blob: f2443ca4afcb92ddc510e5eb1ee6cd6f6b0b93ce [file] [log] [blame]
/*
* Samsung exynos4210 Display Controller (FIMD)
*
* Copyright (c) 2000 - 2011 Samsung Electronics Co., Ltd.
* All rights reserved.
* Based on LCD controller for Samsung S5PC1xx-based board emulation
* by Kirill Batuzov <batuzovk@ispras.ru>
*
* Contributed by Mitsyanko Igor <i.mitsyanko@samsung.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu-common.h"
#include "cpu-all.h"
#include "sysbus.h"
#include "console.h"
#include "pixel_ops.h"
#include "bswap.h"
/* Debug messages configuration */
#define EXYNOS4210_FIMD_DEBUG 0
#define EXYNOS4210_FIMD_MODE_TRACE 0
#if EXYNOS4210_FIMD_DEBUG == 0
#define DPRINT_L1(fmt, args...) do { } while (0)
#define DPRINT_L2(fmt, args...) do { } while (0)
#define DPRINT_ERROR(fmt, args...) do { } while (0)
#elif EXYNOS4210_FIMD_DEBUG == 1
#define DPRINT_L1(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0)
#define DPRINT_L2(fmt, args...) do { } while (0)
#define DPRINT_ERROR(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD ERROR: "fmt, ## args); } while (0)
#else
#define DPRINT_L1(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0)
#define DPRINT_L2(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0)
#define DPRINT_ERROR(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD ERROR: "fmt, ## args); } while (0)
#endif
#if EXYNOS4210_FIMD_MODE_TRACE == 0
#define DPRINT_TRACE(fmt, args...) do { } while (0)
#else
#define DPRINT_TRACE(fmt, args...) \
do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0)
#endif
#define NUM_OF_WINDOWS 5
#define FIMD_REGS_SIZE 0x4114
/* Video main control registers */
#define FIMD_VIDCON0 0x0000
#define FIMD_VIDCON1 0x0004
#define FIMD_VIDCON2 0x0008
#define FIMD_VIDCON3 0x000C
#define FIMD_VIDCON0_ENVID_F (1 << 0)
#define FIMD_VIDCON0_ENVID (1 << 1)
#define FIMD_VIDCON0_ENVID_MASK ((1 << 0) | (1 << 1))
#define FIMD_VIDCON1_ROMASK 0x07FFE000
/* Video time control registers */
#define FIMD_VIDTCON_START 0x10
#define FIMD_VIDTCON_END 0x1C
#define FIMD_VIDTCON2_SIZE_MASK 0x07FF
#define FIMD_VIDTCON2_HOR_SHIFT 0
#define FIMD_VIDTCON2_VER_SHIFT 11
/* Window control registers */
#define FIMD_WINCON_START 0x0020
#define FIMD_WINCON_END 0x0030
#define FIMD_WINCON_ROMASK 0x82200000
#define FIMD_WINCON_ENWIN (1 << 0)
#define FIMD_WINCON_BLD_PIX (1 << 6)
#define FIMD_WINCON_ALPHA_MUL (1 << 7)
#define FIMD_WINCON_ALPHA_SEL (1 << 1)
#define FIMD_WINCON_SWAP 0x078000
#define FIMD_WINCON_SWAP_SHIFT 15
#define FIMD_WINCON_SWAP_WORD 0x1
#define FIMD_WINCON_SWAP_HWORD 0x2
#define FIMD_WINCON_SWAP_BYTE 0x4
#define FIMD_WINCON_SWAP_BITS 0x8
#define FIMD_WINCON_BUFSTAT_L (1 << 21)
#define FIMD_WINCON_BUFSTAT_H (1 << 31)
#define FIMD_WINCON_BUFSTATUS ((1 << 21) | (1 << 31))
#define FIMD_WINCON_BUF0_STAT ((0 << 21) | (0 << 31))
#define FIMD_WINCON_BUF1_STAT ((1 << 21) | (0 << 31))
#define FIMD_WINCON_BUF2_STAT ((0 << 21) | (1 << 31))
#define FIMD_WINCON_BUFSELECT ((1 << 20) | (1 << 30))
#define FIMD_WINCON_BUF0_SEL ((0 << 20) | (0 << 30))
#define FIMD_WINCON_BUF1_SEL ((1 << 20) | (0 << 30))
#define FIMD_WINCON_BUF2_SEL ((0 << 20) | (1 << 30))
#define FIMD_WINCON_BUFMODE (1 << 14)
#define IS_PALETTIZED_MODE(w) (w->wincon & 0xC)
#define PAL_MODE_WITH_ALPHA(x) ((x) == 7)
#define WIN_BPP_MODE(w) ((w->wincon >> 2) & 0xF)
#define WIN_BPP_MODE_WITH_ALPHA(w) \
(WIN_BPP_MODE(w) == 0xD || WIN_BPP_MODE(w) == 0xE)
/* Shadow control register */
#define FIMD_SHADOWCON 0x0034
#define FIMD_WINDOW_PROTECTED(s, w) ((s) & (1 << (10 + (w))))
/* Channel mapping control register */
#define FIMD_WINCHMAP 0x003C
/* Window position control registers */
#define FIMD_VIDOSD_START 0x0040
#define FIMD_VIDOSD_END 0x0088
#define FIMD_VIDOSD_COORD_MASK 0x07FF
#define FIMD_VIDOSD_HOR_SHIFT 11
#define FIMD_VIDOSD_VER_SHIFT 0
#define FIMD_VIDOSD_ALPHA_AEN0 0xFFF000
#define FIMD_VIDOSD_AEN0_SHIFT 12
#define FIMD_VIDOSD_ALPHA_AEN1 0x000FFF
/* Frame buffer address registers */
#define FIMD_VIDWADD0_START 0x00A0
#define FIMD_VIDWADD0_END 0x00C4
#define FIMD_VIDWADD0_END 0x00C4
#define FIMD_VIDWADD1_START 0x00D0
#define FIMD_VIDWADD1_END 0x00F4
#define FIMD_VIDWADD2_START 0x0100
#define FIMD_VIDWADD2_END 0x0110
#define FIMD_VIDWADD2_PAGEWIDTH 0x1FFF
#define FIMD_VIDWADD2_OFFSIZE 0x1FFF
#define FIMD_VIDWADD2_OFFSIZE_SHIFT 13
#define FIMD_VIDW0ADD0_B2 0x20A0
#define FIMD_VIDW4ADD0_B2 0x20C0
/* Video interrupt control registers */
#define FIMD_VIDINTCON0 0x130
#define FIMD_VIDINTCON1 0x134
/* Window color key registers */
#define FIMD_WKEYCON_START 0x140
#define FIMD_WKEYCON_END 0x15C
#define FIMD_WKEYCON0_COMPKEY 0x00FFFFFF
#define FIMD_WKEYCON0_CTL_SHIFT 24
#define FIMD_WKEYCON0_DIRCON (1 << 24)
#define FIMD_WKEYCON0_KEYEN (1 << 25)
#define FIMD_WKEYCON0_KEYBLEN (1 << 26)
/* Window color key alpha control register */
#define FIMD_WKEYALPHA_START 0x160
#define FIMD_WKEYALPHA_END 0x16C
/* Dithering control register */
#define FIMD_DITHMODE 0x170
/* Window alpha control registers */
#define FIMD_VIDALPHA_ALPHA_LOWER 0x000F0F0F
#define FIMD_VIDALPHA_ALPHA_UPPER 0x00F0F0F0
#define FIMD_VIDWALPHA_START 0x21C
#define FIMD_VIDWALPHA_END 0x240
/* Window color map registers */
#define FIMD_WINMAP_START 0x180
#define FIMD_WINMAP_END 0x190
#define FIMD_WINMAP_EN (1 << 24)
#define FIMD_WINMAP_COLOR_MASK 0x00FFFFFF
/* Window palette control registers */
#define FIMD_WPALCON_HIGH 0x019C
#define FIMD_WPALCON_LOW 0x01A0
#define FIMD_WPALCON_UPDATEEN (1 << 9)
#define FIMD_WPAL_W0PAL_L 0x07
#define FIMD_WPAL_W0PAL_L_SHT 0
#define FIMD_WPAL_W1PAL_L 0x07
#define FIMD_WPAL_W1PAL_L_SHT 3
#define FIMD_WPAL_W2PAL_L 0x01
#define FIMD_WPAL_W2PAL_L_SHT 6
#define FIMD_WPAL_W2PAL_H 0x06
#define FIMD_WPAL_W2PAL_H_SHT 8
#define FIMD_WPAL_W3PAL_L 0x01
#define FIMD_WPAL_W3PAL_L_SHT 7
#define FIMD_WPAL_W3PAL_H 0x06
#define FIMD_WPAL_W3PAL_H_SHT 12
#define FIMD_WPAL_W4PAL_L 0x01
#define FIMD_WPAL_W4PAL_L_SHT 8
#define FIMD_WPAL_W4PAL_H 0x06
#define FIMD_WPAL_W4PAL_H_SHT 16
/* Trigger control registers */
#define FIMD_TRIGCON 0x01A4
#define FIMD_TRIGCON_ROMASK 0x00000004
/* LCD I80 Interface Control */
#define FIMD_I80IFCON_START 0x01B0
#define FIMD_I80IFCON_END 0x01BC
/* Color gain control register */
#define FIMD_COLORGAINCON 0x01C0
/* LCD i80 Interface Command Control */
#define FIMD_LDI_CMDCON0 0x01D0
#define FIMD_LDI_CMDCON1 0x01D4
/* I80 System Interface Manual Command Control */
#define FIMD_SIFCCON0 0x01E0
#define FIMD_SIFCCON2 0x01E8
/* Hue Control Registers */
#define FIMD_HUECOEFCR_START 0x01EC
#define FIMD_HUECOEFCR_END 0x01F4
#define FIMD_HUECOEFCB_START 0x01FC
#define FIMD_HUECOEFCB_END 0x0208
#define FIMD_HUEOFFSET 0x020C
/* Video interrupt control registers */
#define FIMD_VIDINT_INTFIFOPEND (1 << 0)
#define FIMD_VIDINT_INTFRMPEND (1 << 1)
#define FIMD_VIDINT_INTI80PEND (1 << 2)
#define FIMD_VIDINT_INTEN (1 << 0)
#define FIMD_VIDINT_INTFIFOEN (1 << 1)
#define FIMD_VIDINT_INTFRMEN (1 << 12)
#define FIMD_VIDINT_I80IFDONE (1 << 17)
