blob: 90f25451d0d542e9215cab19b3ac05dd6b820d31 [file] [log] [blame]
/*
* Virtio Support
*
* Copyright IBM, Corp. 2007
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "exec/address-spaces.h"
#include "qemu/error-report.h"
#include "hw/virtio/virtio.h"
#include "qemu/atomic.h"
#include "hw/virtio/virtio-bus.h"
#include "migration/migration.h"
#include "hw/virtio/virtio-access.h"
/*
* The alignment to use between consumer and producer parts of vring.
* x86 pagesize again. This is the default, used by transports like PCI
* which don't provide a means for the guest to tell the host the alignment.
*/
#define VIRTIO_PCI_VRING_ALIGN 4096
typedef struct VRingDesc
{
uint64_t addr;
uint32_t len;
uint16_t flags;
uint16_t next;
} VRingDesc;
typedef struct VRingAvail
{
uint16_t flags;
uint16_t idx;
uint16_t ring[0];
} VRingAvail;
typedef struct VRingUsedElem
{
uint32_t id;
uint32_t len;
} VRingUsedElem;
typedef struct VRingUsed
{
uint16_t flags;
uint16_t idx;
VRingUsedElem ring[0];
} VRingUsed;
typedef struct VRing
{
unsigned int num;
unsigned int num_default;
unsigned int align;
hwaddr desc;
hwaddr avail;
hwaddr used;
} VRing;
struct VirtQueue
{
VRing vring;
/* Next head to pop */
uint16_t last_avail_idx;
/* Last avail_idx read from VQ. */
uint16_t shadow_avail_idx;
uint16_t used_idx;
/* Last used index value we have signalled on */
uint16_t signalled_used;
/* Last used index value we have signalled on */
bool signalled_used_valid;
/* Notification enabled? */
bool notification;
uint16_t queue_index;
int inuse;
uint16_t vector;
void (*handle_output)(VirtIODevice *vdev, VirtQueue *vq);
VirtIODevice *vdev;
EventNotifier guest_notifier;
EventNotifier host_notifier;
QLIST_ENTRY(VirtQueue) node;
};
/* virt queue functions */
void virtio_queue_update_rings(VirtIODevice *vdev, int n)
{
VRing *vring = &vdev->vq[n].vring;
if (!vring->desc) {
/* not yet setup -> nothing to do */
return;
}
vring->avail = vring->desc + vring->num * sizeof(VRingDesc);
vring->used = vring_align(vring->avail +
offsetof(VRingAvail, ring[vring->num]),
vring->align);
}
static void vring_desc_read(VirtIODevice *vdev, VRingDesc *desc,
hwaddr desc_pa, int i)
{
address_space_read(&address_space_memory, desc_pa + i * sizeof(VRingDesc),
MEMTXATTRS_UNSPECIFIED, (void *)desc, sizeof(VRingDesc));
virtio_tswap64s(vdev, &desc->addr);
virtio_tswap32s(vdev, &desc->len);
virtio_tswap16s(vdev, &desc->flags);
virtio_tswap16s(vdev, &desc->next);
}
static inline uint16_t vring_avail_flags(VirtQueue *vq)
{
hwaddr pa;
pa = vq->vring.avail + offsetof(VRingAvail, flags);
return virtio_lduw_phys(vq->vdev, pa);
}
static inline uint16_t vring_avail_idx(VirtQueue *vq)
{
hwaddr pa;
pa = vq->vring.avail + offsetof(VRingAvail, idx);
vq->shadow_avail_idx = virtio_lduw_phys(vq->vdev, pa);
return vq->shadow_avail_idx;
}
static inline uint16_t vring_avail_ring(VirtQueue *vq, int i)
{
hwaddr pa;
pa = vq->vring.avail + offsetof(VRingAvail, ring[i]);
return virtio_lduw_phys(vq->vdev, pa);
}
static inline uint16_t vring_get_used_event(VirtQueue *vq)
{
return vring_avail_ring(vq, vq->vring.num);
}
static inline void vring_used_write(VirtQueue *vq, VRingUsedElem *uelem,
int i)
{
hwaddr pa;
virtio_tswap32s(vq->vdev, &uelem->id);
virtio_tswap32s(vq->vdev, &uelem->len);
pa = vq->vring.used + offsetof(VRingUsed, ring[i]);
address_space_write(&address_space_memory, pa, MEMTXATTRS_UNSPECIFIED,
(void *)uelem, sizeof(VRingUsedElem));
}
static uint16_t vring_used_idx(VirtQueue *vq)
{
hwaddr pa;
pa = vq->vring.used + offsetof(VRingUsed, idx);
return virtio_lduw_phys(vq->vdev, pa);
}
static inline void vring_used_idx_set(VirtQueue *vq, uint16_t val)
{
hwaddr pa;
pa = vq->vring.used + offsetof(VRingUsed, idx);
virtio_stw_phys(vq->vdev, pa, val);
vq->used_idx = val;
}
static inline void vring_used_flags_set_bit(VirtQueue *vq, int mask)
{
VirtIODevice *vdev = vq->vdev;
hwaddr pa;
pa = vq->vring.used + offsetof(VRingUsed, flags);
virtio_stw_phys(vdev, pa, virtio_lduw_phys(vdev, pa) | mask);
}
static inline void vring_used_flags_unset_bit(VirtQueue *vq, int mask)
{
VirtIODevice *vdev = vq->vdev;
hwaddr pa;
pa = vq->vring.used + offsetof(VRingUsed, flags);
virtio_stw_phys(vdev, pa, virtio_lduw_phys(vdev, pa) & ~mask);
}
static inline void vring_set_avail_event(VirtQueue *vq, uint16_t val)
{
hwaddr pa;
if (!vq->notification) {
return;
}
pa = vq->vring.used + offsetof(VRingUsed, ring[vq->vring.num]);
virtio_stw_phys(vq->vdev, pa, val);
}
void virtio_queue_set_notification(VirtQueue *vq, int enable)
{
vq->notification = enable;
if (virtio_vdev_has_feature(vq->vdev, VIRTIO_RING_F_EVENT_IDX)) {
vring_set_avail_event(vq, vring_avail_idx(vq));
} else if (enable) {
vring_used_flags_unset_bit(vq, VRING_USED_F_NO_NOTIFY);
} else {
vring_used_flags_set_bit(vq, VRING_USED_F_NO_NOTIFY);
}
if (enable) {
/* Expose avail event/used flags before caller checks the avail idx. */
smp_mb();
}
}
int virtio_queue_ready(VirtQueue *vq)
{
return vq->vring.avail != 0;
}
/* Fetch avail_idx from VQ memory only when we really need to know if
* guest has added some buffers. */
int virtio_queue_empty(VirtQueue *vq)
{
if (vq->shadow_avail_idx != vq->last_avail_idx) {
return 0;
}
return vring_avail_idx(vq) == vq->last_avail_idx;
}
static void virtqueue_unmap_sg(VirtQueue *vq, const VirtQueueElement *elem,
unsigned int len)
{
unsigned int offset;
int i;
offset = 0;
for (i = 0; i < elem->in_num; i++) {
