| /* |
| * QEMU MC146818 RTC emulation |
| * |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw.h" |
| #include "qemu-timer.h" |
| #include "sysemu.h" |
| #include "mc146818rtc.h" |
| |
| #ifdef TARGET_I386 |
| #include "apic.h" |
| #endif |
| |
| //#define DEBUG_CMOS |
| //#define DEBUG_COALESCED |
| |
| #ifdef DEBUG_CMOS |
| # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) |
| #else |
| # define CMOS_DPRINTF(format, ...) do { } while (0) |
| #endif |
| |
| #ifdef DEBUG_COALESCED |
| # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__) |
| #else |
| # define DPRINTF_C(format, ...) do { } while (0) |
| #endif |
| |
| #define NSEC_PER_SEC 1000000000LL |
| #define SEC_PER_MIN 60 |
| #define MIN_PER_HOUR 60 |
| #define SEC_PER_HOUR 3600 |
| #define HOUR_PER_DAY 24 |
| #define SEC_PER_DAY 86400 |
| |
| #define RTC_REINJECT_ON_ACK_COUNT 20 |
| #define RTC_CLOCK_RATE 32768 |
| #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768) |
| |
| typedef struct RTCState { |
| ISADevice dev; |
| MemoryRegion io; |
| uint8_t cmos_data[128]; |
| uint8_t cmos_index; |
| int32_t base_year; |
| uint64_t base_rtc; |
| uint64_t last_update; |
| int64_t offset; |
| qemu_irq irq; |
| qemu_irq sqw_irq; |
| int it_shift; |
| /* periodic timer */ |
| QEMUTimer *periodic_timer; |
| int64_t next_periodic_time; |
| /* update-ended timer */ |
| QEMUTimer *update_timer; |
| uint64_t next_alarm_time; |
| uint16_t irq_reinject_on_ack_count; |
| uint32_t irq_coalesced; |
| uint32_t period; |
| QEMUTimer *coalesced_timer; |
| Notifier clock_reset_notifier; |
| LostTickPolicy lost_tick_policy; |
| Notifier suspend_notifier; |
| } RTCState; |
| |
| static void rtc_set_time(RTCState *s); |
| static void rtc_update_time(RTCState *s); |
| static void rtc_set_cmos(RTCState *s, const struct tm *tm); |
| static inline int rtc_from_bcd(RTCState *s, int a); |
| static uint64_t get_next_alarm(RTCState *s); |
| |
| static inline bool rtc_running(RTCState *s) |
| { |
| return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) && |
| (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20); |
| } |
| |
| static uint64_t get_guest_rtc_ns(RTCState *s) |
| { |
| uint64_t guest_rtc; |
| uint64_t guest_clock = qemu_get_clock_ns(rtc_clock); |
| |
| guest_rtc = s->base_rtc * NSEC_PER_SEC |
| + guest_clock - s->last_update + s->offset; |
| return guest_rtc; |
| } |
| |
| #ifdef TARGET_I386 |
| static void rtc_coalesced_timer_update(RTCState *s) |
| { |
| if (s->irq_coalesced == 0) { |
| qemu_del_timer(s->coalesced_timer); |
| } else { |
| /* divide each RTC interval to 2 - 8 smaller intervals */ |
| int c = MIN(s->irq_coalesced, 7) + 1; |
| int64_t next_clock = qemu_get_clock_ns(rtc_clock) + |
| muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE); |
| qemu_mod_timer(s->coalesced_timer, next_clock); |
| } |
| } |
| |
| static void rtc_coalesced_timer(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| if (s->irq_coalesced != 0) { |
| apic_reset_irq_delivered(); |
| s->cmos_data[RTC_REG_C] |= 0xc0; |
| DPRINTF_C("cmos: injecting from timer\n"); |
| qemu_irq_raise(s->irq); |
| if (apic_get_irq_delivered()) { |
| s->irq_coalesced--; |
| DPRINTF_C("cmos: coalesced irqs decreased to %d\n", |
| s->irq_coalesced); |
| } |
| } |
| |
| rtc_coalesced_timer_update(s); |
| } |
| #endif |
| |
| /* handle periodic timer */ |
| static void periodic_timer_update(RTCState *s, int64_t current_time) |
| { |
| int period_code, period; |
| int64_t cur_clock, next_irq_clock; |
| |
| period_code = s->cmos_data[RTC_REG_A] & 0x0f; |
| if (period_code != 0 |
| && ((s->cmos_data[RTC_REG_B] & REG_B_PIE) |
| || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) { |
| if (period_code <= 2) |
| period_code += 7; |
| /* period in 32 Khz cycles */ |
| period = 1 << (period_code - 1); |
| #ifdef TARGET_I386 |
| if (period != s->period) { |
| s->irq_coalesced = (s->irq_coalesced * s->period) / period; |
| DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced); |
| } |
| s->period = period; |
| #endif |
| /* compute 32 khz clock */ |
| cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec()); |
| next_irq_clock = (cur_clock & ~(period - 1)) + period; |
| s->next_periodic_time = |
| muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1; |
| qemu_mod_timer(s->periodic_timer, s->next_periodic_time); |
| } else { |
| #ifdef TARGET_I386 |
| s->irq_coalesced = 0; |
| #endif |
| qemu_del_timer(s->periodic_timer); |
| } |
| } |
| |
| static void rtc_periodic_timer(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| periodic_timer_update(s, s->next_periodic_time); |
| s->cmos_data[RTC_REG_C] |= REG_C_PF; |
| if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF; |
| #ifdef TARGET_I386 |
| if (s->lost_tick_policy == LOST_TICK_SLEW) { |
| if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) |
| s->irq_reinject_on_ack_count = 0; |
| apic_reset_irq_delivered(); |
| qemu_irq_raise(s->irq); |
| if (!apic_get_irq_delivered()) { |
| s->irq_coalesced++; |
| rtc_coalesced_timer_update(s); |
| DPRINTF_C("cmos: coalesced irqs increased to %d\n", |
| s->irq_coalesced); |
| } |
| } else |
| #endif |
| qemu_irq_raise(s->irq); |
| } |
| if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) { |
| /* Not square wave at all but we don't want 2048Hz interrupts! |
| Must be seen as a pulse. */ |
| qemu_irq_raise(s->sqw_irq); |
| } |
| } |
| |
| /* handle update-ended timer */ |
| static void check_update_timer(RTCState *s) |
| { |
| uint64_t next_update_time; |
| uint64_t guest_nsec; |
| int next_alarm_sec; |
| |
| /* From the data sheet: "Holding the dividers in reset prevents |
| * interrupts from operating, while setting the SET bit allows" |
| * them to occur. However, it will prevent an alarm interrupt |
| * from occurring, because the time of day is not updated. |
| */ |
| if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) { |
| qemu_del_timer(s->update_timer); |
| return; |
| } |
| if ((s->cmos_data[RTC_REG_C] & REG_C_UF) && |
| (s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| qemu_del_timer(s->update_timer); |
| return; |
| } |
| if ((s->cmos_data[RTC_REG_C] & REG_C_UF) && |
| (s->cmos_data[RTC_REG_C] & REG_C_AF)) { |
| qemu_del_timer(s->update_timer); |
| return; |
| } |
| |
| guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC; |
| /* if UF is clear, reprogram to next second */ |
| next_update_time = qemu_get_clock_ns(rtc_clock) |
| + NSEC_PER_SEC - guest_nsec; |
| |
| /* Compute time of next alarm. One second is already accounted |
| * for in next_update_time. |
| */ |
| next_alarm_sec = get_next_alarm(s); |
| s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC; |
| |
| if (s->cmos_data[RTC_REG_C] & REG_C_UF) { |
| /* UF is set, but AF is clear. Program the timer to target |
| * the alarm time. */ |
| next_update_time = s->next_alarm_time; |
| } |
| if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) { |
| qemu_mod_timer(s->update_timer, next_update_time); |
| } |
| } |
| |
| static inline uint8_t convert_hour(RTCState *s, uint8_t hour) |
| { |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { |
| hour %= 12; |
| if (s->cmos_data[RTC_HOURS] & 0x80) { |
| hour += 12; |
| } |
| } |
| return hour; |
