| /* |
| * RISC-V CPU helpers for qemu. |
| * |
| * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu |
| * Copyright (c) 2017-2018 SiFive, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg-op.h" |
| #include "trace.h" |
| #include "semihosting/common-semi.h" |
| |
| int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) |
| { |
| #ifdef CONFIG_USER_ONLY |
| return 0; |
| #else |
| return env->priv; |
| #endif |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static int riscv_cpu_local_irq_pending(CPURISCVState *env) |
| { |
| target_ulong irqs; |
| |
| target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); |
| target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); |
| target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE); |
| |
| target_ulong pending = env->mip & env->mie & |
| ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); |
| target_ulong vspending = (env->mip & env->mie & |
| (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)); |
| |
| target_ulong mie = env->priv < PRV_M || |
| (env->priv == PRV_M && mstatus_mie); |
| target_ulong sie = env->priv < PRV_S || |
| (env->priv == PRV_S && mstatus_sie); |
| target_ulong hs_sie = env->priv < PRV_S || |
| (env->priv == PRV_S && hs_mstatus_sie); |
| |
| if (riscv_cpu_virt_enabled(env)) { |
| target_ulong pending_hs_irq = pending & -hs_sie; |
| |
| if (pending_hs_irq) { |
| riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP); |
| return ctz64(pending_hs_irq); |
| } |
| |
| pending = vspending; |
| } |
| |
| irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie); |
| |
| if (irqs) { |
| return ctz64(irqs); /* since non-zero */ |
| } else { |
| return EXCP_NONE; /* indicates no pending interrupt */ |
| } |
| } |
| #endif |
| |
| bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| int interruptno = riscv_cpu_local_irq_pending(env); |
| if (interruptno >= 0) { |
| cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; |
| riscv_cpu_do_interrupt(cs); |
| return true; |
| } |
| } |
| #endif |
| return false; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| /* Return true is floating point support is currently enabled */ |
| bool riscv_cpu_fp_enabled(CPURISCVState *env) |
| { |
| if (env->mstatus & MSTATUS_FS) { |
| if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) |
| { |
| uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | |
| MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | |
| MSTATUS64_UXL; |
| bool current_virt = riscv_cpu_virt_enabled(env); |
| |
| g_assert(riscv_has_ext(env, RVH)); |
| |
| if (current_virt) { |
| /* Current V=1 and we are about to change to V=0 */ |
| env->vsstatus = env->mstatus & mstatus_mask; |
| env->mstatus &= ~mstatus_mask; |
| env->mstatus |= env->mstatus_hs; |
| |
| env->vstvec = env->stvec; |
| env->stvec = env->stvec_hs; |
| |
| env->vsscratch = env->sscratch; |
| env->sscratch = env->sscratch_hs; |
| |
| env->vsepc = env->sepc; |
| env->sepc = env->sepc_hs; |
| |
| env->vscause = env->scause; |
| env->scause = env->scause_hs; |
| |
| env->vstval = env->sbadaddr; |
| env->sbadaddr = env->stval_hs; |
| |
| env->vsatp = env->satp; |
| env->satp = env->satp_hs; |
| } else { |
| /* Current V=0 and we are about to change to V=1 */ |
| env->mstatus_hs = env->mstatus & mstatus_mask; |
| env->mstatus &= ~mstatus_mask; |
| env->mstatus |= env->vsstatus; |
| |
| env->stvec_hs = env->stvec; |
| env->stvec = env->vstvec; |
| |
| env->sscratch_hs = env->sscratch; |
| env->sscratch = env->vsscratch; |
| |
| env->sepc_hs = env->sepc; |
| env->sepc = env->vsepc; |
| |
| env->scause_hs = env->scause; |
| env->scause = env->vscause; |
| |
| env->stval_hs = env->sbadaddr; |
| env->sbadaddr = env->vstval; |
| |
| env->satp_hs = env->satp; |
| env->satp = env->vsatp; |
| } |
| } |
| |
| bool riscv_cpu_virt_enabled(CPURISCVState *env) |
| { |