/* Window blend equation control registers */
#define FIMD_BLENDEQ_START 0x0244
#define FIMD_BLENDEQ_END 0x0250
#define FIMD_BLENDCON 0x0260
#define FIMD_ALPHA_8BIT (1 << 0)
#define FIMD_BLENDEQ_COEF_MASK 0xF
/* Window RTQOS Control Registers */
#define FIMD_WRTQOSCON_START 0x0264
#define FIMD_WRTQOSCON_END 0x0274
/* LCD I80 Interface Command */
#define FIMD_I80IFCMD_START 0x0280
#define FIMD_I80IFCMD_END 0x02AC
/* Shadow windows control registers */
#define FIMD_SHD_ADD0_START 0x40A0
#define FIMD_SHD_ADD0_END 0x40C0
#define FIMD_SHD_ADD1_START 0x40D0
#define FIMD_SHD_ADD1_END 0x40F0
#define FIMD_SHD_ADD2_START 0x4100
#define FIMD_SHD_ADD2_END 0x4110
/* Palette memory */
#define FIMD_PAL_MEM_START 0x2400
#define FIMD_PAL_MEM_END 0x37FC
/* Palette memory aliases for windows 0 and 1 */
#define FIMD_PALMEM_AL_START 0x0400
#define FIMD_PALMEM_AL_END 0x0BFC
typedef struct {
uint8_t r, g, b;
/* D[31..24]dummy, D[23..16]rAlpha, D[15..8]gAlpha, D[7..0]bAlpha */
uint32_t a;
} rgba;
#define RGBA_SIZE 7
typedef void pixel_to_rgb_func(uint32_t pixel, rgba *p);
typedef struct Exynos4210fimdWindow Exynos4210fimdWindow;
struct Exynos4210fimdWindow {
uint32_t wincon; /* Window control register */
uint32_t buf_start[3]; /* Start address for video frame buffer */
uint32_t buf_end[3]; /* End address for video frame buffer */
uint32_t keycon[2]; /* Window color key registers */
uint32_t keyalpha; /* Color key alpha control register */
uint32_t winmap; /* Window color map register */
uint32_t blendeq; /* Window blending equation control register */
uint32_t rtqoscon; /* Window RTQOS Control Registers */
uint32_t palette[256]; /* Palette RAM */
uint32_t shadow_buf_start; /* Start address of shadow frame buffer */
uint32_t shadow_buf_end; /* End address of shadow frame buffer */
uint32_t shadow_buf_size; /* Virtual shadow screen width */
pixel_to_rgb_func *pixel_to_rgb;
void (*draw_line)(Exynos4210fimdWindow *w, uint8_t *src, uint8_t *dst,
bool blend);
uint32_t (*get_alpha)(Exynos4210fimdWindow *w, uint32_t pix_a);
uint16_t lefttop_x, lefttop_y; /* VIDOSD0 register */
uint16_t rightbot_x, rightbot_y; /* VIDOSD1 register */
uint32_t osdsize; /* VIDOSD2&3 register */
uint32_t alpha_val[2]; /* VIDOSD2&3, VIDWALPHA registers */
uint16_t virtpage_width; /* VIDWADD2 register */
uint16_t virtpage_offsize; /* VIDWADD2 register */
MemoryRegionSection mem_section; /* RAM fragment containing framebuffer */
uint8_t *host_fb_addr; /* Host pointer to window's framebuffer */
hwaddr fb_len; /* Framebuffer length */
};
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
DisplayState *console;
qemu_irq irq[3];
uint32_t vidcon[4]; /* Video main control registers 0-3 */
uint32_t vidtcon[4]; /* Video time control registers 0-3 */
uint32_t shadowcon; /* Window shadow control register */
uint32_t winchmap; /* Channel mapping control register */
uint32_t vidintcon[2]; /* Video interrupt control registers */
uint32_t dithmode; /* Dithering control register */
uint32_t wpalcon[2]; /* Window palette control registers */
uint32_t trigcon; /* Trigger control register */
uint32_t i80ifcon[4]; /* I80 interface control registers */
uint32_t colorgaincon; /* Color gain control register */
uint32_t ldi_cmdcon[2]; /* LCD I80 interface command control */
uint32_t sifccon[3]; /* I80 System Interface Manual Command Control */
uint32_t huecoef_cr[4]; /* Hue control registers */
uint32_t huecoef_cb[4]; /* Hue control registers */
uint32_t hueoffset; /* Hue offset control register */
uint32_t blendcon; /* Blending control register */
uint32_t i80ifcmd[12]; /* LCD I80 Interface Command */
Exynos4210fimdWindow window[5]; /* Window-specific registers */
uint8_t *ifb; /* Internal frame buffer */
bool invalidate; /* Image needs to be redrawn */
bool enabled; /* Display controller is enabled */
} Exynos4210fimdState;
/* Perform byte/halfword/word swap of data according to WINCON */
static inline void fimd_swap_data(unsigned int swap_ctl, uint64_t *data)
{
int i;
uint64_t res;
uint64_t x = *data;
if (swap_ctl & FIMD_WINCON_SWAP_BITS) {
res = 0;
for (i = 0; i < 64; i++) {
if (x & (1ULL << (64 - i))) {
res |= (1ULL << i);
}
}
x = res;
}
if (swap_ctl & FIMD_WINCON_SWAP_BYTE) {
x = bswap64(x);
}
if (swap_ctl & FIMD_WINCON_SWAP_HWORD) {
x = ((x & 0x000000000000FFFFULL) << 48) |
((x & 0x00000000FFFF0000ULL) << 16) |
((x & 0x0000FFFF00000000ULL) >> 16) |
((x & 0xFFFF000000000000ULL) >> 48);
}
if (swap_ctl & FIMD_WINCON_SWAP_WORD) {
x = ((x & 0x00000000FFFFFFFFULL) << 32) |
((x & 0xFFFFFFFF00000000ULL) >> 32);
}
*data = x;
}
/* Conversion routines of Pixel data from frame buffer area to internal RGBA
* pixel representation.
* Every color component internally represented as 8-bit value. If original
* data has less than 8 bit for component, data is extended to 8 bit. For
* example, if blue component has only two possible values 0 and 1 it will be
* extended to 0 and 0xFF */
/* One bit for alpha representation */
#define DEF_PIXEL_TO_RGB_A1(N, R, G, B) \
static void N(uint32_t pixel, rgba *p) \
{ \
p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \
((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \
pixel >>= (B); \
p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \
((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \
pixel >>= (G); \
p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \
((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \
pixel >>= (R); \
p->a = (pixel & 0x1); \
}
DEF_PIXEL_TO_RGB_A1(pixel_a444_to_rgb, 4, 4, 4)
DEF_PIXEL_TO_RGB_A1(pixel_a555_to_rgb, 5, 5, 5)
DEF_PIXEL_TO_RGB_A1(pixel_a666_to_rgb, 6, 6, 6)
DEF_PIXEL_TO_RGB_A1(pixel_a665_to_rgb, 6, 6, 5)
DEF_PIXEL_TO_RGB_A1(pixel_a888_to_rgb, 8, 8, 8)
DEF_PIXEL_TO_RGB_A1(pixel_a887_to_rgb, 8, 8, 7)
/* Alpha component is always zero */
#define DEF_PIXEL_TO_RGB_A0(N, R, G, B) \
static void N(uint32_t pixel, rgba *p) \
{ \
p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \
((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \
pixel >>= (B); \
p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \
((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \
pixel >>= (G); \
p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \
((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \
p->a = 0x0; \
}
DEF_PIXEL_TO_RGB_A0(pixel_565_to_rgb, 5, 6, 5)
DEF_PIXEL_TO_RGB_A0(pixel_555_to_rgb, 5, 5, 5)
DEF_PIXEL_TO_RGB_A0(pixel_666_to_rgb, 6, 6, 6)
DEF_PIXEL_TO_RGB_A0(pixel_888_to_rgb, 8, 8, 8)
/* Alpha component has some meaningful value */
#define DEF_PIXEL_TO_RGB_A(N, R, G, B, A) \
static void N(uint32_t pixel, rgba *p) \
{ \
p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \
((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \
pixel >>= (B); \
p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \
((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \
pixel >>= (G); \
p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \
((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \
pixel >>= (R); \
p->a = (pixel & ((1 << (A)) - 1)) << (8 - (A)) | \
((pixel >> (2 * (A) - 8)) & ((1 << (8 - (A))) - 1)); \
p->a = p->a | (p->a << 8) | (p->a << 16); \
}
DEF_PIXEL_TO_RGB_A(pixel_4444_to_rgb, 4, 4, 4, 4)
DEF_PIXEL_TO_RGB_A(pixel_8888_to_rgb, 8, 8, 8, 8)
/* Lookup table to extent 2-bit color component to 8 bit */
static const uint8_t pixel_lutable_2b[4] = {
0x0, 0x55, 0xAA, 0xFF
};
/* Lookup table to extent 3-bit color component to 8 bit */
static const uint8_t pixel_lutable_3b[8] = {
0x0, 0x24, 0x49, 0x6D, 0x92, 0xB6, 0xDB, 0xFF
};
/* Special case for a232 bpp mode */
static void pixel_a232_to_rgb(uint32_t pixel, rgba *p)
{
p->b = pixel_lutable_2b[(pixel & 0x3)];
pixel >>= 2;
p->g = pixel_lutable_3b[(pixel & 0x7)];
pixel >>= 3;
p->r = pixel_lutable_2b[(pixel & 0x3)];
pixel >>= 2;
p->a = (pixel & 0x1);
}
/* Special case for (5+1, 5+1, 5+1) mode. Data bit 15 is common LSB
* for all three color components */
static void pixel_1555_to_rgb(uint32_t pixel, rgba *p)
{
uint8_t comm = (pixel >> 15) & 1;
p->b = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3);
pixel >>= 5;
p->g = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3);
pixel >>= 5;
p->r = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3);
p->a = 0x0;
}
/* Put/get pixel to/from internal LCD Controller framebuffer */
static int put_pixel_ifb(const rgba p, uint8_t *d)
{
*(uint8_t *)d++ = p.r;
*(uint8_t *)d++ = p.g;
*(uint8_t *)d++ = p.b;
*(uint32_t *)d = p.a;
return RGBA_SIZE;
}
static int get_pixel_ifb(const uint8_t *s, rgba *p)
{
p->r = *(uint8_t *)s++;
p->g = *(uint8_t *)s++;
p->b = *(uint8_t *)s++;
p->a = (*(uint32_t *)s) & 0x00FFFFFF;
return RGBA_SIZE;
}
static pixel_to_rgb_func *palette_data_format[8] = {
[0] = pixel_565_to_rgb,
[1] = pixel_a555_to_rgb,
[2] = pixel_666_to_rgb,
[3] = pixel_a665_to_rgb,
[4] = pixel_a666_to_rgb,
[5] = pixel_888_to_rgb,
[6] = pixel_a888_to_rgb,
[7] = pixel_8888_to_rgb
};
/* Returns Index in palette data formats table for given window number WINDOW */
static uint32_t
exynos4210_fimd_palette_format(Exynos4210fimdState *s, int window)
{
uint32_t ret;
switch (window) {
case 0:
ret = (s->wpalcon[1] >> FIMD_WPAL_W0PAL_L_SHT) & FIMD_WPAL_W0PAL_L;
if (ret != 7) {
ret = 6 - ret;
}
break;
case 1:
ret = (s->wpalcon[1] >> FIMD_WPAL_W1PAL_L_SHT) & FIMD_WPAL_W1PAL_L;
if (ret != 7) {
ret = 6 - ret;
}
break;
case 2:
ret = ((s->wpalcon[0] >> FIMD_WPAL_W2PAL_H_SHT) & FIMD_WPAL_W2PAL_H) |
((s->wpalcon[1] >> FIMD_WPAL_W2PAL_L_SHT) & FIMD_WPAL_W2PAL_L);
break;
case 3:
ret = ((s->wpalcon[0] >> FIMD_WPAL_W3PAL_H_SHT) & FIMD_WPAL_W3PAL_H) |
((s->wpalcon[1] >> FIMD_WPAL_W3PAL_L_SHT) & FIMD_WPAL_W3PAL_L);
break;
case 4:
ret = ((s->wpalcon[0] >> FIMD_WPAL_W4PAL_H_SHT) & FIMD_WPAL_W4PAL_H) |
((s->wpalcon[1] >> FIMD_WPAL_W4PAL_L_SHT) & FIMD_WPAL_W4PAL_L);
break;
default:
hw_error("exynos4210.fimd: incorrect window number %d\n", window);
ret = 0;
break;
}
return ret;
}
#define FIMD_1_MINUS_COLOR(x) \
((0xFF - ((x) & 0xFF)) | (0xFF00 - ((x) & 0xFF00)) | \
(0xFF0000 - ((x) & 0xFF0000)))
#define EXTEND_LOWER_HALFBYTE(x) (((x) & 0xF0F0F) | (((x) << 4) & 0xF0F0F0))
#define EXTEND_UPPER_HALFBYTE(x) (((x) & 0xF0F0F0) | (((x) >> 4) & 0xF0F0F))
/* Multiply three lower bytes of two 32-bit words with each other.
* Each byte with values 0-255 is considered as a number with possible values
* in a range [0 - 1] */
static inline uint32_t fimd_mult_each_byte(uint32_t a, uint32_t b)
{
uint32_t tmp;
uint32_t ret;
ret = ((tmp = (((a & 0xFF) * (b & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF : tmp;
ret |= ((tmp = ((((a >> 8) & 0xFF) * ((b >> 8) & 0xFF)) / 0xFF)) > 0xFF) ?
0xFF00 : tmp << 8;
ret |= ((tmp = ((((a >> 16) & 0xFF) * ((b >> 16) & 0xFF)) / 0xFF)) > 0xFF) ?
0xFF0000 : tmp << 16;
return ret;
}
/* For each corresponding bytes of two 32-bit words: (a*b + c*d)
* Byte values 0-255 are mapped to a range [0 .. 1] */
static inline uint32_t
fimd_mult_and_sum_each_byte(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
{
uint32_t tmp;
uint32_t ret;
ret = ((tmp = (((a & 0xFF) * (b & 0xFF) + (c & 0xFF) * (d & 0xFF)) / 0xFF))
> 0xFF) ? 0xFF : tmp;
ret |= ((tmp = ((((a >> 8) & 0xFF) * ((b >> 8) & 0xFF) + ((c >> 8) & 0xFF) *
((d >> 8) & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF00 : tmp << 8;
ret |= ((tmp = ((((a >> 16) & 0xFF) * ((b >> 16) & 0xFF) +
((c >> 16) & 0xFF) * ((d >> 16) & 0xFF)) / 0xFF)) > 0xFF) ?
0xFF0000 : tmp << 16;
return ret;
}
/* These routines cover all possible sources of window's transparent factor
* used in blending equation. Choice of routine is affected by WPALCON
* registers, BLENDCON register and window's WINCON register */
static uint32_t fimd_get_alpha_pix(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return pix_a;
}
static uint32_t
fimd_get_alpha_pix_extlow(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return EXTEND_LOWER_HALFBYTE(pix_a);
}
static uint32_t
fimd_get_alpha_pix_exthigh(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return EXTEND_UPPER_HALFBYTE(pix_a);
}
static uint32_t fimd_get_alpha_mult(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return fimd_mult_each_byte(pix_a, w->alpha_val[0]);
}
static uint32_t fimd_get_alpha_mult_ext(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return fimd_mult_each_byte(EXTEND_LOWER_HALFBYTE(pix_a),
EXTEND_UPPER_HALFBYTE(w->alpha_val[0]));
}
static uint32_t fimd_get_alpha_aen(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return w->alpha_val[pix_a];
}
static uint32_t fimd_get_alpha_aen_ext(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return EXTEND_UPPER_HALFBYTE(w->alpha_val[pix_a]);
}
static uint32_t fimd_get_alpha_sel(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return w->alpha_val[(w->wincon & FIMD_WINCON_ALPHA_SEL) ? 1 : 0];
}
static uint32_t fimd_get_alpha_sel_ext(Exynos4210fimdWindow *w, uint32_t pix_a)
{
return EXTEND_UPPER_HALFBYTE(w->alpha_val[(w->wincon &
FIMD_WINCON_ALPHA_SEL) ? 1 : 0]);
}
/* Updates currently active alpha value get function for specified window */
static void fimd_update_get_alpha(Exynos4210fimdState *s, int win)
{
Exynos4210fimdWindow *w = &s->window[win];
const bool alpha_is_8bit = s->blendcon & FIMD_ALPHA_8BIT;
if (w->wincon & FIMD_WINCON_BLD_PIX) {
if ((w->wincon & FIMD_WINCON_ALPHA_SEL) && WIN_BPP_MODE_WITH_ALPHA(w)) {
/* In this case, alpha component contains meaningful value */
if (w->wincon & FIMD_WINCON_ALPHA_MUL) {
w->get_alpha = alpha_is_8bit ?
fimd_get_alpha_mult : fimd_get_alpha_mult_ext;
} else {
w->get_alpha = alpha_is_8bit ?
fimd_get_alpha_pix : fimd_get_alpha_pix_extlow;
}
} else {
if (IS_PALETTIZED_MODE(w) &&
PAL_MODE_WITH_ALPHA(exynos4210_fimd_palette_format(s, win))) {
/* Alpha component has 8-bit numeric value */
w->get_alpha = alpha_is_8bit ?
fimd_get_alpha_pix : fimd_get_alpha_pix_exthigh;
} else {
/* Alpha has only two possible values (AEN) */
w->get_alpha = alpha_is_8bit ?