| } |
| |
| static uint64_t get_next_alarm(RTCState *s) |
| { |
| int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec; |
| int32_t hour, min, sec; |
| |
| rtc_update_time(s); |
| |
| alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]); |
| alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]); |
| alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]); |
| alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour); |
| |
| cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); |
| cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); |
| cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]); |
| cur_hour = convert_hour(s, cur_hour); |
| |
| if (alarm_hour == -1) { |
| alarm_hour = cur_hour; |
| if (alarm_min == -1) { |
| alarm_min = cur_min; |
| if (alarm_sec == -1) { |
| alarm_sec = cur_sec + 1; |
| } else if (cur_sec > alarm_sec) { |
| alarm_min++; |
| } |
| } else if (cur_min == alarm_min) { |
| if (alarm_sec == -1) { |
| alarm_sec = cur_sec + 1; |
| } else { |
| if (cur_sec > alarm_sec) { |
| alarm_hour++; |
| } |
| } |
| if (alarm_sec == SEC_PER_MIN) { |
| /* wrap to next hour, minutes is not in don't care mode */ |
| alarm_sec = 0; |
| alarm_hour++; |
| } |
| } else if (cur_min > alarm_min) { |
| alarm_hour++; |
| } |
| } else if (cur_hour == alarm_hour) { |
| if (alarm_min == -1) { |
| alarm_min = cur_min; |
| if (alarm_sec == -1) { |
| alarm_sec = cur_sec + 1; |
| } else if (cur_sec > alarm_sec) { |
| alarm_min++; |
| } |
| |
| if (alarm_sec == SEC_PER_MIN) { |
| alarm_sec = 0; |
| alarm_min++; |
| } |
| /* wrap to next day, hour is not in don't care mode */ |
| alarm_min %= MIN_PER_HOUR; |
| } else if (cur_min == alarm_min) { |
| if (alarm_sec == -1) { |
| alarm_sec = cur_sec + 1; |
| } |
| /* wrap to next day, hours+minutes not in don't care mode */ |
| alarm_sec %= SEC_PER_MIN; |
| } |
| } |
| |
| /* values that are still don't care fire at the next min/sec */ |
| if (alarm_min == -1) { |
| alarm_min = 0; |
| } |
| if (alarm_sec == -1) { |
| alarm_sec = 0; |
| } |
| |
| /* keep values in range */ |
| if (alarm_sec == SEC_PER_MIN) { |
| alarm_sec = 0; |
| alarm_min++; |
| } |
| if (alarm_min == MIN_PER_HOUR) { |
| alarm_min = 0; |
| alarm_hour++; |
| } |
| alarm_hour %= HOUR_PER_DAY; |
| |
| hour = alarm_hour - cur_hour; |
| min = hour * MIN_PER_HOUR + alarm_min - cur_min; |
| sec = min * SEC_PER_MIN + alarm_sec - cur_sec; |
| return sec <= 0 ? sec + SEC_PER_DAY : sec; |
| } |
| |
| static void rtc_update_timer(void *opaque) |
| { |
| RTCState *s = opaque; |
| int32_t irqs = REG_C_UF; |
| int32_t new_irqs; |
| |
| assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60); |
| |
| /* UIP might have been latched, update time and clear it. */ |
| rtc_update_time(s); |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| |
| if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) { |
| irqs |= REG_C_AF; |
| if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { |
| qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC); |
| } |
| } |
| |
| new_irqs = irqs & ~s->cmos_data[RTC_REG_C]; |
| s->cmos_data[RTC_REG_C] |= irqs; |
| if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) { |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF; |
| qemu_irq_raise(s->irq); |
| } |
| check_update_timer(s); |
| } |
| |
| static void cmos_ioport_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| RTCState *s = opaque; |
| |
| if ((addr & 1) == 0) { |
| s->cmos_index = data & 0x7f; |
| } else { |
| CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n", |
| s->cmos_index, data); |
| switch(s->cmos_index) { |
