
while (count < maxsamples) {
uint32_t left = 0, right = 0;
uint8_t sample;
for (channel = 0; channel < 4; channel++) {
ASCFIFOState *fs = &s->fifos[channel >> 1];
int chanreg = ASC_WAVETABLE + (channel << 3);
uint32_t phase, incr, offset;
phase = ldl_be_p(&s->regs[chanreg]);
incr = ldl_be_p(&s->regs[chanreg + sizeof(uint32_t)]);
phase += incr;
offset = (phase >> 15) & 0x1ff;
sample = fs->fifo[0x200 * (channel >> 1) + offset];
stl_be_p(&s->regs[chanreg], phase);
left += sample;
right += sample;
}
buf[count * 2] = left >> 2;
buf[count * 2 + 1] = right >> 2;
count++;
}
return count;
}
static void asc_out_cb(void *opaque, int free_b)
{
ASCState *s = opaque;
int samples, generated;
if (free_b == 0) {
return;
}
samples = MIN(s->samples, free_b >> s->shift);
switch (s->regs[ASC_MODE] & 3) {
default:
/* Off */
generated = 0;
break;
case 1:
/* FIFO mode */
generated = generate_fifo(s, samples);
break;
case 2:
/* Wave table mode */
generated = generate_wavetable(s, samples);
break;
}
if (!generated) {
/* Workaround for audio underflow bug on Windows dsound backend */
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int silent_samples = muldiv64(now - s->fifo_empty_ns,
NANOSECONDS_PER_SECOND, ASC_FREQ);
if (silent_samples > ASC_FIFO_CYCLE_TIME / 2) {
/*
* No new FIFO data within half a cycle time (~23ms) so fill the
* entire available buffer with silence. This prevents an issue
* with the Windows dsound backend whereby the sound appears to
* loop because the FIFO has run out of data, and the driver
* reuses the stale content in its circular audio buffer.
*/
AUD_write(s->voice, s->silentbuf, samples << s->shift);
}
return;
}
AUD_write(s->voice, s->mixbuf, generated << s->shift);
}
static uint64_t asc_fifo_read(void *opaque, hwaddr addr,
unsigned size)
{
ASCFIFOState *fs = opaque;
trace_asc_read_fifo('A' + fs->index, addr, size, fs->fifo[addr]);
return fs->fifo[addr];
}
static void asc_fifo_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
ASCFIFOState *fs = opaque;
ASCState *s = container_of(fs, ASCState, fifos[fs->index]);
bool fifo_half_irq_enabled = fs->extregs[ASC_EXTREGS_INTCTRL] & 1;
trace_asc_write_fifo('A' + fs->index, addr, size, fs->wptr, fs->cnt, value);
if (s->regs[ASC_MODE] == 1) {
fs->fifo[fs->wptr++] = value;
fs->wptr &= 0x3ff;
fs->cnt++;
if (fs->cnt <= 0x1ff) {
/* FIFO less than half full */
fs->int_status |= ASC_FIFO_STATUS_HALF_FULL;
} else {
/* FIFO at least half full */
fs->int_status &= ~ASC_FIFO_STATUS_HALF_FULL;
}
if (fs->cnt == 0x200 && fifo_half_irq_enabled) {
/* Raise FIFO half full interrupt */
asc_raise_irq(s);
}
if (fs->cnt == 0x3ff) {
/* Raise FIFO full interrupt */
fs->int_status |= ASC_FIFO_STATUS_FULL_EMPTY;
asc_raise_irq(s);
}
} else {
fs->fifo[addr] = value;
}
return;
}
static const MemoryRegionOps asc_fifo_ops = {
.read = asc_fifo_read,
.write = asc_fifo_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_BIG_ENDIAN,
};
static void asc_fifo_reset(ASCFIFOState *fs);
static uint64_t asc_read(void *opaque, hwaddr addr,
unsigned size)
{
ASCState *s = opaque;
uint64_t prev, value;
switch (addr) {
case ASC_VERSION:
switch (s->type) {
default:
case ASC_TYPE_ASC:
value = 0;
break;
case ASC_TYPE_EASC:
value = 0xb0;
break;
}
break;
case ASC_FIFOIRQ:
prev = (s->fifos[0].int_status & 0x3) |
(s->fifos[1].int_status & 0x3) << 2;
s->fifos[0].int_status = 0;
s->fifos[1].int_status = 0;
asc_lower_irq(s);
value = prev;
break;
default:
value = s->regs[addr];
break;
}
trace_asc_read_reg(addr, size, value);
return value;
}
static void asc_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
ASCState *s = opaque;
switch (addr) {
case ASC_MODE:
value &= 3;
if (value != s->regs[ASC_MODE]) {
asc_fifo_reset(&s->fifos[0]);
asc_fifo_reset(&s->fifos[1]);
asc_lower_irq(s);
if (value != 0) {
AUD_set_active_out(s->voice, 1);
} else {
AUD_set_active_out(s->voice, 0);
}
}
break;
case ASC_FIFOMODE:
if (value & 0x80) {
asc_fifo_reset(&s->fifos[0]);
asc_fifo_reset(&s->fifos[1]);
asc_lower_irq(s);
}
break;
case ASC_WAVECTRL:
break;
case ASC_VOLUME:
{
int vol = (value & 0xe0);
AUD_set_volume_out(s->voice, 0, vol, vol);
break;
}
}
trace_asc_write_reg(addr, size, value);
s->regs[addr] = value;
}
static const MemoryRegionOps asc_regs_ops = {
.read = asc_read,
.write = asc_write,
.endianness = DEVICE_BIG_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
}
};
static uint64_t asc_ext_read(void *opaque, hwaddr addr,
unsigned size)
{
ASCFIFOState *fs = opaque;
uint64_t value;
value = fs->extregs[addr];
trace_asc_read_extreg('A' + fs->index, addr, size, value);
return value;
}
static void asc_ext_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
ASCFIFOState *fs = opaque;
trace_asc_write_extreg('A' + fs->index, addr, size, value);
fs->extregs[addr] = value;
}
static const MemoryRegionOps asc_extregs_ops = {
.read = asc_ext_read,
.write = asc_ext_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_BIG_ENDIAN,
};
static int asc_post_load(void *opaque, int version)
{
ASCState *s = ASC(opaque);
if (s->regs[ASC_MODE] != 0) {
AUD_set_active_out(s->voice, 1);
}
return 0;
}
static const VMStateDescription vmstate_asc_fifo = {
.name = "apple-sound-chip.fifo",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT8_ARRAY(fifo, ASCFIFOState, ASC_FIFO_SIZE),
VMSTATE_UINT8(int_status, ASCFIFOState),
VMSTATE_INT32(cnt, ASCFIFOState),
VMSTATE_INT32(wptr, ASCFIFOState),
VMSTATE_INT32(rptr, ASCFIFOState),
VMSTATE_UINT8_ARRAY(extregs, ASCFIFOState, ASC_EXTREG_SIZE),
VMSTATE_INT32(xa_cnt, ASCFIFOState),
VMSTATE_UINT8(xa_val, ASCFIFOState),
VMSTATE_UINT8(xa_flags, ASCFIFOState),
VMSTATE_INT16_ARRAY(xa_last, ASCFIFOState, 2),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_asc = {
.name = "apple-sound-chip",
.version_id = 0,
.minimum_version_id = 0,
.post_load = asc_post_load,
.fields = (const VMStateField[]) {
VMSTATE_STRUCT_ARRAY(fifos, ASCState, 2, 0, vmstate_asc_fifo,
ASCFIFOState),
VMSTATE_UINT8_ARRAY(regs, ASCState, ASC_REG_SIZE),
VMSTATE_INT64(fifo_empty_ns, ASCState),
VMSTATE_END_OF_LIST()
}
};
static void asc_fifo_reset(ASCFIFOState *fs)
{
fs->wptr = 0;
fs->rptr = 0;
fs->cnt = 0;
fs->xa_cnt = -1;
fs->int_status = 0;
}
static void asc_fifo_init(ASCFIFOState *fs, int index)
{