fimd_get_alpha_aen : fimd_get_alpha_aen_ext;
}
}
} else {
w->get_alpha = alpha_is_8bit ? fimd_get_alpha_sel :
fimd_get_alpha_sel_ext;
}
}
/* Blends current window's (w) pixel (foreground pixel *ret) with background
* window (w_blend) pixel p_bg according to formula:
* NEW_COLOR = a_coef x FG_PIXEL_COLOR + b_coef x BG_PIXEL_COLOR
* NEW_ALPHA = p_coef x FG_ALPHA + q_coef x BG_ALPHA
*/
static void
exynos4210_fimd_blend_pixel(Exynos4210fimdWindow *w, rgba p_bg, rgba *ret)
{
rgba p_fg = *ret;
uint32_t bg_color = ((p_bg.r & 0xFF) << 16) | ((p_bg.g & 0xFF) << 8) |
(p_bg.b & 0xFF);
uint32_t fg_color = ((p_fg.r & 0xFF) << 16) | ((p_fg.g & 0xFF) << 8) |
(p_fg.b & 0xFF);
uint32_t alpha_fg = p_fg.a;
int i;
/* It is possible that blending equation parameters a and b do not
* depend on window BLENEQ register. Account for this with first_coef */
enum { A_COEF = 0, B_COEF = 1, P_COEF = 2, Q_COEF = 3, COEF_NUM = 4};
uint32_t first_coef = A_COEF;
uint32_t blend_param[COEF_NUM];
if (w->keycon[0] & FIMD_WKEYCON0_KEYEN) {
uint32_t colorkey = (w->keycon[1] &
~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) & FIMD_WKEYCON0_COMPKEY;
if ((w->keycon[0] & FIMD_WKEYCON0_DIRCON) &&
(bg_color & ~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) == colorkey) {
/* Foreground pixel is displayed */
if (w->keycon[0] & FIMD_WKEYCON0_KEYBLEN) {
alpha_fg = w->keyalpha;
blend_param[A_COEF] = alpha_fg;
blend_param[B_COEF] = FIMD_1_MINUS_COLOR(alpha_fg);
} else {
alpha_fg = 0;
blend_param[A_COEF] = 0xFFFFFF;
blend_param[B_COEF] = 0x0;
}
first_coef = P_COEF;
} else if ((w->keycon[0] & FIMD_WKEYCON0_DIRCON) == 0 &&
(fg_color & ~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) == colorkey) {
/* Background pixel is displayed */
if (w->keycon[0] & FIMD_WKEYCON0_KEYBLEN) {
alpha_fg = w->keyalpha;
blend_param[A_COEF] = alpha_fg;
blend_param[B_COEF] = FIMD_1_MINUS_COLOR(alpha_fg);
} else {
alpha_fg = 0;
blend_param[A_COEF] = 0x0;
blend_param[B_COEF] = 0xFFFFFF;
}
first_coef = P_COEF;
}
}
for (i = first_coef; i < COEF_NUM; i++) {
switch ((w->blendeq >> i * 6) & FIMD_BLENDEQ_COEF_MASK) {
case 0:
blend_param[i] = 0;
break;
case 1:
blend_param[i] = 0xFFFFFF;
break;
case 2:
blend_param[i] = alpha_fg;
break;
case 3:
blend_param[i] = FIMD_1_MINUS_COLOR(alpha_fg);
break;
case 4:
blend_param[i] = p_bg.a;
break;
case 5:
blend_param[i] = FIMD_1_MINUS_COLOR(p_bg.a);
break;
case 6:
blend_param[i] = w->alpha_val[0];
break;
case 10:
blend_param[i] = fg_color;
break;
case 11:
blend_param[i] = FIMD_1_MINUS_COLOR(fg_color);
break;
case 12:
blend_param[i] = bg_color;
break;
case 13:
blend_param[i] = FIMD_1_MINUS_COLOR(bg_color);
break;
default:
hw_error("exynos4210.fimd: blend equation coef illegal value\n");
break;
}
}
fg_color = fimd_mult_and_sum_each_byte(bg_color, blend_param[B_COEF],
fg_color, blend_param[A_COEF]);
ret->b = fg_color & 0xFF;
fg_color >>= 8;
ret->g = fg_color & 0xFF;
fg_color >>= 8;
ret->r = fg_color & 0xFF;
ret->a = fimd_mult_and_sum_each_byte(alpha_fg, blend_param[P_COEF],
p_bg.a, blend_param[Q_COEF]);
}
/* These routines read data from video frame buffer in system RAM, convert
* this data to display controller internal representation, if necessary,
* perform pixel blending with data, currently presented in internal buffer.
* Result is stored in display controller internal frame buffer. */
/* Draw line with index in palette table in RAM frame buffer data */
#define DEF_DRAW_LINE_PALETTE(N) \
static void glue(draw_line_palette_, N)(Exynos4210fimdWindow *w, uint8_t *src, \
uint8_t *dst, bool blend) \
{ \
int width = w->rightbot_x - w->lefttop_x + 1; \
uint8_t *ifb = dst; \
uint8_t swap = (w->wincon & FIMD_WINCON_SWAP) >> FIMD_WINCON_SWAP_SHIFT; \
uint64_t data; \
rgba p, p_old; \
int i; \
do { \
data = ldq_raw((void *)src); \
src += 8; \
fimd_swap_data(swap, &data); \
for (i = (64 / (N) - 1); i >= 0; i--) { \
w->pixel_to_rgb(w->palette[(data >> ((N) * i)) & \
((1ULL << (N)) - 1)], &p); \
p.a = w->get_alpha(w, p.a); \
if (blend) { \
ifb += get_pixel_ifb(ifb, &p_old); \
exynos4210_fimd_blend_pixel(w, p_old, &p); \
} \
dst += put_pixel_ifb(p, dst); \
} \
width -= (64 / (N)); \
} while (width > 0); \
}
/* Draw line with direct color value in RAM frame buffer data */
#define DEF_DRAW_LINE_NOPALETTE(N) \
static void glue(draw_line_, N)(Exynos4210fimdWindow *w, uint8_t *src, \
uint8_t *dst, bool blend) \
{ \
int width = w->rightbot_x - w->lefttop_x + 1; \
uint8_t *ifb = dst; \
uint8_t swap = (w->wincon & FIMD_WINCON_SWAP) >> FIMD_WINCON_SWAP_SHIFT; \
uint64_t data; \
rgba p, p_old; \
int i; \
do { \
data = ldq_raw((void *)src); \
src += 8; \
fimd_swap_data(swap, &data); \
for (i = (64 / (N) - 1); i >= 0; i--) { \
w->pixel_to_rgb((data >> ((N) * i)) & ((1ULL << (N)) - 1), &p); \
p.a = w->get_alpha(w, p.a); \
if (blend) { \
ifb += get_pixel_ifb(ifb, &p_old); \
exynos4210_fimd_blend_pixel(w, p_old, &p); \
} \
dst += put_pixel_ifb(p, dst); \
} \
width -= (64 / (N)); \
} while (width > 0); \
}
DEF_DRAW_LINE_PALETTE(1)
DEF_DRAW_LINE_PALETTE(2)
DEF_DRAW_LINE_PALETTE(4)
DEF_DRAW_LINE_PALETTE(8)
DEF_DRAW_LINE_NOPALETTE(8) /* 8bpp mode has palette and non-palette versions */
DEF_DRAW_LINE_NOPALETTE(16)
DEF_DRAW_LINE_NOPALETTE(32)
/* Special draw line routine for window color map case */
static void draw_line_mapcolor(Exynos4210fimdWindow *w, uint8_t *src,
uint8_t *dst, bool blend)
{
rgba p, p_old;
uint8_t *ifb = dst;
int width = w->rightbot_x - w->lefttop_x + 1;
uint32_t map_color = w->winmap & FIMD_WINMAP_COLOR_MASK;
do {
pixel_888_to_rgb(map_color, &p);
p.a = w->get_alpha(w, p.a);
if (blend) {
ifb += get_pixel_ifb(ifb, &p_old);
exynos4210_fimd_blend_pixel(w, p_old, &p);
}
dst += put_pixel_ifb(p, dst);
} while (--width);
}
/* Write RGB to QEMU's GraphicConsole framebuffer */
static int put_to_qemufb_pixel8(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel8(p.r, p.g, p.b);
*(uint8_t *)d = pixel;
return 1;
}
static int put_to_qemufb_pixel15(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel15(p.r, p.g, p.b);
*(uint16_t *)d = pixel;
return 2;
}
static int put_to_qemufb_pixel16(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel16(p.r, p.g, p.b);
*(uint16_t *)d = pixel;
return 2;
}
static int put_to_qemufb_pixel24(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel24(p.r, p.g, p.b);
*(uint8_t *)d++ = (pixel >> 0) & 0xFF;
*(uint8_t *)d++ = (pixel >> 8) & 0xFF;
*(uint8_t *)d++ = (pixel >> 16) & 0xFF;
return 3;
}
static int put_to_qemufb_pixel32(const rgba p, uint8_t *d)
{
uint32_t pixel = rgb_to_pixel24(p.r, p.g, p.b);
*(uint32_t *)d = pixel;
return 4;
}
/* Routine to copy pixel from internal buffer to QEMU buffer */
static int (*put_pixel_toqemu)(const rgba p, uint8_t *pixel);
static inline void fimd_update_putpix_qemu(int bpp)
{
switch (bpp) {
case 8:
put_pixel_toqemu = put_to_qemufb_pixel8;
break;
case 15:
put_pixel_toqemu = put_to_qemufb_pixel15;
break;
case 16:
put_pixel_toqemu = put_to_qemufb_pixel16;
break;
case 24:
put_pixel_toqemu = put_to_qemufb_pixel24;
break;
case 32:
put_pixel_toqemu = put_to_qemufb_pixel32;
break;
default:
hw_error("exynos4210.fimd: unsupported BPP (%d)", bpp);
break;
}
}
/* Routine to copy a line from internal frame buffer to QEMU display */