| if (!riscv_has_ext(env, RVH)) { |
| return false; |
| } |
| |
| return get_field(env->virt, VIRT_ONOFF); |
| } |
| |
| void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) |
| { |
| if (!riscv_has_ext(env, RVH)) { |
| return; |
| } |
| |
| /* Flush the TLB on all virt mode changes. */ |
| if (get_field(env->virt, VIRT_ONOFF) != enable) { |
| tlb_flush(env_cpu(env)); |
| } |
| |
| env->virt = set_field(env->virt, VIRT_ONOFF, enable); |
| } |
| |
| bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env) |
| { |
| if (!riscv_has_ext(env, RVH)) { |
| return false; |
| } |
| |
| return get_field(env->virt, FORCE_HS_EXCEP); |
| } |
| |
| void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable) |
| { |
| if (!riscv_has_ext(env, RVH)) { |
| return; |
| } |
| |
| env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable); |
| } |
| |
| bool riscv_cpu_two_stage_lookup(int mmu_idx) |
| { |
| return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; |
| } |
| |
| int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) |
| { |
| CPURISCVState *env = &cpu->env; |
| if (env->miclaim & interrupts) { |
| return -1; |
| } else { |
| env->miclaim |= interrupts; |
| return 0; |
| } |
| } |
| |
| uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) |
| { |
| CPURISCVState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| uint32_t old = env->mip; |
| bool locked = false; |
| |
| if (!qemu_mutex_iothread_locked()) { |
| locked = true; |
| qemu_mutex_lock_iothread(); |
| } |
| |
| env->mip = (env->mip & ~mask) | (value & mask); |
| |
| if (env->mip) { |
| cpu_interrupt(cs, CPU_INTERRUPT_HARD); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); |
| } |
| |
| if (locked) { |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| return old; |
| } |
| |
| void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t), |
| uint32_t arg) |
| { |
| env->rdtime_fn = fn; |
| env->rdtime_fn_arg = arg; |
| } |
| |
| void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) |
| { |
| if (newpriv > PRV_M) { |
| g_assert_not_reached(); |
| } |
| if (newpriv == PRV_H) { |
| newpriv = PRV_U; |
| } |
| /* tlb_flush is unnecessary as mode is contained in mmu_idx */ |
| env->priv = newpriv; |
| |
| /* |
| * Clear the load reservation - otherwise a reservation placed in one |
| * context/process can be used by another, resulting in an SC succeeding |
| * incorrectly. Version 2.2 of the ISA specification explicitly requires |
| * this behaviour, while later revisions say that the kernel "should" use |
| * an SC instruction to force the yielding of a load reservation on a |
| * preemptive context switch. As a result, do both. |
| */ |
| env->load_res = -1; |
| } |
| |
| /* |
| * get_physical_address_pmp - check PMP permission for this physical address |
| * |
| * Match the PMP region and check permission for this physical address and it's |
| * TLB page. Returns 0 if the permission checking was successful |
| * |
| * @env: CPURISCVState |
| * @prot: The returned protection attributes |
| * @tlb_size: TLB page size containing addr. It could be modified after PMP |
| * permission checking. NULL if not set TLB page for addr. |
| * @addr: The physical address to be checked permission |
| * @access_type: The type of MMU access |
| * @mode: Indicates current privilege level. |
| */ |
| static int get_physical_address_pmp(CPURISCVState *env, int *prot, |
| target_ulong *tlb_size, hwaddr addr, |
| int size, MMUAccessType access_type, |
| int mode) |
| { |
| pmp_priv_t pmp_priv; |
| target_ulong tlb_size_pmp = 0; |
| |
| if (!riscv_feature(env, RISCV_FEATURE_PMP)) { |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TRANSLATE_SUCCESS; |
| } |
| |
| if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv, |
| mode)) { |
| *prot = 0; |
| return TRANSLATE_PMP_FAIL; |
| } |
| |
| *prot = pmp_priv_to_page_prot(pmp_priv); |