size_t size = MIN(len - offset, elem->in_sg[i].iov_len);
cpu_physical_memory_unmap(elem->in_sg[i].iov_base,
elem->in_sg[i].iov_len,
1, size);
offset += size;
}
for (i = 0; i < elem->out_num; i++)
cpu_physical_memory_unmap(elem->out_sg[i].iov_base,
elem->out_sg[i].iov_len,
0, elem->out_sg[i].iov_len);
}
void virtqueue_discard(VirtQueue *vq, const VirtQueueElement *elem,
unsigned int len)
{
vq->last_avail_idx--;
virtqueue_unmap_sg(vq, elem, len);
}
void virtqueue_fill(VirtQueue *vq, const VirtQueueElement *elem,
unsigned int len, unsigned int idx)
{
VRingUsedElem uelem;
trace_virtqueue_fill(vq, elem, len, idx);
virtqueue_unmap_sg(vq, elem, len);
idx = (idx + vq->used_idx) % vq->vring.num;
uelem.id = elem->index;
uelem.len = len;
vring_used_write(vq, &uelem, idx);
}
void virtqueue_flush(VirtQueue *vq, unsigned int count)
{
uint16_t old, new;
/* Make sure buffer is written before we update index. */
smp_wmb();
trace_virtqueue_flush(vq, count);
old = vq->used_idx;
new = old + count;
vring_used_idx_set(vq, new);
vq->inuse -= count;
if (unlikely((int16_t)(new - vq->signalled_used) < (uint16_t)(new - old)))
vq->signalled_used_valid = false;
}
void virtqueue_push(VirtQueue *vq, const VirtQueueElement *elem,
unsigned int len)
{
virtqueue_fill(vq, elem, len, 0);
virtqueue_flush(vq, 1);
}
static int virtqueue_num_heads(VirtQueue *vq, unsigned int idx)
{
uint16_t num_heads = vring_avail_idx(vq) - idx;
/* Check it isn't doing very strange things with descriptor numbers. */
if (num_heads > vq->vring.num) {
error_report("Guest moved used index from %u to %u",
idx, vq->shadow_avail_idx);
exit(1);
}
/* On success, callers read a descriptor at vq->last_avail_idx.
* Make sure descriptor read does not bypass avail index read. */
if (num_heads) {
smp_rmb();
}
return num_heads;
}
static unsigned int virtqueue_get_head(VirtQueue *vq, unsigned int idx)
{
unsigned int head;
/* Grab the next descriptor number they're advertising, and increment
* the index we've seen. */
head = vring_avail_ring(vq, idx % vq->vring.num);
/* If their number is silly, that's a fatal mistake. */
if (head >= vq->vring.num) {
error_report("Guest says index %u is available", head);
exit(1);
}
return head;
}
static unsigned virtqueue_read_next_desc(VirtIODevice *vdev, VRingDesc *desc,
hwaddr desc_pa, unsigned int max)
{
unsigned int next;
/* If this descriptor says it doesn't chain, we're done. */
if (!(desc->flags & VRING_DESC_F_NEXT)) {
return max;
}
/* Check they're not leading us off end of descriptors. */
next = desc->next;
/* Make sure compiler knows to grab that: we don't want it changing! */
smp_wmb();
if (next >= max) {
error_report("Desc next is %u", next);
exit(1);
}
vring_desc_read(vdev, desc, desc_pa, next);
return next;
}
void virtqueue_get_avail_bytes(VirtQueue *vq, unsigned int *in_bytes,
unsigned int *out_bytes,
unsigned max_in_bytes, unsigned max_out_bytes)
{
unsigned int idx;
unsigned int total_bufs, in_total, out_total;
idx = vq->last_avail_idx;
total_bufs = in_total = out_total = 0;
while (virtqueue_num_heads(vq, idx)) {
VirtIODevice *vdev = vq->vdev;
unsigned int max, num_bufs, indirect = 0;
VRingDesc desc;
hwaddr desc_pa;
int i;
max = vq->vring.num;
num_bufs = total_bufs;
i = virtqueue_get_head(vq, idx++);
desc_pa = vq->vring.desc;
vring_desc_read(vdev, &desc, desc_pa, i);
if (desc.flags & VRING_DESC_F_INDIRECT) {
if (desc.len % sizeof(VRingDesc)) {
error_report("Invalid size for indirect buffer table");
exit(1);
}
/* If we've got too many, that implies a descriptor loop. */
if (num_bufs >= max) {
error_report("Looped descriptor");
exit(1);
}
/* loop over the indirect descriptor table */
indirect = 1;
max = desc.len / sizeof(VRingDesc);
desc_pa = desc.addr;
num_bufs = i = 0;
vring_desc_read(vdev, &desc, desc_pa, i);
}
do {
/* If we've got too many, that implies a descriptor loop. */
if (++num_bufs > max) {
error_report("Looped descriptor");
exit(1);
}
if (desc.flags & VRING_DESC_F_WRITE) {
in_total += desc.len;
} else {
out_total += desc.len;
}
if (in_total >= max_in_bytes && out_total >= max_out_bytes) {
goto done;
}
} while ((i = virtqueue_read_next_desc(vdev, &desc, desc_pa, max)) != max);
if (!indirect)
total_bufs = num_bufs;
else
total_bufs++;
}
done:
if (in_bytes) {
*in_bytes = in_total;
}
if (out_bytes) {
*out_bytes = out_total;
}
}
int virtqueue_avail_bytes(VirtQueue *vq, unsigned int in_bytes,
unsigned int out_bytes)
{
unsigned int in_total, out_total;
virtqueue_get_avail_bytes(vq, &in_total, &out_total, in_bytes, out_bytes);
return in_bytes <= in_total && out_bytes <= out_total;
}
static void virtqueue_map_desc(unsigned int *p_num_sg, hwaddr *addr, struct iovec *iov,
unsigned int max_num_sg, bool is_write,
hwaddr pa, size_t sz)
{
unsigned num_sg = *p_num_sg;
assert(num_sg <= max_num_sg);
while (sz) {
hwaddr len = sz;
if (num_sg == max_num_sg) {
error_report("virtio: too many write descriptors in indirect table");
exit(1);
}
iov[num_sg].iov_base = cpu_physical_memory_map(pa, &len, is_write);
iov[num_sg].iov_len = len;
addr[num_sg] = pa;
sz -= len;
pa += len;
num_sg++;
}
*p_num_sg = num_sg;
}
static void virtqueue_map_iovec(struct iovec *sg, hwaddr *addr,
unsigned int *num_sg, unsigned int max_size,
int is_write)
{
unsigned int i;
hwaddr len;
/* Note: this function MUST validate input, some callers
* are passing in num_sg values received over the network.
