|  | /* Decimal number arithmetic module for the decNumber C Library. | 
|  | Copyright (C) 2005, 2007 Free Software Foundation, Inc. | 
|  | Contributed by IBM Corporation.  Author Mike Cowlishaw. | 
|  |  | 
|  | This file is part of GCC. | 
|  |  | 
|  | GCC is free software; you can redistribute it and/or modify it under | 
|  | the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 2, or (at your option) any later | 
|  | version. | 
|  |  | 
|  | In addition to the permissions in the GNU General Public License, | 
|  | the Free Software Foundation gives you unlimited permission to link | 
|  | the compiled version of this file into combinations with other | 
|  | programs, and to distribute those combinations without any | 
|  | restriction coming from the use of this file.  (The General Public | 
|  | License restrictions do apply in other respects; for example, they | 
|  | cover modification of the file, and distribution when not linked | 
|  | into a combine executable.) | 
|  |  | 
|  | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with GCC; see the file COPYING.  If not, write to the Free | 
|  | Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | 02110-1301, USA.  */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Decimal Number arithmetic module				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This module comprises the routines for General Decimal Arithmetic  */ | 
|  | /* as defined in the specification which may be found on the	      */ | 
|  | /* http://www2.hursley.ibm.com/decimal web pages.  It implements both */ | 
|  | /* the full ('extended') arithmetic and the simpler ('subset')	      */ | 
|  | /* arithmetic.							      */ | 
|  | /*								      */ | 
|  | /* Usage notes:							      */ | 
|  | /*								      */ | 
|  | /* 1. This code is ANSI C89 except:				      */ | 
|  | /*								      */ | 
|  | /*       If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and	      */ | 
|  | /*	 uint64_t types may be used.  To avoid these, set DECUSE64=0  */ | 
|  | /*	 and DECDPUN<=4 (see documentation).			      */ | 
|  | /*								      */ | 
|  | /* 2. The decNumber format which this library uses is optimized for   */ | 
|  | /*    efficient processing of relatively short numbers; in particular */ | 
|  | /*    it allows the use of fixed sized structures and minimizes copy  */ | 
|  | /*    and move operations.  It does, however, support arbitrary	      */ | 
|  | /*    precision (up to 999,999,999 digits) and arbitrary exponent     */ | 
|  | /*    range (Emax in the range 0 through 999,999,999 and Emin in the  */ | 
|  | /*    range -999,999,999 through 0).  Mathematical functions (for     */ | 
|  | /*    example decNumberExp) as identified below are restricted more   */ | 
|  | /*    tightly: digits, emax, and -emin in the context must be <=      */ | 
|  | /*    DEC_MAX_MATH (999999), and their operand(s) must be within      */ | 
|  | /*    these bounds.						      */ | 
|  | /*								      */ | 
|  | /* 3. Logical functions are further restricted; their operands must   */ | 
|  | /*    be finite, positive, have an exponent of zero, and all digits   */ | 
|  | /*    must be either 0 or 1.  The result will only contain digits     */ | 
|  | /*    which are 0 or 1 (and will have exponent=0 and a sign of 0).    */ | 
|  | /*								      */ | 
|  | /* 4. Operands to operator functions are never modified unless they   */ | 
|  | /*    are also specified to be the result number (which is always     */ | 
|  | /*    permitted).  Other than that case, operands must not overlap.   */ | 
|  | /*								      */ | 
|  | /* 5. Error handling: the type of the error is ORed into the status   */ | 
|  | /*    flags in the current context (decContext structure).  The	      */ | 
|  | /*    SIGFPE signal is then raised if the corresponding trap-enabler  */ | 
|  | /*    flag in the decContext is set (is 1).			      */ | 
|  | /*								      */ | 
|  | /*    It is the responsibility of the caller to clear the status      */ | 
|  | /*    flags as required.					      */ | 
|  | /*								      */ | 
|  | /*    The result of any routine which returns a number will always    */ | 
|  | /*    be a valid number (which may be a special value, such as an     */ | 
|  | /*    Infinity or NaN).						      */ | 
|  | /*								      */ | 
|  | /* 6. The decNumber format is not an exchangeable concrete	      */ | 
|  | /*    representation as it comprises fields which may be machine-     */ | 
|  | /*    dependent (packed or unpacked, or special length, for example). */ | 
|  | /*    Canonical conversions to and from strings are provided; other   */ | 
|  | /*    conversions are available in separate modules.		      */ | 
|  | /*								      */ | 
|  | /* 7. Normally, input operands are assumed to be valid.	 Set DECCHECK */ | 
|  | /*    to 1 for extended operand checking (including NULL operands).   */ | 
|  | /*    Results are undefined if a badly-formed structure (or a NULL    */ | 
|  | /*    pointer to a structure) is provided, though with DECCHECK	      */ | 
|  | /*    enabled the operator routines are protected against exceptions. */ | 
|  | /*    (Except if the result pointer is NULL, which is unrecoverable.) */ | 
|  | /*								      */ | 
|  | /*    However, the routines will never cause exceptions if they are   */ | 
|  | /*    given well-formed operands, even if the value of the operands   */ | 
|  | /*    is inappropriate for the operation and DECCHECK is not set.     */ | 
|  | /*    (Except for SIGFPE, as and where documented.)		      */ | 
|  | /*								      */ | 
|  | /* 8. Subset arithmetic is available only if DECSUBSET is set to 1.   */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Implementation notes for maintenance of this module:		      */ | 
|  | /*								      */ | 
|  | /* 1. Storage leak protection:	Routines which use malloc are not     */ | 
|  | /*    permitted to use return for fastpath or error exits (i.e.,      */ | 
|  | /*    they follow strict structured programming conventions).	      */ | 
|  | /*    Instead they have a do{}while(0); construct surrounding the     */ | 
|  | /*    code which is protected -- break may be used to exit this.      */ | 
|  | /*    Other routines can safely use the return statement inline.      */ | 
|  | /*								      */ | 
|  | /*    Storage leak accounting can be enabled using DECALLOC.	      */ | 
|  | /*								      */ | 
|  | /* 2. All loops use the for(;;) construct.  Any do construct does     */ | 
|  | /*    not loop; it is for allocation protection as just described.    */ | 
|  | /*								      */ | 
|  | /* 3. Setting status in the context must always be the very last      */ | 
|  | /*    action in a routine, as non-0 status may raise a trap and hence */ | 
|  | /*    the call to set status may not return (if the handler uses long */ | 
|  | /*    jump).  Therefore all cleanup must be done first.	 In general,  */ | 
|  | /*    to achieve this status is accumulated and is only applied just  */ | 
|  | /*    before return by calling decContextSetStatus (via decStatus).   */ | 
|  | /*								      */ | 
|  | /*    Routines which allocate storage cannot, in general, use the     */ | 
|  | /*    'top level' routines which could cause a non-returning	      */ | 
|  | /*    transfer of control.  The decXxxxOp routines are safe (do not   */ | 
|  | /*    call decStatus even if traps are set in the context) and should */ | 
|  | /*    be used instead (they are also a little faster).		      */ | 
|  | /*								      */ | 
|  | /* 4. Exponent checking is minimized by allowing the exponent to      */ | 
|  | /*    grow outside its limits during calculations, provided that      */ | 
|  | /*    the decFinalize function is called later.	 Multiplication and   */ | 
|  | /*    division, and intermediate calculations in exponentiation,      */ | 
|  | /*    require more careful checks because of the risk of 31-bit	      */ | 
|  | /*    overflow (the most negative valid exponent is -1999999997, for  */ | 
|  | /*    a 999999999-digit number with adjusted exponent of -999999999). */ | 
|  | /*								      */ | 
|  | /* 5. Rounding is deferred until finalization of results, with any    */ | 
|  | /*    'off to the right' data being represented as a single digit     */ | 
|  | /*    residue (in the range -1 through 9).  This avoids any double-   */ | 
|  | /*    rounding when more than one shortening takes place (for	      */ | 
|  | /*    example, when a result is subnormal).			      */ | 
|  | /*								      */ | 
|  | /* 6. The digits count is allowed to rise to a multiple of DECDPUN    */ | 
|  | /*    during many operations, so whole Units are handled and exact    */ | 
|  | /*    accounting of digits is not needed.  The correct digits value   */ | 
|  | /*    is found by decGetDigits, which accounts for leading zeros.     */ | 
|  | /*    This must be called before any rounding if the number of digits */ | 
|  | /*    is not known exactly.					      */ | 
|  | /*								      */ | 
|  | /* 7. The multiply-by-reciprocal 'trick' is used for partitioning     */ | 
|  | /*    numbers up to four digits, using appropriate constants.  This   */ | 
|  | /*    is not useful for longer numbers because overflow of 32 bits    */ | 
|  | /*    would lead to 4 multiplies, which is almost as expensive as     */ | 
|  | /*    a divide (unless a floating-point or 64-bit multiply is	      */ | 
|  | /*    assumed to be available).					      */ | 
|  | /*								      */ | 
|  | /* 8. Unusual abbreviations that may be used in the commentary:	      */ | 
|  | /*	lhs -- left hand side (operand, of an operation)	      */ | 
|  | /*	lsd -- least significant digit (of coefficient)		      */ | 
|  | /*	lsu -- least significant Unit (of coefficient)		      */ | 
|  | /*	msd -- most significant digit (of coefficient)		      */ | 
|  | /*	msi -- most significant item (in an array)		      */ | 
|  | /*	msu -- most significant Unit (of coefficient)		      */ | 
|  | /*	rhs -- right hand side (operand, of an operation)	      */ | 
|  | /*	+ve -- positive						      */ | 
|  | /*	-ve -- negative						      */ | 
|  | /*	**  -- raise to the power				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/host-utils.h" | 
|  | #include "libdecnumber/dconfig.h" | 
|  | #include "libdecnumber/decNumber.h" | 
|  | #include "libdecnumber/decNumberLocal.h" | 
|  |  | 
|  | /* Constants */ | 
|  | /* Public lookup table used by the D2U macro */ | 
|  | const uByte d2utable[DECMAXD2U+1]=D2UTABLE; | 
|  |  | 
|  | #define DECVERB	    1		   /* set to 1 for verbose DECCHECK */ | 
|  | #define powers	    DECPOWERS	   /* old internal name */ | 
|  |  | 
|  | /* Local constants */ | 
|  | #define DIVIDE	    0x80	   /* Divide operators */ | 
|  | #define REMAINDER   0x40	   /* .. */ | 
|  | #define DIVIDEINT   0x20	   /* .. */ | 
|  | #define REMNEAR	    0x10	   /* .. */ | 
|  | #define COMPARE	    0x01	   /* Compare operators */ | 
|  | #define COMPMAX	    0x02	   /* .. */ | 
|  | #define COMPMIN	    0x03	   /* .. */ | 
|  | #define COMPTOTAL   0x04	   /* .. */ | 
|  | #define COMPNAN	    0x05	   /* .. [NaN processing] */ | 
|  | #define COMPSIG	    0x06	   /* .. [signaling COMPARE] */ | 
|  | #define COMPMAXMAG  0x07	   /* .. */ | 
|  | #define COMPMINMAG  0x08	   /* .. */ | 
|  |  | 
|  | #define DEC_sNaN     0x40000000	   /* local status: sNaN signal */ | 
|  | #define BADINT	(Int)0x80000000	   /* most-negative Int; error indicator */ | 
|  | /* Next two indicate an integer >= 10**6, and its parity (bottom bit) */ | 
|  | #define BIGEVEN (Int)0x80000002 | 
|  | #define BIGODD	(Int)0x80000003 | 
|  |  | 
|  | static Unit uarrone[1]={1};   /* Unit array of 1, used for incrementing */ | 
|  |  | 
|  | /* Granularity-dependent code */ | 
|  | #if DECDPUN<=4 | 
|  | #define eInt	Int	      /* extended integer */ | 
|  | #define ueInt uInt	      /* unsigned extended integer */ | 
|  | /* Constant multipliers for divide-by-power-of five using reciprocal */ | 
|  | /* multiply, after removing powers of 2 by shifting, and final shift */ | 
|  | /* of 17 [we only need up to **4] */ | 
|  | static const uInt multies[]={131073, 26215, 5243, 1049, 210}; | 
|  | /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */ | 
|  | #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17) | 
|  | #else | 
|  | /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */ | 
|  | #if !DECUSE64 | 
|  | #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4 | 
|  | #endif | 
|  | #define eInt	Long	      /* extended integer */ | 
|  | #define ueInt uLong	      /* unsigned extended integer */ | 
|  | #endif | 
|  |  | 
|  | /* Local routines */ | 
|  | static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *, | 
|  | decContext *, uByte, uInt *); | 
|  | static Flag	   decBiStr(const char *, const char *, const char *); | 
|  | static uInt	   decCheckMath(const decNumber *, decContext *, uInt *); | 
|  | static void	   decApplyRound(decNumber *, decContext *, Int, uInt *); | 
|  | static Int	   decCompare(const decNumber *lhs, const decNumber *rhs, Flag); | 
|  | static decNumber * decCompareOp(decNumber *, const decNumber *, | 
|  | const decNumber *, decContext *, | 
|  | Flag, uInt *); | 
|  | static void	   decCopyFit(decNumber *, const decNumber *, decContext *, | 
|  | Int *, uInt *); | 
|  | static decNumber * decDecap(decNumber *, Int); | 
|  | static decNumber * decDivideOp(decNumber *, const decNumber *, | 
|  | const decNumber *, decContext *, Flag, uInt *); | 
|  | static decNumber * decExpOp(decNumber *, const decNumber *, | 
|  | decContext *, uInt *); | 
|  | static void	   decFinalize(decNumber *, decContext *, Int *, uInt *); | 
|  | static Int	   decGetDigits(Unit *, Int); | 
|  | static Int	   decGetInt(const decNumber *); | 
|  | static decNumber * decLnOp(decNumber *, const decNumber *, | 
|  | decContext *, uInt *); | 
|  | static decNumber * decMultiplyOp(decNumber *, const decNumber *, | 
|  | const decNumber *, decContext *, | 
|  | uInt *); | 
|  | static decNumber * decNaNs(decNumber *, const decNumber *, | 
|  | const decNumber *, decContext *, uInt *); | 
|  | static decNumber * decQuantizeOp(decNumber *, const decNumber *, | 
|  | const decNumber *, decContext *, Flag, | 
|  | uInt *); | 
|  | static void	   decReverse(Unit *, Unit *); | 
|  | static void	   decSetCoeff(decNumber *, decContext *, const Unit *, | 
|  | Int, Int *, uInt *); | 
|  | static void	   decSetMaxValue(decNumber *, decContext *); | 
|  | static void	   decSetOverflow(decNumber *, decContext *, uInt *); | 
|  | static void	   decSetSubnormal(decNumber *, decContext *, Int *, uInt *); | 
|  | static Int	   decShiftToLeast(Unit *, Int, Int); | 
|  | static Int	   decShiftToMost(Unit *, Int, Int); | 
|  | static void	   decStatus(decNumber *, uInt, decContext *); | 
|  | static void	   decToString(const decNumber *, char[], Flag); | 
|  | static decNumber * decTrim(decNumber *, decContext *, Flag, Int *); | 
|  | static Int	   decUnitAddSub(const Unit *, Int, const Unit *, Int, Int, | 
|  | Unit *, Int); | 
|  | static Int	   decUnitCompare(const Unit *, Int, const Unit *, Int, Int); | 
|  | static bool        mulUInt128ByPowOf10(uLong *, uLong *, uInt); | 
|  |  | 
|  | #if !DECSUBSET | 
|  | /* decFinish == decFinalize when no subset arithmetic needed */ | 
|  | #define decFinish(a,b,c,d) decFinalize(a,b,c,d) | 
|  | #else | 
|  | static void	   decFinish(decNumber *, decContext *, Int *, uInt *); | 
|  | static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *); | 
|  | #endif | 
|  |  | 
|  | /* Local macros */ | 
|  | /* masked special-values bits */ | 
|  | #define SPECIALARG  (rhs->bits & DECSPECIAL) | 
|  | #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL) | 
|  |  | 
|  | /* Diagnostic macros, etc. */ | 
|  | #if DECALLOC | 
|  | /* Handle malloc/free accounting.  If enabled, our accountable routines */ | 
|  | /* are used; otherwise the code just goes straight to the system malloc */ | 
|  | /* and free routines. */ | 
|  | #define malloc(a) decMalloc(a) | 
|  | #define free(a) decFree(a) | 
|  | #define DECFENCE 0x5a		   /* corruption detector */ | 
|  | /* 'Our' malloc and free: */ | 
|  | static void *decMalloc(size_t); | 
|  | static void  decFree(void *); | 
|  | uInt decAllocBytes=0;		   /* count of bytes allocated */ | 
|  | /* Note that DECALLOC code only checks for storage buffer overflow. */ | 
|  | /* To check for memory leaks, the decAllocBytes variable must be */ | 
|  | /* checked to be 0 at appropriate times (e.g., after the test */ | 
|  | /* harness completes a set of tests).  This checking may be unreliable */ | 
|  | /* if the testing is done in a multi-thread environment. */ | 
|  | #endif | 
|  |  | 
|  | #if DECCHECK | 
|  | /* Optional checking routines.	Enabling these means that decNumber */ | 
|  | /* and decContext operands to operator routines are checked for */ | 
|  | /* correctness.	 This roughly doubles the execution time of the */ | 
|  | /* fastest routines (and adds 600+ bytes), so should not normally be */ | 
|  | /* used in 'production'. */ | 
|  | /* decCheckInexact is used to check that inexact results have a full */ | 
|  | /* complement of digits (where appropriate -- this is not the case */ | 
