| /* | 
 |  * QTest testcase for parallel flash with AMD command set | 
 |  * | 
 |  * Copyright (c) 2019 Stephen Checkoway | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
 |  * See the COPYING file in the top-level directory. | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "libqtest.h" | 
 |  | 
 | /* | 
 |  * To test the pflash_cfi02 device, we run QEMU with the musicpal machine with | 
 |  * a pflash drive. This enables us to test some flash configurations, but not | 
 |  * all. In particular, we're limited to a 16-bit wide flash device. | 
 |  */ | 
 |  | 
 | #define MP_FLASH_SIZE_MAX (32 * 1024 * 1024) | 
 | #define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX) | 
 |  | 
 | #define UNIFORM_FLASH_SIZE (8 * 1024 * 1024) | 
 | #define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024) | 
 |  | 
 | /* Use a newtype to keep flash addresses separate from byte addresses. */ | 
 | typedef struct { | 
 |     uint64_t addr; | 
 | } faddr; | 
 | #define FLASH_ADDR(x) ((faddr) { .addr = (x) }) | 
 |  | 
 | #define CFI_ADDR FLASH_ADDR(0x55) | 
 | #define UNLOCK0_ADDR FLASH_ADDR(0x555) | 
 | #define UNLOCK1_ADDR FLASH_ADDR(0x2AA) | 
 |  | 
 | #define CFI_CMD 0x98 | 
 | #define UNLOCK0_CMD 0xAA | 
 | #define UNLOCK1_CMD 0x55 | 
 | #define SECOND_UNLOCK_CMD 0x80 | 
 | #define AUTOSELECT_CMD 0x90 | 
 | #define RESET_CMD 0xF0 | 
 | #define PROGRAM_CMD 0xA0 | 
 | #define SECTOR_ERASE_CMD 0x30 | 
 | #define CHIP_ERASE_CMD 0x10 | 
 | #define UNLOCK_BYPASS_CMD 0x20 | 
 | #define UNLOCK_BYPASS_RESET_CMD 0x00 | 
 | #define ERASE_SUSPEND_CMD 0xB0 | 
 | #define ERASE_RESUME_CMD SECTOR_ERASE_CMD | 
 |  | 
 | typedef struct { | 
 |     int bank_width; | 
 |  | 
 |     /* Nonuniform block size. */ | 
 |     int nb_blocs[4]; | 
 |     int sector_len[4]; | 
 |  | 
 |     QTestState *qtest; | 
 | } FlashConfig; | 
 |  | 
 | static char *image_path; | 
 |  | 
 | /* | 
 |  * The pflash implementation allows some parameters to be unspecified. We want | 
 |  * to test those configurations but we also need to know the real values in | 
 |  * our testing code. So after we launch qemu, we'll need a new FlashConfig | 
 |  * with the correct values filled in. | 
 |  */ | 
 | static FlashConfig expand_config_defaults(const FlashConfig *c) | 
 | { | 
 |     FlashConfig ret = *c; | 
 |  | 
 |     if (ret.bank_width == 0) { | 
 |         ret.bank_width = 2; | 
 |     } | 
 |     if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) { | 
 |         ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE; | 
 |         ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE; | 
 |     } | 
 |  | 
 |     /* XXX: Limitations of test harness. */ | 
 |     assert(ret.bank_width == 2); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Return a bit mask suitable for extracting the least significant | 
 |  * status/query response from an interleaved response. | 
 |  */ | 
 | static inline uint64_t device_mask(const FlashConfig *c) | 
 | { | 
 |     return (uint64_t)-1; | 
 | } | 
 |  | 
 | /* | 
 |  * Return a bit mask exactly as long as the bank_width. | 
 |  */ | 
 | static inline uint64_t bank_mask(const FlashConfig *c) | 
 | { | 
 |     if (c->bank_width == 8) { | 
 |         return (uint64_t)-1; | 
 |     } | 
 |     return (1ULL << (c->bank_width * 8)) - 1ULL; | 
 | } | 
 |  | 
 | static inline void flash_write(const FlashConfig *c, uint64_t byte_addr, | 
 |                                uint64_t data) | 
 | { | 
 |     /* Sanity check our tests. */ | 
 |     assert((data & ~bank_mask(c)) == 0); | 
 |     uint64_t addr = BASE_ADDR + byte_addr; | 
 |     switch (c->bank_width) { | 
 |     case 1: | 
 |         qtest_writeb(c->qtest, addr, data); | 
 |         break; | 
 |     case 2: | 
 |         qtest_writew(c->qtest, addr, data); | 
 |         break; | 
 |     case 4: | 
 |         qtest_writel(c->qtest, addr, data); | 
 |         break; | 
 |     case 8: | 
 |         qtest_writeq(c->qtest, addr, data); | 
 |         break; | 
 |     default: | 
 |         abort(); | 
 |     } | 
 | } | 
 |  | 
 | static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr) | 
 | { | 
 |     uint64_t addr = BASE_ADDR + byte_addr; | 
 |     switch (c->bank_width) { | 
 |     case 1: | 
 |         return qtest_readb(c->qtest, addr); | 
 |     case 2: | 
 |         return qtest_readw(c->qtest, addr); | 
 |     case 4: | 
 |         return qtest_readl(c->qtest, addr); | 
 |     case 8: | 
 |         return qtest_readq(c->qtest, addr); | 