*/
/* TODO: teach all callers that this can fail, and return failure instead
* of asserting here.
* When we do, we might be able to re-enable NDEBUG below.
*/
#ifdef NDEBUG
#error building with NDEBUG is not supported
#endif
assert(*num_sg <= max_size);
for (i = 0; i < *num_sg; i++) {
len = sg[i].iov_len;
sg[i].iov_base = cpu_physical_memory_map(addr[i], &len, is_write);
if (!sg[i].iov_base) {
error_report("virtio: error trying to map MMIO memory");
exit(1);
}
if (len != sg[i].iov_len) {
error_report("virtio: unexpected memory split");
exit(1);
}
}
}
void virtqueue_map(VirtQueueElement *elem)
{
virtqueue_map_iovec(elem->in_sg, elem->in_addr, &elem->in_num,
VIRTQUEUE_MAX_SIZE, 1);
virtqueue_map_iovec(elem->out_sg, elem->out_addr, &elem->out_num,
VIRTQUEUE_MAX_SIZE, 0);
}
void *virtqueue_alloc_element(size_t sz, unsigned out_num, unsigned in_num)
{
VirtQueueElement *elem;
size_t in_addr_ofs = QEMU_ALIGN_UP(sz, __alignof__(elem->in_addr[0]));
size_t out_addr_ofs = in_addr_ofs + in_num * sizeof(elem->in_addr[0]);
size_t out_addr_end = out_addr_ofs + out_num * sizeof(elem->out_addr[0]);
size_t in_sg_ofs = QEMU_ALIGN_UP(out_addr_end, __alignof__(elem->in_sg[0]));
size_t out_sg_ofs = in_sg_ofs + in_num * sizeof(elem->in_sg[0]);
size_t out_sg_end = out_sg_ofs + out_num * sizeof(elem->out_sg[0]);
assert(sz >= sizeof(VirtQueueElement));
elem = g_malloc(out_sg_end);
elem->out_num = out_num;
elem->in_num = in_num;
elem->in_addr = (void *)elem + in_addr_ofs;
elem->out_addr = (void *)elem + out_addr_ofs;
elem->in_sg = (void *)elem + in_sg_ofs;
elem->out_sg = (void *)elem + out_sg_ofs;
return elem;
}
void *virtqueue_pop(VirtQueue *vq, size_t sz)
{
unsigned int i, head, max;
hwaddr desc_pa = vq->vring.desc;
VirtIODevice *vdev = vq->vdev;
VirtQueueElement *elem;
unsigned out_num, in_num;
hwaddr addr[VIRTQUEUE_MAX_SIZE];
struct iovec iov[VIRTQUEUE_MAX_SIZE];
VRingDesc desc;
if (virtio_queue_empty(vq)) {
return NULL;
}
/* Needed after virtio_queue_empty(), see comment in
* virtqueue_num_heads(). */
smp_rmb();
/* When we start there are none of either input nor output. */
out_num = in_num = 0;
max = vq->vring.num;
i = head = virtqueue_get_head(vq, vq->last_avail_idx++);
if (virtio_vdev_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX)) {
vring_set_avail_event(vq, vq->last_avail_idx);
}
vring_desc_read(vdev, &desc, desc_pa, i);
if (desc.flags & VRING_DESC_F_INDIRECT) {
if (desc.len % sizeof(VRingDesc)) {
error_report("Invalid size for indirect buffer table");
exit(1);
}
/* loop over the indirect descriptor table */
max = desc.len / sizeof(VRingDesc);
desc_pa = desc.addr;
i = 0;
vring_desc_read(vdev, &desc, desc_pa, i);
}
/* Collect all the descriptors */
do {
if (desc.flags & VRING_DESC_F_WRITE) {
virtqueue_map_desc(&in_num, addr + out_num, iov + out_num,
VIRTQUEUE_MAX_SIZE - out_num, true, desc.addr, desc.len);
} else {
if (in_num) {
error_report("Incorrect order for descriptors");
exit(1);
}
virtqueue_map_desc(&out_num, addr, iov,
VIRTQUEUE_MAX_SIZE, false, desc.addr, desc.len);
}
/* If we've got too many, that implies a descriptor loop. */
if ((in_num + out_num) > max) {
error_report("Looped descriptor");
exit(1);
}
} while ((i = virtqueue_read_next_desc(vdev, &desc, desc_pa, max)) != max);
/* Now copy what we have collected and mapped */
elem = virtqueue_alloc_element(sz, out_num, in_num);
elem->index = head;
for (i = 0; i < out_num; i++) {
elem->out_addr[i] = addr[i];
elem->out_sg[i] = iov[i];
}
for (i = 0; i < in_num; i++) {
elem->in_addr[i] = addr[out_num + i];
elem->in_sg[i] = iov[out_num + i];
}
vq->inuse++;
trace_virtqueue_pop(vq, elem, elem->in_num, elem->out_num);
return elem;
}
/* Reading and writing a structure directly to QEMUFile is *awful*, but
* it is what QEMU has always done by mistake. We can change it sooner
* or later by bumping the version number of the affected vm states.
* In the meanwhile, since the in-memory layout of VirtQueueElement
* has changed, we need to marshal to and from the layout that was
* used before the change.