static void fimd_copy_line_toqemu(int width, uint8_t *src, uint8_t *dst)
{
rgba p;
do {
src += get_pixel_ifb(src, &p);
dst += put_pixel_toqemu(p, dst);
} while (--width);
}
/* Parse BPPMODE_F = WINCON1[5:2] bits */
static void exynos4210_fimd_update_win_bppmode(Exynos4210fimdState *s, int win)
{
Exynos4210fimdWindow *w = &s->window[win];
if (w->winmap & FIMD_WINMAP_EN) {
w->draw_line = draw_line_mapcolor;
return;
}
switch (WIN_BPP_MODE(w)) {
case 0:
w->draw_line = draw_line_palette_1;
w->pixel_to_rgb =
palette_data_format[exynos4210_fimd_palette_format(s, win)];
break;
case 1:
w->draw_line = draw_line_palette_2;
w->pixel_to_rgb =
palette_data_format[exynos4210_fimd_palette_format(s, win)];
break;
case 2:
w->draw_line = draw_line_palette_4;
w->pixel_to_rgb =
palette_data_format[exynos4210_fimd_palette_format(s, win)];
break;
case 3:
w->draw_line = draw_line_palette_8;
w->pixel_to_rgb =
palette_data_format[exynos4210_fimd_palette_format(s, win)];
break;
case 4:
w->draw_line = draw_line_8;
w->pixel_to_rgb = pixel_a232_to_rgb;
break;
case 5:
w->draw_line = draw_line_16;
w->pixel_to_rgb = pixel_565_to_rgb;
break;
case 6:
w->draw_line = draw_line_16;
w->pixel_to_rgb = pixel_a555_to_rgb;
break;
case 7:
w->draw_line = draw_line_16;
w->pixel_to_rgb = pixel_1555_to_rgb;
break;
case 8:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_666_to_rgb;
break;
case 9:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_a665_to_rgb;
break;
case 10:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_a666_to_rgb;
break;
case 11:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_888_to_rgb;
break;
case 12:
w->draw_line = draw_line_32;
w->pixel_to_rgb = pixel_a887_to_rgb;
break;
case 13:
w->draw_line = draw_line_32;
if ((w->wincon & FIMD_WINCON_BLD_PIX) && (w->wincon &
FIMD_WINCON_ALPHA_SEL)) {
w->pixel_to_rgb = pixel_8888_to_rgb;
} else {
w->pixel_to_rgb = pixel_a888_to_rgb;
}
break;
case 14:
w->draw_line = draw_line_16;
if ((w->wincon & FIMD_WINCON_BLD_PIX) && (w->wincon &
FIMD_WINCON_ALPHA_SEL)) {
w->pixel_to_rgb = pixel_4444_to_rgb;
} else {
w->pixel_to_rgb = pixel_a444_to_rgb;
}
break;
case 15:
w->draw_line = draw_line_16;
w->pixel_to_rgb = pixel_555_to_rgb;
break;
}
}
#if EXYNOS4210_FIMD_MODE_TRACE > 0
static const char *exynos4210_fimd_get_bppmode(int mode_code)
{
switch (mode_code) {
case 0:
return "1 bpp";
case 1:
return "2 bpp";
case 2:
return "4 bpp";
case 3:
return "8 bpp (palettized)";
case 4:
return "8 bpp (non-palettized, A: 1-R:2-G:3-B:2)";
case 5:
return "16 bpp (non-palettized, R:5-G:6-B:5)";
case 6:
return "16 bpp (non-palettized, A:1-R:5-G:5-B:5)";
case 7:
return "16 bpp (non-palettized, I :1-R:5-G:5-B:5)";
case 8:
return "Unpacked 18 bpp (non-palettized, R:6-G:6-B:6)";
case 9:
return "Unpacked 18bpp (non-palettized,A:1-R:6-G:6-B:5)";
case 10:
return "Unpacked 19bpp (non-palettized,A:1-R:6-G:6-B:6)";
case 11:
return "Unpacked 24 bpp (non-palettized R:8-G:8-B:8)";
case 12:
return "Unpacked 24 bpp (non-palettized A:1-R:8-G:8-B:7)";
case 13:
return "Unpacked 25 bpp (non-palettized A:1-R:8-G:8-B:8)";
case 14:
return "Unpacked 13 bpp (non-palettized A:1-R:4-G:4-B:4)";
case 15:
return "Unpacked 15 bpp (non-palettized R:5-G:5-B:5)";
default:
return "Non-existing bpp mode";
}
}
static inline void exynos4210_fimd_trace_bppmode(Exynos4210fimdState *s,
int win_num, uint32_t val)
{
Exynos4210fimdWindow *w = &s->window[win_num];
if (w->winmap & FIMD_WINMAP_EN) {
printf("QEMU FIMD: Window %d is mapped with MAPCOLOR=0x%x\n",
win_num, w->winmap & 0xFFFFFF);
return;
}
if ((val != 0xFFFFFFFF) && ((w->wincon >> 2) & 0xF) == ((val >> 2) & 0xF)) {
return;
}
printf("QEMU FIMD: Window %d BPP mode set to %s\n", win_num,
exynos4210_fimd_get_bppmode((val >> 2) & 0xF));
}
#else
static inline void exynos4210_fimd_trace_bppmode(Exynos4210fimdState *s,
int win_num, uint32_t val)
{
}
#endif
static inline int fimd_get_buffer_id(Exynos4210fimdWindow *w)
{
switch (w->wincon & FIMD_WINCON_BUFSTATUS) {
case FIMD_WINCON_BUF0_STAT:
return 0;
case FIMD_WINCON_BUF1_STAT:
return 1;
case FIMD_WINCON_BUF2_STAT:
return 2;
default:
DPRINT_ERROR("Non-existent buffer index\n");
return 0;
}
}
/* Updates specified window's MemorySection based on values of WINCON,
* VIDOSDA, VIDOSDB, VIDWADDx and SHADOWCON registers */
static void fimd_update_memory_section(Exynos4210fimdState *s, unsigned win)
{
Exynos4210fimdWindow *w = &s->window[win];
hwaddr fb_start_addr, fb_mapped_len;
if (!s->enabled || !(w->wincon & FIMD_WINCON_ENWIN) ||
FIMD_WINDOW_PROTECTED(s->shadowcon, win)) {
return;
}
if (w->host_fb_addr) {
cpu_physical_memory_unmap(w->host_fb_addr, w->fb_len, 0, 0);
w->host_fb_addr = NULL;
w->fb_len = 0;
}
fb_start_addr = w->buf_start[fimd_get_buffer_id(w)];
/* Total number of bytes of virtual screen used by current window */
w->fb_len = fb_mapped_len = (w->virtpage_width + w->virtpage_offsize) *
(w->rightbot_y - w->lefttop_y + 1);
w->mem_section = memory_region_find(sysbus_address_space(&s->busdev),
fb_start_addr, w->fb_len);
assert(w->mem_section.mr);
assert(w->mem_section.offset_within_address_space == fb_start_addr);
DPRINT_TRACE("Window %u framebuffer changed: address=0x%08x, len=0x%x\n",
win, fb_start_addr, w->fb_len);
if (w->mem_section.size != w->fb_len ||
!memory_region_is_ram(w->mem_section.mr)) {
DPRINT_ERROR("Failed to find window %u framebuffer region\n", win);
goto error_return;
}
w->host_fb_addr = cpu_physical_memory_map(fb_start_addr, &fb_mapped_len, 0);
if (!w->host_fb_addr) {
DPRINT_ERROR("Failed to map window %u framebuffer\n", win);
goto error_return;
}
if (fb_mapped_len != w->fb_len) {
DPRINT_ERROR("Window %u mapped framebuffer length is less then "
"expected\n", win);
cpu_physical_memory_unmap(w->host_fb_addr, fb_mapped_len, 0, 0);
goto error_return;
}
return;
error_return:
w->mem_section.mr = NULL;
w->mem_section.size = 0;
w->host_fb_addr = NULL;
w->fb_len = 0;
}
static void exynos4210_fimd_enable(Exynos4210fimdState *s, bool enabled)
{
if (enabled && !s->enabled) {
unsigned w;
s->enabled = true;
for (w = 0; w < NUM_OF_WINDOWS; w++) {
fimd_update_memory_section(s, w);
}
}
s->enabled = enabled;
DPRINT_TRACE("display controller %s\n", enabled ? "enabled" : "disabled");
}
static inline uint32_t unpack_upper_4(uint32_t x)
{
return ((x & 0xF00) << 12) | ((x & 0xF0) << 8) | ((x & 0xF) << 4);
}
static inline uint32_t pack_upper_4(uint32_t x)
{
return (((x & 0xF00000) >> 12) | ((x & 0xF000) >> 8) |
((x & 0xF0) >> 4)) & 0xFFF;
}
static void exynos4210_fimd_update_irq(Exynos4210fimdState *s)
{
if (!(s->vidintcon[0] & FIMD_VIDINT_INTEN)) {
qemu_irq_lower(s->irq[0]);
qemu_irq_lower(s->irq[1]);
qemu_irq_lower(s->irq[2]);
return;
}
if ((s->vidintcon[0] & FIMD_VIDINT_INTFIFOEN) &&
(s->vidintcon[1] & FIMD_VIDINT_INTFIFOPEND)) {
qemu_irq_raise(s->irq[0]);
} else {
qemu_irq_lower(s->irq[0]);
}
if ((s->vidintcon[0] & FIMD_VIDINT_INTFRMEN) &&
(s->vidintcon[1] & FIMD_VIDINT_INTFRMPEND)) {
qemu_irq_raise(s->irq[1]);
} else {
qemu_irq_lower(s->irq[1]);
}
if ((s->vidintcon[0] & FIMD_VIDINT_I80IFDONE) &&
(s->vidintcon[1] & FIMD_VIDINT_INTI80PEND)) {
qemu_irq_raise(s->irq[2]);
} else {
qemu_irq_lower(s->irq[2]);
}
}