|  | /* for Quantize, for example) */ | 
|  | #define DECUNRESU ((decNumber *)(void *)0xffffffff) | 
|  | #define DECUNUSED ((const decNumber *)(void *)0xffffffff) | 
|  | #define DECUNCONT ((decContext *)(void *)(0xffffffff)) | 
|  | static Flag decCheckOperands(decNumber *, const decNumber *, | 
|  | const decNumber *, decContext *); | 
|  | static Flag decCheckNumber(const decNumber *); | 
|  | static void decCheckInexact(const decNumber *, decContext *); | 
|  | #endif | 
|  |  | 
|  | #if DECTRACE || DECCHECK | 
|  | /* Optional trace/debugging routines (may or may not be used) */ | 
|  | void decNumberShow(const decNumber *);	/* displays the components of a number */ | 
|  | static void decDumpAr(char, const Unit *, Int); | 
|  | #endif | 
|  |  | 
|  | /* ================================================================== */ | 
|  | /* Conversions							      */ | 
|  | /* ================================================================== */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* from-int32 -- conversion from Int or uInt			      */ | 
|  | /*								      */ | 
|  | /*  dn is the decNumber to receive the integer			      */ | 
|  | /*  in or uin is the integer to be converted			      */ | 
|  | /*  returns dn							      */ | 
|  | /*								      */ | 
|  | /* No error is possible.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberFromInt32(decNumber *dn, Int in) { | 
|  | uInt unsig; | 
|  | if (in>=0) unsig=in; | 
|  | else {				/* negative (possibly BADINT) */ | 
|  | if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */ | 
|  | else unsig=-in;			/* invert */ | 
|  | } | 
|  | /* in is now positive */ | 
|  | decNumberFromUInt32(dn, unsig); | 
|  | if (in<0) dn->bits=DECNEG;		/* sign needed */ | 
|  | return dn; | 
|  | } /* decNumberFromInt32 */ | 
|  |  | 
|  | decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) { | 
|  | Unit *up;				/* work pointer */ | 
|  | decNumberZero(dn);			/* clean */ | 
|  | if (uin==0) return dn;		/* [or decGetDigits bad call] */ | 
|  | for (up=dn->lsu; uin>0; up++) { | 
|  | *up=(Unit)(uin%(DECDPUNMAX+1)); | 
|  | uin=uin/(DECDPUNMAX+1); | 
|  | } | 
|  | dn->digits=decGetDigits(dn->lsu, up-dn->lsu); | 
|  | return dn; | 
|  | } /* decNumberFromUInt32 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* to-int32 -- conversion to Int or uInt			      */ | 
|  | /*								      */ | 
|  | /*  dn is the decNumber to convert				      */ | 
|  | /*  set is the context for reporting errors			      */ | 
|  | /*  returns the converted decNumber, or 0 if Invalid is set	      */ | 
|  | /*								      */ | 
|  | /* Invalid is set if the decNumber does not have exponent==0 or if    */ | 
|  | /* it is a NaN, Infinite, or out-of-range.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | Int decNumberToInt32(const decNumber *dn, decContext *set) { | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | 
|  | #endif | 
|  |  | 
|  | /* special or too many digits, or bad exponent */ | 
|  | if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */ | 
|  | else { /* is a finite integer with 10 or fewer digits */ | 
|  | Int d;			   /* work */ | 
|  | const Unit *up;		   /* .. */ | 
|  | uInt hi=0, lo;		   /* .. */ | 
|  | up=dn->lsu;			   /* -> lsu */ | 
|  | lo=*up;			   /* get 1 to 9 digits */ | 
|  | #if DECDPUN>1		   /* split to higher */ | 
|  | hi=lo/10; | 
|  | lo=lo%10; | 
|  | #endif | 
|  | up++; | 
|  | /* collect remaining Units, if any, into hi */ | 
|  | for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; | 
|  | /* now low has the lsd, hi the remainder */ | 
|  | if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */ | 
|  | /* most-negative is a reprieve */ | 
|  | if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000; | 
|  | /* bad -- drop through */ | 
|  | } | 
|  | else { /* in-range always */ | 
|  | Int i=X10(hi)+lo; | 
|  | if (dn->bits&DECNEG) return -i; | 
|  | return i; | 
|  | } | 
|  | } /* integer */ | 
|  | decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */ | 
|  | return 0; | 
|  | } /* decNumberToInt32 */ | 
|  |  | 
|  | uInt decNumberToUInt32(const decNumber *dn, decContext *set) { | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | 
|  | #endif | 
|  | /* special or too many digits, or bad exponent, or negative (<0) */ | 
|  | if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0 | 
|  | || (dn->bits&DECNEG && !ISZERO(dn)));		    /* bad */ | 
|  | else { /* is a finite integer with 10 or fewer digits */ | 
|  | Int d;			   /* work */ | 
|  | const Unit *up;		   /* .. */ | 
|  | uInt hi=0, lo;		   /* .. */ | 
|  | up=dn->lsu;			   /* -> lsu */ | 
|  | lo=*up;			   /* get 1 to 9 digits */ | 
|  | #if DECDPUN>1		   /* split to higher */ | 
|  | hi=lo/10; | 
|  | lo=lo%10; | 
|  | #endif | 
|  | up++; | 
|  | /* collect remaining Units, if any, into hi */ | 
|  | for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1]; | 
|  |  | 
|  | /* now low has the lsd, hi the remainder */ | 
|  | if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */ | 
|  | else return X10(hi)+lo; | 
|  | } /* integer */ | 
|  | decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */ | 
|  | return 0; | 
|  | } /* decNumberToUInt32 */ | 
|  |  | 
|  | decNumber *decNumberFromInt64(decNumber *dn, int64_t in) | 
|  | { | 
|  | uint64_t unsig = in; | 
|  | if (in < 0) { | 
|  | unsig = -unsig; | 
|  | } | 
|  |  | 
|  | decNumberFromUInt64(dn, unsig); | 
|  | if (in < 0) { | 
|  | dn->bits = DECNEG;        /* sign needed */ | 
|  | } | 
|  | return dn; | 
|  | } /* decNumberFromInt64 */ | 
|  |  | 
|  | decNumber *decNumberFromUInt64(decNumber *dn, uint64_t uin) | 
|  | { | 
|  | Unit *up;                             /* work pointer */ | 
|  | decNumberZero(dn);                    /* clean */ | 
|  | if (uin == 0) { | 
|  | return dn;                /* [or decGetDigits bad call] */ | 
|  | } | 
|  | for (up = dn->lsu; uin > 0; up++) { | 
|  | *up = (Unit)(uin % (DECDPUNMAX + 1)); | 
|  | uin = uin / (DECDPUNMAX + 1); | 
|  | } | 
|  | dn->digits = decGetDigits(dn->lsu, up-dn->lsu); | 
|  | return dn; | 
|  | } /* decNumberFromUInt64 */ | 
|  |  | 
|  | decNumber *decNumberFromInt128(decNumber *dn, uint64_t lo, int64_t hi) | 
|  | { | 
|  | uint64_t unsig_hi = hi; | 
|  | if (hi < 0) { | 
|  | if (lo == 0) { | 
|  | unsig_hi = -unsig_hi; | 
|  | } else { | 
|  | unsig_hi = ~unsig_hi; | 
|  | lo = -lo; | 
|  | } | 
|  | } | 
|  |  | 
|  | decNumberFromUInt128(dn, lo, unsig_hi); | 
|  | if (hi < 0) { | 
|  | dn->bits = DECNEG;        /* sign needed */ | 
|  | } | 
|  | return dn; | 
|  | } /* decNumberFromInt128 */ | 
|  |  | 
|  | decNumber *decNumberFromUInt128(decNumber *dn, uint64_t lo, uint64_t hi) | 
|  | { | 
|  | uint64_t rem; | 
|  | Unit *up;                             /* work pointer */ | 
|  | decNumberZero(dn);                    /* clean */ | 
|  | if (lo == 0 && hi == 0) { | 
|  | return dn;                /* [or decGetDigits bad call] */ | 
|  | } | 
|  | for (up = dn->lsu; hi > 0 || lo > 0; up++) { | 
|  | rem = divu128(&lo, &hi, DECDPUNMAX + 1); | 
|  | *up = (Unit)rem; | 
|  | } | 
|  | dn->digits = decGetDigits(dn->lsu, up - dn->lsu); | 
|  | return dn; | 
|  | } /* decNumberFromUInt128 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* to-int64 -- conversion to int64                                    */ | 
|  | /*                                                                    */ | 
|  | /*  dn is the decNumber to convert.  dn is assumed to have been       */ | 
|  | /*    rounded to a floating point integer value.                      */ | 
|  | /*  set is the context for reporting errors                           */ | 
|  | /*  returns the converted decNumber, or 0 if Invalid is set           */ | 
|  | /*                                                                    */ | 
|  | /* Invalid is set if the decNumber is a NaN, Infinite or is out of    */ | 
|  | /* range for a signed 64 bit integer.                                 */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  |  | 
|  | int64_t decNumberIntegralToInt64(const decNumber *dn, decContext *set) | 
|  | { | 
|  | if (decNumberIsSpecial(dn) || (dn->exponent < 0) || | 
|  | (dn->digits + dn->exponent > 19)) { | 
|  | goto Invalid; | 
|  | } else { | 
|  | int64_t d;        /* work */ | 
|  | const Unit *up;   /* .. */ | 
|  | uint64_t hi = 0; | 
|  | up = dn->lsu;     /* -> lsu */ | 
|  |  | 
|  | for (d = 1; d <= dn->digits; up++, d += DECDPUN) { | 
|  | uint64_t prev = hi; | 
|  | hi += *up * powers[d-1]; | 
|  | if ((hi < prev) || (hi > INT64_MAX)) { | 
|  | goto Invalid; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t prev = hi; | 
|  | hi *= (uint64_t)powers[dn->exponent]; | 
|  | if ((hi < prev) || (hi > INT64_MAX)) { | 
|  | goto Invalid; | 
|  | } | 
|  | return (decNumberIsNegative(dn)) ? -((int64_t)hi) : (int64_t)hi; | 
|  | } | 
|  |  | 
|  | Invalid: | 
|  | decContextSetStatus(set, DEC_Invalid_operation); | 
|  | return 0; | 
|  | } /* decNumberIntegralToInt64 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberIntegralToInt128 -- conversion to int128                  */ | 
|  | /*                                                                    */ | 
|  | /*  dn is the decNumber to convert.  dn is assumed to have been       */ | 
|  | /*    rounded to a floating point integer value.                      */ | 
|  | /*  set is the context for reporting errors                           */ | 
|  | /*  returns the converted decNumber via plow and phigh                */ | 
|  | /*                                                                    */ | 
|  | /* Invalid is set if the decNumber is a NaN, Infinite or is out of    */ | 
|  | /* range for a signed 128 bit integer.                                */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  |  | 
|  | void decNumberIntegralToInt128(const decNumber *dn, decContext *set, | 
|  | uint64_t *plow, uint64_t *phigh) | 
|  | { | 
|  | int d;        /* work */ | 
|  | const Unit *up;   /* .. */ | 
|  | uint64_t lo = 0, hi = 0; | 
|  |  | 
|  | if (decNumberIsSpecial(dn) || (dn->exponent < 0) || | 
|  | (dn->digits + dn->exponent > 39)) { | 
|  | goto Invalid; | 
|  | } | 
|  |  | 
|  | up = dn->lsu;     /* -> lsu */ | 
|  |  | 
|  | for (d = (dn->digits - 1) / DECDPUN; d >= 0; d--) { | 
|  | if (mulu128(&lo, &hi, DECDPUNMAX + 1)) { | 
|  | /* overflow */ | 
|  | goto Invalid; | 
|  | } | 
|  | if (uadd64_overflow(lo, up[d], &lo)) { | 
|  | if (uadd64_overflow(hi, 1, &hi)) { | 
|  | /* overflow */ | 
|  | goto Invalid; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mulUInt128ByPowOf10(&lo, &hi, dn->exponent)) { | 
|  | /* overflow */ | 
|  | goto Invalid; | 
|  | } | 
|  |  | 
|  | if (decNumberIsNegative(dn)) { | 
|  | if (lo == 0) { | 
|  | *phigh = -hi; | 
|  | *plow = 0; | 
|  | } else { | 
|  | *phigh = ~hi; | 
|  | *plow = -lo; | 
|  | } | 
|  | } else { | 
|  | *plow = lo; | 
|  | *phigh = hi; | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | Invalid: | 
|  | decContextSetStatus(set, DEC_Invalid_operation); | 
|  | } /* decNumberIntegralToInt128 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* to-scientific-string -- conversion to numeric string		      */ | 
|  | /* to-engineering-string -- conversion to numeric string	      */ | 
|  | /*								      */ | 
|  | /*   decNumberToString(dn, string);				      */ | 
|  | /*   decNumberToEngString(dn, string);				      */ | 
|  | /*								      */ | 
|  | /*  dn is the decNumber to convert				      */ | 
|  | /*  string is the string where the result will be laid out	      */ | 
|  | /*								      */ | 
|  | /*  string must be at least dn->digits+14 characters long	      */ | 
|  | /*								      */ | 
|  | /*  No error is possible, and no status can be set.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | char * decNumberToString(const decNumber *dn, char *string){ | 
|  | decToString(dn, string, 0); | 
|  | return string; | 
|  | } /* DecNumberToString */ | 
|  |  | 
|  | char * decNumberToEngString(const decNumber *dn, char *string){ | 
|  | decToString(dn, string, 1); | 
|  | return string; | 
|  | } /* DecNumberToEngString */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* to-number -- conversion from numeric string			      */ | 
|  | /*								      */ | 
|  | /* decNumberFromString -- convert string to decNumber		      */ | 
|  | /*   dn	       -- the number structure to fill			      */ | 
|  | /*   chars[]   -- the string to convert ('\0' terminated)	      */ | 
|  | /*   set       -- the context used for processing any error,	      */ | 
|  | /*		  determining the maximum precision available	      */ | 
|  | /*		  (set.digits), determining the maximum and minimum   */ | 
|  | /*		  exponent (set.emax and set.emin), determining if    */ | 
|  | /*		  extended values are allowed, and checking the	      */ | 
|  | /*		  rounding mode if overflow occurs or rounding is     */ | 
|  | /*		  needed.					      */ | 
|  | /*								      */ | 
|  | /* The length of the coefficient and the size of the exponent are     */ | 
|  | /* checked by this routine, so the correct error (Underflow or	      */ | 
|  | /* Overflow) can be reported or rounding applied, as necessary.	      */ | 
|  | /*								      */ | 
|  | /* If bad syntax is detected, the result will be a quiet NaN.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberFromString(decNumber *dn, const char chars[], | 
|  | decContext *set) { | 
|  | Int	exponent=0;		   /* working exponent [assume 0] */ | 
|  | uByte bits=0;			   /* working flags [assume +ve] */ | 
|  | Unit	*res;			   /* where result will be built */ | 
|  | Unit	resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */ | 
|  | /* [+9 allows for ln() constants] */ | 
|  | Unit	*allocres=NULL;		   /* -> allocated result, iff allocated */ | 
|  | Int	d=0;			   /* count of digits found in decimal part */ | 
|  | const char *dotchar=NULL;	   /* where dot was found */ | 
|  | const char *cfirst=chars;	   /* -> first character of decimal part */ | 
|  | const char *last=NULL;	   /* -> last digit of decimal part */ | 
|  | const char *c;		   /* work */ | 
|  | Unit	*up;			   /* .. */ | 
|  | #if DECDPUN>1 | 
|  | Int	cut, out;		   /* .. */ | 
|  | #endif | 
|  | Int	residue;		   /* rounding residue */ | 
|  | uInt	status=0;		   /* error code */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set)) | 
|  | return decNumberZero(dn); | 
|  | #endif | 
|  |  | 
|  | do {				   /* status & malloc protection */ | 
|  | for (c=chars;; c++) {	   /* -> input character */ | 
|  | if (*c>='0' && *c<='9') {	   /* test for Arabic digit */ | 
|  | last=c; | 
|  | d++;			   /* count of real digits */ | 
|  | continue;		   /* still in decimal part */ | 
|  | } | 
|  | if (*c=='.' && dotchar==NULL) { /* first '.' */ | 
|  | dotchar=c;		   /* record offset into decimal part */ | 
|  | if (c==cfirst) cfirst++;   /* first digit must follow */ | 
|  | continue;} | 
|  | if (c==chars) {		   /* first in string... */ | 
|  | if (*c=='-') {		   /* valid - sign */ | 
|  | cfirst++; | 
|  | bits=DECNEG; | 
|  | continue;} | 
|  | if (*c=='+') {		   /* valid + sign */ | 
|  | cfirst++; | 
|  | continue;} | 
|  | } | 
|  | /* *c is not a digit, or a valid +, -, or '.' */ | 
|  | break; | 
|  | } /* c */ | 
|  |  | 
|  | if (last==NULL) {		   /* no digits yet */ | 
|  | status=DEC_Conversion_syntax;/* assume the worst */ | 
|  | if (*c=='\0') break;	   /* and no more to come... */ | 
|  | #if DECSUBSET | 
|  | /* if subset then infinities and NaNs are not allowed */ | 
|  | if (!set->extended) break;   /* hopeless */ | 
|  | #endif | 
|  | /* Infinities and NaNs are possible, here */ | 
|  | if (dotchar!=NULL) break;	   /* .. unless had a dot */ | 
|  | decNumberZero(dn);	   /* be optimistic */ | 
|  | if (decBiStr(c, "infinity", "INFINITY") | 
|  | || decBiStr(c, "inf", "INF")) { | 
|  | dn->bits=bits | DECINF; | 
|  | status=0;		   /* is OK */ | 
|  | break; /* all done */ | 
|  | } | 
|  | /* a NaN expected */ | 
|  | /* 2003.09.10 NaNs are now permitted to have a sign */ | 
|  | dn->bits=bits | DECNAN;	   /* assume simple NaN */ | 
|  | if (*c=='s' || *c=='S') {	   /* looks like an sNaN */ | 
|  | c++; | 
|  | dn->bits=bits | DECSNAN; | 
|  | } | 
|  | if (*c!='n' && *c!='N') break;	/* check caseless "NaN" */ | 
|  | c++; | 
|  | if (*c!='a' && *c!='A') break;	/* .. */ | 
|  | c++; | 
|  | if (*c!='n' && *c!='N') break;	/* .. */ | 
|  | c++; | 
|  | /* now either nothing, or nnnn payload, expected */ | 
|  | /* -> start of integer and skip leading 0s [including plain 0] */ | 
|  | for (cfirst=c; *cfirst=='0';) cfirst++; | 
|  | if (*cfirst=='\0') {	   /* "NaN" or "sNaN", maybe with all 0s */ | 
|  | status=0;		   /* it's good */ | 
|  | break;			   /* .. */ | 
|  | } | 
|  | /* something other than 0s; setup last and d as usual [no dots] */ | 
|  | for (c=cfirst;; c++, d++) { | 
|  | if (*c<'0' || *c>'9') break; /* test for Arabic digit */ | 
|  | last=c; | 
|  | } | 
|  | if (*c!='\0') break;	   /* not all digits */ | 
|  | if (d>set->digits-1) { | 
|  | /* [NB: payload in a decNumber can be full length unless */ | 
|  | /* clamped, in which case can only be digits-1] */ | 
|  | if (set->clamp) break; | 