| if (tlb_size != NULL) { |
| if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) { |
| *tlb_size = tlb_size_pmp; |
| } |
| } |
| |
| return TRANSLATE_SUCCESS; |
| } |
| |
| /* get_physical_address - get the physical address for this virtual address |
| * |
| * Do a page table walk to obtain the physical address corresponding to a |
| * virtual address. Returns 0 if the translation was successful |
| * |
| * Adapted from Spike's mmu_t::translate and mmu_t::walk |
| * |
| * @env: CPURISCVState |
| * @physical: This will be set to the calculated physical address |
| * @prot: The returned protection attributes |
| * @addr: The virtual address to be translated |
| * @fault_pte_addr: If not NULL, this will be set to fault pte address |
| * when a error occurs on pte address translation. |
| * This will already be shifted to match htval. |
| * @access_type: The type of MMU access |
| * @mmu_idx: Indicates current privilege level |
| * @first_stage: Are we in first stage translation? |
| * Second stage is used for hypervisor guest translation |
| * @two_stage: Are we going to perform two stage translation |
| */ |
| static int get_physical_address(CPURISCVState *env, hwaddr *physical, |
| int *prot, target_ulong addr, |
| target_ulong *fault_pte_addr, |
| int access_type, int mmu_idx, |
| bool first_stage, bool two_stage) |
| { |
| /* NOTE: the env->pc value visible here will not be |
| * correct, but the value visible to the exception handler |
| * (riscv_cpu_do_interrupt) is correct */ |
| MemTxResult res; |
| MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; |
| int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; |
| bool use_background = false; |
| |
| /* |
| * Check if we should use the background registers for the two |
| * stage translation. We don't need to check if we actually need |
| * two stage translation as that happened before this function |
| * was called. Background registers will be used if the guest has |
| * forced a two stage translation to be on (in HS or M mode). |
| */ |
| if (!riscv_cpu_virt_enabled(env) && two_stage) { |
| use_background = true; |
| } |
| |
| /* MPRV does not affect the virtual-machine load/store |
| instructions, HLV, HLVX, and HSV. */ |
| if (riscv_cpu_two_stage_lookup(mmu_idx)) { |
| mode = get_field(env->hstatus, HSTATUS_SPVP); |
| } else if (mode == PRV_M && access_type != MMU_INST_FETCH) { |
| if (get_field(env->mstatus, MSTATUS_MPRV)) { |
| mode = get_field(env->mstatus, MSTATUS_MPP); |
| } |
| } |
| |
| if (first_stage == false) { |
| /* We are in stage 2 translation, this is similar to stage 1. */ |
| /* Stage 2 is always taken as U-mode */ |
| mode = PRV_U; |
| } |
| |
| if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { |
| *physical = addr; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TRANSLATE_SUCCESS; |
| } |
| |
| *prot = 0; |
| |
| hwaddr base; |
| int levels, ptidxbits, ptesize, vm, sum, mxr, widened; |
| |
| if (first_stage == true) { |
| mxr = get_field(env->mstatus, MSTATUS_MXR); |
| } else { |
| mxr = get_field(env->vsstatus, MSTATUS_MXR); |
| } |
| |
| if (first_stage == true) { |
| if (use_background) { |
| base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT; |
| vm = get_field(env->vsatp, SATP_MODE); |
| } else { |
| base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT; |
| vm = get_field(env->satp, SATP_MODE); |
| } |
| widened = 0; |
| } else { |
| base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT; |
| vm = get_field(env->hgatp, HGATP_MODE); |
| widened = 2; |
| } |
| /* status.SUM will be ignored if execute on background */ |
| sum = get_field(env->mstatus, MSTATUS_SUM) || use_background; |
| switch (vm) { |
| case VM_1_10_SV32: |
| levels = 2; ptidxbits = 10; ptesize = 4; break; |
| case VM_1_10_SV39: |
| levels = 3; ptidxbits = 9; ptesize = 8; break; |