*/
typedef struct VirtQueueElementOld {
unsigned int index;
unsigned int out_num;
unsigned int in_num;
hwaddr in_addr[VIRTQUEUE_MAX_SIZE];
hwaddr out_addr[VIRTQUEUE_MAX_SIZE];
struct iovec in_sg[VIRTQUEUE_MAX_SIZE];
struct iovec out_sg[VIRTQUEUE_MAX_SIZE];
} VirtQueueElementOld;
void *qemu_get_virtqueue_element(QEMUFile *f, size_t sz)
{
VirtQueueElement *elem;
VirtQueueElementOld data;
int i;
qemu_get_buffer(f, (uint8_t *)&data, sizeof(VirtQueueElementOld));
elem = virtqueue_alloc_element(sz, data.out_num, data.in_num);
elem->index = data.index;
for (i = 0; i < elem->in_num; i++) {
elem->in_addr[i] = data.in_addr[i];
}
for (i = 0; i < elem->out_num; i++) {
elem->out_addr[i] = data.out_addr[i];
}
for (i = 0; i < elem->in_num; i++) {
/* Base is overwritten by virtqueue_map. */
elem->in_sg[i].iov_base = 0;
elem->in_sg[i].iov_len = data.in_sg[i].iov_len;
}
for (i = 0; i < elem->out_num; i++) {
/* Base is overwritten by virtqueue_map. */
elem->out_sg[i].iov_base = 0;
elem->out_sg[i].iov_len = data.out_sg[i].iov_len;
}
virtqueue_map(elem);
return elem;
}
void qemu_put_virtqueue_element(QEMUFile *f, VirtQueueElement *elem)
{
VirtQueueElementOld data;
int i;
memset(&data, 0, sizeof(data));
data.index = elem->index;
data.in_num = elem->in_num;
data.out_num = elem->out_num;
for (i = 0; i < elem->in_num; i++) {
data.in_addr[i] = elem->in_addr[i];
}
for (i = 0; i < elem->out_num; i++) {
data.out_addr[i] = elem->out_addr[i];
}
for (i = 0; i < elem->in_num; i++) {
/* Base is overwritten by virtqueue_map when loading. Do not
* save it, as it would leak the QEMU address space layout. */
data.in_sg[i].iov_len = elem->in_sg[i].iov_len;
}
for (i = 0; i < elem->out_num; i++) {
/* Do not save iov_base as above. */
data.out_sg[i].iov_len = elem->out_sg[i].iov_len;
}
qemu_put_buffer(f, (uint8_t *)&data, sizeof(VirtQueueElementOld));
}
/* virtio device */
static void virtio_notify_vector(VirtIODevice *vdev, uint16_t vector)
{
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
if (k->notify) {
k->notify(qbus->parent, vector);
}
}
void virtio_update_irq(VirtIODevice *vdev)
{
virtio_notify_vector(vdev, VIRTIO_NO_VECTOR);
}
static int virtio_validate_features(VirtIODevice *vdev)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
if (k->validate_features) {
return k->validate_features(vdev);
} else {
return 0;
}
}
int virtio_set_status(VirtIODevice *vdev, uint8_t val)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
trace_virtio_set_status(vdev, val);
if (virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) {
if (!(vdev->status & VIRTIO_CONFIG_S_FEATURES_OK) &&
val & VIRTIO_CONFIG_S_FEATURES_OK) {
int ret = virtio_validate_features(vdev);
if (ret) {
return ret;
}
}
}
if (k->set_status) {
k->set_status(vdev, val);
}
vdev->status = val;
return 0;
}
bool target_words_bigendian(void);
static enum virtio_device_endian virtio_default_endian(void)
{
if (target_words_bigendian()) {
return VIRTIO_DEVICE_ENDIAN_BIG;
} else {
return VIRTIO_DEVICE_ENDIAN_LITTLE;
}
}
static enum virtio_device_endian virtio_current_cpu_endian(void)
{
CPUClass *cc = CPU_GET_CLASS(current_cpu);
if (cc->virtio_is_big_endian(current_cpu)) {
return VIRTIO_DEVICE_ENDIAN_BIG;
} else {
return VIRTIO_DEVICE_ENDIAN_LITTLE;
}
}
void virtio_reset(void *opaque)
{
VirtIODevice *vdev = opaque;
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
int i;
virtio_set_status(vdev, 0);
if (current_cpu) {
/* Guest initiated reset */
vdev->device_endian = virtio_current_cpu_endian();
} else {
/* System reset */
vdev->device_endian = virtio_default_endian();
}
if (k->reset) {
k->reset(vdev);
}
vdev->guest_features = 0;
vdev->queue_sel = 0;
vdev->status = 0;
vdev->isr = 0;
vdev->config_vector = VIRTIO_NO_VECTOR;
virtio_notify_vector(vdev, vdev->config_vector);
for(i = 0; i < VIRTIO_QUEUE_MAX; i++) {
vdev->vq[i].vring.desc = 0;
vdev->vq[i].vring.avail = 0;
vdev->vq[i].vring.used = 0;
vdev->vq[i].last_avail_idx = 0;
vdev->vq[i].shadow_avail_idx = 0;
vdev->vq[i].used_idx = 0;
virtio_queue_set_vector(vdev, i, VIRTIO_NO_VECTOR);
vdev->vq[i].signalled_used = 0;
vdev->vq[i].signalled_used_valid = false;
vdev->vq[i].notification = true;
vdev->vq[i].vring.num = vdev->vq[i].vring.num_default;
}
}
uint32_t virtio_config_readb(VirtIODevice *vdev, uint32_t addr)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint8_t val;
if (addr + sizeof(val) > vdev->config_len) {
return (uint32_t)-1;
}
k->get_config(vdev, vdev->config);
val = ldub_p(vdev->config + addr);
return val;
}
uint32_t virtio_config_readw(VirtIODevice *vdev, uint32_t addr)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint16_t val;
if (addr + sizeof(val) > vdev->config_len) {
return (uint32_t)-1;
}
k->get_config(vdev, vdev->config);
val = lduw_p(vdev->config + addr);
return val;
}
uint32_t virtio_config_readl(VirtIODevice *vdev, uint32_t addr)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint32_t val;
if (addr + sizeof(val) > vdev->config_len) {
return (uint32_t)-1;
}
k->get_config(vdev, vdev->config);
val = ldl_p(vdev->config + addr);
return val;
}
void virtio_config_writeb(VirtIODevice *vdev, uint32_t addr, uint32_t data)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint8_t val = data;
if (addr + sizeof(val) > vdev->config_len) {
return;
}
stb_p(vdev->config + addr, val);
if (k->set_config) {
k->set_config(vdev, vdev->config);
}
}
void virtio_config_writew(VirtIODevice *vdev, uint32_t addr, uint32_t data)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint16_t val = data;
if (addr + sizeof(val) > vdev->config_len) {
return;
}
stw_p(vdev->config + addr, val);
if (k->set_config) {
k->set_config(vdev, vdev->config);
}
}
void virtio_config_writel(VirtIODevice *vdev, uint32_t addr, uint32_t data)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint32_t val = data;
if (addr + sizeof(val) > vdev->config_len) {
return;
}
stl_p(vdev->config + addr, val);
if (k->set_config) {