| case RTC_SECONDS_ALARM: |
| case RTC_MINUTES_ALARM: |
| case RTC_HOURS_ALARM: |
| s->cmos_data[s->cmos_index] = data; |
| check_update_timer(s); |
| break; |
| case RTC_IBM_PS2_CENTURY_BYTE: |
| s->cmos_index = RTC_CENTURY; |
| /* fall through */ |
| case RTC_CENTURY: |
| case RTC_SECONDS: |
| case RTC_MINUTES: |
| case RTC_HOURS: |
| case RTC_DAY_OF_WEEK: |
| case RTC_DAY_OF_MONTH: |
| case RTC_MONTH: |
| case RTC_YEAR: |
| s->cmos_data[s->cmos_index] = data; |
| /* if in set mode, do not update the time */ |
| if (rtc_running(s)) { |
| rtc_set_time(s); |
| check_update_timer(s); |
| } |
| break; |
| case RTC_REG_A: |
| if ((data & 0x60) == 0x60) { |
| if (rtc_running(s)) { |
| rtc_update_time(s); |
| } |
| /* What happens to UIP when divider reset is enabled is |
| * unclear from the datasheet. Shouldn't matter much |
| * though. |
| */ |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) && |
| (data & 0x70) <= 0x20) { |
| /* when the divider reset is removed, the first update cycle |
| * begins one-half second later*/ |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| s->offset = 500000000; |
| rtc_set_time(s); |
| } |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| } |
| /* UIP bit is read only */ |
| s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | |
| (s->cmos_data[RTC_REG_A] & REG_A_UIP); |
| periodic_timer_update(s, qemu_get_clock_ns(rtc_clock)); |
| check_update_timer(s); |
| break; |
| case RTC_REG_B: |
| if (data & REG_B_SET) { |
| /* update cmos to when the rtc was stopping */ |
| if (rtc_running(s)) { |
| rtc_update_time(s); |
| } |
| /* set mode: reset UIP mode */ |
| s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| data &= ~REG_B_UIE; |
| } else { |
| /* if disabling set mode, update the time */ |
| if ((s->cmos_data[RTC_REG_B] & REG_B_SET) && |
| (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) { |
| s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC; |
| rtc_set_time(s); |
| } |
| } |
| /* if an interrupt flag is already set when the interrupt |
| * becomes enabled, raise an interrupt immediately. */ |
| if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) { |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF; |
| qemu_irq_raise(s->irq); |
| } else { |
| s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF; |
| qemu_irq_lower(s->irq); |
| } |
| s->cmos_data[RTC_REG_B] = data; |
| periodic_timer_update(s, qemu_get_clock_ns(rtc_clock)); |
| check_update_timer(s); |
| break; |
| case RTC_REG_C: |
| case RTC_REG_D: |
| /* cannot write to them */ |
| break; |
| default: |
| s->cmos_data[s->cmos_index] = data; |
| break; |
| } |
| } |
| } |
| |
| static inline int rtc_to_bcd(RTCState *s, int a) |
| { |
| if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
| return a; |
| } else { |
| return ((a / 10) << 4) | (a % 10); |
| } |
| } |
| |
| static inline int rtc_from_bcd(RTCState *s, int a) |
| { |
| if ((a & 0xc0) == 0xc0) { |
| return -1; |
| } |
| if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
| return a; |
| } else { |
| return ((a >> 4) * 10) + (a & 0x0f); |
| } |
| } |
| |
| static void rtc_get_time(RTCState *s, struct tm *tm) |
| { |
| tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); |
| tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); |
| tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); |
| if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { |
| tm->tm_hour %= 12; |
| if (s->cmos_data[RTC_HOURS] & 0x80) { |
| tm->tm_hour += 12; |
| } |
| } |
| tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; |
| tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); |
| tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; |
| tm->tm_year = |
| rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year + |
| rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900; |
| } |
| |
| static void rtc_set_time(RTCState *s) |
| { |
| struct tm tm; |
| |
| rtc_get_time(s, &tm); |
| s->base_rtc = mktimegm(&tm); |
| s->last_update = qemu_get_clock_ns(rtc_clock); |
| |
| rtc_change_mon_event(&tm); |
| } |
| |
| static void rtc_set_cmos(RTCState *s, const struct tm *tm) |
| { |
| int year; |
| |
| s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); |
| s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); |
| if (s->cmos_data[RTC_REG_B] & REG_B_24H) { |
| /* 24 hour format */ |
| s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); |
| } else { |
| /* 12 hour format */ |
| int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12; |
| s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h); |
| if (tm->tm_hour >= 12) |
| s->cmos_data[RTC_HOURS] |= 0x80; |
| } |
| s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); |
| s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); |
| s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); |
| year = tm->tm_year + 1900 - s->base_year; |
| s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100); |
| s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100); |
| } |
| |
| static void rtc_update_time(RTCState *s) |
| { |
| struct tm ret; |
| time_t guest_sec; |
| int64_t guest_nsec; |
| |
| guest_nsec = get_guest_rtc_ns(s); |
| guest_sec = guest_nsec / NSEC_PER_SEC; |
| gmtime_r(&guest_sec, &ret); |
| rtc_set_cmos(s, &ret); |
| } |
| |
| static int update_in_progress(RTCState *s) |
| { |
| int64_t guest_nsec; |
| |
| if (!rtc_running(s)) { |
| return 0; |
| } |
| if (qemu_timer_pending(s->update_timer)) { |
| int64_t next_update_time = qemu_timer_expire_time_ns(s->update_timer); |
| /* Latch UIP until the timer expires. */ |
| if (qemu_get_clock_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) { |
| s->cmos_data[RTC_REG_A] |= REG_A_UIP; |
| return 1; |
| } |
| } |
| |
| guest_nsec = get_guest_rtc_ns(s); |
| /* UIP bit will be set at last 244us of every second. */ |
| if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static uint64_t cmos_ioport_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| RTCState *s = opaque; |
| int ret; |
| if ((addr & 1) == 0) { |
| return 0xff; |
| } else { |
| switch(s->cmos_index) { |
| case RTC_IBM_PS2_CENTURY_BYTE: |
| s->cmos_index = RTC_CENTURY; |
| /* fall through */ |
| case RTC_CENTURY: |
| case RTC_SECONDS: |
| case RTC_MINUTES: |
| case RTC_HOURS: |
| case RTC_DAY_OF_WEEK: |
| case RTC_DAY_OF_MONTH: |
| case RTC_MONTH: |
| case RTC_YEAR: |
| /* if not in set mode, calibrate cmos before |
| * reading*/ |
| if (rtc_running(s)) { |
| rtc_update_time(s); |
| } |
| ret = s->cmos_data[s->cmos_index]; |
| break; |
| case RTC_REG_A: |
| if (update_in_progress(s)) { |
| s->cmos_data[s->cmos_index] |= REG_A_UIP; |
| } else { |
| s->cmos_data[s->cmos_index] &= ~REG_A_UIP; |
| } |
| ret = s->cmos_data[s->cmos_index]; |
| break; |
| case RTC_REG_C: |
| ret = s->cmos_data[s->cmos_index]; |
| qemu_irq_lower(s->irq); |
| s->cmos_data[RTC_REG_C] = 0x00; |
| if (ret & (REG_C_UF | REG_C_AF)) { |
| check_update_timer(s); |
| } |
| #ifdef TARGET_I386 |
| if(s->irq_coalesced && |
| (s->cmos_data[RTC_REG_B] & REG_B_PIE) && |
| s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { |
| s->irq_reinject_on_ack_count++; |
| s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF; |