 |     default: | 
 |         abort(); | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * Convert a flash address expressed in the maximum width of the device as a | 
 |  * byte address. | 
 |  */ | 
 | static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr) | 
 | { | 
 |     /* | 
 |      * Command addresses are always given as addresses in the maximum | 
 |      * supported bus size for the flash chip. So an x8/x16 chip in x8 mode | 
 |      * uses addresses 0xAAA and 0x555 to unlock because the least significant | 
 |      * bit is ignored. (0x555 rather than 0x554 is traditional.) | 
 |      * | 
 |      * In general we need to multiply by the maximum device width. | 
 |      */ | 
 |     return flash_addr.addr * c->bank_width; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the command value or expected status replicated across all devices. | 
 |  */ | 
 | static inline uint64_t replicate(const FlashConfig *c, uint64_t data) | 
 | { | 
 |     /* Sanity check our tests. */ | 
 |     assert((data & ~device_mask(c)) == 0); | 
 |     return data; | 
 | } | 
 |  | 
 | static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr, | 
 |                              uint8_t cmd) | 
 | { | 
 |     flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd)); | 
 | } | 
 |  | 
 | static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr) | 
 | { | 
 |     return flash_read(c, as_byte_addr(c, query_addr)); | 
 | } | 
 |  | 
 | static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr) | 
 | { | 
 |     return flash_query(c, query_addr) & device_mask(c); | 
 | } | 
 |  | 
 | static void unlock(const FlashConfig *c) | 
 | { | 
 |     flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD); | 
 |     flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD); | 
 | } | 
 |  | 
 | static void reset(const FlashConfig *c) | 
 | { | 
 |     flash_cmd(c, FLASH_ADDR(0), RESET_CMD); | 
 | } | 
 |  | 
 | static void sector_erase(const FlashConfig *c, uint64_t byte_addr) | 
 | { | 
 |     unlock(c); | 
 |     flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD); | 
 |     unlock(c); | 
 |     flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD)); | 
 | } | 
 |  | 
 | static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr) | 
 | { | 
 |     /* If DQ6 is toggling, step the clock and ensure the toggle stops. */ | 
 |     const uint64_t dq6 = replicate(c, 0x40); | 
 |     if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) { | 
 |         /* Wait for erase or program to finish. */ | 
 |         qtest_clock_step_next(c->qtest); | 
 |         /* Ensure that DQ6 has stopped toggling. */ | 
 |         g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr)); | 
 |     } | 
 | } | 
 |  | 
 | static void bypass_program(const FlashConfig *c, uint64_t byte_addr, | 
 |                            uint16_t data) | 
 | { | 
 |     flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD); | 
 |     flash_write(c, byte_addr, data); | 
 |     /* | 
 |      * Data isn't valid until DQ6 stops toggling. We don't model this as | 
 |      * writes are immediate, but if this changes in the future, we can wait | 
 |      * until the program is complete. | 
 |      */ | 
 |     wait_for_completion(c, byte_addr); | 
 | } | 
 |  | 
 | static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data) | 
 | { | 
 |     unlock(c); | 
 |     bypass_program(c, byte_addr, data); | 
 | } | 
 |  | 
 | static void chip_erase(const FlashConfig *c) | 
 | { | 
 |     unlock(c); | 
 |     flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD); | 
 |     unlock(c); | 
 |     flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD); | 
 | } | 
 |  | 
 | static void erase_suspend(const FlashConfig *c) | 
 | { | 
 |     flash_cmd(c, FLASH_ADDR(0), ERASE_SUSPEND_CMD); | 
 | } | 
 |  | 
 | static void erase_resume(const FlashConfig *c) | 
 | { | 
 |     flash_cmd(c, FLASH_ADDR(0), ERASE_RESUME_CMD); | 
 | } | 
 |  | 
 | /* | 
 |  * Test flash commands with a variety of device geometry. | 
 |  */ | 
 | static void test_geometry(const void *opaque) | 
 | { | 
 |     const FlashConfig *config = opaque; | 
 |     QTestState *qtest; | 
 |     qtest = qtest_initf("-M musicpal" | 
 |                         " -drive if=pflash,file=%s,format=raw,copy-on-read=on" | 
 |                         /* Device geometry properties. */ | 
 |                         " -global driver=cfi.pflash02," | 