| case VM_1_10_SV48: |
| levels = 4; ptidxbits = 9; ptesize = 8; break; |
| case VM_1_10_SV57: |
| levels = 5; ptidxbits = 9; ptesize = 8; break; |
| case VM_1_10_MBARE: |
| *physical = addr; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TRANSLATE_SUCCESS; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| CPUState *cs = env_cpu(env); |
| int va_bits = PGSHIFT + levels * ptidxbits + widened; |
| target_ulong mask, masked_msbs; |
| |
| if (TARGET_LONG_BITS > (va_bits - 1)) { |
| mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; |
| } else { |
| mask = 0; |
| } |
| masked_msbs = (addr >> (va_bits - 1)) & mask; |
| |
| if (masked_msbs != 0 && masked_msbs != mask) { |
| return TRANSLATE_FAIL; |
| } |
| |
| int ptshift = (levels - 1) * ptidxbits; |
| int i; |
| |
| #if !TCG_OVERSIZED_GUEST |
| restart: |
| #endif |
| for (i = 0; i < levels; i++, ptshift -= ptidxbits) { |
| target_ulong idx; |
| if (i == 0) { |
| idx = (addr >> (PGSHIFT + ptshift)) & |
| ((1 << (ptidxbits + widened)) - 1); |
| } else { |
| idx = (addr >> (PGSHIFT + ptshift)) & |
| ((1 << ptidxbits) - 1); |
| } |
| |
| /* check that physical address of PTE is legal */ |
| hwaddr pte_addr; |
| |
| if (two_stage && first_stage) { |
| int vbase_prot; |
| hwaddr vbase; |
| |
| /* Do the second stage translation on the base PTE address. */ |
| int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, |
| base, NULL, MMU_DATA_LOAD, |
| mmu_idx, false, true); |
| |
| if (vbase_ret != TRANSLATE_SUCCESS) { |
| if (fault_pte_addr) { |
| *fault_pte_addr = (base + idx * ptesize) >> 2; |
| } |
| return TRANSLATE_G_STAGE_FAIL; |
| } |
| |
| pte_addr = vbase + idx * ptesize; |
| } else { |
| pte_addr = base + idx * ptesize; |
| } |
| |
| int pmp_prot; |
| int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, |
| sizeof(target_ulong), |
| MMU_DATA_LOAD, PRV_S); |
| if (pmp_ret != TRANSLATE_SUCCESS) { |
| return TRANSLATE_PMP_FAIL; |
| } |
| |
| target_ulong pte; |
| if (riscv_cpu_is_32bit(env)) { |
| pte = address_space_ldl(cs->as, pte_addr, attrs, &res); |
| } else { |
| pte = address_space_ldq(cs->as, pte_addr, attrs, &res); |
| } |
| |
| if (res != MEMTX_OK) { |
| return TRANSLATE_FAIL; |
| } |
| |
| hwaddr ppn = pte >> PTE_PPN_SHIFT; |
| |
| if (!(pte & PTE_V)) { |
| /* Invalid PTE */ |
| return TRANSLATE_FAIL; |
| } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { |
| /* Inner PTE, continue walking */ |
| base = ppn << PGSHIFT; |
| } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { |
| /* Reserved leaf PTE flags: PTE_W */ |
| return TRANSLATE_FAIL; |
| } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { |
| /* Reserved leaf PTE flags: PTE_W + PTE_X */ |
| return TRANSLATE_FAIL; |
| } else if ((pte & PTE_U) && ((mode != PRV_U) && |
| (!sum || access_type == MMU_INST_FETCH))) { |
| /* User PTE flags when not U mode and mstatus.SUM is not set, |
| or the access type is an instruction fetch */ |
| return TRANSLATE_FAIL; |
| } else if (!(pte & PTE_U) && (mode != PRV_S)) { |
| /* Supervisor PTE flags when not S mode */ |
| return TRANSLATE_FAIL; |
| } else if (ppn & ((1ULL << ptshift) - 1)) { |
| /* Misaligned PPN */ |
| return TRANSLATE_FAIL; |
| } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || |
| ((pte & PTE_X) && mxr))) { |
| /* Read access check failed */ |
| return TRANSLATE_FAIL; |
| } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { |
| /* Write access check failed */ |
| return TRANSLATE_FAIL; |
| } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { |
| /* Fetch access check failed */ |
| return TRANSLATE_FAIL; |
| } else { |
| /* if necessary, set accessed and dirty bits. */ |
| target_ulong updated_pte = pte | PTE_A | |
| (access_type == MMU_DATA_STORE ? PTE_D : 0); |
| |
| /* Page table updates need to be atomic with MTTCG enabled */ |
| if (updated_pte != pte) { |
| /* |