static void exynos4210_fimd_invalidate(void *opaque)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
s->invalidate = true;
}
static void exynos4210_update_resolution(Exynos4210fimdState *s)
{
/* LCD resolution is stored in VIDEO TIME CONTROL REGISTER 2 */
uint32_t width = ((s->vidtcon[2] >> FIMD_VIDTCON2_HOR_SHIFT) &
FIMD_VIDTCON2_SIZE_MASK) + 1;
uint32_t height = ((s->vidtcon[2] >> FIMD_VIDTCON2_VER_SHIFT) &
FIMD_VIDTCON2_SIZE_MASK) + 1;
if (s->ifb == NULL || ds_get_width(s->console) != width ||
ds_get_height(s->console) != height) {
DPRINT_L1("Resolution changed from %ux%u to %ux%u\n",
ds_get_width(s->console), ds_get_height(s->console), width, height);
qemu_console_resize(s->console, width, height);
s->ifb = g_realloc(s->ifb, width * height * RGBA_SIZE + 1);
memset(s->ifb, 0, width * height * RGBA_SIZE + 1);
exynos4210_fimd_invalidate(s);
}
}
static void exynos4210_fimd_update(void *opaque)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
Exynos4210fimdWindow *w;
int i, line;
hwaddr fb_line_addr, inc_size;
int scrn_height;
int first_line = -1, last_line = -1, scrn_width;
bool blend = false;
uint8_t *host_fb_addr;
bool is_dirty = false;
const int global_width = (s->vidtcon[2] & FIMD_VIDTCON2_SIZE_MASK) + 1;
const int global_height = ((s->vidtcon[2] >> FIMD_VIDTCON2_VER_SHIFT) &
FIMD_VIDTCON2_SIZE_MASK) + 1;
if (!s || !s->console || !ds_get_bits_per_pixel(s->console) ||
!s->enabled) {
return;
}
exynos4210_update_resolution(s);
for (i = 0; i < NUM_OF_WINDOWS; i++) {
w = &s->window[i];
if ((w->wincon & FIMD_WINCON_ENWIN) && w->host_fb_addr) {
scrn_height = w->rightbot_y - w->lefttop_y + 1;
scrn_width = w->virtpage_width;
/* Total width of virtual screen page in bytes */
inc_size = scrn_width + w->virtpage_offsize;
memory_region_sync_dirty_bitmap(w->mem_section.mr);
host_fb_addr = w->host_fb_addr;
fb_line_addr = w->mem_section.offset_within_region;
for (line = 0; line < scrn_height; line++) {
is_dirty = memory_region_get_dirty(w->mem_section.mr,
fb_line_addr, scrn_width, DIRTY_MEMORY_VGA);
if (s->invalidate || is_dirty) {
if (first_line == -1) {
first_line = line;
}
last_line = line;
w->draw_line(w, host_fb_addr, s->ifb +
w->lefttop_x * RGBA_SIZE + (w->lefttop_y + line) *
global_width * RGBA_SIZE, blend);
}
host_fb_addr += inc_size;
fb_line_addr += inc_size;
is_dirty = false;
}
memory_region_reset_dirty(w->mem_section.mr,
w->mem_section.offset_within_region,
w->fb_len, DIRTY_MEMORY_VGA);
blend = true;
}
}
/* Copy resulting image to QEMU_CONSOLE. */
if (first_line >= 0) {
uint8_t *d;
int bpp;
bpp = ds_get_bits_per_pixel(s->console);
fimd_update_putpix_qemu(bpp);
bpp = (bpp + 1) >> 3;
d = ds_get_data(s->console);
for (line = first_line; line <= last_line; line++) {
fimd_copy_line_toqemu(global_width, s->ifb + global_width * line *
RGBA_SIZE, d + global_width * line * bpp);
}
dpy_gfx_update(s->console, 0, 0, global_width, global_height);
}
s->invalidate = false;
s->vidintcon[1] |= FIMD_VIDINT_INTFRMPEND;
if ((s->vidcon[0] & FIMD_VIDCON0_ENVID_F) == 0) {
exynos4210_fimd_enable(s, false);
}
exynos4210_fimd_update_irq(s);
}
static void exynos4210_fimd_reset(DeviceState *d)
{
Exynos4210fimdState *s = DO_UPCAST(Exynos4210fimdState, busdev.qdev, d);
unsigned w;
DPRINT_TRACE("Display controller reset\n");
/* Set all display controller registers to 0 */
memset(&s->vidcon, 0, (uint8_t *)&s->window - (uint8_t *)&s->vidcon);
for (w = 0; w < NUM_OF_WINDOWS; w++) {
memset(&s->window[w], 0, sizeof(Exynos4210fimdWindow));
s->window[w].blendeq = 0xC2;
exynos4210_fimd_update_win_bppmode(s, w);
exynos4210_fimd_trace_bppmode(s, w, 0xFFFFFFFF);
fimd_update_get_alpha(s, w);
}
if (s->ifb != NULL) {
g_free(s->ifb);
}
s->ifb = NULL;
exynos4210_fimd_invalidate(s);
exynos4210_fimd_enable(s, false);
/* Some registers have non-zero initial values */
s->winchmap = 0x7D517D51;
s->colorgaincon = 0x10040100;
s->huecoef_cr[0] = s->huecoef_cr[3] = 0x01000100;
s->huecoef_cb[0] = s->huecoef_cb[3] = 0x01000100;
s->hueoffset = 0x01800080;
}
static void exynos4210_fimd_write(void *opaque, hwaddr offset,
uint64_t val, unsigned size)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
unsigned w, i;
uint32_t old_value;
DPRINT_L2("write offset 0x%08x, value=%llu(0x%08llx)\n", offset,
(long long unsigned int)val, (long long unsigned int)val);
switch (offset) {
case FIMD_VIDCON0:
if ((val & FIMD_VIDCON0_ENVID_MASK) == FIMD_VIDCON0_ENVID_MASK) {
exynos4210_fimd_enable(s, true);
} else {
if ((val & FIMD_VIDCON0_ENVID) == 0) {
exynos4210_fimd_enable(s, false);
}
}
s->vidcon[0] = val;
break;
case FIMD_VIDCON1:
/* Leave read-only bits as is */
val = (val & (~FIMD_VIDCON1_ROMASK)) |
(s->vidcon[1] & FIMD_VIDCON1_ROMASK);
s->vidcon[1] = val;
break;
case FIMD_VIDCON2 ... FIMD_VIDCON3:
s->vidcon[(offset) >> 2] = val;
break;
case FIMD_VIDTCON_START ... FIMD_VIDTCON_END:
s->vidtcon[(offset - FIMD_VIDTCON_START) >> 2] = val;
break;
case FIMD_WINCON_START ... FIMD_WINCON_END:
w = (offset - FIMD_WINCON_START) >> 2;
/* Window's current buffer ID */
i = fimd_get_buffer_id(&s->window[w]);
old_value = s->window[w].wincon;
val = (val & ~FIMD_WINCON_ROMASK) |
(s->window[w].wincon & FIMD_WINCON_ROMASK);
if (w == 0) {
/* Window 0 wincon ALPHA_MUL bit must always be 0 */
val &= ~FIMD_WINCON_ALPHA_MUL;
}
exynos4210_fimd_trace_bppmode(s, w, val);
switch (val & FIMD_WINCON_BUFSELECT) {
case FIMD_WINCON_BUF0_SEL:
val &= ~FIMD_WINCON_BUFSTATUS;
break;
case FIMD_WINCON_BUF1_SEL:
val = (val & ~FIMD_WINCON_BUFSTAT_H) | FIMD_WINCON_BUFSTAT_L;
break;
case FIMD_WINCON_BUF2_SEL:
if (val & FIMD_WINCON_BUFMODE) {
val = (val & ~FIMD_WINCON_BUFSTAT_L) | FIMD_WINCON_BUFSTAT_H;
}
break;
default:
break;
}
s->window[w].wincon = val;
exynos4210_fimd_update_win_bppmode(s, w);
fimd_update_get_alpha(s, w);
if ((i != fimd_get_buffer_id(&s->window[w])) ||
(!(old_value & FIMD_WINCON_ENWIN) && (s->window[w].wincon &
FIMD_WINCON_ENWIN))) {
fimd_update_memory_section(s, w);
}
break;
case FIMD_SHADOWCON:
old_value = s->shadowcon;
s->shadowcon = val;
for (w = 0; w < NUM_OF_WINDOWS; w++) {
if (FIMD_WINDOW_PROTECTED(old_value, w) &&
!FIMD_WINDOW_PROTECTED(s->shadowcon, w)) {
fimd_update_memory_section(s, w);
}
}
break;
case FIMD_WINCHMAP:
s->winchmap = val;
break;
case FIMD_VIDOSD_START ... FIMD_VIDOSD_END:
w = (offset - FIMD_VIDOSD_START) >> 4;
i = ((offset - FIMD_VIDOSD_START) & 0xF) >> 2;
switch (i) {
case 0:
old_value = s->window[w].lefttop_y;
s->window[w].lefttop_x = (val >> FIMD_VIDOSD_HOR_SHIFT) &
FIMD_VIDOSD_COORD_MASK;
s->window[w].lefttop_y = (val >> FIMD_VIDOSD_VER_SHIFT) &
FIMD_VIDOSD_COORD_MASK;
if (s->window[w].lefttop_y != old_value) {
fimd_update_memory_section(s, w);
}
break;
case 1:
old_value = s->window[w].rightbot_y;
s->window[w].rightbot_x = (val >> FIMD_VIDOSD_HOR_SHIFT) &
FIMD_VIDOSD_COORD_MASK;
s->window[w].rightbot_y = (val >> FIMD_VIDOSD_VER_SHIFT) &
FIMD_VIDOSD_COORD_MASK;
if (s->window[w].rightbot_y != old_value) {
fimd_update_memory_section(s, w);
}
break;
case 2:
if (w == 0) {
s->window[w].osdsize = val;
} else {
s->window[w].alpha_val[0] =
unpack_upper_4((val & FIMD_VIDOSD_ALPHA_AEN0) >>
FIMD_VIDOSD_AEN0_SHIFT) |
(s->window[w].alpha_val[0] & FIMD_VIDALPHA_ALPHA_LOWER);
s->window[w].alpha_val[1] =
unpack_upper_4(val & FIMD_VIDOSD_ALPHA_AEN1) |