|  | if (d>set->digits) break; | 
|  | } /* too many digits? */ | 
|  | /* good; drop through to convert the integer to coefficient */ | 
|  | status=0;			   /* syntax is OK */ | 
|  | bits=dn->bits;		   /* for copy-back */ | 
|  | } /* last==NULL */ | 
|  |  | 
|  | else if (*c!='\0') {	   /* more to process... */ | 
|  | /* had some digits; exponent is only valid sequence now */ | 
|  | Flag nege;		   /* 1=negative exponent */ | 
|  | const char *firstexp;	   /* -> first significant exponent digit */ | 
|  | status=DEC_Conversion_syntax;/* assume the worst */ | 
|  | if (*c!='e' && *c!='E') break; | 
|  | /* Found 'e' or 'E' -- now process explicit exponent */ | 
|  | /* 1998.07.11: sign no longer required */ | 
|  | nege=0; | 
|  | c++;			   /* to (possible) sign */ | 
|  | if (*c=='-') {nege=1; c++;} | 
|  | else if (*c=='+') c++; | 
|  | if (*c=='\0') break; | 
|  |  | 
|  | for (; *c=='0' && *(c+1)!='\0';) c++;  /* strip insignificant zeros */ | 
|  | firstexp=c;			     /* save exponent digit place */ | 
|  | for (; ;c++) { | 
|  | if (*c<'0' || *c>'9') break;	     /* not a digit */ | 
|  | exponent=X10(exponent)+(Int)*c-(Int)'0'; | 
|  | } /* c */ | 
|  | /* if not now on a '\0', *c must not be a digit */ | 
|  | if (*c!='\0') break; | 
|  |  | 
|  | /* (this next test must be after the syntax checks) */ | 
|  | /* if it was too long the exponent may have wrapped, so check */ | 
|  | /* carefully and set it to a certain overflow if wrap possible */ | 
|  | if (c>=firstexp+9+1) { | 
|  | if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2; | 
|  | /* [up to 1999999999 is OK, for example 1E-1000000998] */ | 
|  | } | 
|  | if (nege) exponent=-exponent;	/* was negative */ | 
|  | status=0;				/* is OK */ | 
|  | } /* stuff after digits */ | 
|  |  | 
|  | /* Here when whole string has been inspected; syntax is good */ | 
|  | /* cfirst->first digit (never dot), last->last digit (ditto) */ | 
|  |  | 
|  | /* strip leading zeros/dot [leave final 0 if all 0's] */ | 
|  | if (*cfirst=='0') {			/* [cfirst has stepped over .] */ | 
|  | for (c=cfirst; c<last; c++, cfirst++) { | 
|  | if (*c=='.') continue;		/* ignore dots */ | 
|  | if (*c!='0') break;		/* non-zero found */ | 
|  | d--;				/* 0 stripped */ | 
|  | } /* c */ | 
|  | #if DECSUBSET | 
|  | /* make a rapid exit for easy zeros if !extended */ | 
|  | if (*cfirst=='0' && !set->extended) { | 
|  | decNumberZero(dn);		/* clean result */ | 
|  | break;				/* [could be return] */ | 
|  | } | 
|  | #endif | 
|  | } /* at least one leading 0 */ | 
|  |  | 
|  | /* Handle decimal point... */ | 
|  | if (dotchar!=NULL && dotchar<last)	/* non-trailing '.' found? */ | 
|  | exponent-=(last-dotchar);		/* adjust exponent */ | 
|  | /* [we can now ignore the .] */ | 
|  |  | 
|  | /* OK, the digits string is good.  Assemble in the decNumber, or in */ | 
|  | /* a temporary units array if rounding is needed */ | 
|  | if (d<=set->digits) res=dn->lsu;	/* fits into supplied decNumber */ | 
|  | else {				/* rounding needed */ | 
|  | Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */ | 
|  | res=resbuff;			/* assume use local buffer */ | 
|  | if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */ | 
|  | allocres=(Unit *)malloc(needbytes); | 
|  | if (allocres==NULL) {status|=DEC_Insufficient_storage; break;} | 
|  | res=allocres; | 
|  | } | 
|  | } | 
|  | /* res now -> number lsu, buffer, or allocated storage for Unit array */ | 
|  |  | 
|  | /* Place the coefficient into the selected Unit array */ | 
|  | /* [this is often 70% of the cost of this function when DECDPUN>1] */ | 
|  | #if DECDPUN>1 | 
|  | out=0;			   /* accumulator */ | 
|  | up=res+D2U(d)-1;		   /* -> msu */ | 
|  | cut=d-(up-res)*DECDPUN;	   /* digits in top unit */ | 
|  | for (c=cfirst;; c++) {	   /* along the digits */ | 
|  | if (*c=='.') continue;	   /* ignore '.' [don't decrement cut] */ | 
|  | out=X10(out)+(Int)*c-(Int)'0'; | 
|  | if (c==last) break;	   /* done [never get to trailing '.'] */ | 
|  | cut--; | 
|  | if (cut>0) continue;	   /* more for this unit */ | 
|  | *up=(Unit)out;		   /* write unit */ | 
|  | up--;			   /* prepare for unit below.. */ | 
|  | cut=DECDPUN;		   /* .. */ | 
|  | out=0;			   /* .. */ | 
|  | } /* c */ | 
|  | *up=(Unit)out;		   /* write lsu */ | 
|  |  | 
|  | #else | 
|  | /* DECDPUN==1 */ | 
|  | up=res;			   /* -> lsu */ | 
|  | for (c=last; c>=cfirst; c--) { /* over each character, from least */ | 
|  | if (*c=='.') continue;	   /* ignore . [don't step up] */ | 
|  | *up=(Unit)((Int)*c-(Int)'0'); | 
|  | up++; | 
|  | } /* c */ | 
|  | #endif | 
|  |  | 
|  | dn->bits=bits; | 
|  | dn->exponent=exponent; | 
|  | dn->digits=d; | 
|  |  | 
|  | /* if not in number (too long) shorten into the number */ | 
|  | if (d>set->digits) { | 
|  | residue=0; | 
|  | decSetCoeff(dn, set, res, d, &residue, &status); | 
|  | /* always check for overflow or subnormal and round as needed */ | 
|  | decFinalize(dn, set, &residue, &status); | 
|  | } | 
|  | else { /* no rounding, but may still have overflow or subnormal */ | 
|  | /* [these tests are just for performance; finalize repeats them] */ | 
|  | if ((dn->exponent-1<set->emin-dn->digits) | 
|  | || (dn->exponent-1>set->emax-set->digits)) { | 
|  | residue=0; | 
|  | decFinalize(dn, set, &residue, &status); | 
|  | } | 
|  | } | 
|  | /* decNumberShow(dn); */ | 
|  | } while(0);				/* [for break] */ | 
|  |  | 
|  | if (allocres!=NULL) free(allocres);	/* drop any storage used */ | 
|  | if (status!=0) decStatus(dn, status, set); | 
|  | return dn; | 
|  | } /* decNumberFromString */ | 
|  |  | 
|  | /* ================================================================== */ | 
|  | /* Operators							      */ | 
|  | /* ================================================================== */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberAbs -- absolute value operator			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = abs(A)					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* See also decNumberCopyAbs for a quiet bitwise version of this.     */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This has the same effect as decNumberPlus unless A is negative,    */ | 
|  | /* in which case it has the same effect as decNumberMinus.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberAbs(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | decNumber dzero;			/* for 0 */ | 
|  | uInt status=0;			/* accumulator */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | decNumberZero(&dzero);		/* set 0 */ | 
|  | dzero.exponent=rhs->exponent;		/* [no coefficient expansion] */ | 
|  | decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberAbs */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberAdd -- add two Numbers				      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A + B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This just calls the routine shared with Subtract		      */ | 
|  | decNumber * decNumberAdd(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decAddOp(res, lhs, rhs, set, 0, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberAdd */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberAnd -- AND two Numbers, digitwise			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A & B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X&X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context (used for result length and error report)     */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Logical function restrictions apply (see above); a NaN is	      */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberAnd(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | const Unit *ua, *ub;			/* -> operands */ | 
|  | const Unit *msua, *msub;		/* -> operand msus */ | 
|  | Unit *uc,  *msuc;			/* -> result and its msu */ | 
|  | Int	msudigs;			/* digits in res msu */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) | 
|  | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
|  | decStatus(res, DEC_Invalid_operation, set); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* operands are valid */ | 
|  | ua=lhs->lsu;				/* bottom-up */ | 
|  | ub=rhs->lsu;				/* .. */ | 
|  | uc=res->lsu;				/* .. */ | 
|  | msua=ua+D2U(lhs->digits)-1;		/* -> msu of lhs */ | 
|  | msub=ub+D2U(rhs->digits)-1;		/* -> msu of rhs */ | 
|  | msuc=uc+D2U(set->digits)-1;		/* -> msu of result */ | 
|  | msudigs=MSUDIGITS(set->digits);	/* [faster than remainder] */ | 
|  | for (; uc<=msuc; ua++, ub++, uc++) {	/* Unit loop */ | 
|  | Unit a, b;				/* extract units */ | 
|  | if (ua>msua) a=0; | 
|  | else a=*ua; | 
|  | if (ub>msub) b=0; | 
|  | else b=*ub; | 
|  | *uc=0;				/* can now write back */ | 
|  | if (a|b) {				/* maybe 1 bits to examine */ | 
|  | Int i, j; | 
|  | *uc=0;				/* can now write back */ | 
|  | /* This loop could be unrolled and/or use BIN2BCD tables */ | 
|  | for (i=0; i<DECDPUN; i++) { | 
|  | if (a&b&1) *uc=*uc+(Unit)powers[i];  /* effect AND */ | 
|  | j=a%10; | 
|  | a=a/10; | 
|  | j|=b%10; | 
|  | b=b/10; | 
|  | if (j>1) { | 
|  | decStatus(res, DEC_Invalid_operation, set); | 
|  | return res; | 
|  | } | 
|  | if (uc==msuc && i==msudigs-1) break; /* just did final digit */ | 
|  | } /* each digit */ | 
|  | } /* both OK */ | 
|  | } /* each unit */ | 
|  | /* [here uc-1 is the msu of the result] */ | 
|  | res->digits=decGetDigits(res->lsu, uc-res->lsu); | 
|  | res->exponent=0;			/* integer */ | 
|  | res->bits=0;				/* sign=0 */ | 
|  | return res;  /* [no status to set] */ | 
|  | } /* decNumberAnd */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberCompare -- compare two Numbers			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ? B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for one digit (or NaN).			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberCompare(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decCompareOp(res, lhs, rhs, set, COMPARE, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberCompare */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberCompareSignal -- compare, signalling on all NaNs	      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ? B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for one digit (or NaN).			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decCompareOp(res, lhs, rhs, set, COMPSIG, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberCompareSignal */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberCompareTotal -- compare two Numbers, using total ordering */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ? B, under total ordering		      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for one digit; the result will always be one of  */ | 
|  | /* -1, 0, or 1.							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberCompareTotal */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberCompareTotalMag -- compare, total ordering of magnitudes  */ | 
|  | /*								      */ | 
|  | /*   This computes C = |A| ? |B|, under total ordering		      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for one digit; the result will always be one of  */ | 
|  | /* -1, 0, or 1.							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;		   /* accumulator */ | 
|  | uInt needbytes;		   /* for space calculations */ | 
|  | decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */ | 
|  | decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */ | 
|  | decNumber bufb[D2N(DECBUFFER+1)]; | 
|  | decNumber *allocbufb=NULL;	   /* -> allocated bufb, iff allocated */ | 
|  | decNumber *a, *b;		   /* temporary pointers */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {					/* protect allocated storage */ | 
|  | /* if either is negative, take a copy and absolute */ | 
|  | if (decNumberIsNegative(lhs)) {	/* lhs<0 */ | 
|  | a=bufa; | 
|  | needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufa)) {	/* need malloc space */ | 
|  | allocbufa=(decNumber *)malloc(needbytes); | 
|  | if (allocbufa==NULL) {		/* hopeless -- abandon */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | a=allocbufa;			/* use the allocated space */ | 
|  | } | 
|  | decNumberCopy(a, lhs);		/* copy content */ | 
|  | a->bits&=~DECNEG;			/* .. and clear the sign */ | 
|  | lhs=a;				/* use copy from here on */ | 
|  | } | 
|  | if (decNumberIsNegative(rhs)) {	/* rhs<0 */ | 
|  | b=bufb; | 
|  | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufb)) {	/* need malloc space */ | 
|  | allocbufb=(decNumber *)malloc(needbytes); | 
|  | if (allocbufb==NULL) {		/* hopeless -- abandon */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | b=allocbufb;			/* use the allocated space */ | 
|  | } | 
|  | decNumberCopy(b, rhs);		/* copy content */ | 
|  | b->bits&=~DECNEG;			/* .. and clear the sign */ | 
|  | rhs=b;				/* use copy from here on */ | 
|  | } | 
|  | decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status); | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ | 
|  | if (allocbufb!=NULL) free(allocbufb); /* .. */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberCompareTotalMag */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberDivide -- divide one number by another		      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A / B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberDivide(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decDivideOp(res, lhs, rhs, set, DIVIDE, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberDivide */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberDivideInteger -- divide and return integer quotient	      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A # B, where # is the integer divide operator  */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X#X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberDivideInteger */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberExp -- exponentiation				      */ | 
|  | /*								      */ | 
|  | /*   This computes C = exp(A)					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context; note that rounding mode has no effect	      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /*								      */ | 
|  | /* Finite results will always be full precision and Inexact, except   */ | 
|  | /* when A is a zero or -Infinity (giving 1 or 0 respectively).	      */ | 
|  | /*								      */ | 
|  | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */ | 
|  | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
|  | /* error in rare cases.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This is a wrapper for decExpOp which can handle the slightly wider */ | 
|  | /* (double) range needed by Ln (which has to be able to calculate     */ | 
|  | /* exp(-a) where a can be the tiniest number (Ntiny).		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberExp(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | #if DECSUBSET | 
|  | decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */ | 
|  | #endif | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* Check restrictions; these restrictions ensure that if h=8 (see */ | 
|  | /* decExpOp) then the result will either overflow or underflow to 0. */ | 
|  | /* Other math functions restrict the input range, too, for inverses. */ | 
|  | /* If not violated then carry out the operation. */ | 
|  | if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operand and set lostDigits status, as needed */ | 
|  | if (rhs->digits>set->digits) { | 
|  | allocrhs=decRoundOperand(rhs, set, &status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | decExpOp(res, rhs, set, &status); | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | if (allocrhs !=NULL) free(allocrhs);	/* drop any storage used */ | 
|  | #endif | 
|  | /* apply significant status */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberExp */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberFMA -- fused multiply add				      */ | 
|  | /*								      */ | 
|  | /*   This computes D = (A * B) + C with only one rounding	      */ | 
|  | /*								      */ | 
|  | /*   res is D, the result.  D may be A or B or C (e.g., X=FMA(X,X,X)) */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   fhs is C [far hand side]					      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberFMA(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, const decNumber *fhs, | 
|  | decContext *set) { | 
|  | uInt status=0;		   /* accumulator */ | 
|  | decContext dcmul;		   /* context for the multiplication */ | 
|  | uInt needbytes;		   /* for space calculations */ | 
|  | decNumber bufa[D2N(DECBUFFER*2+1)]; | 
|  | decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */ | 
|  | decNumber *acc;		   /* accumulator pointer */ | 
|  | decNumber dzero;		   /* work */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | if (decCheckOperands(res, fhs, DECUNUSED, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {					/* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) {		/* [undefined if subset] */ | 
|  | status|=DEC_Invalid_operation; | 
|  | break;} | 
|  | #endif | 
|  | /* Check math restrictions [these ensure no overflow or underflow] */ | 
|  | if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status)) | 
|  | || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status)) | 