 |                         "property=num-blocks0,value=%d" | 
 |                         " -global driver=cfi.pflash02," | 
 |                         "property=sector-length0,value=%d" | 
 |                         " -global driver=cfi.pflash02," | 
 |                         "property=num-blocks1,value=%d" | 
 |                         " -global driver=cfi.pflash02," | 
 |                         "property=sector-length1,value=%d" | 
 |                         " -global driver=cfi.pflash02," | 
 |                         "property=num-blocks2,value=%d" | 
 |                         " -global driver=cfi.pflash02," | 
 |                         "property=sector-length2,value=%d" | 
 |                         " -global driver=cfi.pflash02," | 
 |                         "property=num-blocks3,value=%d" | 
 |                         " -global driver=cfi.pflash02," | 
 |                         "property=sector-length3,value=%d", | 
 |                         image_path, | 
 |                         config->nb_blocs[0], | 
 |                         config->sector_len[0], | 
 |                         config->nb_blocs[1], | 
 |                         config->sector_len[1], | 
 |                         config->nb_blocs[2], | 
 |                         config->sector_len[2], | 
 |                         config->nb_blocs[3], | 
 |                         config->sector_len[3]); | 
 |     FlashConfig explicit_config = expand_config_defaults(config); | 
 |     explicit_config.qtest = qtest; | 
 |     const FlashConfig *c = &explicit_config; | 
 |  | 
 |     /* Check the IDs. */ | 
 |     unlock(c); | 
 |     flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF)); | 
 |     if (c->bank_width >= 2) { | 
 |         /* | 
 |          * XXX: The ID returned by the musicpal flash chip is 16 bits which | 
 |          * wouldn't happen with an 8-bit device. It would probably be best to | 
 |          * prohibit addresses larger than the device width in pflash_cfi02.c, | 
 |          * but then we couldn't test smaller device widths at all. | 
 |          */ | 
 |         g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==, | 
 |                         replicate(c, 0x236D)); | 
 |     } | 
 |     reset(c); | 
 |  | 
 |     /* Check the erase blocks. */ | 
 |     flash_cmd(c, CFI_ADDR, CFI_CMD); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q')); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R')); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y')); | 
 |  | 
 |     /* Num erase regions. */ | 
 |     int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C)); | 
 |     g_assert_cmphex(nb_erase_regions, ==, | 
 |                     !!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] + | 
 |                     !!c->nb_blocs[3]); | 
 |  | 
 |     /* Check device length. */ | 
 |     uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27)); | 
 |     g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE); | 
 |  | 
 |     /* Check that erase suspend to read/write is supported. */ | 
 |     uint16_t pri = flash_query_1(c, FLASH_ADDR(0x15)) + | 
 |                    (flash_query_1(c, FLASH_ADDR(0x16)) << 8); | 
 |     g_assert_cmpint(pri, >=, 0x2D + 4 * nb_erase_regions); | 
 |     g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 0)), ==, replicate(c, 'P')); | 
 |     g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 1)), ==, replicate(c, 'R')); | 
 |     g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 2)), ==, replicate(c, 'I')); | 
 |     g_assert_cmpint(flash_query_1(c, FLASH_ADDR(pri + 6)), ==, 2); /* R/W */ | 
 |     reset(c); | 
 |  | 
 |     const uint64_t dq7 = replicate(c, 0x80); | 
 |     const uint64_t dq6 = replicate(c, 0x40); | 
 |     const uint64_t dq3 = replicate(c, 0x08); | 
 |     const uint64_t dq2 = replicate(c, 0x04); | 
 |  | 
 |     uint64_t byte_addr = 0; | 
 |     for (int region = 0; region < nb_erase_regions; ++region) { | 
 |         uint64_t base = 0x2D + 4 * region; | 
 |         flash_cmd(c, CFI_ADDR, CFI_CMD); | 
 |         uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) + | 
 |                               (flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1; | 
 |         uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) + | 
 |                               (flash_query_1(c, FLASH_ADDR(base + 3)) << 16); | 
 |         g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]); | 