(s->window[w].alpha_val[1] & FIMD_VIDALPHA_ALPHA_LOWER);
}
break;
case 3:
if (w != 1 && w != 2) {
DPRINT_ERROR("Bad write offset 0x%08x\n", offset);
return;
}
s->window[w].osdsize = val;
break;
}
break;
case FIMD_VIDWADD0_START ... FIMD_VIDWADD0_END:
w = (offset - FIMD_VIDWADD0_START) >> 3;
i = ((offset - FIMD_VIDWADD0_START) >> 2) & 1;
if (i == fimd_get_buffer_id(&s->window[w]) &&
s->window[w].buf_start[i] != val) {
s->window[w].buf_start[i] = val;
fimd_update_memory_section(s, w);
break;
}
s->window[w].buf_start[i] = val;
break;
case FIMD_VIDWADD1_START ... FIMD_VIDWADD1_END:
w = (offset - FIMD_VIDWADD1_START) >> 3;
i = ((offset - FIMD_VIDWADD1_START) >> 2) & 1;
s->window[w].buf_end[i] = val;
break;
case FIMD_VIDWADD2_START ... FIMD_VIDWADD2_END:
w = (offset - FIMD_VIDWADD2_START) >> 2;
if (((val & FIMD_VIDWADD2_PAGEWIDTH) != s->window[w].virtpage_width) ||
(((val >> FIMD_VIDWADD2_OFFSIZE_SHIFT) & FIMD_VIDWADD2_OFFSIZE) !=
s->window[w].virtpage_offsize)) {
s->window[w].virtpage_width = val & FIMD_VIDWADD2_PAGEWIDTH;
s->window[w].virtpage_offsize =
(val >> FIMD_VIDWADD2_OFFSIZE_SHIFT) & FIMD_VIDWADD2_OFFSIZE;
fimd_update_memory_section(s, w);
}
break;
case FIMD_VIDINTCON0:
s->vidintcon[0] = val;
break;
case FIMD_VIDINTCON1:
s->vidintcon[1] &= ~(val & 7);
exynos4210_fimd_update_irq(s);
break;
case FIMD_WKEYCON_START ... FIMD_WKEYCON_END:
w = ((offset - FIMD_WKEYCON_START) >> 3) + 1;
i = ((offset - FIMD_WKEYCON_START) >> 2) & 1;
s->window[w].keycon[i] = val;
break;
case FIMD_WKEYALPHA_START ... FIMD_WKEYALPHA_END:
w = ((offset - FIMD_WKEYALPHA_START) >> 2) + 1;
s->window[w].keyalpha = val;
break;
case FIMD_DITHMODE:
s->dithmode = val;
break;
case FIMD_WINMAP_START ... FIMD_WINMAP_END:
w = (offset - FIMD_WINMAP_START) >> 2;
old_value = s->window[w].winmap;
s->window[w].winmap = val;
if ((val & FIMD_WINMAP_EN) ^ (old_value & FIMD_WINMAP_EN)) {
exynos4210_fimd_invalidate(s);
exynos4210_fimd_update_win_bppmode(s, w);
exynos4210_fimd_trace_bppmode(s, w, 0xFFFFFFFF);
exynos4210_fimd_update(s);
}
break;
case FIMD_WPALCON_HIGH ... FIMD_WPALCON_LOW:
i = (offset - FIMD_WPALCON_HIGH) >> 2;
s->wpalcon[i] = val;
if (s->wpalcon[1] & FIMD_WPALCON_UPDATEEN) {
for (w = 0; w < NUM_OF_WINDOWS; w++) {
exynos4210_fimd_update_win_bppmode(s, w);
fimd_update_get_alpha(s, w);
}
}
break;
case FIMD_TRIGCON:
val = (val & ~FIMD_TRIGCON_ROMASK) | (s->trigcon & FIMD_TRIGCON_ROMASK);
s->trigcon = val;
break;
case FIMD_I80IFCON_START ... FIMD_I80IFCON_END:
s->i80ifcon[(offset - FIMD_I80IFCON_START) >> 2] = val;
break;
case FIMD_COLORGAINCON:
s->colorgaincon = val;
break;
case FIMD_LDI_CMDCON0 ... FIMD_LDI_CMDCON1:
s->ldi_cmdcon[(offset - FIMD_LDI_CMDCON0) >> 2] = val;
break;
case FIMD_SIFCCON0 ... FIMD_SIFCCON2:
i = (offset - FIMD_SIFCCON0) >> 2;
if (i != 2) {
s->sifccon[i] = val;
}
break;
case FIMD_HUECOEFCR_START ... FIMD_HUECOEFCR_END:
i = (offset - FIMD_HUECOEFCR_START) >> 2;
s->huecoef_cr[i] = val;
break;
case FIMD_HUECOEFCB_START ... FIMD_HUECOEFCB_END:
i = (offset - FIMD_HUECOEFCB_START) >> 2;
s->huecoef_cb[i] = val;
break;
case FIMD_HUEOFFSET:
s->hueoffset = val;
break;
case FIMD_VIDWALPHA_START ... FIMD_VIDWALPHA_END:
w = ((offset - FIMD_VIDWALPHA_START) >> 3);
i = ((offset - FIMD_VIDWALPHA_START) >> 2) & 1;
if (w == 0) {
s->window[w].alpha_val[i] = val;
} else {
s->window[w].alpha_val[i] = (val & FIMD_VIDALPHA_ALPHA_LOWER) |
(s->window[w].alpha_val[i] & FIMD_VIDALPHA_ALPHA_UPPER);
}
break;
case FIMD_BLENDEQ_START ... FIMD_BLENDEQ_END:
s->window[(offset - FIMD_BLENDEQ_START) >> 2].blendeq = val;
break;
case FIMD_BLENDCON:
old_value = s->blendcon;
s->blendcon = val;
if ((s->blendcon & FIMD_ALPHA_8BIT) != (old_value & FIMD_ALPHA_8BIT)) {
for (w = 0; w < NUM_OF_WINDOWS; w++) {
fimd_update_get_alpha(s, w);
}
}
break;
case FIMD_WRTQOSCON_START ... FIMD_WRTQOSCON_END:
s->window[(offset - FIMD_WRTQOSCON_START) >> 2].rtqoscon = val;
break;
case FIMD_I80IFCMD_START ... FIMD_I80IFCMD_END:
s->i80ifcmd[(offset - FIMD_I80IFCMD_START) >> 2] = val;
break;
case FIMD_VIDW0ADD0_B2 ... FIMD_VIDW4ADD0_B2:
if (offset & 0x0004) {
DPRINT_ERROR("bad write offset 0x%08x\n", offset);
break;
}
w = (offset - FIMD_VIDW0ADD0_B2) >> 3;
if (fimd_get_buffer_id(&s->window[w]) == 2 &&
s->window[w].buf_start[2] != val) {
s->window[w].buf_start[2] = val;
fimd_update_memory_section(s, w);
break;
}
s->window[w].buf_start[2] = val;
break;
case FIMD_SHD_ADD0_START ... FIMD_SHD_ADD0_END:
if (offset & 0x0004) {
DPRINT_ERROR("bad write offset 0x%08x\n", offset);
break;
}
s->window[(offset - FIMD_SHD_ADD0_START) >> 3].shadow_buf_start = val;
break;
case FIMD_SHD_ADD1_START ... FIMD_SHD_ADD1_END:
if (offset & 0x0004) {
DPRINT_ERROR("bad write offset 0x%08x\n", offset);
break;
}
s->window[(offset - FIMD_SHD_ADD1_START) >> 3].shadow_buf_end = val;
break;
case FIMD_SHD_ADD2_START ... FIMD_SHD_ADD2_END:
s->window[(offset - FIMD_SHD_ADD2_START) >> 2].shadow_buf_size = val;
break;
case FIMD_PAL_MEM_START ... FIMD_PAL_MEM_END:
w = (offset - FIMD_PAL_MEM_START) >> 10;
i = ((offset - FIMD_PAL_MEM_START) >> 2) & 0xFF;
s->window[w].palette[i] = val;
break;
case FIMD_PALMEM_AL_START ... FIMD_PALMEM_AL_END:
/* Palette memory aliases for windows 0 and 1 */
w = (offset - FIMD_PALMEM_AL_START) >> 10;
i = ((offset - FIMD_PALMEM_AL_START) >> 2) & 0xFF;
s->window[w].palette[i] = val;
break;
default:
DPRINT_ERROR("bad write offset 0x%08x\n", offset);
break;
}
}
static uint64_t exynos4210_fimd_read(void *opaque, hwaddr offset,
unsigned size)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
int w, i;
uint32_t ret = 0;
DPRINT_L2("read offset 0x%08x\n", offset);
switch (offset) {
case FIMD_VIDCON0 ... FIMD_VIDCON3:
return s->vidcon[(offset - FIMD_VIDCON0) >> 2];
case FIMD_VIDTCON_START ... FIMD_VIDTCON_END:
return s->vidtcon[(offset - FIMD_VIDTCON_START) >> 2];
case FIMD_WINCON_START ... FIMD_WINCON_END:
return s->window[(offset - FIMD_WINCON_START) >> 2].wincon;
case FIMD_SHADOWCON:
return s->shadowcon;
case FIMD_WINCHMAP:
return s->winchmap;
case FIMD_VIDOSD_START ... FIMD_VIDOSD_END:
w = (offset - FIMD_VIDOSD_START) >> 4;
i = ((offset - FIMD_VIDOSD_START) & 0xF) >> 2;
switch (i) {
case 0:
ret = ((s->window[w].lefttop_x & FIMD_VIDOSD_COORD_MASK) <<
FIMD_VIDOSD_HOR_SHIFT) |
(s->window[w].lefttop_y & FIMD_VIDOSD_COORD_MASK);
break;
case 1:
ret = ((s->window[w].rightbot_x & FIMD_VIDOSD_COORD_MASK) <<
FIMD_VIDOSD_HOR_SHIFT) |
(s->window[w].rightbot_y & FIMD_VIDOSD_COORD_MASK);
break;
case 2:
if (w == 0) {
ret = s->window[w].osdsize;
} else {
ret = (pack_upper_4(s->window[w].alpha_val[0]) <<
FIMD_VIDOSD_AEN0_SHIFT) |
pack_upper_4(s->window[w].alpha_val[1]);
}
break;
case 3:
if (w != 1 && w != 2) {
DPRINT_ERROR("bad read offset 0x%08x\n", offset);
return 0xBAADBAAD;
}
ret = s->window[w].osdsize;
break;
}
return ret;
case FIMD_VIDWADD0_START ... FIMD_VIDWADD0_END:
w = (offset - FIMD_VIDWADD0_START) >> 3;
i = ((offset - FIMD_VIDWADD0_START) >> 2) & 1;
return s->window[w].buf_start[i];
case FIMD_VIDWADD1_START ... FIMD_VIDWADD1_END:
w = (offset - FIMD_VIDWADD1_START) >> 3;
i = ((offset - FIMD_VIDWADD1_START) >> 2) & 1;
return s->window[w].buf_end[i];
case FIMD_VIDWADD2_START ... FIMD_VIDWADD2_END:
w = (offset - FIMD_VIDWADD2_START) >> 2;