|  | || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break; | 
|  | /* set up context for multiply */ | 
|  | dcmul=*set; | 
|  | dcmul.digits=lhs->digits+rhs->digits; /* just enough */ | 
|  | /* [The above may be an over-estimate for subset arithmetic, but that's OK] */ | 
|  | dcmul.emax=DEC_MAX_EMAX;		/* effectively unbounded .. */ | 
|  | dcmul.emin=DEC_MIN_EMIN;		/* [thanks to Math restrictions] */ | 
|  | /* set up decNumber space to receive the result of the multiply */ | 
|  | acc=bufa;				/* may fit */ | 
|  | needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufa)) {	/* need malloc space */ | 
|  | allocbufa=(decNumber *)malloc(needbytes); | 
|  | if (allocbufa==NULL) {		/* hopeless -- abandon */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | acc=allocbufa;			/* use the allocated space */ | 
|  | } | 
|  | /* multiply with extended range and necessary precision */ | 
|  | /*printf("emin=%ld\n", dcmul.emin); */ | 
|  | decMultiplyOp(acc, lhs, rhs, &dcmul, &status); | 
|  | /* Only Invalid operation (from sNaN or Inf * 0) is possible in */ | 
|  | /* status; if either is seen than ignore fhs (in case it is */ | 
|  | /* another sNaN) and set acc to NaN unless we had an sNaN */ | 
|  | /* [decMultiplyOp leaves that to caller] */ | 
|  | /* Note sNaN has to go through addOp to shorten payload if */ | 
|  | /* necessary */ | 
|  | if ((status&DEC_Invalid_operation)!=0) { | 
|  | if (!(status&DEC_sNaN)) {		/* but be true invalid */ | 
|  | decNumberZero(res);		/* acc not yet set */ | 
|  | res->bits=DECNAN; | 
|  | break; | 
|  | } | 
|  | decNumberZero(&dzero);		/* make 0 (any non-NaN would do) */ | 
|  | fhs=&dzero;			/* use that */ | 
|  | } | 
|  | #if DECCHECK | 
|  | else { /* multiply was OK */ | 
|  | if (status!=0) printf("Status=%08lx after FMA multiply\n", status); | 
|  | } | 
|  | #endif | 
|  | /* add the third operand and result -> res, and all is done */ | 
|  | decAddOp(res, acc, fhs, set, 0, &status); | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberFMA */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberInvert -- invert a Number, digitwise		      */ | 
|  | /*								      */ | 
|  | /*   This computes C = ~A					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A (e.g., X=~X)		      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context (used for result length and error report)     */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Logical function restrictions apply (see above); a NaN is	      */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberInvert(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | const Unit *ua, *msua;		/* -> operand and its msu */ | 
|  | Unit	*uc, *msuc;			/* -> result and its msu */ | 
|  | Int	msudigs;			/* digits in res msu */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
|  | decStatus(res, DEC_Invalid_operation, set); | 
|  | return res; | 
|  | } | 
|  | /* operand is valid */ | 
|  | ua=rhs->lsu;				/* bottom-up */ | 
|  | uc=res->lsu;				/* .. */ | 
|  | msua=ua+D2U(rhs->digits)-1;		/* -> msu of rhs */ | 
|  | msuc=uc+D2U(set->digits)-1;		/* -> msu of result */ | 
|  | msudigs=MSUDIGITS(set->digits);	/* [faster than remainder] */ | 
|  | for (; uc<=msuc; ua++, uc++) {	/* Unit loop */ | 
|  | Unit a;				/* extract unit */ | 
|  | Int	 i, j;				/* work */ | 
|  | if (ua>msua) a=0; | 
|  | else a=*ua; | 
|  | *uc=0;				/* can now write back */ | 
|  | /* always need to examine all bits in rhs */ | 
|  | /* This loop could be unrolled and/or use BIN2BCD tables */ | 
|  | for (i=0; i<DECDPUN; i++) { | 
|  | if ((~a)&1) *uc=*uc+(Unit)powers[i];   /* effect INVERT */ | 
|  | j=a%10; | 
|  | a=a/10; | 
|  | if (j>1) { | 
|  | decStatus(res, DEC_Invalid_operation, set); | 
|  | return res; | 
|  | } | 
|  | if (uc==msuc && i==msudigs-1) break;   /* just did final digit */ | 
|  | } /* each digit */ | 
|  | } /* each unit */ | 
|  | /* [here uc-1 is the msu of the result] */ | 
|  | res->digits=decGetDigits(res->lsu, uc-res->lsu); | 
|  | res->exponent=0;			/* integer */ | 
|  | res->bits=0;				/* sign=0 */ | 
|  | return res;  /* [no status to set] */ | 
|  | } /* decNumberInvert */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberLn -- natural logarithm				      */ | 
|  | /*								      */ | 
|  | /*   This computes C = ln(A)					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context; note that rounding mode has no effect	      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Notable cases:						      */ | 
|  | /*   A<0 -> Invalid						      */ | 
|  | /*   A=0 -> -Infinity (Exact)					      */ | 
|  | /*   A=+Infinity -> +Infinity (Exact)				      */ | 
|  | /*   A=1 exactly -> 0 (Exact)					      */ | 
|  | /*								      */ | 
|  | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /*								      */ | 
|  | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */ | 
|  | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
|  | /* error in rare cases.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This is a wrapper for decLnOp which can handle the slightly wider  */ | 
|  | /* (+11) range needed by Ln, Log10, etc. (which may have to be able   */ | 
|  | /* to calculate at p+e+2).					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberLn(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | uInt status=0;		   /* accumulator */ | 
|  | #if DECSUBSET | 
|  | decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */ | 
|  | #endif | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* Check restrictions; this is a math function; if not violated */ | 
|  | /* then carry out the operation. */ | 
|  | if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operand and set lostDigits status, as needed */ | 
|  | if (rhs->digits>set->digits) { | 
|  | allocrhs=decRoundOperand(rhs, set, &status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | /* special check in subset for rhs=0 */ | 
|  | if (ISZERO(rhs)) {		/* +/- zeros -> error */ | 
|  | status|=DEC_Invalid_operation; | 
|  | break;} | 
|  | } /* extended=0 */ | 
|  | #endif | 
|  | decLnOp(res, rhs, set, &status); | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | if (allocrhs !=NULL) free(allocrhs);	/* drop any storage used */ | 
|  | #endif | 
|  | /* apply significant status */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberLn */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberLogB - get adjusted exponent, by 754r rules		      */ | 
|  | /*								      */ | 
|  | /*   This computes C = adjustedexponent(A)			      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context, used only for digits and status	      */ | 
|  | /*								      */ | 
|  | /* C must have space for 10 digits (A might have 10**9 digits and     */ | 
|  | /* an exponent of +999999999, or one digit and an exponent of	      */ | 
|  | /* -1999999999).						      */ | 
|  | /*								      */ | 
|  | /* This returns the adjusted exponent of A after (in theory) padding  */ | 
|  | /* with zeros on the right to set->digits digits while keeping the    */ | 
|  | /* same value.	The exponent is not limited by emin/emax.	      */ | 
|  | /*								      */ | 
|  | /* Notable cases:						      */ | 
|  | /*   A<0 -> Use |A|						      */ | 
|  | /*   A=0 -> -Infinity (Division by zero)			      */ | 
|  | /*   A=Infinite -> +Infinity (Exact)				      */ | 
|  | /*   A=1 exactly -> 0 (Exact)					      */ | 
|  | /*   NaNs are propagated as usual				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberLogB(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | uInt status=0;		   /* accumulator */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* NaNs as usual; Infinities return +Infinity; 0->oops */ | 
|  | if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status); | 
|  | else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs); | 
|  | else if (decNumberIsZero(rhs)) { | 
|  | decNumberZero(res);			/* prepare for Infinity */ | 
|  | res->bits=DECNEG|DECINF;		/* -Infinity */ | 
|  | status|=DEC_Division_by_zero;	/* as per 754r */ | 
|  | } | 
|  | else { /* finite non-zero */ | 
|  | Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */ | 
|  | decNumberFromInt32(res, ae);	/* lay it out */ | 
|  | } | 
|  |  | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberLogB */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberLog10 -- logarithm in base 10			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = log10(A)					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context; note that rounding mode has no effect	      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Notable cases:						      */ | 
|  | /*   A<0 -> Invalid						      */ | 
|  | /*   A=0 -> -Infinity (Exact)					      */ | 
|  | /*   A=+Infinity -> +Infinity (Exact)				      */ | 
|  | /*   A=10**n (if n is an integer) -> n (Exact)			      */ | 
|  | /*								      */ | 
|  | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /*								      */ | 
|  | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */ | 
|  | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
|  | /* error in rare cases.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This calculates ln(A)/ln(10) using appropriate precision.  For     */ | 
|  | /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the      */ | 
|  | /* requested digits and t is the number of digits in the exponent     */ | 
|  | /* (maximum 6).	 For ln(10) it is p + 3; this is often handled by the */ | 
|  | /* fastpath in decLnOp.	 The final division is done to the requested  */ | 
|  | /* precision.							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberLog10(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | uInt status=0, ignore=0;	   /* status accumulators */ | 
|  | uInt needbytes;		   /* for space calculations */ | 
|  | Int p;			   /* working precision */ | 
|  | Int t;			   /* digits in exponent of A */ | 
|  |  | 
|  | /* buffers for a and b working decimals */ | 
|  | /* (adjustment calculator, same size) */ | 
|  | decNumber bufa[D2N(DECBUFFER+2)]; | 
|  | decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */ | 
|  | decNumber *a=bufa;		   /* temporary a */ | 
|  | decNumber bufb[D2N(DECBUFFER+2)]; | 
|  | decNumber *allocbufb=NULL;	   /* -> allocated bufb, iff allocated */ | 
|  | decNumber *b=bufb;		   /* temporary b */ | 
|  | decNumber bufw[D2N(10)];	   /* working 2-10 digit number */ | 
|  | decNumber *w=bufw;		   /* .. */ | 
|  | #if DECSUBSET | 
|  | decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */ | 
|  | #endif | 
|  |  | 
|  | decContext aset;		   /* working context */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* Check restrictions; this is a math function; if not violated */ | 
|  | /* then carry out the operation. */ | 
|  | if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operand and set lostDigits status, as needed */ | 
|  | if (rhs->digits>set->digits) { | 
|  | allocrhs=decRoundOperand(rhs, set, &status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | /* special check in subset for rhs=0 */ | 
|  | if (ISZERO(rhs)) {		/* +/- zeros -> error */ | 
|  | status|=DEC_Invalid_operation; | 
|  | break;} | 
|  | } /* extended=0 */ | 
|  | #endif | 
|  |  | 
|  | decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */ | 
|  |  | 
|  | /* handle exact powers of 10; only check if +ve finite */ | 
|  | if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) { | 
|  | Int residue=0;		   /* (no residue) */ | 
|  | uInt copystat=0;		   /* clean status */ | 
|  |  | 
|  | /* round to a single digit... */ | 
|  | aset.digits=1; | 
|  | decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */ | 
|  | /* if exact and the digit is 1, rhs is a power of 10 */ | 
|  | if (!(copystat&DEC_Inexact) && w->lsu[0]==1) { | 
|  | /* the exponent, conveniently, is the power of 10; making */ | 
|  | /* this the result needs a little care as it might not fit, */ | 
|  | /* so first convert it into the working number, and then move */ | 
|  | /* to res */ | 
|  | decNumberFromInt32(w, w->exponent); | 
|  | residue=0; | 
|  | decCopyFit(res, w, set, &residue, &status); /* copy & round */ | 
|  | decFinish(res, set, &residue, &status);	    /* cleanup/set flags */ | 
|  | break; | 
|  | } /* not a power of 10 */ | 
|  | } /* not a candidate for exact */ | 
|  |  | 
|  | /* simplify the information-content calculation to use 'total */ | 
|  | /* number of digits in a, including exponent' as compared to the */ | 
|  | /* requested digits, as increasing this will only rarely cost an */ | 
|  | /* iteration in ln(a) anyway */ | 
|  | t=6;				/* it can never be >6 */ | 
|  |  | 
|  | /* allocate space when needed... */ | 
|  | p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3; | 
|  | needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufa)) {	/* need malloc space */ | 
|  | allocbufa=(decNumber *)malloc(needbytes); | 
|  | if (allocbufa==NULL) {		/* hopeless -- abandon */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | a=allocbufa;			/* use the allocated space */ | 
|  | } | 
|  | aset.digits=p;			/* as calculated */ | 
|  | aset.emax=DEC_MAX_MATH;		/* usual bounds */ | 
|  | aset.emin=-DEC_MAX_MATH;		/* .. */ | 
|  | aset.clamp=0;			/* and no concrete format */ | 
|  | decLnOp(a, rhs, &aset, &status);	/* a=ln(rhs) */ | 
|  |  | 
|  | /* skip the division if the result so far is infinite, NaN, or */ | 
|  | /* zero, or there was an error; note NaN from sNaN needs copy */ | 
|  | if (status&DEC_NaNs && !(status&DEC_sNaN)) break; | 
|  | if (a->bits&DECSPECIAL || ISZERO(a)) { | 
|  | decNumberCopy(res, a);		/* [will fit] */ | 
|  | break;} | 
|  |  | 
|  | /* for ln(10) an extra 3 digits of precision are needed */ | 
|  | p=set->digits+3; | 
|  | needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufb)) {	/* need malloc space */ | 
|  | allocbufb=(decNumber *)malloc(needbytes); | 
|  | if (allocbufb==NULL) {		/* hopeless -- abandon */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | b=allocbufb;			/* use the allocated space */ | 
|  | } | 
|  | decNumberZero(w);			/* set up 10... */ | 
|  | #if DECDPUN==1 | 
|  | w->lsu[1]=1; w->lsu[0]=0;		/* .. */ | 
|  | #else | 
|  | w->lsu[0]=10;			/* .. */ | 
|  | #endif | 
|  | w->digits=2;			/* .. */ | 
|  |  | 
|  | aset.digits=p; | 
|  | decLnOp(b, w, &aset, &ignore);	/* b=ln(10) */ | 
|  |  | 
|  | aset.digits=set->digits;		/* for final divide */ | 
|  | decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */ | 
|  | } while(0);				/* [for break] */ | 
|  |  | 
|  | if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ | 
|  | if (allocbufb!=NULL) free(allocbufb); /* .. */ | 
|  | #if DECSUBSET | 
|  | if (allocrhs !=NULL) free(allocrhs);	/* .. */ | 
|  | #endif | 
|  | /* apply significant status */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberLog10 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberMax -- compare two Numbers and return the maximum	      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ? B, returning the maximum by 754R rules     */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberMax(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decCompareOp(res, lhs, rhs, set, COMPMAX, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberMax */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberMaxMag -- compare and return the maximum by magnitude     */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ? B, returning the maximum by 754R rules     */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberMaxMag */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberMin -- compare two Numbers and return the minimum	      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ? B, returning the minimum by 754R rules     */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberMin(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decCompareOp(res, lhs, rhs, set, COMPMIN, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberMin */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberMinMag -- compare and return the minimum by magnitude     */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ? B, returning the minimum by 754R rules     */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberMinMag */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberMinus -- prefix minus operator			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = 0 - A					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* See also decNumberCopyNegate for a quiet bitwise version of this.  */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Simply use AddOp for the subtract, which will do the necessary.    */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberMinus(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | decNumber dzero; | 
|  | uInt status=0;			/* accumulator */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | decNumberZero(&dzero);		/* make 0 */ | 
|  | dzero.exponent=rhs->exponent;		/* [no coefficient expansion] */ | 
|  | decAddOp(res, &dzero, rhs, set, DECNEG, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberMinus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberNextMinus -- next towards -Infinity			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A - infinitesimal, rounded towards -Infinity   */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* This is a generalization of 754r NextDown.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | decNumber dtiny;			     /* constant */ | 