| * - if accessed or dirty bits need updating, and the PTE is |
| * in RAM, then we do so atomically with a compare and swap. |
| * - if the PTE is in IO space or ROM, then it can't be updated |
| * and we return TRANSLATE_FAIL. |
| * - if the PTE changed by the time we went to update it, then |
| * it is no longer valid and we must re-walk the page table. |
| */ |
| MemoryRegion *mr; |
| hwaddr l = sizeof(target_ulong), addr1; |
| mr = address_space_translate(cs->as, pte_addr, |
| &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); |
| if (memory_region_is_ram(mr)) { |
| target_ulong *pte_pa = |
| qemu_map_ram_ptr(mr->ram_block, addr1); |
| #if TCG_OVERSIZED_GUEST |
| /* MTTCG is not enabled on oversized TCG guests so |
| * page table updates do not need to be atomic */ |
| *pte_pa = pte = updated_pte; |
| #else |
| target_ulong old_pte = |
| qatomic_cmpxchg(pte_pa, pte, updated_pte); |
| if (old_pte != pte) { |
| goto restart; |
| } else { |
| pte = updated_pte; |
| } |
| #endif |
| } else { |
| /* misconfigured PTE in ROM (AD bits are not preset) or |
| * PTE is in IO space and can't be updated atomically */ |
| return TRANSLATE_FAIL; |
| } |
| } |
| |
| /* for superpage mappings, make a fake leaf PTE for the TLB's |
| benefit. */ |
| target_ulong vpn = addr >> PGSHIFT; |
| *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) | |
| (addr & ~TARGET_PAGE_MASK); |
| |
| /* set permissions on the TLB entry */ |
| if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { |
| *prot |= PAGE_READ; |
| } |
| if ((pte & PTE_X)) { |
| *prot |= PAGE_EXEC; |
| } |
| /* add write permission on stores or if the page is already dirty, |
| so that we TLB miss on later writes to update the dirty bit */ |
| if ((pte & PTE_W) && |
| (access_type == MMU_DATA_STORE || (pte & PTE_D))) { |
| *prot |= PAGE_WRITE; |
| } |
| return TRANSLATE_SUCCESS; |
| } |
| } |
| return TRANSLATE_FAIL; |
| } |
| |
| static void raise_mmu_exception(CPURISCVState *env, target_ulong address, |
| MMUAccessType access_type, bool pmp_violation, |
| bool first_stage, bool two_stage) |
| { |
| CPUState *cs = env_cpu(env); |
| int page_fault_exceptions; |
| if (first_stage) { |
| page_fault_exceptions = |
| get_field(env->satp, SATP_MODE) != VM_1_10_MBARE && |
| !pmp_violation; |
| } else { |
| page_fault_exceptions = |
| get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE && |
| !pmp_violation; |
| } |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| if (riscv_cpu_virt_enabled(env) && !first_stage) { |
| cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; |
| } else { |
| cs->exception_index = page_fault_exceptions ? |
| RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; |
| } |
| break; |
| case MMU_DATA_LOAD: |
| if (two_stage && !first_stage) { |
| cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; |
| } else { |
| cs->exception_index = page_fault_exceptions ? |
| RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; |
| } |
| break; |
| case MMU_DATA_STORE: |
| if (two_stage && !first_stage) { |
| cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; |
| } else { |
| cs->exception_index = page_fault_exceptions ? |
| RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| env->badaddr = address; |
| env->two_stage_lookup = two_stage; |
| } |
| |
| hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| hwaddr phys_addr; |
| int prot; |
| int mmu_idx = cpu_mmu_index(&cpu->env, false); |
| |
| if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, |
| true, riscv_cpu_virt_enabled(env))) { |
| return -1; |
| } |
| |
| if (riscv_cpu_virt_enabled(env)) { |
| if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, |
| 0, mmu_idx, false, true)) { |
| return -1; |
| } |
| } |
| |
| return phys_addr & TARGET_PAGE_MASK; |
| } |
| |
| void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, |
| vaddr addr, unsigned size, |