k->set_config(vdev, vdev->config);
}
}
uint32_t virtio_config_modern_readb(VirtIODevice *vdev, uint32_t addr)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint8_t val;
if (addr + sizeof(val) > vdev->config_len) {
return (uint32_t)-1;
}
k->get_config(vdev, vdev->config);
val = ldub_p(vdev->config + addr);
return val;
}
uint32_t virtio_config_modern_readw(VirtIODevice *vdev, uint32_t addr)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint16_t val;
if (addr + sizeof(val) > vdev->config_len) {
return (uint32_t)-1;
}
k->get_config(vdev, vdev->config);
val = lduw_le_p(vdev->config + addr);
return val;
}
uint32_t virtio_config_modern_readl(VirtIODevice *vdev, uint32_t addr)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint32_t val;
if (addr + sizeof(val) > vdev->config_len) {
return (uint32_t)-1;
}
k->get_config(vdev, vdev->config);
val = ldl_le_p(vdev->config + addr);
return val;
}
void virtio_config_modern_writeb(VirtIODevice *vdev,
uint32_t addr, uint32_t data)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint8_t val = data;
if (addr + sizeof(val) > vdev->config_len) {
return;
}
stb_p(vdev->config + addr, val);
if (k->set_config) {
k->set_config(vdev, vdev->config);
}
}
void virtio_config_modern_writew(VirtIODevice *vdev,
uint32_t addr, uint32_t data)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint16_t val = data;
if (addr + sizeof(val) > vdev->config_len) {
return;
}
stw_le_p(vdev->config + addr, val);
if (k->set_config) {
k->set_config(vdev, vdev->config);
}
}
void virtio_config_modern_writel(VirtIODevice *vdev,
uint32_t addr, uint32_t data)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
uint32_t val = data;
if (addr + sizeof(val) > vdev->config_len) {
return;
}
stl_le_p(vdev->config + addr, val);
if (k->set_config) {
k->set_config(vdev, vdev->config);
}
}
void virtio_queue_set_addr(VirtIODevice *vdev, int n, hwaddr addr)
{
vdev->vq[n].vring.desc = addr;
virtio_queue_update_rings(vdev, n);
}
hwaddr virtio_queue_get_addr(VirtIODevice *vdev, int n)
{
return vdev->vq[n].vring.desc;
}
void virtio_queue_set_rings(VirtIODevice *vdev, int n, hwaddr desc,
hwaddr avail, hwaddr used)
{
vdev->vq[n].vring.desc = desc;
vdev->vq[n].vring.avail = avail;
vdev->vq[n].vring.used = used;
}
void virtio_queue_set_num(VirtIODevice *vdev, int n, int num)
{
/* Don't allow guest to flip queue between existent and
* nonexistent states, or to set it to an invalid size.
*/
if (!!num != !!vdev->vq[n].vring.num ||
num > VIRTQUEUE_MAX_SIZE ||
num < 0) {
return;
}
vdev->vq[n].vring.num = num;
}
VirtQueue *virtio_vector_first_queue(VirtIODevice *vdev, uint16_t vector)
{
return QLIST_FIRST(&vdev->vector_queues[vector]);
}
VirtQueue *virtio_vector_next_queue(VirtQueue *vq)
{
return QLIST_NEXT(vq, node);
}
int virtio_queue_get_num(VirtIODevice *vdev, int n)
{
return vdev->vq[n].vring.num;
}
int virtio_get_num_queues(VirtIODevice *vdev)
{
int i;
for (i = 0; i < VIRTIO_QUEUE_MAX; i++) {
if (!virtio_queue_get_num(vdev, i)) {
break;
}
}
return i;
}
int virtio_queue_get_id(VirtQueue *vq)
{
VirtIODevice *vdev = vq->vdev;
assert(vq >= &vdev->vq[0] && vq < &vdev->vq[VIRTIO_QUEUE_MAX]);
return vq - &vdev->vq[0];
}
void virtio_queue_set_align(VirtIODevice *vdev, int n, int align)
{
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
/* virtio-1 compliant devices cannot change the alignment */
if (virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) {
error_report("tried to modify queue alignment for virtio-1 device");
return;
}
/* Check that the transport told us it was going to do this
* (so a buggy transport will immediately assert rather than
* silently failing to migrate this state)
*/
assert(k->has_variable_vring_alignment);
vdev->vq[n].vring.align = align;
virtio_queue_update_rings(vdev, n);
}
void virtio_queue_notify_vq(VirtQueue *vq)
{
if (vq->vring.desc && vq->handle_output) {
VirtIODevice *vdev = vq->vdev;
trace_virtio_queue_notify(vdev, vq - vdev->vq, vq);
vq->handle_output(vdev, vq);
}
}
void virtio_queue_notify(VirtIODevice *vdev, int n)
{
virtio_queue_notify_vq(&vdev->vq[n]);
}
uint16_t virtio_queue_vector(VirtIODevice *vdev, int n)
{
return n < VIRTIO_QUEUE_MAX ? vdev->vq[n].vector :
VIRTIO_NO_VECTOR;
}
void virtio_queue_set_vector(VirtIODevice *vdev, int n, uint16_t vector)
{
VirtQueue *vq = &vdev->vq[n];
if (n < VIRTIO_QUEUE_MAX) {
if (vdev->vector_queues &&
vdev->vq[n].vector != VIRTIO_NO_VECTOR) {
QLIST_REMOVE(vq, node);
}
vdev->vq[n].vector = vector;
if (vdev->vector_queues &&
vector != VIRTIO_NO_VECTOR) {
QLIST_INSERT_HEAD(&vdev->vector_queues[vector], vq, node);
}
}
}
VirtQueue *virtio_add_queue(VirtIODevice *vdev, int queue_size,
void (*handle_output)(VirtIODevice *, VirtQueue *))
{
int i;
for (i = 0; i < VIRTIO_QUEUE_MAX; i++) {
if (vdev->vq[i].vring.num == 0)
break;
}
if (i == VIRTIO_QUEUE_MAX || queue_size > VIRTQUEUE_MAX_SIZE)
abort();
vdev->vq[i].vring.num = queue_size;
vdev->vq[i].vring.num_default = queue_size;
vdev->vq[i].vring.align = VIRTIO_PCI_VRING_ALIGN;
vdev->vq[i].handle_output = handle_output;
return &vdev->vq[i];
}
void virtio_del_queue(VirtIODevice *vdev, int n)
{
if (n < 0 || n >= VIRTIO_QUEUE_MAX) {
abort();
}
vdev->vq[n].vring.num = 0;
vdev->vq[n].vring.num_default = 0;
}
void virtio_irq(VirtQueue *vq)
{
trace_virtio_irq(vq);
vq->vdev->isr |= 0x01;
virtio_notify_vector(vq->vdev, vq->vector);
}
static bool vring_notify(VirtIODevice *vdev, VirtQueue *vq)
{
uint16_t old, new;
bool v;
/* We need to expose used array entries before checking used event. */
smp_mb();
/* Always notify when queue is empty (when feature acknowledge) */
if (virtio_vdev_has_feature(vdev, VIRTIO_F_NOTIFY_ON_EMPTY) &&
!vq->inuse && virtio_queue_empty(vq)) {
return true;
}
if (!virtio_vdev_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX)) {
return !(vring_avail_flags(vq) & VRING_AVAIL_F_NO_INTERRUPT);
}
v = vq->signalled_used_valid;
vq->signalled_used_valid = true;