 |         g_assert_cmphex(sector_len, ==, c->sector_len[region]); | 
 |         reset(c); | 
 |  | 
 |         /* Erase and program sector. */ | 
 |         for (uint32_t i = 0; i < nb_sectors; ++i) { | 
 |             sector_erase(c, byte_addr); | 
 |  | 
 |             /* Check that DQ3 is 0. */ | 
 |             g_assert_cmphex(flash_read(c, byte_addr) & dq3, ==, 0); | 
 |             qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */ | 
 |  | 
 |             /* Check that DQ3 is 1. */ | 
 |             uint64_t status0 = flash_read(c, byte_addr); | 
 |             g_assert_cmphex(status0 & dq3, ==, dq3); | 
 |  | 
 |             /* DQ7 is 0 during an erase. */ | 
 |             g_assert_cmphex(status0 & dq7, ==, 0); | 
 |             uint64_t status1 = flash_read(c, byte_addr); | 
 |  | 
 |             /* DQ6 toggles during an erase. */ | 
 |             g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6); | 
 |  | 
 |             /* Wait for erase to complete. */ | 
 |             wait_for_completion(c, byte_addr); | 
 |  | 
 |             /* Ensure DQ6 has stopped toggling. */ | 
 |             g_assert_cmphex(flash_read(c, byte_addr), ==, | 
 |                             flash_read(c, byte_addr)); | 
 |  | 
 |             /* Now the data should be valid. */ | 
 |             g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c)); | 
 |  | 
 |             /* Program a bit pattern. */ | 
 |             program(c, byte_addr, 0x55); | 
 |             g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55); | 
 |             program(c, byte_addr, 0xA5); | 
 |             g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05); | 
 |             byte_addr += sector_len; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Erase the chip. */ | 
 |     chip_erase(c); | 
 |     /* Read toggle. */ | 
 |     uint64_t status0 = flash_read(c, 0); | 
 |     /* DQ7 is 0 during an erase. */ | 
 |     g_assert_cmphex(status0 & dq7, ==, 0); | 
 |     uint64_t status1 = flash_read(c, 0); | 
 |     /* DQ6 toggles during an erase. */ | 
 |     g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6); | 
 |     /* Wait for erase to complete. */ | 
 |     qtest_clock_step_next(c->qtest); | 
 |     /* Ensure DQ6 has stopped toggling. */ | 
 |     g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0)); | 
 |     /* Now the data should be valid. */ | 
 |  | 
 |     for (int region = 0; region < nb_erase_regions; ++region) { | 
 |         for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) { | 
 |             byte_addr = (uint64_t)i * c->sector_len[region]; | 
 |             g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c)); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Unlock bypass */ | 
 |     unlock(c); | 
 |     flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD); | 
 |     bypass_program(c, 0 * c->bank_width, 0x01); | 
 |     bypass_program(c, 1 * c->bank_width, 0x23); | 
 |     bypass_program(c, 2 * c->bank_width, 0x45); | 
 |     /* | 
 |      * Test that bypass programming, unlike normal programming can use any | 
 |      * address for the PROGRAM_CMD. | 
 |      */ | 
 |     flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD); | 
 |     flash_write(c, 3 * c->bank_width, 0x67); | 
 |     wait_for_completion(c, 3 * c->bank_width); | 
 |     flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD); | 
 |     bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */ | 
 |     g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01); | 
 |     g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23); | 
 |     g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45); | 
 |     g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67); | 
 |     g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c)); | 
 |  | 
 |     /* Test ignored high order bits of address. */ | 
 |     flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD); | 
 |     flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD); | 
 |     flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF)); | 
 |     reset(c); | 
 |  | 
 |     /* | 
 |      * Program a word on each sector, erase one or two sectors per region, and | 
 |      * verify that all of those, and only those, are erased. | 
 |      */ | 
 |     byte_addr = 0; | 
 |     for (int region = 0; region < nb_erase_regions; ++region) { | 
 |         for (int i = 0; i < config->nb_blocs[region]; ++i) { | 
 |             program(c, byte_addr, 0); | 