return s->window[w].virtpage_width | (s->window[w].virtpage_offsize <<
FIMD_VIDWADD2_OFFSIZE_SHIFT);
case FIMD_VIDINTCON0 ... FIMD_VIDINTCON1:
return s->vidintcon[(offset - FIMD_VIDINTCON0) >> 2];
case FIMD_WKEYCON_START ... FIMD_WKEYCON_END:
w = ((offset - FIMD_WKEYCON_START) >> 3) + 1;
i = ((offset - FIMD_WKEYCON_START) >> 2) & 1;
return s->window[w].keycon[i];
case FIMD_WKEYALPHA_START ... FIMD_WKEYALPHA_END:
w = ((offset - FIMD_WKEYALPHA_START) >> 2) + 1;
return s->window[w].keyalpha;
case FIMD_DITHMODE:
return s->dithmode;
case FIMD_WINMAP_START ... FIMD_WINMAP_END:
return s->window[(offset - FIMD_WINMAP_START) >> 2].winmap;
case FIMD_WPALCON_HIGH ... FIMD_WPALCON_LOW:
return s->wpalcon[(offset - FIMD_WPALCON_HIGH) >> 2];
case FIMD_TRIGCON:
return s->trigcon;
case FIMD_I80IFCON_START ... FIMD_I80IFCON_END:
return s->i80ifcon[(offset - FIMD_I80IFCON_START) >> 2];
case FIMD_COLORGAINCON:
return s->colorgaincon;
case FIMD_LDI_CMDCON0 ... FIMD_LDI_CMDCON1:
return s->ldi_cmdcon[(offset - FIMD_LDI_CMDCON0) >> 2];
case FIMD_SIFCCON0 ... FIMD_SIFCCON2:
i = (offset - FIMD_SIFCCON0) >> 2;
return s->sifccon[i];
case FIMD_HUECOEFCR_START ... FIMD_HUECOEFCR_END:
i = (offset - FIMD_HUECOEFCR_START) >> 2;
return s->huecoef_cr[i];
case FIMD_HUECOEFCB_START ... FIMD_HUECOEFCB_END:
i = (offset - FIMD_HUECOEFCB_START) >> 2;
return s->huecoef_cb[i];
case FIMD_HUEOFFSET:
return s->hueoffset;
case FIMD_VIDWALPHA_START ... FIMD_VIDWALPHA_END:
w = ((offset - FIMD_VIDWALPHA_START) >> 3);
i = ((offset - FIMD_VIDWALPHA_START) >> 2) & 1;
return s->window[w].alpha_val[i] &
(w == 0 ? 0xFFFFFF : FIMD_VIDALPHA_ALPHA_LOWER);
case FIMD_BLENDEQ_START ... FIMD_BLENDEQ_END:
return s->window[(offset - FIMD_BLENDEQ_START) >> 2].blendeq;
case FIMD_BLENDCON:
return s->blendcon;
case FIMD_WRTQOSCON_START ... FIMD_WRTQOSCON_END:
return s->window[(offset - FIMD_WRTQOSCON_START) >> 2].rtqoscon;
case FIMD_I80IFCMD_START ... FIMD_I80IFCMD_END:
return s->i80ifcmd[(offset - FIMD_I80IFCMD_START) >> 2];
case FIMD_VIDW0ADD0_B2 ... FIMD_VIDW4ADD0_B2:
if (offset & 0x0004) {
break;
}
return s->window[(offset - FIMD_VIDW0ADD0_B2) >> 3].buf_start[2];
case FIMD_SHD_ADD0_START ... FIMD_SHD_ADD0_END:
if (offset & 0x0004) {
break;
}
return s->window[(offset - FIMD_SHD_ADD0_START) >> 3].shadow_buf_start;
case FIMD_SHD_ADD1_START ... FIMD_SHD_ADD1_END:
if (offset & 0x0004) {
break;
}
return s->window[(offset - FIMD_SHD_ADD1_START) >> 3].shadow_buf_end;
case FIMD_SHD_ADD2_START ... FIMD_SHD_ADD2_END:
return s->window[(offset - FIMD_SHD_ADD2_START) >> 2].shadow_buf_size;
case FIMD_PAL_MEM_START ... FIMD_PAL_MEM_END:
w = (offset - FIMD_PAL_MEM_START) >> 10;
i = ((offset - FIMD_PAL_MEM_START) >> 2) & 0xFF;
return s->window[w].palette[i];
case FIMD_PALMEM_AL_START ... FIMD_PALMEM_AL_END:
/* Palette aliases for win 0,1 */
w = (offset - FIMD_PALMEM_AL_START) >> 10;
i = ((offset - FIMD_PALMEM_AL_START) >> 2) & 0xFF;
return s->window[w].palette[i];
}
DPRINT_ERROR("bad read offset 0x%08x\n", offset);
return 0xBAADBAAD;
}
static const MemoryRegionOps exynos4210_fimd_mmio_ops = {
.read = exynos4210_fimd_read,
.write = exynos4210_fimd_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int exynos4210_fimd_load(void *opaque, int version_id)
{
Exynos4210fimdState *s = (Exynos4210fimdState *)opaque;
int w;
if (version_id != 1) {
return -EINVAL;
}
for (w = 0; w < NUM_OF_WINDOWS; w++) {
exynos4210_fimd_update_win_bppmode(s, w);
fimd_update_get_alpha(s, w);
fimd_update_memory_section(s, w);
}
/* Redraw the whole screen */
exynos4210_update_resolution(s);
exynos4210_fimd_invalidate(s);
exynos4210_fimd_enable(s, (s->vidcon[0] & FIMD_VIDCON0_ENVID_MASK) ==
FIMD_VIDCON0_ENVID_MASK);
return 0;
}
static const VMStateDescription exynos4210_fimd_window_vmstate = {
.name = "exynos4210.fimd_window",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(wincon, Exynos4210fimdWindow),
VMSTATE_UINT32_ARRAY(buf_start, Exynos4210fimdWindow, 3),
VMSTATE_UINT32_ARRAY(buf_end, Exynos4210fimdWindow, 3),
VMSTATE_UINT32_ARRAY(keycon, Exynos4210fimdWindow, 2),
VMSTATE_UINT32(keyalpha, Exynos4210fimdWindow),
VMSTATE_UINT32(winmap, Exynos4210fimdWindow),
VMSTATE_UINT32(blendeq, Exynos4210fimdWindow),
VMSTATE_UINT32(rtqoscon, Exynos4210fimdWindow),
VMSTATE_UINT32_ARRAY(palette, Exynos4210fimdWindow, 256),
VMSTATE_UINT32(shadow_buf_start, Exynos4210fimdWindow),
VMSTATE_UINT32(shadow_buf_end, Exynos4210fimdWindow),
VMSTATE_UINT32(shadow_buf_size, Exynos4210fimdWindow),
VMSTATE_UINT16(lefttop_x, Exynos4210fimdWindow),
VMSTATE_UINT16(lefttop_y, Exynos4210fimdWindow),
VMSTATE_UINT16(rightbot_x, Exynos4210fimdWindow),
VMSTATE_UINT16(rightbot_y, Exynos4210fimdWindow),
VMSTATE_UINT32(osdsize, Exynos4210fimdWindow),
VMSTATE_UINT32_ARRAY(alpha_val, Exynos4210fimdWindow, 2),
VMSTATE_UINT16(virtpage_width, Exynos4210fimdWindow),
VMSTATE_UINT16(virtpage_offsize, Exynos4210fimdWindow),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription exynos4210_fimd_vmstate = {
.name = "exynos4210.fimd",
.version_id = 1,
.minimum_version_id = 1,
.post_load = exynos4210_fimd_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(vidcon, Exynos4210fimdState, 4),
VMSTATE_UINT32_ARRAY(vidtcon, Exynos4210fimdState, 4),
VMSTATE_UINT32(shadowcon, Exynos4210fimdState),
VMSTATE_UINT32(winchmap, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(vidintcon, Exynos4210fimdState, 2),
VMSTATE_UINT32(dithmode, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(wpalcon, Exynos4210fimdState, 2),
VMSTATE_UINT32(trigcon, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(i80ifcon, Exynos4210fimdState, 4),
VMSTATE_UINT32(colorgaincon, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(ldi_cmdcon, Exynos4210fimdState, 2),
VMSTATE_UINT32_ARRAY(sifccon, Exynos4210fimdState, 3),
VMSTATE_UINT32_ARRAY(huecoef_cr, Exynos4210fimdState, 4),
VMSTATE_UINT32_ARRAY(huecoef_cb, Exynos4210fimdState, 4),
VMSTATE_UINT32(hueoffset, Exynos4210fimdState),
VMSTATE_UINT32_ARRAY(i80ifcmd, Exynos4210fimdState, 12),
VMSTATE_UINT32(blendcon, Exynos4210fimdState),
VMSTATE_STRUCT_ARRAY(window, Exynos4210fimdState, 5, 1,
exynos4210_fimd_window_vmstate, Exynos4210fimdWindow),
VMSTATE_END_OF_LIST()
}
};
static int exynos4210_fimd_init(SysBusDevice *dev)
{
Exynos4210fimdState *s = FROM_SYSBUS(Exynos4210fimdState, dev);
s->ifb = NULL;
sysbus_init_irq(dev, &s->irq[0]);
sysbus_init_irq(dev, &s->irq[1]);
sysbus_init_irq(dev, &s->irq[2]);
memory_region_init_io(&s->iomem, &exynos4210_fimd_mmio_ops, s,
"exynos4210.fimd", FIMD_REGS_SIZE);
sysbus_init_mmio(dev, &s->iomem);
s->console = graphic_console_init(exynos4210_fimd_update,
exynos4210_fimd_invalidate, NULL, NULL, s);
return 0;
}
static void exynos4210_fimd_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
dc->vmsd = &exynos4210_fimd_vmstate;
dc->reset = exynos4210_fimd_reset;
k->init = exynos4210_fimd_init;
}
static TypeInfo exynos4210_fimd_info = {
.name = "exynos4210.fimd",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(Exynos4210fimdState),
.class_init = exynos4210_fimd_class_init,
};
static void exynos4210_fimd_register_types(void)
{
type_register_static(&exynos4210_fimd_info);
}
type_init(exynos4210_fimd_register_types)