|  | decContext workset=*set;		     /* work */ | 
|  | uInt status=0;			     /* accumulator */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* +Infinity is the special case */ | 
|  | if ((rhs->bits&(DECINF|DECNEG))==DECINF) { | 
|  | decSetMaxValue(res, set);		     /* is +ve */ | 
|  | /* there is no status to set */ | 
|  | return res; | 
|  | } | 
|  | decNumberZero(&dtiny);		     /* start with 0 */ | 
|  | dtiny.lsu[0]=1;			     /* make number that is .. */ | 
|  | dtiny.exponent=DEC_MIN_EMIN-1;	     /* .. smaller than tiniest */ | 
|  | workset.round=DEC_ROUND_FLOOR; | 
|  | decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status); | 
|  | status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberNextMinus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberNextPlus -- next towards +Infinity			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A + infinitesimal, rounded towards +Infinity   */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* This is a generalization of 754r NextUp.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | decNumber dtiny;			     /* constant */ | 
|  | decContext workset=*set;		     /* work */ | 
|  | uInt status=0;			     /* accumulator */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* -Infinity is the special case */ | 
|  | if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { | 
|  | decSetMaxValue(res, set); | 
|  | res->bits=DECNEG;			     /* negative */ | 
|  | /* there is no status to set */ | 
|  | return res; | 
|  | } | 
|  | decNumberZero(&dtiny);		     /* start with 0 */ | 
|  | dtiny.lsu[0]=1;			     /* make number that is .. */ | 
|  | dtiny.exponent=DEC_MIN_EMIN-1;	     /* .. smaller than tiniest */ | 
|  | workset.round=DEC_ROUND_CEILING; | 
|  | decAddOp(res, rhs, &dtiny, &workset, 0, &status); | 
|  | status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberNextPlus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberNextToward -- next towards rhs			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A +/- infinitesimal, rounded towards	      */ | 
|  | /*   +/-Infinity in the direction of B, as per 754r nextafter rules   */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A or B.			      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* This is a generalization of 754r NextAfter.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | decNumber dtiny;			     /* constant */ | 
|  | decContext workset=*set;		     /* work */ | 
|  | Int result;				     /* .. */ | 
|  | uInt status=0;			     /* accumulator */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { | 
|  | decNaNs(res, lhs, rhs, set, &status); | 
|  | } | 
|  | else { /* Is numeric, so no chance of sNaN Invalid, etc. */ | 
|  | result=decCompare(lhs, rhs, 0);	/* sign matters */ | 
|  | if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */ | 
|  | else { /* valid compare */ | 
|  | if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */ | 
|  | else { /* differ: need NextPlus or NextMinus */ | 
|  | uByte sub;			/* add or subtract */ | 
|  | if (result<0) {			/* lhs<rhs, do nextplus */ | 
|  | /* -Infinity is the special case */ | 
|  | if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { | 
|  | decSetMaxValue(res, set); | 
|  | res->bits=DECNEG;		/* negative */ | 
|  | return res;			/* there is no status to set */ | 
|  | } | 
|  | workset.round=DEC_ROUND_CEILING; | 
|  | sub=0;			/* add, please */ | 
|  | } /* plus */ | 
|  | else {				/* lhs>rhs, do nextminus */ | 
|  | /* +Infinity is the special case */ | 
|  | if ((lhs->bits&(DECINF|DECNEG))==DECINF) { | 
|  | decSetMaxValue(res, set); | 
|  | return res;			/* there is no status to set */ | 
|  | } | 
|  | workset.round=DEC_ROUND_FLOOR; | 
|  | sub=DECNEG;			/* subtract, please */ | 
|  | } /* minus */ | 
|  | decNumberZero(&dtiny);		/* start with 0 */ | 
|  | dtiny.lsu[0]=1;			/* make number that is .. */ | 
|  | dtiny.exponent=DEC_MIN_EMIN-1;	/* .. smaller than tiniest */ | 
|  | decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */ | 
|  | /* turn off exceptions if the result is a normal number */ | 
|  | /* (including Nmin), otherwise let all status through */ | 
|  | if (decNumberIsNormal(res, set)) status=0; | 
|  | } /* unequal */ | 
|  | } /* compare OK */ | 
|  | } /* numeric */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberNextToward */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberOr -- OR two Numbers, digitwise			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A | B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X|X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context (used for result length and error report)     */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Logical function restrictions apply (see above); a NaN is	      */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberOr(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | const Unit *ua, *ub;			/* -> operands */ | 
|  | const Unit *msua, *msub;		/* -> operand msus */ | 
|  | Unit	*uc, *msuc;			/* -> result and its msu */ | 
|  | Int	msudigs;			/* digits in res msu */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) | 
|  | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
|  | decStatus(res, DEC_Invalid_operation, set); | 
|  | return res; | 
|  | } | 
|  | /* operands are valid */ | 
|  | ua=lhs->lsu;				/* bottom-up */ | 
|  | ub=rhs->lsu;				/* .. */ | 
|  | uc=res->lsu;				/* .. */ | 
|  | msua=ua+D2U(lhs->digits)-1;		/* -> msu of lhs */ | 
|  | msub=ub+D2U(rhs->digits)-1;		/* -> msu of rhs */ | 
|  | msuc=uc+D2U(set->digits)-1;		/* -> msu of result */ | 
|  | msudigs=MSUDIGITS(set->digits);	/* [faster than remainder] */ | 
|  | for (; uc<=msuc; ua++, ub++, uc++) {	/* Unit loop */ | 
|  | Unit a, b;				/* extract units */ | 
|  | if (ua>msua) a=0; | 
|  | else a=*ua; | 
|  | if (ub>msub) b=0; | 
|  | else b=*ub; | 
|  | *uc=0;				/* can now write back */ | 
|  | if (a|b) {				/* maybe 1 bits to examine */ | 
|  | Int i, j; | 
|  | /* This loop could be unrolled and/or use BIN2BCD tables */ | 
|  | for (i=0; i<DECDPUN; i++) { | 
|  | if ((a|b)&1) *uc=*uc+(Unit)powers[i];	  /* effect OR */ | 
|  | j=a%10; | 
|  | a=a/10; | 
|  | j|=b%10; | 
|  | b=b/10; | 
|  | if (j>1) { | 
|  | decStatus(res, DEC_Invalid_operation, set); | 
|  | return res; | 
|  | } | 
|  | if (uc==msuc && i==msudigs-1) break;	  /* just did final digit */ | 
|  | } /* each digit */ | 
|  | } /* non-zero */ | 
|  | } /* each unit */ | 
|  | /* [here uc-1 is the msu of the result] */ | 
|  | res->digits=decGetDigits(res->lsu, uc-res->lsu); | 
|  | res->exponent=0;			/* integer */ | 
|  | res->bits=0;				/* sign=0 */ | 
|  | return res;  /* [no status to set] */ | 
|  | } /* decNumberOr */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberPlus -- prefix plus operator			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = 0 + A					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* See also decNumberCopy for a quiet bitwise version of this.	      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This simply uses AddOp; Add will take fast path after preparing A. */ | 
|  | /* Performance is a concern here, as this routine is often used to    */ | 
|  | /* check operands and apply rounding and overflow/underflow testing.  */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberPlus(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | decNumber dzero; | 
|  | uInt status=0;			/* accumulator */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | decNumberZero(&dzero);		/* make 0 */ | 
|  | dzero.exponent=rhs->exponent;		/* [no coefficient expansion] */ | 
|  | decAddOp(res, &dzero, rhs, set, 0, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberPlus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberMultiply -- multiply two Numbers			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A x B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;		   /* accumulator */ | 
|  | decMultiplyOp(res, lhs, rhs, set, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberMultiply */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberPower -- raise a number to a power			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ** B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X**X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Mathematical function restrictions apply (see above); a NaN is     */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /*								      */ | 
|  | /* However, if 1999999997<=B<=999999999 and B is an integer then the  */ | 
|  | /* restrictions on A and the context are relaxed to the usual bounds, */ | 
|  | /* for compatibility with the earlier (integer power only) version    */ | 
|  | /* of this function.						      */ | 
|  | /*								      */ | 
|  | /* When B is an integer, the result may be exact, even if rounded.    */ | 
|  | /*								      */ | 
|  | /* The final result is rounded according to the context; it will      */ | 
|  | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
|  | /* error in rare cases.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberPower(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | #if DECSUBSET | 
|  | decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */ | 
|  | decNumber *allocrhs=NULL;	   /* .., rhs */ | 
|  | #endif | 
|  | decNumber *allocdac=NULL;	   /* -> allocated acc buffer, iff used */ | 
|  | decNumber *allocinv=NULL;	   /* -> allocated 1/x buffer, iff used */ | 
|  | Int	reqdigits=set->digits;	   /* requested DIGITS */ | 
|  | Int	n;			   /* rhs in binary */ | 
|  | Flag	rhsint=0;		   /* 1 if rhs is an integer */ | 
|  | Flag	useint=0;		   /* 1 if can use integer calculation */ | 
|  | Flag	isoddint=0;		   /* 1 if rhs is an integer and odd */ | 
|  | Int	i;			   /* work */ | 
|  | #if DECSUBSET | 
|  | Int	dropped;		   /* .. */ | 
|  | #endif | 
|  | uInt	needbytes;		   /* buffer size needed */ | 
|  | Flag	seenbit;		   /* seen a bit while powering */ | 
|  | Int	residue=0;		   /* rounding residue */ | 
|  | uInt	status=0;		   /* accumulators */ | 
|  | uByte bits=0;			   /* result sign if errors */ | 
|  | decContext aset;		   /* working context */ | 
|  | decNumber dnOne;		   /* work value 1... */ | 
|  | /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */ | 
|  | decNumber dacbuff[D2N(DECBUFFER+9)]; | 
|  | decNumber *dac=dacbuff;	   /* -> result accumulator */ | 
|  | /* same again for possible 1/lhs calculation */ | 
|  | decNumber invbuff[D2N(DECBUFFER+9)]; | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {				   /* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { /* reduce operands and set status, as needed */ | 
|  | if (lhs->digits>reqdigits) { | 
|  | alloclhs=decRoundOperand(lhs, set, &status); | 
|  | if (alloclhs==NULL) break; | 
|  | lhs=alloclhs; | 
|  | } | 
|  | if (rhs->digits>reqdigits) { | 
|  | allocrhs=decRoundOperand(rhs, set, &status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* [following code does not require input rounding] */ | 
|  |  | 
|  | /* handle NaNs and rhs Infinity (lhs infinity is harder) */ | 
|  | if (SPECIALARGS) { | 
|  | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */ | 
|  | decNaNs(res, lhs, rhs, set, &status); | 
|  | break;} | 
|  | if (decNumberIsInfinite(rhs)) {	/* rhs Infinity */ | 
|  | Flag rhsneg=rhs->bits&DECNEG;	/* save rhs sign */ | 
|  | if (decNumberIsNegative(lhs)	/* lhs<0 */ | 
|  | && !decNumberIsZero(lhs))	/* .. */ | 
|  | status|=DEC_Invalid_operation; | 
|  | else {				/* lhs >=0 */ | 
|  | decNumberZero(&dnOne);	/* set up 1 */ | 
|  | dnOne.lsu[0]=1; | 
|  | decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */ | 
|  | decNumberZero(res);		/* prepare for 0/1/Infinity */ | 
|  | if (decNumberIsNegative(dac)) {    /* lhs<1 */ | 
|  | if (rhsneg) res->bits|=DECINF;   /* +Infinity [else is +0] */ | 
|  | } | 
|  | else if (dac->lsu[0]==0) {	     /* lhs=1 */ | 
|  | /* 1**Infinity is inexact, so return fully-padded 1.0000 */ | 
|  | Int shift=set->digits-1; | 
|  | *res->lsu=1;		     /* was 0, make int 1 */ | 
|  | res->digits=decShiftToMost(res->lsu, 1, shift); | 
|  | res->exponent=-shift;	     /* make 1.0000... */ | 
|  | status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */ | 
|  | } | 
|  | else {			     /* lhs>1 */ | 
|  | if (!rhsneg) res->bits|=DECINF;  /* +Infinity [else is +0] */ | 
|  | } | 
|  | } /* lhs>=0 */ | 
|  | break;} | 
|  | /* [lhs infinity drops through] */ | 
|  | } /* specials */ | 
|  |  | 
|  | /* Original rhs may be an integer that fits and is in range */ | 
|  | n=decGetInt(rhs); | 
|  | if (n!=BADINT) {			/* it is an integer */ | 
|  | rhsint=1;				/* record the fact for 1**n */ | 
|  | isoddint=(Flag)n&1;		/* [works even if big] */ | 
|  | if (n!=BIGEVEN && n!=BIGODD)	/* can use integer path? */ | 
|  | useint=1;			/* looks good */ | 
|  | } | 
|  |  | 
|  | if (decNumberIsNegative(lhs)	/* -x .. */ | 
|  | && isoddint) bits=DECNEG;		/* .. to an odd power */ | 
|  |  | 
|  | /* handle LHS infinity */ | 
|  | if (decNumberIsInfinite(lhs)) {	/* [NaNs already handled] */ | 
|  | uByte rbits=rhs->bits;		/* save */ | 
|  | decNumberZero(res);		/* prepare */ | 
|  | if (n==0) *res->lsu=1;		/* [-]Inf**0 => 1 */ | 
|  | else { | 
|  | /* -Inf**nonint -> error */ | 
|  | if (!rhsint && decNumberIsNegative(lhs)) { | 
|  | status|=DEC_Invalid_operation;     /* -Inf**nonint is error */ | 
|  | break;} | 
|  | if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */ | 
|  | /* [otherwise will be 0 or -0] */ | 
|  | res->bits=bits; | 
|  | } | 
|  | break;} | 
|  |  | 
|  | /* similarly handle LHS zero */ | 
|  | if (decNumberIsZero(lhs)) { | 
|  | if (n==0) {			     /* 0**0 => Error */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) {		     /* [unless subset] */ | 
|  | decNumberZero(res); | 
|  | *res->lsu=1;			     /* return 1 */ | 
|  | break;} | 
|  | #endif | 
|  | status|=DEC_Invalid_operation; | 
|  | } | 
|  | else {				     /* 0**x */ | 
|  | uByte rbits=rhs->bits;		     /* save */ | 
|  | if (rbits & DECNEG) {		     /* was a 0**(-n) */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) {		     /* [bad if subset] */ | 
|  | status|=DEC_Invalid_operation; | 
|  | break;} | 
|  | #endif | 
|  | bits|=DECINF; | 
|  | } | 
|  | decNumberZero(res);		     /* prepare */ | 
|  | /* [otherwise will be 0 or -0] */ | 
|  | res->bits=bits; | 
|  | } | 
|  | break;} | 
|  |  | 
|  | /* here both lhs and rhs are finite; rhs==0 is handled in the */ | 
|  | /* integer path.  Next handle the non-integer cases */ | 
|  | if (!useint) {			/* non-integral rhs */ | 
|  | /* any -ve lhs is bad, as is either operand or context out of */ | 
|  | /* bounds */ | 
|  | if (decNumberIsNegative(lhs)) { | 
|  | status|=DEC_Invalid_operation; | 
|  | break;} | 
|  | if (decCheckMath(lhs, set, &status) | 
|  | || decCheckMath(rhs, set, &status)) break; /* variable status */ | 
|  |  | 
|  | decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */ | 
|  | aset.emax=DEC_MAX_MATH;		/* usual bounds */ | 
|  | aset.emin=-DEC_MAX_MATH;		/* .. */ | 
|  | aset.clamp=0;			/* and no concrete format */ | 
|  |  | 
|  | /* calculate the result using exp(ln(lhs)*rhs), which can */ | 
|  | /* all be done into the accumulator, dac.	 The precision needed */ | 
|  | /* is enough to contain the full information in the lhs (which */ | 
|  | /* is the total digits, including exponent), or the requested */ | 
|  | /* precision, if larger, + 4; 6 is used for the exponent */ | 
|  | /* maximum length, and this is also used when it is shorter */ | 
|  | /* than the requested digits as it greatly reduces the >0.5 ulp */ | 
|  | /* cases at little cost (because Ln doubles digits each */ | 
|  | /* iteration so a few extra digits rarely causes an extra */ | 
|  | /* iteration) */ | 
|  | aset.digits=MAXI(lhs->digits, set->digits)+6+4; | 
|  | } /* non-integer rhs */ | 
|  |  | 
|  | else { /* rhs is in-range integer */ | 
|  | if (n==0) {			/* x**0 = 1 */ | 
|  | /* (0**0 was handled above) */ | 
|  | decNumberZero(res);		/* result=1 */ | 
|  | *res->lsu=1;			/* .. */ | 
|  | break;} | 
|  | /* rhs is a non-zero integer */ | 
|  | if (n<0) n=-n;			/* use abs(n) */ | 
|  |  | 
|  | aset=*set;			/* clone the context */ | 
|  | aset.round=DEC_ROUND_HALF_EVEN;	/* internally use balanced */ | 
|  | /* calculate the working DIGITS */ | 
|  | aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2; | 
|  | #if DECSUBSET | 
|  | if (!set->extended) aset.digits--;     /* use classic precision */ | 
|  | #endif | 
|  | /* it's an error if this is more than can be handled */ | 
|  | if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;} | 
|  | } /* integer path */ | 
|  |  | 
|  | /* aset.digits is the count of digits for the accumulator needed */ | 
|  | /* if accumulator is too long for local storage, then allocate */ | 
|  | needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit); | 
|  | /* [needbytes also used below if 1/lhs needed] */ | 
|  | if (needbytes>sizeof(dacbuff)) { | 
|  | allocdac=(decNumber *)malloc(needbytes); | 