 |             byte_addr += config->sector_len[region]; | 
 |         } | 
 |     } | 
 |     unlock(c); | 
 |     flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD); | 
 |     unlock(c); | 
 |     byte_addr = 0; | 
 |     const uint64_t erase_cmd = replicate(c, SECTOR_ERASE_CMD); | 
 |     for (int region = 0; region < nb_erase_regions; ++region) { | 
 |         flash_write(c, byte_addr, erase_cmd); | 
 |         if (c->nb_blocs[region] > 1) { | 
 |             flash_write(c, byte_addr + c->sector_len[region], erase_cmd); | 
 |         } | 
 |         byte_addr += c->sector_len[region] * c->nb_blocs[region]; | 
 |     } | 
 |  | 
 |     qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */ | 
 |     wait_for_completion(c, 0); | 
 |     byte_addr = 0; | 
 |     for (int region = 0; region < nb_erase_regions; ++region) { | 
 |         for (int i = 0; i < config->nb_blocs[region]; ++i) { | 
 |             if (i < 2) { | 
 |                 g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c)); | 
 |             } else { | 
 |                 g_assert_cmphex(flash_read(c, byte_addr), ==, 0); | 
 |             } | 
 |             byte_addr += config->sector_len[region]; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Test erase suspend/resume during erase timeout. */ | 
 |     sector_erase(c, 0); | 
 |     /* | 
 |      * Check that DQ 3 is 0 and DQ6 and DQ2 are toggling in the sector being | 
 |      * erased as well as in a sector not being erased. | 
 |      */ | 
 |     byte_addr = c->sector_len[0]; | 
 |     status0 = flash_read(c, 0); | 
 |     status1 = flash_read(c, 0); | 
 |     g_assert_cmpint(status0 & dq3, ==, 0); | 
 |     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |     status0 = flash_read(c, byte_addr); | 
 |     status1 = flash_read(c, byte_addr); | 
 |     g_assert_cmpint(status0 & dq3, ==, 0); | 
 |     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |  | 
 |     /* | 
 |      * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in | 
 |      * an erase suspended sector but that neither toggle (we should be | 
 |      * getting data) in a sector not being erased. | 
 |      */ | 
 |     erase_suspend(c); | 
 |     status0 = flash_read(c, 0); | 
 |     status1 = flash_read(c, 0); | 
 |     g_assert_cmpint(status0 & dq6, ==, status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |     g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr)); | 
 |  | 
 |     /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */ | 
 |     erase_resume(c); | 
 |     status0 = flash_read(c, 0); | 
 |     status1 = flash_read(c, 0); | 
 |     g_assert_cmpint(status0 & dq3, ==, dq3); | 
 |     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |     status0 = flash_read(c, byte_addr); | 
 |     status1 = flash_read(c, byte_addr); | 
 |     g_assert_cmpint(status0 & dq3, ==, dq3); | 
 |     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |     wait_for_completion(c, 0); | 
 |  | 
 |     /* Repeat this process but this time suspend after the timeout. */ | 
 |     sector_erase(c, 0); | 
 |     qtest_clock_step_next(c->qtest); | 
 |     /* | 
 |      * Check that DQ 3 is 1 and DQ6 and DQ2 are toggling in the sector being | 
 |      * erased as well as in a sector not being erased. | 
 |      */ | 
 |     byte_addr = c->sector_len[0]; | 
 |     status0 = flash_read(c, 0); | 
 |     status1 = flash_read(c, 0); | 
 |     g_assert_cmpint(status0 & dq3, ==, dq3); | 
 |     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |     status0 = flash_read(c, byte_addr); | 
 |     status1 = flash_read(c, byte_addr); | 
 |     g_assert_cmpint(status0 & dq3, ==, dq3); | 
 |     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |  | 
 |     /* | 
 |      * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in | 
 |      * an erase suspended sector but that neither toggle (we should be | 
 |      * getting data) in a sector not being erased. | 
 |      */ | 
 |     erase_suspend(c); | 
 |     status0 = flash_read(c, 0); | 
 |     status1 = flash_read(c, 0); | 
 |     g_assert_cmpint(status0 & dq6, ==, status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |     g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr)); | 
 |  | 
 |     /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */ | 
 |     erase_resume(c); | 
 |     status0 = flash_read(c, 0); | 
 |     status1 = flash_read(c, 0); | 
 |     g_assert_cmpint(status0 & dq3, ==, dq3); | 