old = vq->signalled_used;
new = vq->signalled_used = vq->used_idx;
return !v || vring_need_event(vring_get_used_event(vq), new, old);
}
void virtio_notify(VirtIODevice *vdev, VirtQueue *vq)
{
if (!vring_notify(vdev, vq)) {
return;
}
trace_virtio_notify(vdev, vq);
vdev->isr |= 0x01;
virtio_notify_vector(vdev, vq->vector);
}
void virtio_notify_config(VirtIODevice *vdev)
{
if (!(vdev->status & VIRTIO_CONFIG_S_DRIVER_OK))
return;
vdev->isr |= 0x03;
vdev->generation++;
virtio_notify_vector(vdev, vdev->config_vector);
}
static bool virtio_device_endian_needed(void *opaque)
{
VirtIODevice *vdev = opaque;
assert(vdev->device_endian != VIRTIO_DEVICE_ENDIAN_UNKNOWN);
if (!virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) {
return vdev->device_endian != virtio_default_endian();
}
/* Devices conforming to VIRTIO 1.0 or later are always LE. */
return vdev->device_endian != VIRTIO_DEVICE_ENDIAN_LITTLE;
}
static bool virtio_64bit_features_needed(void *opaque)
{
VirtIODevice *vdev = opaque;
return (vdev->host_features >> 32) != 0;
}
static bool virtio_virtqueue_needed(void *opaque)
{
VirtIODevice *vdev = opaque;
return virtio_host_has_feature(vdev, VIRTIO_F_VERSION_1);
}
static bool virtio_ringsize_needed(void *opaque)
{
VirtIODevice *vdev = opaque;
int i;
for (i = 0; i < VIRTIO_QUEUE_MAX; i++) {
if (vdev->vq[i].vring.num != vdev->vq[i].vring.num_default) {
return true;
}
}
return false;
}
static bool virtio_extra_state_needed(void *opaque)
{
VirtIODevice *vdev = opaque;
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
return k->has_extra_state &&
k->has_extra_state(qbus->parent);
}
static const VMStateDescription vmstate_virtqueue = {
.name = "virtqueue_state",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(vring.avail, struct VirtQueue),
VMSTATE_UINT64(vring.used, struct VirtQueue),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_virtio_virtqueues = {
.name = "virtio/virtqueues",
.version_id = 1,
.minimum_version_id = 1,
.needed = &virtio_virtqueue_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_VARRAY_POINTER_KNOWN(vq, struct VirtIODevice,
VIRTIO_QUEUE_MAX, 0, vmstate_virtqueue, VirtQueue),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_ringsize = {
.name = "ringsize_state",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(vring.num_default, struct VirtQueue),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_virtio_ringsize = {
.name = "virtio/ringsize",
.version_id = 1,
.minimum_version_id = 1,
.needed = &virtio_ringsize_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_VARRAY_POINTER_KNOWN(vq, struct VirtIODevice,
VIRTIO_QUEUE_MAX, 0, vmstate_ringsize, VirtQueue),
VMSTATE_END_OF_LIST()
}
};
static int get_extra_state(QEMUFile *f, void *pv, size_t size)
{
VirtIODevice *vdev = pv;
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
if (!k->load_extra_state) {
return -1;
} else {
return k->load_extra_state(qbus->parent, f);
}
}
static void put_extra_state(QEMUFile *f, void *pv, size_t size)
{
VirtIODevice *vdev = pv;
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
k->save_extra_state(qbus->parent, f);
}
static const VMStateInfo vmstate_info_extra_state = {
.name = "virtqueue_extra_state",
.get = get_extra_state,
.put = put_extra_state,
};
static const VMStateDescription vmstate_virtio_extra_state = {
.name = "virtio/extra_state",
.version_id = 1,
.minimum_version_id = 1,
.needed = &virtio_extra_state_needed,
.fields = (VMStateField[]) {
{
.name = "extra_state",
.version_id = 0,
.field_exists = NULL,
.size = 0,
.info = &vmstate_info_extra_state,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_virtio_device_endian = {
.name = "virtio/device_endian",
.version_id = 1,
.minimum_version_id = 1,
.needed = &virtio_device_endian_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(device_endian, VirtIODevice),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_virtio_64bit_features = {
.name = "virtio/64bit_features",
.version_id = 1,
.minimum_version_id = 1,
.needed = &virtio_64bit_features_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(guest_features, VirtIODevice),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_virtio = {
.name = "virtio",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_virtio_device_endian,
&vmstate_virtio_64bit_features,
&vmstate_virtio_virtqueues,
&vmstate_virtio_ringsize,
&vmstate_virtio_extra_state,
NULL
}
};
void virtio_save(VirtIODevice *vdev, QEMUFile *f)
{
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(vdev);
uint32_t guest_features_lo = (vdev->guest_features & 0xffffffff);
int i;
if (k->save_config) {
k->save_config(qbus->parent, f);
}
qemu_put_8s(f, &vdev->status);
qemu_put_8s(f, &vdev->isr);
qemu_put_be16s(f, &vdev->queue_sel);
qemu_put_be32s(f, &guest_features_lo);
qemu_put_be32(f, vdev->config_len);
qemu_put_buffer(f, vdev->config, vdev->config_len);
for (i = 0; i < VIRTIO_QUEUE_MAX; i++) {
if (vdev->vq[i].vring.num == 0)
break;
}
qemu_put_be32(f, i);
for (i = 0; i < VIRTIO_QUEUE_MAX; i++) {
if (vdev->vq[i].vring.num == 0)
break;
qemu_put_be32(f, vdev->vq[i].vring.num);
if (k->has_variable_vring_alignment) {
qemu_put_be32(f, vdev->vq[i].vring.align);
}
/* XXX virtio-1 devices */
qemu_put_be64(f, vdev->vq[i].vring.desc);
qemu_put_be16s(f, &vdev->vq[i].last_avail_idx);
if (k->save_queue) {
k->save_queue(qbus->parent, i, f);
}
}
if (vdc->save != NULL) {
vdc->save(vdev, f);
}
/* Subsections */
vmstate_save_state(f, &vmstate_virtio, vdev, NULL);
}
static int virtio_set_features_nocheck(VirtIODevice *vdev, uint64_t val)
{
VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev);
bool bad = (val & ~(vdev->host_features)) != 0;
val &= vdev->host_features;
if (k->set_features) {
k->set_features(vdev, val);
}
vdev->guest_features = val;
return bad ? -1 : 0;
}
int virtio_set_features(VirtIODevice *vdev, uint64_t val)
{
/*
* The driver must not attempt to set features after feature negotiation
* has finished.