| MMUAccessType access_type, |
| int mmu_idx, MemTxAttrs attrs, |
| MemTxResult response, uintptr_t retaddr) |
| { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| |
| if (access_type == MMU_DATA_STORE) { |
| cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; |
| } else { |
| cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; |
| } |
| |
| env->badaddr = addr; |
| env->two_stage_lookup = riscv_cpu_virt_enabled(env) || |
| riscv_cpu_two_stage_lookup(mmu_idx); |
| riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); |
| } |
| |
| void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, |
| MMUAccessType access_type, int mmu_idx, |
| uintptr_t retaddr) |
| { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; |
| break; |
| case MMU_DATA_LOAD: |
| cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; |
| break; |
| case MMU_DATA_STORE: |
| cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| env->badaddr = addr; |
| env->two_stage_lookup = riscv_cpu_virt_enabled(env) || |
| riscv_cpu_two_stage_lookup(mmu_idx); |
| riscv_raise_exception(env, cs->exception_index, retaddr); |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| #ifndef CONFIG_USER_ONLY |
| vaddr im_address; |
| hwaddr pa = 0; |
| int prot, prot2, prot_pmp; |
| bool pmp_violation = false; |
| bool first_stage_error = true; |
| bool two_stage_lookup = false; |
| int ret = TRANSLATE_FAIL; |
| int mode = mmu_idx; |
| /* default TLB page size */ |
| target_ulong tlb_size = TARGET_PAGE_SIZE; |
| |
| env->guest_phys_fault_addr = 0; |
| |
| qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", |
| __func__, address, access_type, mmu_idx); |
| |
| /* MPRV does not affect the virtual-machine load/store |
| instructions, HLV, HLVX, and HSV. */ |
| if (riscv_cpu_two_stage_lookup(mmu_idx)) { |
| mode = get_field(env->hstatus, HSTATUS_SPVP); |
| } else if (mode == PRV_M && access_type != MMU_INST_FETCH && |
| get_field(env->mstatus, MSTATUS_MPRV)) { |
| mode = get_field(env->mstatus, MSTATUS_MPP); |
| if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) { |
| two_stage_lookup = true; |
| } |
| } |
| |
| if (riscv_cpu_virt_enabled(env) || |
| ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) && |
| access_type != MMU_INST_FETCH)) { |
| /* Two stage lookup */ |
| ret = get_physical_address(env, &pa, &prot, address, |
| &env->guest_phys_fault_addr, access_type, |
| mmu_idx, true, true); |
| |
| /* |
| * A G-stage exception may be triggered during two state lookup. |
| * And the env->guest_phys_fault_addr has already been set in |
| * get_physical_address(). |
| */ |
| if (ret == TRANSLATE_G_STAGE_FAIL) { |
| first_stage_error = false; |
| access_type = MMU_DATA_LOAD; |
| } |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " |
| TARGET_FMT_plx " prot %d\n", |
| __func__, address, ret, pa, prot); |
| |
| if (ret == TRANSLATE_SUCCESS) { |
| /* Second stage lookup */ |
| im_address = pa; |
| |
| ret = get_physical_address(env, &pa, &prot2, im_address, NULL, |
| access_type, mmu_idx, false, true); |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " |
| TARGET_FMT_plx " prot %d\n", |
| __func__, im_address, ret, pa, prot2); |
| |
| prot &= prot2; |
| |
| if (ret == TRANSLATE_SUCCESS) { |
| ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, |
| size, access_type, mode); |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s PMP address=" TARGET_FMT_plx " ret %d prot" |
| " %d tlb_size " TARGET_FMT_lu "\n", |
| __func__, pa, ret, prot_pmp, tlb_size); |
| |
| prot &= prot_pmp; |
| } |
| |
| if (ret != TRANSLATE_SUCCESS) { |
| /* |
| * Guest physical address translation failed, this is a HS |
| * level exception |
| */ |
| first_stage_error = false; |
| env->guest_phys_fault_addr = (im_address | |
| (address & |
| (TARGET_PAGE_SIZE - 1))) >> 2; |
| } |
| } |
| } else { |
| /* Single stage lookup */ |