| apic_reset_irq_delivered(); |
| DPRINTF_C("cmos: injecting on ack\n"); |
| qemu_irq_raise(s->irq); |
| if (apic_get_irq_delivered()) { |
| s->irq_coalesced--; |
| DPRINTF_C("cmos: coalesced irqs decreased to %d\n", |
| s->irq_coalesced); |
| } |
| } |
| #endif |
| break; |
| default: |
| ret = s->cmos_data[s->cmos_index]; |
| break; |
| } |
| CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", |
| s->cmos_index, ret); |
| return ret; |
| } |
| } |
| |
| void rtc_set_memory(ISADevice *dev, int addr, int val) |
| { |
| RTCState *s = DO_UPCAST(RTCState, dev, dev); |
| if (addr >= 0 && addr <= 127) |
| s->cmos_data[addr] = val; |
| } |
| |
| static void rtc_set_date_from_host(ISADevice *dev) |
| { |
| RTCState *s = DO_UPCAST(RTCState, dev, dev); |
| struct tm tm; |
| |
| qemu_get_timedate(&tm, 0); |
| |
| s->base_rtc = mktimegm(&tm); |
| s->last_update = qemu_get_clock_ns(rtc_clock); |
| s->offset = 0; |
| |
| /* set the CMOS date */ |
| rtc_set_cmos(s, &tm); |
| } |
| |
| static int rtc_post_load(void *opaque, int version_id) |
| { |
| RTCState *s = opaque; |
| |
| if (version_id <= 2) { |
| rtc_set_time(s); |
| s->offset = 0; |
| check_update_timer(s); |
| } |
| |
| #ifdef TARGET_I386 |
| if (version_id >= 2) { |
| if (s->lost_tick_policy == LOST_TICK_SLEW) { |
| rtc_coalesced_timer_update(s); |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_rtc = { |
| .name = "mc146818rtc", |
| .version_id = 3, |
| .minimum_version_id = 1, |
| .minimum_version_id_old = 1, |
| .post_load = rtc_post_load, |
| .fields = (VMStateField []) { |
| VMSTATE_BUFFER(cmos_data, RTCState), |
| VMSTATE_UINT8(cmos_index, RTCState), |
| VMSTATE_UNUSED(7*4), |
| VMSTATE_TIMER(periodic_timer, RTCState), |
| VMSTATE_INT64(next_periodic_time, RTCState), |
| VMSTATE_UNUSED(3*8), |
| VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), |
| VMSTATE_UINT32_V(period, RTCState, 2), |
| VMSTATE_UINT64_V(base_rtc, RTCState, 3), |
| VMSTATE_UINT64_V(last_update, RTCState, 3), |
| VMSTATE_INT64_V(offset, RTCState, 3), |
| VMSTATE_TIMER_V(update_timer, RTCState, 3), |
| VMSTATE_UINT64_V(next_alarm_time, RTCState, 3), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void rtc_notify_clock_reset(Notifier *notifier, void *data) |
| { |
| RTCState *s = container_of(notifier, RTCState, clock_reset_notifier); |
| int64_t now = *(int64_t *)data; |
| |
| rtc_set_date_from_host(&s->dev); |
| periodic_timer_update(s, now); |
| check_update_timer(s); |
| #ifdef TARGET_I386 |
| if (s->lost_tick_policy == LOST_TICK_SLEW) { |
| rtc_coalesced_timer_update(s); |
| } |
| #endif |
| } |
| |
| /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) |
| BIOS will read it and start S3 resume at POST Entry */ |
| static void rtc_notify_suspend(Notifier *notifier, void *data) |
| { |
| RTCState *s = container_of(notifier, RTCState, suspend_notifier); |
| rtc_set_memory(&s->dev, 0xF, 0xFE); |
| } |
| |
| static void rtc_reset(void *opaque) |
| { |
| RTCState *s = opaque; |
| |
| s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); |
| s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); |
| check_update_timer(s); |
| |
| qemu_irq_lower(s->irq); |
| |
| #ifdef TARGET_I386 |
| if (s->lost_tick_policy == LOST_TICK_SLEW) { |
| s->irq_coalesced = 0; |
| } |
| #endif |
| } |
| |
| static const MemoryRegionOps cmos_ops = { |
| .read = cmos_ioport_read, |
| .write = cmos_ioport_write, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| }, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void rtc_get_date(Object *obj, Visitor *v, void *opaque, |
| const char *name, Error **errp) |
| { |