|  | if (allocdac==NULL) {   /* hopeless -- abandon */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | dac=allocdac;	      /* use the allocated space */ | 
|  | } | 
|  | /* here, aset is set up and accumulator is ready for use */ | 
|  |  | 
|  | if (!useint) {			     /* non-integral rhs */ | 
|  | /* x ** y; special-case x=1 here as it will otherwise always */ | 
|  | /* reduce to integer 1; decLnOp has a fastpath which detects */ | 
|  | /* the case of x=1 */ | 
|  | decLnOp(dac, lhs, &aset, &status);     /* dac=ln(lhs) */ | 
|  | /* [no error possible, as lhs 0 already handled] */ | 
|  | if (ISZERO(dac)) {		     /* x==1, 1.0, etc. */ | 
|  | /* need to return fully-padded 1.0000 etc., but rhsint->1 */ | 
|  | *dac->lsu=1;			     /* was 0, make int 1 */ | 
|  | if (!rhsint) {			     /* add padding */ | 
|  | Int shift=set->digits-1; | 
|  | dac->digits=decShiftToMost(dac->lsu, 1, shift); | 
|  | dac->exponent=-shift;		     /* make 1.0000... */ | 
|  | status|=DEC_Inexact|DEC_Rounded;   /* deemed inexact */ | 
|  | } | 
|  | } | 
|  | else { | 
|  | decMultiplyOp(dac, dac, rhs, &aset, &status);  /* dac=dac*rhs */ | 
|  | decExpOp(dac, dac, &aset, &status);	       /* dac=exp(dac) */ | 
|  | } | 
|  | /* and drop through for final rounding */ | 
|  | } /* non-integer rhs */ | 
|  |  | 
|  | else {				/* carry on with integer */ | 
|  | decNumberZero(dac);		/* acc=1 */ | 
|  | *dac->lsu=1;			/* .. */ | 
|  |  | 
|  | /* if a negative power the constant 1 is needed, and if not subset */ | 
|  | /* invert the lhs now rather than inverting the result later */ | 
|  | if (decNumberIsNegative(rhs)) {	/* was a **-n [hence digits>0] */ | 
|  | decNumber *inv=invbuff;		/* assume use fixed buffer */ | 
|  | decNumberCopy(&dnOne, dac);	/* dnOne=1;  [needed now or later] */ | 
|  | #if DECSUBSET | 
|  | if (set->extended) {		/* need to calculate 1/lhs */ | 
|  | #endif | 
|  | /* divide lhs into 1, putting result in dac [dac=1/dac] */ | 
|  | decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status); | 
|  | /* now locate or allocate space for the inverted lhs */ | 
|  | if (needbytes>sizeof(invbuff)) { | 
|  | allocinv=(decNumber *)malloc(needbytes); | 
|  | if (allocinv==NULL) {	/* hopeless -- abandon */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | inv=allocinv;		/* use the allocated space */ | 
|  | } | 
|  | /* [inv now points to big-enough buffer or allocated storage] */ | 
|  | decNumberCopy(inv, dac);	/* copy the 1/lhs */ | 
|  | decNumberCopy(dac, &dnOne);	/* restore acc=1 */ | 
|  | lhs=inv;			/* .. and go forward with new lhs */ | 
|  | #if DECSUBSET | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Raise-to-the-power loop... */ | 
|  | seenbit=0;		   /* set once a 1-bit is encountered */ | 
|  | for (i=1;;i++){		   /* for each bit [top bit ignored] */ | 
|  | /* abandon if had overflow or terminal underflow */ | 
|  | if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */ | 
|  | if (status&DEC_Overflow || ISZERO(dac)) break; | 
|  | } | 
|  | /* [the following two lines revealed an optimizer bug in a C++ */ | 
|  | /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */ | 
|  | n=n<<1;			   /* move next bit to testable position */ | 
|  | if (n<0) {		   /* top bit is set */ | 
|  | seenbit=1;		   /* OK, significant bit seen */ | 
|  | decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */ | 
|  | } | 
|  | if (i==31) break;	   /* that was the last bit */ | 
|  | if (!seenbit) continue;	   /* no need to square 1 */ | 
|  | decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */ | 
|  | } /*i*/ /* 32 bits */ | 
|  |  | 
|  | /* complete internal overflow or underflow processing */ | 
|  | if (status & (DEC_Overflow|DEC_Underflow)) { | 
|  | #if DECSUBSET | 
|  | /* If subset, and power was negative, reverse the kind of -erflow */ | 
|  | /* [1/x not yet done] */ | 
|  | if (!set->extended && decNumberIsNegative(rhs)) { | 
|  | if (status & DEC_Overflow) | 
|  | status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal; | 
|  | else { /* trickier -- Underflow may or may not be set */ | 
|  | status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */ | 
|  | status|=DEC_Overflow; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */ | 
|  | /* round subnormals [to set.digits rather than aset.digits] */ | 
|  | /* or set overflow result similarly as required */ | 
|  | decFinalize(dac, set, &residue, &status); | 
|  | decNumberCopy(res, dac);   /* copy to result (is now OK length) */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | #if DECSUBSET | 
|  | if (!set->extended &&		     /* subset math */ | 
|  | decNumberIsNegative(rhs)) {	     /* was a **-n [hence digits>0] */ | 
|  | /* so divide result into 1 [dac=1/dac] */ | 
|  | decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status); | 
|  | } | 
|  | #endif | 
|  | } /* rhs integer path */ | 
|  |  | 
|  | /* reduce result to the requested length and copy to result */ | 
|  | decCopyFit(res, dac, set, &residue, &status); | 
|  | decFinish(res, set, &residue, &status);  /* final cleanup */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) decTrim(res, set, 0, &dropped); /* trailing zeros */ | 
|  | #endif | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | if (allocdac!=NULL) free(allocdac);	/* drop any storage used */ | 
|  | if (allocinv!=NULL) free(allocinv);	/* .. */ | 
|  | #if DECSUBSET | 
|  | if (alloclhs!=NULL) free(alloclhs);	/* .. */ | 
|  | if (allocrhs!=NULL) free(allocrhs);	/* .. */ | 
|  | #endif | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberPower */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberQuantize -- force exponent to requested value	      */ | 
|  | /*								      */ | 
|  | /*   This computes C = op(A, B), where op adjusts the coefficient     */ | 
|  | /*   of C (by rounding or shifting) such that the exponent (-scale)   */ | 
|  | /*   of C has exponent of B.  The numerical value of C will equal A,  */ | 
|  | /*   except for the effects of any rounding that occurred.	      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A or B			      */ | 
|  | /*   lhs is A, the number to adjust				      */ | 
|  | /*   rhs is B, the number with exponent to match		      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Unless there is an error or the result is infinite, the exponent   */ | 
|  | /* after the operation is guaranteed to be equal to that of B.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decQuantizeOp(res, lhs, rhs, set, 1, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberQuantize */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberReduce -- remove trailing zeros			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = 0 + A, and normalizes the result		      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Previously known as Normalize */ | 
|  | decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | return decNumberReduce(res, rhs, set); | 
|  | } /* decNumberNormalize */ | 
|  |  | 
|  | decNumber * decNumberReduce(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | #if DECSUBSET | 
|  | decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */ | 
|  | #endif | 
|  | uInt status=0;		   /* as usual */ | 
|  | Int  residue=0;		   /* as usual */ | 
|  | Int  dropped;			   /* work */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {				   /* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operand and set lostDigits status, as needed */ | 
|  | if (rhs->digits>set->digits) { | 
|  | allocrhs=decRoundOperand(rhs, set, &status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* [following code does not require input rounding] */ | 
|  |  | 
|  | /* Infinities copy through; NaNs need usual treatment */ | 
|  | if (decNumberIsNaN(rhs)) { | 
|  | decNaNs(res, rhs, NULL, set, &status); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* reduce result to the requested length and copy to result */ | 
|  | decCopyFit(res, rhs, set, &residue, &status); /* copy & round */ | 
|  | decFinish(res, set, &residue, &status);	  /* cleanup/set flags */ | 
|  | decTrim(res, set, 1, &dropped);		  /* normalize in place */ | 
|  | } while(0);				     /* end protected */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | if (allocrhs !=NULL) free(allocrhs);	     /* .. */ | 
|  | #endif | 
|  | if (status!=0) decStatus(res, status, set);/* then report status */ | 
|  | return res; | 
|  | } /* decNumberReduce */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberRescale -- force exponent to requested value	      */ | 
|  | /*								      */ | 
|  | /*   This computes C = op(A, B), where op adjusts the coefficient     */ | 
|  | /*   of C (by rounding or shifting) such that the exponent (-scale)   */ | 
|  | /*   of C has the value B.  The numerical value of C will equal A,    */ | 
|  | /*   except for the effects of any rounding that occurred.	      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A or B			      */ | 
|  | /*   lhs is A, the number to adjust				      */ | 
|  | /*   rhs is B, the requested exponent				      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Unless there is an error or the result is infinite, the exponent   */ | 
|  | /* after the operation is guaranteed to be equal to B.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberRescale(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decQuantizeOp(res, lhs, rhs, set, 0, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberRescale */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberRemainder -- divide and return remainder		      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A % B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decDivideOp(res, lhs, rhs, set, REMAINDER, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberRemainder */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberRemainderNear -- divide and return remainder from nearest */ | 
|  | /*								      */ | 
|  | /*   This computes C = A % B, where % is the IEEE remainder operator  */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  | decDivideOp(res, lhs, rhs, set, REMNEAR, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberRemainderNear */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberRotate -- rotate the coefficient of a Number left/right   */ | 
|  | /*								      */ | 
|  | /*   This computes C = A rot B	(in base ten and rotating set->digits */ | 
|  | /*   digits).							      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=XrotX)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B, the number of digits to rotate (-ve to right)	      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* The digits of the coefficient of A are rotated to the left (if B   */ | 
|  | /* is positive) or to the right (if B is negative) without adjusting  */ | 
|  | /* the exponent or the sign of A.  If lhs->digits is less than	      */ | 
|  | /* set->digits the coefficient is padded with zeros on the left	      */ | 
|  | /* before the rotate.  Any leading zeros in the result are removed    */ | 
|  | /* as usual.							      */ | 
|  | /*								      */ | 
|  | /* B must be an integer (q=0) and in the range -set->digits through   */ | 
|  | /* +set->digits.						      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* NaNs are propagated as usual.  Infinities are unaffected (but      */ | 
|  | /* B must be valid).  No status is set unless B is invalid or an      */ | 
|  | /* operand is an sNaN.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberRotate(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;	      /* accumulator */ | 
|  | Int  rotate;		      /* rhs as an Int */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* NaNs propagate as normal */ | 
|  | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) | 
|  | decNaNs(res, lhs, rhs, set, &status); | 
|  | /* rhs must be an integer */ | 
|  | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) | 
|  | status=DEC_Invalid_operation; | 
|  | else { /* both numeric, rhs is an integer */ | 
|  | rotate=decGetInt(rhs);		     /* [cannot fail] */ | 
|  | if (rotate==BADINT			     /* something bad .. */ | 
|  | || rotate==BIGODD || rotate==BIGEVEN    /* .. very big .. */ | 
|  | || abs(rotate)>set->digits)	     /* .. or out of range */ | 
|  | status=DEC_Invalid_operation; | 
|  | else {				     /* rhs is OK */ | 
|  | decNumberCopy(res, lhs); | 
|  | /* convert -ve rotate to equivalent positive rotation */ | 
|  | if (rotate<0) rotate=set->digits+rotate; | 
|  | if (rotate!=0 && rotate!=set->digits   /* zero or full rotation */ | 
|  | && !decNumberIsInfinite(res)) {	     /* lhs was infinite */ | 
|  | /* left-rotate to do; 0 < rotate < set->digits */ | 
|  | uInt units, shift;		     /* work */ | 
|  | uInt msudigits;			     /* digits in result msu */ | 
|  | Unit *msu=res->lsu+D2U(res->digits)-1;	  /* current msu */ | 
|  | Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */ | 
|  | for (msu++; msu<=msumax; msu++) *msu=0;	  /* ensure high units=0 */ | 
|  | res->digits=set->digits;		  /* now full-length */ | 
|  | msudigits=MSUDIGITS(res->digits);	  /* actual digits in msu */ | 
|  |  | 
|  | /* rotation here is done in-place, in three steps */ | 
|  | /* 1. shift all to least up to one unit to unit-align final */ | 
|  | /*    lsd [any digits shifted out are rotated to the left, */ | 
|  | /*    abutted to the original msd (which may require split)] */ | 
|  | /* */ | 
|  | /*    [if there are no whole units left to rotate, the */ | 
|  | /*    rotation is now complete] */ | 
|  | /* */ | 
|  | /* 2. shift to least, from below the split point only, so that */ | 
|  | /*    the final msd is in the right place in its Unit [any */ | 
|  | /*    digits shifted out will fit exactly in the current msu, */ | 
|  | /*    left aligned, no split required] */ | 
|  | /* */ | 
|  | /* 3. rotate all the units by reversing left part, right */ | 
|  | /*    part, and then whole */ | 
|  | /* */ | 
|  | /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */ | 
|  | /* */ | 
|  | /*   start: 00a bcd efg hij klm npq */ | 
|  | /* */ | 
|  | /*	1a  000 0ab cde fgh|ijk lmn [pq saved] */ | 
|  | /*	1b  00p qab cde fgh|ijk lmn */ | 
|  | /* */ | 
|  | /*	2a  00p qab cde fgh|00i jkl [mn saved] */ | 
|  | /*	2b  mnp qab cde fgh|00i jkl */ | 
|  | /* */ | 
|  | /*	3a  fgh cde qab mnp|00i jkl */ | 
|  | /*	3b  fgh cde qab mnp|jkl 00i */ | 
|  | /*	3c  00i jkl mnp qab cde fgh */ | 
|  |  | 
|  | /* Step 1: amount to shift is the partial right-rotate count */ | 
|  | rotate=set->digits-rotate;	/* make it right-rotate */ | 
|  | units=rotate/DECDPUN;		/* whole units to rotate */ | 
|  | shift=rotate%DECDPUN;		/* left-over digits count */ | 
|  | if (shift>0) {			/* not an exact number of units */ | 
|  | uInt save=res->lsu[0]%powers[shift];	  /* save low digit(s) */ | 
|  | decShiftToLeast(res->lsu, D2U(res->digits), shift); | 
|  | if (shift>msudigits) {	/* msumax-1 needs >0 digits */ | 
|  | uInt rem=save%powers[shift-msudigits];/* split save */ | 
|  | *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */ | 
|  | *(msumax-1)=*(msumax-1) | 
|  | +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */ | 
|  | } | 
|  | else { /* all fits in msumax */ | 
|  | *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */ | 
|  | } | 
|  | } /* digits shift needed */ | 
|  |  | 
|  | /* If whole units to rotate... */ | 
|  | if (units>0) {			/* some to do */ | 
|  | /* Step 2: the units to touch are the whole ones in rotate, */ | 
|  | /*   if any, and the shift is DECDPUN-msudigits (which may be */ | 
|  | /*   0, again) */ | 
|  | shift=DECDPUN-msudigits; | 
|  | if (shift>0) {		/* not an exact number of units */ | 
|  | uInt save=res->lsu[0]%powers[shift];  /* save low digit(s) */ | 
|  | decShiftToLeast(res->lsu, units, shift); | 
|  | *msumax=*msumax+(Unit)(save*powers[msudigits]); | 
|  | } /* partial shift needed */ | 
|  |  | 
|  | /* Step 3: rotate the units array using triple reverse */ | 
|  | /* (reversing is easy and fast) */ | 
|  | decReverse(res->lsu+units, msumax);	  /* left part */ | 
|  | decReverse(res->lsu, res->lsu+units-1); /* right part */ | 
|  | decReverse(res->lsu, msumax);		  /* whole */ | 
|  | } /* whole units to rotate */ | 
|  | /* the rotation may have left an undetermined number of zeros */ | 
|  | /* on the left, so true length needs to be calculated */ | 
|  | res->digits=decGetDigits(res->lsu, msumax-res->lsu+1); | 
|  | } /* rotate needed */ | 
|  | } /* rhs OK */ | 
|  | } /* numerics */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberRotate */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberSameQuantum -- test for equal exponents		      */ | 
|  | /*								      */ | 
|  | /*   res is the result number, which will contain either 0 or 1	      */ | 
|  | /*   lhs is a number to test					      */ | 
|  | /*   rhs is the second (usually a pattern)			      */ | 
|  | /*								      */ | 
|  | /* No errors are possible and no context is needed.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs) { | 
|  | Unit ret=0;			   /* return value */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res; | 
|  | #endif | 
|  |  | 
|  | if (SPECIALARGS) { | 
|  | if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1; | 