*/
if (vdev->status & VIRTIO_CONFIG_S_FEATURES_OK) {
return -EINVAL;
}
return virtio_set_features_nocheck(vdev, val);
}
int virtio_load(VirtIODevice *vdev, QEMUFile *f, int version_id)
{
int i, ret;
int32_t config_len;
uint32_t num;
uint32_t features;
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(vdev);
/*
* We poison the endianness to ensure it does not get used before
* subsections have been loaded.
*/
vdev->device_endian = VIRTIO_DEVICE_ENDIAN_UNKNOWN;
if (k->load_config) {
ret = k->load_config(qbus->parent, f);
if (ret)
return ret;
}
qemu_get_8s(f, &vdev->status);
qemu_get_8s(f, &vdev->isr);
qemu_get_be16s(f, &vdev->queue_sel);
if (vdev->queue_sel >= VIRTIO_QUEUE_MAX) {
return -1;
}
qemu_get_be32s(f, &features);
config_len = qemu_get_be32(f);
/*
* There are cases where the incoming config can be bigger or smaller
* than what we have; so load what we have space for, and skip
* any excess that's in the stream.
*/
qemu_get_buffer(f, vdev->config, MIN(config_len, vdev->config_len));
while (config_len > vdev->config_len) {
qemu_get_byte(f);
config_len--;
}
num = qemu_get_be32(f);
if (num > VIRTIO_QUEUE_MAX) {
error_report("Invalid number of virtqueues: 0x%x", num);
return -1;
}
for (i = 0; i < num; i++) {
vdev->vq[i].vring.num = qemu_get_be32(f);
if (k->has_variable_vring_alignment) {
vdev->vq[i].vring.align = qemu_get_be32(f);
}
vdev->vq[i].vring.desc = qemu_get_be64(f);
qemu_get_be16s(f, &vdev->vq[i].last_avail_idx);
vdev->vq[i].signalled_used_valid = false;
vdev->vq[i].notification = true;
if (vdev->vq[i].vring.desc) {
/* XXX virtio-1 devices */
virtio_queue_update_rings(vdev, i);
} else if (vdev->vq[i].last_avail_idx) {
error_report("VQ %d address 0x0 "
"inconsistent with Host index 0x%x",
i, vdev->vq[i].last_avail_idx);
return -1;
}
if (k->load_queue) {
ret = k->load_queue(qbus->parent, i, f);
if (ret)
return ret;
}
}
virtio_notify_vector(vdev, VIRTIO_NO_VECTOR);
if (vdc->load != NULL) {
ret = vdc->load(vdev, f, version_id);
if (ret) {
return ret;
}
}
/* Subsections */
ret = vmstate_load_state(f, &vmstate_virtio, vdev, 1);
if (ret) {
return ret;
}
if (vdev->device_endian == VIRTIO_DEVICE_ENDIAN_UNKNOWN) {
vdev->device_endian = virtio_default_endian();
}
if (virtio_64bit_features_needed(vdev)) {
/*
* Subsection load filled vdev->guest_features. Run them
* through virtio_set_features to sanity-check them against
* host_features.
*/
uint64_t features64 = vdev->guest_features;
if (virtio_set_features_nocheck(vdev, features64) < 0) {
error_report("Features 0x%" PRIx64 " unsupported. "
"Allowed features: 0x%" PRIx64,
features64, vdev->host_features);
return -1;
}
} else {
if (virtio_set_features_nocheck(vdev, features) < 0) {
error_report("Features 0x%x unsupported. "
"Allowed features: 0x%" PRIx64,
features, vdev->host_features);
return -1;
}
}
for (i = 0; i < num; i++) {
if (vdev->vq[i].vring.desc) {
uint16_t nheads;
nheads = vring_avail_idx(&vdev->vq[i]) - vdev->vq[i].last_avail_idx;
/* Check it isn't doing strange things with descriptor numbers. */
if (nheads > vdev->vq[i].vring.num) {
error_report("VQ %d size 0x%x Guest index 0x%x "
"inconsistent with Host index 0x%x: delta 0x%x",
i, vdev->vq[i].vring.num,
vring_avail_idx(&vdev->vq[i]),
vdev->vq[i].last_avail_idx, nheads);
return -1;
}
vdev->vq[i].used_idx = vring_used_idx(&vdev->vq[i]);
vdev->vq[i].shadow_avail_idx = vring_avail_idx(&vdev->vq[i]);
}
}
return 0;
}
void virtio_cleanup(VirtIODevice *vdev)
{
qemu_del_vm_change_state_handler(vdev->vmstate);
g_free(vdev->config);
g_free(vdev->vq);
g_free(vdev->vector_queues);
}
static void virtio_vmstate_change(void *opaque, int running, RunState state)
{
VirtIODevice *vdev = opaque;
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
bool backend_run = running && (vdev->status & VIRTIO_CONFIG_S_DRIVER_OK);
vdev->vm_running = running;
if (backend_run) {
virtio_set_status(vdev, vdev->status);
}
if (k->vmstate_change) {
k->vmstate_change(qbus->parent, backend_run);
}
if (!backend_run) {
virtio_set_status(vdev, vdev->status);
}
}
void virtio_instance_init_common(Object *proxy_obj, void *data,
size_t vdev_size, const char *vdev_name)
{
DeviceState *vdev = data;
object_initialize(vdev, vdev_size, vdev_name);
object_property_add_child(proxy_obj, "virtio-backend", OBJECT(vdev), NULL);
object_unref(OBJECT(vdev));
qdev_alias_all_properties(vdev, proxy_obj);
}
void virtio_init(VirtIODevice *vdev, const char *name,
uint16_t device_id, size_t config_size)
{
BusState *qbus = qdev_get_parent_bus(DEVICE(vdev));
VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
int i;
int nvectors = k->query_nvectors ? k->query_nvectors(qbus->parent) : 0;
if (nvectors) {
vdev->vector_queues =
g_malloc0(sizeof(*vdev->vector_queues) * nvectors);
}
vdev->device_id = device_id;
vdev->status = 0;
vdev->isr = 0;
vdev->queue_sel = 0;
vdev->config_vector = VIRTIO_NO_VECTOR;
vdev->vq = g_malloc0(sizeof(VirtQueue) * VIRTIO_QUEUE_MAX);
vdev->vm_running = runstate_is_running();
for (i = 0; i < VIRTIO_QUEUE_MAX; i++) {