| ret = get_physical_address(env, &pa, &prot, address, NULL, |
| access_type, mmu_idx, true, false); |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s address=%" VADDR_PRIx " ret %d physical " |
| TARGET_FMT_plx " prot %d\n", |
| __func__, address, ret, pa, prot); |
| |
| if (ret == TRANSLATE_SUCCESS) { |
| ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, |
| size, access_type, mode); |
| |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s PMP address=" TARGET_FMT_plx " ret %d prot" |
| " %d tlb_size " TARGET_FMT_lu "\n", |
| __func__, pa, ret, prot_pmp, tlb_size); |
| |
| prot &= prot_pmp; |
| } |
| } |
| |
| if (ret == TRANSLATE_PMP_FAIL) { |
| pmp_violation = true; |
| } |
| |
| if (ret == TRANSLATE_SUCCESS) { |
| tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), |
| prot, mmu_idx, tlb_size); |
| return true; |
| } else if (probe) { |
| return false; |
| } else { |
| raise_mmu_exception(env, address, access_type, pmp_violation, |
| first_stage_error, |
| riscv_cpu_virt_enabled(env) || |
| riscv_cpu_two_stage_lookup(mmu_idx)); |
| riscv_raise_exception(env, cs->exception_index, retaddr); |
| } |
| |
| return true; |
| |
| #else |
| switch (access_type) { |
| case MMU_INST_FETCH: |
| cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; |
| break; |
| case MMU_DATA_LOAD: |
| cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; |
| break; |
| case MMU_DATA_STORE: |
| cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| env->badaddr = address; |
| cpu_loop_exit_restore(cs, retaddr); |
| #endif |
| } |
| |
| /* |
| * Handle Traps |
| * |
| * Adapted from Spike's processor_t::take_trap. |
| * |
| */ |
| void riscv_cpu_do_interrupt(CPUState *cs) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| |
| RISCVCPU *cpu = RISCV_CPU(cs); |
| CPURISCVState *env = &cpu->env; |
| bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env); |
| uint64_t s; |
| |
| /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide |
| * so we mask off the MSB and separate into trap type and cause. |
| */ |
| bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); |
| target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; |
| target_ulong deleg = async ? env->mideleg : env->medeleg; |
| bool write_tval = false; |
| target_ulong tval = 0; |
| target_ulong htval = 0; |
| target_ulong mtval2 = 0; |
| |
| if (cause == RISCV_EXCP_SEMIHOST) { |
| if (env->priv >= PRV_S) { |
| env->gpr[xA0] = do_common_semihosting(cs); |
| env->pc += 4; |
| return; |
| } |
| cause = RISCV_EXCP_BREAKPOINT; |
| } |
| |
| if (!async) { |
| /* set tval to badaddr for traps with address information */ |
| switch (cause) { |
| case RISCV_EXCP_INST_GUEST_PAGE_FAULT: |
| case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: |
| case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: |
| force_hs_execp = true; |
| /* fallthrough */ |
| case RISCV_EXCP_INST_ADDR_MIS: |
| case RISCV_EXCP_INST_ACCESS_FAULT: |
| case RISCV_EXCP_LOAD_ADDR_MIS: |
| case RISCV_EXCP_STORE_AMO_ADDR_MIS: |
| case RISCV_EXCP_LOAD_ACCESS_FAULT: |
| case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: |
| case RISCV_EXCP_INST_PAGE_FAULT: |
| case RISCV_EXCP_LOAD_PAGE_FAULT: |
| case RISCV_EXCP_STORE_PAGE_FAULT: |
| write_tval = true; |
| tval = env->badaddr; |
| break; |
| default: |
| break; |
| } |
| /* ecall is dispatched as one cause so translate based on mode */ |
| if (cause == RISCV_EXCP_U_ECALL) { |
| assert(env->priv <= 3); |
| |
| if (env->priv == PRV_M) { |
| cause = RISCV_EXCP_M_ECALL; |
| } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { |
| cause = RISCV_EXCP_VS_ECALL; |
| } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { |
| cause = RISCV_EXCP_S_ECALL; |
| } else if (env->priv == PRV_U) { |
| cause = RISCV_EXCP_U_ECALL; |
| } |
| } |
| } |
| |
| trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, |