|  | else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1; | 
|  | /* [anything else with a special gives 0] */ | 
|  | } | 
|  | else if (lhs->exponent==rhs->exponent) ret=1; | 
|  |  | 
|  | decNumberZero(res);		   /* OK to overwrite an operand now */ | 
|  | *res->lsu=ret; | 
|  | return res; | 
|  | } /* decNumberSameQuantum */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberScaleB -- multiply by a power of 10			      */ | 
|  | /*								      */ | 
|  | /* This computes C = A x 10**B where B is an integer (q=0) with	      */ | 
|  | /* maximum magnitude 2*(emax+digits)				      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A or B			      */ | 
|  | /*   lhs is A, the number to adjust				      */ | 
|  | /*   rhs is B, the requested power of ten to use		      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* The result may underflow or overflow.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | Int  reqexp;		      /* requested exponent change [B] */ | 
|  | uInt status=0;	      /* accumulator */ | 
|  | Int  residue;		      /* work */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* Handle special values except lhs infinite */ | 
|  | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) | 
|  | decNaNs(res, lhs, rhs, set, &status); | 
|  | /* rhs must be an integer */ | 
|  | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) | 
|  | status=DEC_Invalid_operation; | 
|  | else { | 
|  | /* lhs is a number; rhs is a finite with q==0 */ | 
|  | reqexp=decGetInt(rhs);		     /* [cannot fail] */ | 
|  | if (reqexp==BADINT			     /* something bad .. */ | 
|  | || reqexp==BIGODD || reqexp==BIGEVEN    /* .. very big .. */ | 
|  | || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */ | 
|  | status=DEC_Invalid_operation; | 
|  | else {				     /* rhs is OK */ | 
|  | decNumberCopy(res, lhs);		     /* all done if infinite lhs */ | 
|  | if (!decNumberIsInfinite(res)) {	     /* prepare to scale */ | 
|  | res->exponent+=reqexp;		     /* adjust the exponent */ | 
|  | residue=0; | 
|  | decFinalize(res, set, &residue, &status); /* .. and check */ | 
|  | } /* finite LHS */ | 
|  | } /* rhs OK */ | 
|  | } /* rhs finite */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberScaleB */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberShift -- shift the coefficient of a Number left or right  */ | 
|  | /*								      */ | 
|  | /*   This computes C = A << B or C = A >> -B  (in base ten).	      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X<<X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B, the number of digits to shift (-ve to right)	      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* The digits of the coefficient of A are shifted to the left (if B   */ | 
|  | /* is positive) or to the right (if B is negative) without adjusting  */ | 
|  | /* the exponent or the sign of A.				      */ | 
|  | /*								      */ | 
|  | /* B must be an integer (q=0) and in the range -set->digits through   */ | 
|  | /* +set->digits.						      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* NaNs are propagated as usual.  Infinities are unaffected (but      */ | 
|  | /* B must be valid).  No status is set unless B is invalid or an      */ | 
|  | /* operand is an sNaN.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberShift(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;	      /* accumulator */ | 
|  | Int  shift;		      /* rhs as an Int */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* NaNs propagate as normal */ | 
|  | if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) | 
|  | decNaNs(res, lhs, rhs, set, &status); | 
|  | /* rhs must be an integer */ | 
|  | else if (decNumberIsInfinite(rhs) || rhs->exponent!=0) | 
|  | status=DEC_Invalid_operation; | 
|  | else { /* both numeric, rhs is an integer */ | 
|  | shift=decGetInt(rhs);		     /* [cannot fail] */ | 
|  | if (shift==BADINT			     /* something bad .. */ | 
|  | || shift==BIGODD || shift==BIGEVEN	     /* .. very big .. */ | 
|  | || abs(shift)>set->digits)		     /* .. or out of range */ | 
|  | status=DEC_Invalid_operation; | 
|  | else {				     /* rhs is OK */ | 
|  | decNumberCopy(res, lhs); | 
|  | if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */ | 
|  | if (shift>0) {			     /* to left */ | 
|  | if (shift==set->digits) {	     /* removing all */ | 
|  | *res->lsu=0;		     /* so place 0 */ | 
|  | res->digits=1;		     /* .. */ | 
|  | } | 
|  | else {			     /* */ | 
|  | /* first remove leading digits if necessary */ | 
|  | if (res->digits+shift>set->digits) { | 
|  | decDecap(res, res->digits+shift-set->digits); | 
|  | /* that updated res->digits; may have gone to 1 (for a */ | 
|  | /* single digit or for zero */ | 
|  | } | 
|  | if (res->digits>1 || *res->lsu)  /* if non-zero.. */ | 
|  | res->digits=decShiftToMost(res->lsu, res->digits, shift); | 
|  | } /* partial left */ | 
|  | } /* left */ | 
|  | else { /* to right */ | 
|  | if (-shift>=res->digits) {	     /* discarding all */ | 
|  | *res->lsu=0;		     /* so place 0 */ | 
|  | res->digits=1;		     /* .. */ | 
|  | } | 
|  | else { | 
|  | decShiftToLeast(res->lsu, D2U(res->digits), -shift); | 
|  | res->digits-=(-shift); | 
|  | } | 
|  | } /* to right */ | 
|  | } /* non-0 non-Inf shift */ | 
|  | } /* rhs OK */ | 
|  | } /* numerics */ | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberShift */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberSquareRoot -- square root operator			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = squareroot(A)				      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context; note that rounding mode has no effect	      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This uses the following varying-precision algorithm in:	      */ | 
|  | /*								      */ | 
|  | /*   Properly Rounded Variable Precision Square Root, T. E. Hull and  */ | 
|  | /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */ | 
|  | /*   pp229-237, ACM, September 1985.				      */ | 
|  | /*								      */ | 
|  | /* The square-root is calculated using Newton's method, after which   */ | 
|  | /* a check is made to ensure the result is correctly rounded.	      */ | 
|  | /*								      */ | 
|  | /* % [Reformatted original Numerical Turing source code follows.]     */ | 
|  | /* function sqrt(x : real) : real				      */ | 
|  | /* % sqrt(x) returns the properly rounded approximation to the square */ | 
|  | /* % root of x, in the precision of the calling environment, or it    */ | 
|  | /* % fails if x < 0.						      */ | 
|  | /* % t e hull and a abrham, august, 1984			      */ | 
|  | /* if x <= 0 then						      */ | 
|  | /*   if x < 0 then						      */ | 
|  | /*     assert false						      */ | 
|  | /*   else							      */ | 
|  | /*     result 0							      */ | 
|  | /*   end if							      */ | 
|  | /* end if							      */ | 
|  | /* var f := setexp(x, 0)  % fraction part of x	 [0.1 <= x < 1]	      */ | 
|  | /* var e := getexp(x)	  % exponent part of x			      */ | 
|  | /* var approx : real						      */ | 
|  | /* if e mod 2 = 0  then						      */ | 
|  | /*   approx := .259 + .819 * f	 % approx to root of f		      */ | 
|  | /* else								      */ | 
|  | /*   f := f/l0			 % adjustments			      */ | 
|  | /*   e := e + 1			 %   for odd			      */ | 
|  | /*   approx := .0819 + 2.59 * f	 %   exponent			      */ | 
|  | /* end if							      */ | 
|  | /*								      */ | 
|  | /* var p:= 3							      */ | 
|  | /* const maxp := currentprecision + 2				      */ | 
|  | /* loop								      */ | 
|  | /*   p := min(2*p - 2, maxp)	 % p = 4,6,10, . . . , maxp	      */ | 
|  | /*   precision p						      */ | 
|  | /*   approx := .5 * (approx + f/approx)				      */ | 
|  | /*   exit when p = maxp						      */ | 
|  | /* end loop							      */ | 
|  | /*								      */ | 
|  | /* % approx is now within 1 ulp of the properly rounded square root   */ | 
|  | /* % of f; to ensure proper rounding, compare squares of (approx -    */ | 
|  | /* % l/2 ulp) and (approx + l/2 ulp) with f.			      */ | 
|  | /* p := currentprecision					      */ | 
|  | /* begin							      */ | 
|  | /*   precision p + 2						      */ | 
|  | /*   const approxsubhalf := approx - setexp(.5, -p)		      */ | 
|  | /*   if mulru(approxsubhalf, approxsubhalf) > f then		      */ | 
|  | /*     approx := approx - setexp(.l, -p + 1)			      */ | 
|  | /*   else							      */ | 
|  | /*     const approxaddhalf := approx + setexp(.5, -p)		      */ | 
|  | /*     if mulrd(approxaddhalf, approxaddhalf) < f then		      */ | 
|  | /*	 approx := approx + setexp(.l, -p + 1)			      */ | 
|  | /*     end if							      */ | 
|  | /*   end if							      */ | 
|  | /* end								      */ | 
|  | /* result setexp(approx, e div 2)  % fix exponent		      */ | 
|  | /* end sqrt							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | decContext workset, approxset;   /* work contexts */ | 
|  | decNumber dzero;		   /* used for constant zero */ | 
|  | Int  maxp;			   /* largest working precision */ | 
|  | Int  workp;			   /* working precision */ | 
|  | Int  residue=0;		   /* rounding residue */ | 
|  | uInt status=0, ignore=0;	   /* status accumulators */ | 
|  | uInt rstatus;			   /* .. */ | 
|  | Int  exp;			   /* working exponent */ | 
|  | Int  ideal;			   /* ideal (preferred) exponent */ | 
|  | Int  needbytes;		   /* work */ | 
|  | Int  dropped;			   /* .. */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */ | 
|  | #endif | 
|  | /* buffer for f [needs +1 in case DECBUFFER 0] */ | 
|  | decNumber buff[D2N(DECBUFFER+1)]; | 
|  | /* buffer for a [needs +2 to match likely maxp] */ | 
|  | decNumber bufa[D2N(DECBUFFER+2)]; | 
|  | /* buffer for temporary, b [must be same size as a] */ | 
|  | decNumber bufb[D2N(DECBUFFER+2)]; | 
|  | decNumber *allocbuff=NULL;	   /* -> allocated buff, iff allocated */ | 
|  | decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */ | 
|  | decNumber *allocbufb=NULL;	   /* -> allocated bufb, iff allocated */ | 
|  | decNumber *f=buff;		   /* reduced fraction */ | 
|  | decNumber *a=bufa;		   /* approximation to result */ | 
|  | decNumber *b=bufb;		   /* intermediate result */ | 
|  | /* buffer for temporary variable, up to 3 digits */ | 
|  | decNumber buft[D2N(3)]; | 
|  | decNumber *t=buft;		   /* up-to-3-digit constant or work */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {				   /* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operand and set lostDigits status, as needed */ | 
|  | if (rhs->digits>set->digits) { | 
|  | allocrhs=decRoundOperand(rhs, set, &status); | 
|  | if (allocrhs==NULL) break; | 
|  | /* [Note: 'f' allocation below could reuse this buffer if */ | 
|  | /* used, but as this is rare they are kept separate for clarity.] */ | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* [following code does not require input rounding] */ | 
|  |  | 
|  | /* handle infinities and NaNs */ | 
|  | if (SPECIALARG) { | 
|  | if (decNumberIsInfinite(rhs)) {	      /* an infinity */ | 
|  | if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation; | 
|  | else decNumberCopy(res, rhs);	      /* +Infinity */ | 
|  | } | 
|  | else decNaNs(res, rhs, NULL, set, &status); /* a NaN */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* calculate the ideal (preferred) exponent [floor(exp/2)] */ | 
|  | /* [We would like to write: ideal=rhs->exponent>>1, but this */ | 
|  | /* generates a compiler warning.  Generated code is the same.] */ | 
|  | ideal=(rhs->exponent&~1)/2;		/* target */ | 
|  |  | 
|  | /* handle zeros */ | 
|  | if (ISZERO(rhs)) { | 
|  | decNumberCopy(res, rhs);		/* could be 0 or -0 */ | 
|  | res->exponent=ideal;		/* use the ideal [safe] */ | 
|  | /* use decFinish to clamp any out-of-range exponent, etc. */ | 
|  | decFinish(res, set, &residue, &status); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* any other -x is an oops */ | 
|  | if (decNumberIsNegative(rhs)) { | 
|  | status|=DEC_Invalid_operation; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* space is needed for three working variables */ | 
|  | /*	 f -- the same precision as the RHS, reduced to 0.01->0.99... */ | 
|  | /*	 a -- Hull's approximation -- precision, when assigned, is */ | 
|  | /*	      currentprecision+1 or the input argument precision, */ | 
|  | /*	      whichever is larger (+2 for use as temporary) */ | 
|  | /*	 b -- intermediate temporary result (same size as a) */ | 
|  | /* if any is too long for local storage, then allocate */ | 
|  | workp=MAXI(set->digits+1, rhs->digits);  /* actual rounding precision */ | 
|  | maxp=workp+2;			     /* largest working precision */ | 
|  |  | 
|  | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); | 
|  | if (needbytes>(Int)sizeof(buff)) { | 
|  | allocbuff=(decNumber *)malloc(needbytes); | 
|  | if (allocbuff==NULL) {  /* hopeless -- abandon */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | f=allocbuff;	      /* use the allocated space */ | 
|  | } | 
|  | /* a and b both need to be able to hold a maxp-length number */ | 
|  | needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit); | 
|  | if (needbytes>(Int)sizeof(bufa)) {		  /* [same applies to b] */ | 
|  | allocbufa=(decNumber *)malloc(needbytes); | 
|  | allocbufb=(decNumber *)malloc(needbytes); | 
|  | if (allocbufa==NULL || allocbufb==NULL) {	  /* hopeless */ | 
|  | status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | a=allocbufa;	      /* use the allocated spaces */ | 
|  | b=allocbufb;	      /* .. */ | 
|  | } | 
|  |  | 
|  | /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */ | 
|  | decNumberCopy(f, rhs); | 
|  | exp=f->exponent+f->digits;		     /* adjusted to Hull rules */ | 
|  | f->exponent=-(f->digits);		     /* to range */ | 
|  |  | 
|  | /* set up working context */ | 
|  | decContextDefault(&workset, DEC_INIT_DECIMAL64); | 
|  |  | 
|  | /* [Until further notice, no error is possible and status bits */ | 
|  | /* (Rounded, etc.) should be ignored, not accumulated.] */ | 
|  |  | 
|  | /* Calculate initial approximation, and allow for odd exponent */ | 
|  | workset.digits=workp;		     /* p for initial calculation */ | 
|  | t->bits=0; t->digits=3; | 
|  | a->bits=0; a->digits=3; | 
|  | if ((exp & 1)==0) {			     /* even exponent */ | 
|  | /* Set t=0.259, a=0.819 */ | 
|  | t->exponent=-3; | 
|  | a->exponent=-3; | 
|  | #if DECDPUN>=3 | 
|  | t->lsu[0]=259; | 
|  | a->lsu[0]=819; | 
|  | #elif DECDPUN==2 | 
|  | t->lsu[0]=59; t->lsu[1]=2; | 
|  | a->lsu[0]=19; a->lsu[1]=8; | 
|  | #else | 
|  | t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2; | 
|  | a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8; | 
|  | #endif | 
|  | } | 
|  | else {				     /* odd exponent */ | 
|  | /* Set t=0.0819, a=2.59 */ | 
|  | f->exponent--;			     /* f=f/10 */ | 
|  | exp++;				     /* e=e+1 */ | 
|  | t->exponent=-4; | 
|  | a->exponent=-2; | 
|  | #if DECDPUN>=3 | 
|  | t->lsu[0]=819; | 
|  | a->lsu[0]=259; | 
|  | #elif DECDPUN==2 | 
|  | t->lsu[0]=19; t->lsu[1]=8; | 
|  | a->lsu[0]=59; a->lsu[1]=2; | 
|  | #else | 
|  | t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8; | 
|  | a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2; | 
|  | #endif | 
|  | } | 
|  | decMultiplyOp(a, a, f, &workset, &ignore);	  /* a=a*f */ | 
|  | decAddOp(a, a, t, &workset, 0, &ignore);	  /* ..+t */ | 
|  | /* [a is now the initial approximation for sqrt(f), calculated with */ | 
|  | /* currentprecision, which is also a's precision.] */ | 
|  |  | 
|  | /* the main calculation loop */ | 
|  | decNumberZero(&dzero);		     /* make 0 */ | 
|  | decNumberZero(t);			     /* set t = 0.5 */ | 
|  | t->lsu[0]=5;			     /* .. */ | 
|  | t->exponent=-1;			     /* .. */ | 
|  | workset.digits=3;			     /* initial p */ | 
|  | for (;;) { | 
|  | /* set p to min(2*p - 2, maxp)  [hence 3; or: 4, 6, 10, ... , maxp] */ | 
|  | workset.digits=workset.digits*2-2; | 
|  | if (workset.digits>maxp) workset.digits=maxp; | 
|  | /* a = 0.5 * (a + f/a) */ | 
|  | /* [calculated at p then rounded to currentprecision] */ | 
|  | decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */ | 
|  | decAddOp(b, b, a, &workset, 0, &ignore);	  /* b=b+a */ | 
|  | decMultiplyOp(a, b, t, &workset, &ignore);  /* a=b*0.5 */ | 
|  | if (a->digits==maxp) break;	     /* have required digits */ | 
|  | } /* loop */ | 
|  |  | 
|  | /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */ | 
|  | /* now reduce to length, etc.; this needs to be done with a */ | 
|  | /* having the correct exponent so as to handle subnormals */ | 
|  | /* correctly */ | 
|  | approxset=*set;			     /* get emin, emax, etc. */ | 
|  | approxset.round=DEC_ROUND_HALF_EVEN; | 
|  | a->exponent+=exp/2;			     /* set correct exponent */ | 
|  |  | 
|  | rstatus=0;				     /* clear status */ | 
|  | residue=0;				     /* .. and accumulator */ | 
|  | decCopyFit(a, a, &approxset, &residue, &rstatus);  /* reduce (if needed) */ | 
|  | decFinish(a, &approxset, &residue, &rstatus);      /* clean and finalize */ | 
|  |  | 
|  | /* Overflow was possible if the input exponent was out-of-range, */ | 
|  | /* in which case quit */ | 
|  | if (rstatus&DEC_Overflow) { | 
|  | status=rstatus;			     /* use the status as-is */ | 