| ISADevice *isa = ISA_DEVICE(obj); |
| RTCState *s = DO_UPCAST(RTCState, dev, isa); |
| struct tm current_tm; |
| |
| rtc_update_time(s); |
| rtc_get_time(s, ¤t_tm); |
| visit_start_struct(v, NULL, "struct tm", name, 0, errp); |
| visit_type_int32(v, ¤t_tm.tm_year, "tm_year", errp); |
| visit_type_int32(v, ¤t_tm.tm_mon, "tm_mon", errp); |
| visit_type_int32(v, ¤t_tm.tm_mday, "tm_mday", errp); |
| visit_type_int32(v, ¤t_tm.tm_hour, "tm_hour", errp); |
| visit_type_int32(v, ¤t_tm.tm_min, "tm_min", errp); |
| visit_type_int32(v, ¤t_tm.tm_sec, "tm_sec", errp); |
| visit_end_struct(v, errp); |
| } |
| |
| static int rtc_initfn(ISADevice *dev) |
| { |
| RTCState *s = DO_UPCAST(RTCState, dev, dev); |
| int base = 0x70; |
| |
| s->cmos_data[RTC_REG_A] = 0x26; |
| s->cmos_data[RTC_REG_B] = 0x02; |
| s->cmos_data[RTC_REG_C] = 0x00; |
| s->cmos_data[RTC_REG_D] = 0x80; |
| |
| /* This is for historical reasons. The default base year qdev property |
| * was set to 2000 for most machine types before the century byte was |
| * implemented. |
| * |
| * This if statement means that the century byte will be always 0 |
| * (at least until 2079...) for base_year = 1980, but will be set |
| * correctly for base_year = 2000. |
| */ |
| if (s->base_year == 2000) { |
| s->base_year = 0; |
| } |
| |
| rtc_set_date_from_host(dev); |
| |
| #ifdef TARGET_I386 |
| switch (s->lost_tick_policy) { |
| case LOST_TICK_SLEW: |
| s->coalesced_timer = |
| qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s); |
| break; |
| case LOST_TICK_DISCARD: |
| break; |
| default: |
| return -EINVAL; |
| } |
| #endif |
| |
| s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s); |
| s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s); |
| check_update_timer(s); |
| |
| s->clock_reset_notifier.notify = rtc_notify_clock_reset; |
| qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier); |
| |
| s->suspend_notifier.notify = rtc_notify_suspend; |
| qemu_register_suspend_notifier(&s->suspend_notifier); |
| |
| memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2); |
| isa_register_ioport(dev, &s->io, base); |
| |
| qdev_set_legacy_instance_id(&dev->qdev, base, 3); |
| qemu_register_reset(rtc_reset, s); |
| |
| object_property_add(OBJECT(s), "date", "struct tm", |
| rtc_get_date, NULL, NULL, s, NULL); |
| |
| return 0; |
| } |
| |
| ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq) |
| { |
| ISADevice *dev; |
| RTCState *s; |
| |
| dev = isa_create(bus, "mc146818rtc"); |
| s = DO_UPCAST(RTCState, dev, dev); |
| qdev_prop_set_int32(&dev->qdev, "base_year", base_year); |
| qdev_init_nofail(&dev->qdev); |
| if (intercept_irq) { |
| s->irq = intercept_irq; |
| } else { |
| isa_init_irq(dev, &s->irq, RTC_ISA_IRQ); |
| } |
| return dev; |
| } |
| |
| static Property mc146818rtc_properties[] = { |
| DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), |
| DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState, |
| lost_tick_policy, LOST_TICK_DISCARD), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void rtc_class_initfn(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ISADeviceClass *ic = ISA_DEVICE_CLASS(klass); |
| ic->init = rtc_initfn; |
| dc->no_user = 1; |
| dc->vmsd = &vmstate_rtc; |
| dc->props = mc146818rtc_properties; |
| } |
| |
| static TypeInfo mc146818rtc_info = { |
| .name = "mc146818rtc", |
| .parent = TYPE_ISA_DEVICE, |
| .instance_size = sizeof(RTCState), |
| .class_init = rtc_class_initfn, |
| }; |
| |
| static void mc146818rtc_register_types(void) |
| { |
| type_register_static(&mc146818rtc_info); |
| } |
| |
| type_init(mc146818rtc_register_types) |