| riscv_cpu_get_trap_name(cause, async)); |
| |
| qemu_log_mask(CPU_LOG_INT, |
| "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " |
| "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", |
| __func__, env->mhartid, async, cause, env->pc, tval, |
| riscv_cpu_get_trap_name(cause, async)); |
| |
| if (env->priv <= PRV_S && |
| cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { |
| /* handle the trap in S-mode */ |
| if (riscv_has_ext(env, RVH)) { |
| target_ulong hdeleg = async ? env->hideleg : env->hedeleg; |
| |
| if (env->two_stage_lookup && write_tval) { |
| /* |
| * If we are writing a guest virtual address to stval, set |
| * this to 1. If we are trapping to VS we will set this to 0 |
| * later. |
| */ |
| env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1); |
| } else { |
| /* For other HS-mode traps, we set this to 0. */ |
| env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); |
| } |
| |
| if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) && |
| !force_hs_execp) { |
| /* Trap to VS mode */ |
| /* |
| * See if we need to adjust cause. Yes if its VS mode interrupt |
| * no if hypervisor has delegated one of hs mode's interrupt |
| */ |
| if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || |
| cause == IRQ_VS_EXT) { |
| cause = cause - 1; |
| } |
| env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); |
| } else if (riscv_cpu_virt_enabled(env)) { |
| /* Trap into HS mode, from virt */ |
| riscv_cpu_swap_hypervisor_regs(env); |
| env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, |
| env->priv); |
| env->hstatus = set_field(env->hstatus, HSTATUS_SPV, |
| riscv_cpu_virt_enabled(env)); |
| |
| htval = env->guest_phys_fault_addr; |
| |
| riscv_cpu_set_virt_enabled(env, 0); |
| riscv_cpu_set_force_hs_excep(env, 0); |
| } else { |
| /* Trap into HS mode */ |
| env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); |
| htval = env->guest_phys_fault_addr; |
| } |
| } |
| |
| s = env->mstatus; |
| s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); |
| s = set_field(s, MSTATUS_SPP, env->priv); |
| s = set_field(s, MSTATUS_SIE, 0); |
| env->mstatus = s; |
| env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); |
| env->sepc = env->pc; |
| env->sbadaddr = tval; |
| env->htval = htval; |
| env->pc = (env->stvec >> 2 << 2) + |
| ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); |
| riscv_cpu_set_mode(env, PRV_S); |
| } else { |
| /* handle the trap in M-mode */ |
| if (riscv_has_ext(env, RVH)) { |
| if (riscv_cpu_virt_enabled(env)) { |
| riscv_cpu_swap_hypervisor_regs(env); |
| } |
| env->mstatus = set_field(env->mstatus, MSTATUS_MPV, |
| riscv_cpu_virt_enabled(env)); |
| if (riscv_cpu_virt_enabled(env) && tval) { |
| env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); |
| } |
| |
| mtval2 = env->guest_phys_fault_addr; |
| |
| /* Trapping to M mode, virt is disabled */ |
| riscv_cpu_set_virt_enabled(env, 0); |
| riscv_cpu_set_force_hs_excep(env, 0); |
| } |
| |
| s = env->mstatus; |
| s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); |
| s = set_field(s, MSTATUS_MPP, env->priv); |
| s = set_field(s, MSTATUS_MIE, 0); |
| env->mstatus = s; |
| env->mcause = cause | ~(((target_ulong)-1) >> async); |
| env->mepc = env->pc; |
| env->mbadaddr = tval; |
| env->mtval2 = mtval2; |
| env->pc = (env->mtvec >> 2 << 2) + |
| ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); |
| riscv_cpu_set_mode(env, PRV_M); |
| } |
| |
| /* NOTE: it is not necessary to yield load reservations here. It is only |
| * necessary for an SC from "another hart" to cause a load reservation |
| * to be yielded. Refer to the memory consistency model section of the |
| * RISC-V ISA Specification. |
| */ |
| |
| env->two_stage_lookup = false; |
| #endif |
| cs->exception_index = EXCP_NONE; /* mark handled to qemu */ |
| } |