ASCState *s = container_of(fs, ASCState, fifos[index]);
char *name;
fs->index = index;
name = g_strdup_printf("asc.fifo%c", 'A' + index);
memory_region_init_io(&fs->mem_fifo, OBJECT(s), &asc_fifo_ops, fs,
name, ASC_FIFO_SIZE);
g_free(name);
name = g_strdup_printf("asc.extregs%c", 'A' + index);
memory_region_init_io(&fs->mem_extregs, OBJECT(s), &asc_extregs_ops,
fs, name, ASC_EXTREG_SIZE);
g_free(name);
}
static void asc_reset_hold(Object *obj)
{
ASCState *s = ASC(obj);
AUD_set_active_out(s->voice, 0);
memset(s->regs, 0, sizeof(s->regs));
asc_fifo_reset(&s->fifos[0]);
asc_fifo_reset(&s->fifos[1]);
s->fifo_empty_ns = 0;
if (s->type == ASC_TYPE_ASC) {
/* FIFO half full IRQs enabled by default */
s->fifos[0].extregs[ASC_EXTREGS_INTCTRL] = 1;
s->fifos[1].extregs[ASC_EXTREGS_INTCTRL] = 1;
}
}
static void asc_unrealize(DeviceState *dev)
{
ASCState *s = ASC(dev);
g_free(s->mixbuf);
g_free(s->silentbuf);
AUD_remove_card(&s->card);
}
static void asc_realize(DeviceState *dev, Error **errp)
{
ASCState *s = ASC(dev);
struct audsettings as;
if (!AUD_register_card("Apple Sound Chip", &s->card, errp)) {
return;
}
as.freq = ASC_FREQ;
as.nchannels = 2;
as.fmt = AUDIO_FORMAT_U8;
as.endianness = AUDIO_HOST_ENDIANNESS;
s->voice = AUD_open_out(&s->card, s->voice, "asc.out", s, asc_out_cb,
&as);
s->shift = 1;
s->samples = AUD_get_buffer_size_out(s->voice) >> s->shift;
s->mixbuf = g_malloc0(s->samples << s->shift);
s->silentbuf = g_malloc0(s->samples << s->shift);
memset(s->silentbuf, 0x80, s->samples << s->shift);
/* Add easc registers if required */
if (s->type == ASC_TYPE_EASC) {
memory_region_add_subregion(&s->asc, ASC_EXTREG_OFFSET,
&s->fifos[0].mem_extregs);
memory_region_add_subregion(&s->asc,
ASC_EXTREG_OFFSET + ASC_EXTREG_SIZE,
&s->fifos[1].mem_extregs);
}
}
static void asc_init(Object *obj)
{
ASCState *s = ASC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
memory_region_init(&s->asc, OBJECT(obj), "asc", ASC_SIZE);
asc_fifo_init(&s->fifos[0], 0);
asc_fifo_init(&s->fifos[1], 1);
memory_region_add_subregion(&s->asc, ASC_FIFO_OFFSET,
&s->fifos[0].mem_fifo);
memory_region_add_subregion(&s->asc,
ASC_FIFO_OFFSET + ASC_FIFO_SIZE,
&s->fifos[1].mem_fifo);
memory_region_init_io(&s->mem_regs, OBJECT(obj), &asc_regs_ops, s,
"asc.regs", ASC_REG_SIZE);
memory_region_add_subregion(&s->asc, ASC_REG_OFFSET, &s->mem_regs);
sysbus_init_irq(sbd, &s->irq);
sysbus_init_mmio(sbd, &s->asc);
}
static Property asc_properties[] = {
DEFINE_AUDIO_PROPERTIES(ASCState, card),
DEFINE_PROP_UINT8("asctype", ASCState, type, ASC_TYPE_ASC),
DEFINE_PROP_END_OF_LIST(),
};
static void asc_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
ResettableClass *rc = RESETTABLE_CLASS(oc);
dc->realize = asc_realize;
dc->unrealize = asc_unrealize;
set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
dc->vmsd = &vmstate_asc;
device_class_set_props(dc, asc_properties);
rc->phases.hold = asc_reset_hold;
}
static const TypeInfo asc_info_types[] = {
{
.name = TYPE_ASC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ASCState),
.instance_init = asc_init,
.class_init = asc_class_init,
},
};
DEFINE_TYPES(asc_info_types)