vdev->vq[i].vector = VIRTIO_NO_VECTOR;
vdev->vq[i].vdev = vdev;
vdev->vq[i].queue_index = i;
}
vdev->name = name;
vdev->config_len = config_size;
if (vdev->config_len) {
vdev->config = g_malloc0(config_size);
} else {
vdev->config = NULL;
}
vdev->vmstate = qemu_add_vm_change_state_handler(virtio_vmstate_change,
vdev);
vdev->device_endian = virtio_default_endian();
}
hwaddr virtio_queue_get_desc_addr(VirtIODevice *vdev, int n)
{
return vdev->vq[n].vring.desc;
}
hwaddr virtio_queue_get_avail_addr(VirtIODevice *vdev, int n)
{
return vdev->vq[n].vring.avail;
}
hwaddr virtio_queue_get_used_addr(VirtIODevice *vdev, int n)
{
return vdev->vq[n].vring.used;
}
hwaddr virtio_queue_get_ring_addr(VirtIODevice *vdev, int n)
{
return vdev->vq[n].vring.desc;
}
hwaddr virtio_queue_get_desc_size(VirtIODevice *vdev, int n)
{
return sizeof(VRingDesc) * vdev->vq[n].vring.num;
}
hwaddr virtio_queue_get_avail_size(VirtIODevice *vdev, int n)
{
return offsetof(VRingAvail, ring) +
sizeof(uint16_t) * vdev->vq[n].vring.num;
}
hwaddr virtio_queue_get_used_size(VirtIODevice *vdev, int n)
{
return offsetof(VRingUsed, ring) +
sizeof(VRingUsedElem) * vdev->vq[n].vring.num;
}
hwaddr virtio_queue_get_ring_size(VirtIODevice *vdev, int n)
{
return vdev->vq[n].vring.used - vdev->vq[n].vring.desc +
virtio_queue_get_used_size(vdev, n);
}
uint16_t virtio_queue_get_last_avail_idx(VirtIODevice *vdev, int n)
{
return vdev->vq[n].last_avail_idx;
}
void virtio_queue_set_last_avail_idx(VirtIODevice *vdev, int n, uint16_t idx)
{
vdev->vq[n].last_avail_idx = idx;
vdev->vq[n].shadow_avail_idx = idx;
}
void virtio_queue_invalidate_signalled_used(VirtIODevice *vdev, int n)
{
vdev->vq[n].signalled_used_valid = false;
}
VirtQueue *virtio_get_queue(VirtIODevice *vdev, int n)
{
return vdev->vq + n;
}
uint16_t virtio_get_queue_index(VirtQueue *vq)
{
return vq->queue_index;
}
static void virtio_queue_guest_notifier_read(EventNotifier *n)
{
VirtQueue *vq = container_of(n, VirtQueue, guest_notifier);
if (event_notifier_test_and_clear(n)) {
virtio_irq(vq);
}
}
void virtio_queue_set_guest_notifier_fd_handler(VirtQueue *vq, bool assign,
bool with_irqfd)
{
if (assign && !with_irqfd) {
event_notifier_set_handler(&vq->guest_notifier,
virtio_queue_guest_notifier_read);
} else {
event_notifier_set_handler(&vq->guest_notifier, NULL);
}
if (!assign) {
/* Test and clear notifier before closing it,
* in case poll callback didn't have time to run. */
virtio_queue_guest_notifier_read(&vq->guest_notifier);
}
}
EventNotifier *virtio_queue_get_guest_notifier(VirtQueue *vq)
{
return &vq->guest_notifier;
}
static void virtio_queue_host_notifier_read(EventNotifier *n)
{
VirtQueue *vq = container_of(n, VirtQueue, host_notifier);
if (event_notifier_test_and_clear(n)) {
virtio_queue_notify_vq(vq);
}
}
void virtio_queue_set_host_notifier_fd_handler(VirtQueue *vq, bool assign,
bool set_handler)
{
if (assign && set_handler) {
event_notifier_set_handler(&vq->host_notifier,
virtio_queue_host_notifier_read);
} else {
event_notifier_set_handler(&vq->host_notifier, NULL);
}
if (!assign) {
/* Test and clear notifier before after disabling event,
* in case poll callback didn't have time to run. */
virtio_queue_host_notifier_read(&vq->host_notifier);
}
}
EventNotifier *virtio_queue_get_host_notifier(VirtQueue *vq)
{
return &vq->host_notifier;
}
void virtio_device_set_child_bus_name(VirtIODevice *vdev, char *bus_name)
{
g_free(vdev->bus_name);
vdev->bus_name = g_strdup(bus_name);
}
static void virtio_device_realize(DeviceState *dev, Error **errp)
{
VirtIODevice *vdev = VIRTIO_DEVICE(dev);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(dev);
Error *err = NULL;
if (vdc->realize != NULL) {
vdc->realize(dev, &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
}
virtio_bus_device_plugged(vdev, &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
}
static void virtio_device_unrealize(DeviceState *dev, Error **errp)
{
VirtIODevice *vdev = VIRTIO_DEVICE(dev);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(dev);
Error *err = NULL;
virtio_bus_device_unplugged(vdev);
if (vdc->unrealize != NULL) {
vdc->unrealize(dev, &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
}
g_free(vdev->bus_name);
vdev->bus_name = NULL;
}
static Property virtio_properties[] = {
DEFINE_VIRTIO_COMMON_FEATURES(VirtIODevice, host_features),
DEFINE_PROP_END_OF_LIST(),
};
static void virtio_device_class_init(ObjectClass *klass, void *data)
{
/* Set the default value here. */
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = virtio_device_realize;
dc->unrealize = virtio_device_unrealize;
dc->bus_type = TYPE_VIRTIO_BUS;
dc->props = virtio_properties;
}
static const TypeInfo virtio_device_info = {
.name = TYPE_VIRTIO_DEVICE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(VirtIODevice),
.class_init = virtio_device_class_init,
.abstract = true,
.class_size = sizeof(VirtioDeviceClass),
};
static void virtio_register_types(void)
{
type_register_static(&virtio_device_info);
}
type_init(virtio_register_types)