 |     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |     status0 = flash_read(c, byte_addr); | 
 |     status1 = flash_read(c, byte_addr); | 
 |     g_assert_cmpint(status0 & dq3, ==, dq3); | 
 |     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); | 
 |     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); | 
 |     wait_for_completion(c, 0); | 
 |  | 
 |     qtest_quit(qtest); | 
 | } | 
 |  | 
 | /* | 
 |  * Test that | 
 |  * 1. enter autoselect mode; | 
 |  * 2. enter CFI mode; and then | 
 |  * 3. exit CFI mode | 
 |  * leaves the flash device in autoselect mode. | 
 |  */ | 
 | static void test_cfi_in_autoselect(const void *opaque) | 
 | { | 
 |     const FlashConfig *config = opaque; | 
 |     QTestState *qtest; | 
 |     qtest = qtest_initf("-M musicpal" | 
 |                         " -drive if=pflash,file=%s,format=raw,copy-on-read=on", | 
 |                         image_path); | 
 |     FlashConfig explicit_config = expand_config_defaults(config); | 
 |     explicit_config.qtest = qtest; | 
 |     const FlashConfig *c = &explicit_config; | 
 |  | 
 |     /* 1. Enter autoselect. */ | 
 |     unlock(c); | 
 |     flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF)); | 
 |  | 
 |     /* 2. Enter CFI. */ | 
 |     flash_cmd(c, CFI_ADDR, CFI_CMD); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q')); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R')); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y')); | 
 |  | 
 |     /* 3. Exit CFI. */ | 
 |     reset(c); | 
 |     g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF)); | 
 |  | 
 |     qtest_quit(qtest); | 
 | } | 
 |  | 
 | static void cleanup(void *opaque) | 
 | { | 
 |     unlink(image_path); | 
 |     g_free(image_path); | 
 | } | 
 |  | 
 | /* | 
 |  * XXX: Tests are limited to bank_width = 2 for now because that's what | 
 |  * hw/arm/musicpal.c has. | 
 |  */ | 
 | static const FlashConfig configuration[] = { | 
 |     /* One x16 device. */ | 
 |     { | 
 |         .bank_width = 2, | 
 |     }, | 
 |     /* Nonuniform sectors (top boot). */ | 
 |     { | 
 |         .bank_width = 2, | 
 |         .nb_blocs = { 127, 1, 2, 1 }, | 
 |         .sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 }, | 
 |     }, | 
 |     /* Nonuniform sectors (bottom boot). */ | 
 |     { | 
 |         .bank_width = 2, | 
 |         .nb_blocs = { 1, 2, 1, 127 }, | 
 |         .sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 }, | 
 |     }, | 
 | }; | 
 |  | 
 | int main(int argc, char **argv) | 
 | { | 
 |     GError *err = NULL; | 
 |     int fd = g_file_open_tmp("qtest.XXXXXX", &image_path, &err); | 
 |     g_assert_no_error(err); | 
 |  | 
 |     if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) { | 
 |         int error_code = errno; | 
 |         close(fd); | 
 |         cleanup(NULL); | 
 |         g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path, | 
 |                    UNIFORM_FLASH_SIZE, strerror(error_code)); | 
 |         exit(EXIT_FAILURE); | 
 |     } | 
 |     close(fd); | 
 |  | 
 |     qtest_add_abrt_handler(cleanup, NULL); | 
 |     g_test_init(&argc, &argv, NULL); | 
 |  | 
 |     size_t nb_configurations = sizeof configuration / sizeof configuration[0]; | 
 |     for (size_t i = 0; i < nb_configurations; ++i) { | 
 |         const FlashConfig *config = &configuration[i]; | 
 |         char *path = g_strdup_printf("pflash-cfi02" | 
 |                                      "/geometry/%dx%x-%dx%x-%dx%x-%dx%x" | 
 |                                      "/%d", | 
 |                                      config->nb_blocs[0], | 
 |                                      config->sector_len[0], | 
 |                                      config->nb_blocs[1], | 
 |                                      config->sector_len[1], | 
 |                                      config->nb_blocs[2], | 
 |                                      config->sector_len[2], | 
 |                                      config->nb_blocs[3], | 
 |                                      config->sector_len[3], | 
 |                                      config->bank_width); | 
 |         qtest_add_data_func(path, config, test_geometry); | 
 |         g_free(path); | 
 |     } | 
 |  | 
 |     qtest_add_data_func("pflash-cfi02/cfi-in-autoselect", &configuration[0], | 
 |                         test_cfi_in_autoselect); | 
 |     int result = g_test_run(); | 
 |     cleanup(NULL); | 
 |     return result; | 
 | } |