|  | decNumberCopy(res, a);		     /* copy to result */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Preserve status except Inexact/Rounded */ | 
|  | status|=(rstatus & ~(DEC_Rounded|DEC_Inexact)); | 
|  |  | 
|  | /* Carry out the Hull correction */ | 
|  | a->exponent-=exp/2;			     /* back to 0.1->1 */ | 
|  |  | 
|  | /* a is now at final precision and within 1 ulp of the properly */ | 
|  | /* rounded square root of f; to ensure proper rounding, compare */ | 
|  | /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */ | 
|  | /* Here workset.digits=maxp and t=0.5, and a->digits determines */ | 
|  | /* the ulp */ | 
|  | workset.digits--;				  /* maxp-1 is OK now */ | 
|  | t->exponent=-a->digits-1;			  /* make 0.5 ulp */ | 
|  | decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */ | 
|  | workset.round=DEC_ROUND_UP; | 
|  | decMultiplyOp(b, b, b, &workset, &ignore);	  /* b = mulru(b, b) */ | 
|  | decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */ | 
|  | if (decNumberIsNegative(b)) {		  /* f < b [i.e., b > f] */ | 
|  | /* this is the more common adjustment, though both are rare */ | 
|  | t->exponent++;				  /* make 1.0 ulp */ | 
|  | t->lsu[0]=1;				  /* .. */ | 
|  | decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */ | 
|  | /* assign to approx [round to length] */ | 
|  | approxset.emin-=exp/2;			  /* adjust to match a */ | 
|  | approxset.emax-=exp/2; | 
|  | decAddOp(a, &dzero, a, &approxset, 0, &ignore); | 
|  | } | 
|  | else { | 
|  | decAddOp(b, a, t, &workset, 0, &ignore);	  /* b = a + 0.5 ulp */ | 
|  | workset.round=DEC_ROUND_DOWN; | 
|  | decMultiplyOp(b, b, b, &workset, &ignore);  /* b = mulrd(b, b) */ | 
|  | decCompareOp(b, b, f, &workset, COMPARE, &ignore);   /* b ? f */ | 
|  | if (decNumberIsNegative(b)) {		  /* b < f */ | 
|  | t->exponent++;				  /* make 1.0 ulp */ | 
|  | t->lsu[0]=1;				  /* .. */ | 
|  | decAddOp(a, a, t, &workset, 0, &ignore);  /* a = a + 1 ulp */ | 
|  | /* assign to approx [round to length] */ | 
|  | approxset.emin-=exp/2;			  /* adjust to match a */ | 
|  | approxset.emax-=exp/2; | 
|  | decAddOp(a, &dzero, a, &approxset, 0, &ignore); | 
|  | } | 
|  | } | 
|  | /* [no errors are possible in the above, and rounding/inexact during */ | 
|  | /* estimation are irrelevant, so status was not accumulated] */ | 
|  |  | 
|  | /* Here, 0.1 <= a < 1  (still), so adjust back */ | 
|  | a->exponent+=exp/2;			     /* set correct exponent */ | 
|  |  | 
|  | /* count droppable zeros [after any subnormal rounding] by */ | 
|  | /* trimming a copy */ | 
|  | decNumberCopy(b, a); | 
|  | decTrim(b, set, 1, &dropped);	     /* [drops trailing zeros] */ | 
|  |  | 
|  | /* Set Inexact and Rounded.	 The answer can only be exact if */ | 
|  | /* it is short enough so that squaring it could fit in workp digits, */ | 
|  | /* and it cannot have trailing zeros due to clamping, so these are */ | 
|  | /* the only (relatively rare) conditions a careful check is needed */ | 
|  | if (b->digits*2-1 > workp && !set->clamp) { /* cannot fit */ | 
|  | status|=DEC_Inexact|DEC_Rounded; | 
|  | } | 
|  | else {				     /* could be exact/unrounded */ | 
|  | uInt mstatus=0;			     /* local status */ | 
|  | decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */ | 
|  | if (mstatus&DEC_Overflow) {	     /* result just won't fit */ | 
|  | status|=DEC_Inexact|DEC_Rounded; | 
|  | } | 
|  | else {				     /* plausible */ | 
|  | decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */ | 
|  | if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */ | 
|  | else {				     /* is Exact */ | 
|  | /* here, dropped is the count of trailing zeros in 'a' */ | 
|  | /* use closest exponent to ideal... */ | 
|  | Int todrop=ideal-a->exponent;	     /* most that can be dropped */ | 
|  | if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */ | 
|  | else {			     /* unrounded */ | 
|  | if (dropped<todrop) {	     /* clamp to those available */ | 
|  | todrop=dropped; | 
|  | status|=DEC_Clamped; | 
|  | } | 
|  | if (todrop>0) {		     /* have some to drop */ | 
|  | decShiftToLeast(a->lsu, D2U(a->digits), todrop); | 
|  | a->exponent+=todrop;	     /* maintain numerical value */ | 
|  | a->digits-=todrop;	     /* new length */ | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* double-check Underflow, as perhaps the result could not have */ | 
|  | /* been subnormal (initial argument too big), or it is now Exact */ | 
|  | if (status&DEC_Underflow) { | 
|  | Int ae=rhs->exponent+rhs->digits-1;    /* adjusted exponent */ | 
|  | /* check if truly subnormal */ | 
|  | #if DECEXTFLAG			     /* DEC_Subnormal too */ | 
|  | if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow); | 
|  | #else | 
|  | if (ae>=set->emin*2) status&=~DEC_Underflow; | 
|  | #endif | 
|  | /* check if truly inexact */ | 
|  | if (!(status&DEC_Inexact)) status&=~DEC_Underflow; | 
|  | } | 
|  |  | 
|  | decNumberCopy(res, a);		     /* a is now the result */ | 
|  | } while(0);				     /* end protected */ | 
|  |  | 
|  | if (allocbuff!=NULL) free(allocbuff);	     /* drop any storage used */ | 
|  | if (allocbufa!=NULL) free(allocbufa);	     /* .. */ | 
|  | if (allocbufb!=NULL) free(allocbufb);	     /* .. */ | 
|  | #if DECSUBSET | 
|  | if (allocrhs !=NULL) free(allocrhs);	     /* .. */ | 
|  | #endif | 
|  | if (status!=0) decStatus(res, status, set);/* then report status */ | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberSquareRoot */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberSubtract -- subtract two Numbers			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A - B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X-X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | uInt status=0;			/* accumulator */ | 
|  |  | 
|  | decAddOp(res, lhs, rhs, set, DECNEG, &status); | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | #if DECCHECK | 
|  | decCheckInexact(res, set); | 
|  | #endif | 
|  | return res; | 
|  | } /* decNumberSubtract */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberToIntegralExact -- round-to-integral-value with InExact   */ | 
|  | /* decNumberToIntegralValue -- round-to-integral-value		      */ | 
|  | /*								      */ | 
|  | /*   res is the result						      */ | 
|  | /*   rhs is input number					      */ | 
|  | /*   set is the context						      */ | 
|  | /*								      */ | 
|  | /* res must have space for any value of rhs.			      */ | 
|  | /*								      */ | 
|  | /* This implements the IEEE special operators and therefore treats    */ | 
|  | /* special values as valid.  For finite numbers it returns	      */ | 
|  | /* rescale(rhs, 0) if rhs->exponent is <0.			      */ | 
|  | /* Otherwise the result is rhs (so no error is possible, except for   */ | 
|  | /* sNaN).							      */ | 
|  | /*								      */ | 
|  | /* The context is used for rounding mode and status after sNaN, but   */ | 
|  | /* the digits setting is ignored.  The Exact version will signal      */ | 
|  | /* Inexact if the result differs numerically from rhs; the other      */ | 
|  | /* never signals Inexact.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | decNumber dn; | 
|  | decContext workset;		   /* working context */ | 
|  | uInt status=0;		   /* accumulator */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* handle infinities and NaNs */ | 
|  | if (SPECIALARG) { | 
|  | if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); /* an Infinity */ | 
|  | else decNaNs(res, rhs, NULL, set, &status); /* a NaN */ | 
|  | } | 
|  | else { /* finite */ | 
|  | /* have a finite number; no error possible (res must be big enough) */ | 
|  | if (rhs->exponent>=0) return decNumberCopy(res, rhs); | 
|  | /* that was easy, but if negative exponent there is work to do... */ | 
|  | workset=*set;		   /* clone rounding, etc. */ | 
|  | workset.digits=rhs->digits;	   /* no length rounding */ | 
|  | workset.traps=0;		   /* no traps */ | 
|  | decNumberZero(&dn);		   /* make a number with exponent 0 */ | 
|  | decNumberQuantize(res, rhs, &dn, &workset); | 
|  | status|=workset.status; | 
|  | } | 
|  | if (status!=0) decStatus(res, status, set); | 
|  | return res; | 
|  | } /* decNumberToIntegralExact */ | 
|  |  | 
|  | decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs, | 
|  | decContext *set) { | 
|  | decContext workset=*set;	   /* working context */ | 
|  | workset.traps=0;		   /* no traps */ | 
|  | decNumberToIntegralExact(res, rhs, &workset); | 
|  | /* this never affects set, except for sNaNs; NaN will have been set */ | 
|  | /* or propagated already, so no need to call decStatus */ | 
|  | set->status|=workset.status&DEC_Invalid_operation; | 
|  | return res; | 
|  | } /* decNumberToIntegralValue */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberXor -- XOR two Numbers, digitwise			      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ^ B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X^X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context (used for result length and error report)     */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Logical function restrictions apply (see above); a NaN is	      */ | 
|  | /* returned with Invalid_operation if a restriction is violated.      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberXor(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | const Unit *ua, *ub;			/* -> operands */ | 
|  | const Unit *msua, *msub;		/* -> operand msus */ | 
|  | Unit	*uc, *msuc;			/* -> result and its msu */ | 
|  | Int	msudigs;			/* digits in res msu */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs) | 
|  | || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
|  | decStatus(res, DEC_Invalid_operation, set); | 
|  | return res; | 
|  | } | 
|  | /* operands are valid */ | 
|  | ua=lhs->lsu;				/* bottom-up */ | 
|  | ub=rhs->lsu;				/* .. */ | 
|  | uc=res->lsu;				/* .. */ | 
|  | msua=ua+D2U(lhs->digits)-1;		/* -> msu of lhs */ | 
|  | msub=ub+D2U(rhs->digits)-1;		/* -> msu of rhs */ | 
|  | msuc=uc+D2U(set->digits)-1;		/* -> msu of result */ | 
|  | msudigs=MSUDIGITS(set->digits);	/* [faster than remainder] */ | 
|  | for (; uc<=msuc; ua++, ub++, uc++) {	/* Unit loop */ | 
|  | Unit a, b;				/* extract units */ | 
|  | if (ua>msua) a=0; | 
|  | else a=*ua; | 
|  | if (ub>msub) b=0; | 
|  | else b=*ub; | 
|  | *uc=0;				/* can now write back */ | 
|  | if (a|b) {				/* maybe 1 bits to examine */ | 
|  | Int i, j; | 
|  | /* This loop could be unrolled and/or use BIN2BCD tables */ | 
|  | for (i=0; i<DECDPUN; i++) { | 
|  | if ((a^b)&1) *uc=*uc+(Unit)powers[i];	  /* effect XOR */ | 
|  | j=a%10; | 
|  | a=a/10; | 
|  | j|=b%10; | 
|  | b=b/10; | 
|  | if (j>1) { | 
|  | decStatus(res, DEC_Invalid_operation, set); | 
|  | return res; | 
|  | } | 
|  | if (uc==msuc && i==msudigs-1) break;	  /* just did final digit */ | 
|  | } /* each digit */ | 
|  | } /* non-zero */ | 
|  | } /* each unit */ | 
|  | /* [here uc-1 is the msu of the result] */ | 
|  | res->digits=decGetDigits(res->lsu, uc-res->lsu); | 
|  | res->exponent=0;			/* integer */ | 
|  | res->bits=0;				/* sign=0 */ | 
|  | return res;  /* [no status to set] */ | 
|  | } /* decNumberXor */ | 
|  |  | 
|  |  | 
|  | /* ================================================================== */ | 
|  | /* Utility routines						      */ | 
|  | /* ================================================================== */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberClass -- return the decClass of a decNumber		      */ | 
|  | /*   dn -- the decNumber to test				      */ | 
|  | /*   set -- the context to use for Emin				      */ | 
|  | /*   returns the decClass enum					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | enum decClass decNumberClass(const decNumber *dn, decContext *set) { | 
|  | if (decNumberIsSpecial(dn)) { | 
|  | if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN; | 
|  | if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN; | 
|  | /* must be an infinity */ | 
|  | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF; | 
|  | return DEC_CLASS_POS_INF; | 
|  | } | 
|  | /* is finite */ | 
|  | if (decNumberIsNormal(dn, set)) { /* most common */ | 
|  | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL; | 
|  | return DEC_CLASS_POS_NORMAL; | 
|  | } | 
|  | /* is subnormal or zero */ | 
|  | if (decNumberIsZero(dn)) {	/* most common */ | 
|  | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO; | 
|  | return DEC_CLASS_POS_ZERO; | 
|  | } | 
|  | if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL; | 
|  | return DEC_CLASS_POS_SUBNORMAL; | 
|  | } /* decNumberClass */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberClassToString -- convert decClass to a string	      */ | 
|  | /*								      */ | 
|  | /*  eclass is a valid decClass					      */ | 
|  | /*  returns a constant string describing the class (max 13+1 chars)   */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | const char *decNumberClassToString(enum decClass eclass) { | 
|  | if (eclass==DEC_CLASS_POS_NORMAL)    return DEC_ClassString_PN; | 
|  | if (eclass==DEC_CLASS_NEG_NORMAL)    return DEC_ClassString_NN; | 
|  | if (eclass==DEC_CLASS_POS_ZERO)      return DEC_ClassString_PZ; | 
|  | if (eclass==DEC_CLASS_NEG_ZERO)      return DEC_ClassString_NZ; | 
|  | if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; | 
|  | if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; | 
|  | if (eclass==DEC_CLASS_POS_INF)       return DEC_ClassString_PI; | 
|  | if (eclass==DEC_CLASS_NEG_INF)       return DEC_ClassString_NI; | 
|  | if (eclass==DEC_CLASS_QNAN)	       return DEC_ClassString_QN; | 
|  | if (eclass==DEC_CLASS_SNAN)	       return DEC_ClassString_SN; | 
|  | return DEC_ClassString_UN;	       /* Unknown */ | 
|  | } /* decNumberClassToString */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberCopy -- copy a number				      */ | 
|  | /*								      */ | 
|  | /*   dest is the target decNumber				      */ | 
|  | /*   src  is the source decNumber				      */ | 
|  | /*   returns dest						      */ | 
|  | /*								      */ | 
|  | /* (dest==src is allowed and is a no-op)			      */ | 
|  | /* All fields are updated as required.	This is a utility operation,  */ | 
|  | /* so special values are unchanged and no error is possible.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberCopy(decNumber *dest, const decNumber *src) { | 
|  |  | 
|  | #if DECCHECK | 
|  | if (src==NULL) return decNumberZero(dest); | 
|  | #endif | 
|  |  | 
|  | if (dest==src) return dest;		     /* no copy required */ | 
|  |  | 
|  | /* Use explicit assignments here as structure assignment could copy */ | 
|  | /* more than just the lsu (for small DECDPUN).  This would not affect */ | 
|  | /* the value of the results, but could disturb test harness spill */ | 
|  | /* checking. */ | 
|  | dest->bits=src->bits; | 
|  | dest->exponent=src->exponent; | 
|  | dest->digits=src->digits; | 
|  | dest->lsu[0]=src->lsu[0]; | 
|  | if (src->digits>DECDPUN) {		     /* more Units to come */ | 
|  | const Unit *smsup, *s;		     /* work */ | 
|  | Unit  *d;				     /* .. */ | 
|  | /* memcpy for the remaining Units would be safe as they cannot */ | 
|  | /* overlap.	 However, this explicit loop is faster in short cases. */ | 
|  | d=dest->lsu+1;			     /* -> first destination */ | 
|  | smsup=src->lsu+D2U(src->digits);	     /* -> source msu+1 */ | 
|  | for (s=src->lsu+1; s<smsup; s++, d++) *d=*s; | 
|  | } | 
|  | return dest; | 
|  | } /* decNumberCopy */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberCopyAbs -- quiet absolute value operator		      */ | 
|  | /*								      */ | 
|  | /*   This sets C = abs(A)					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* No exception or error can occur; this is a quiet bitwise operation.*/ | 
|  | /* See also decNumberAbs for a checking version of this.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) { | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | 
|  | #endif | 
|  | decNumberCopy(res, rhs); | 
|  | res->bits&=~DECNEG;			/* turn off sign */ | 
|  | return res; | 
|  | } /* decNumberCopyAbs */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberCopyNegate -- quiet negate value operator		      */ | 
|  | /*								      */ | 
|  | /*   This sets C = negate(A)					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* No exception or error can occur; this is a quiet bitwise operation.*/ | 
|  | /* See also decNumberMinus for a checking version of this.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) { | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | 
|  | #endif | 
|  | decNumberCopy(res, rhs); | 
|  | res->bits^=DECNEG;			/* invert the sign */ | 
|  | return res; | 
|  | } /* decNumberCopyNegate */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberCopySign -- quiet copy and set sign operator	      */ | 
|  | /*								      */ | 
|  | /*   This sets C = A with the sign of B				      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* No exception or error can occur; this is a quiet bitwise operation.*/ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs) { | 
|  | uByte sign;				/* rhs sign */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res; | 
|  | #endif | 
|  | sign=rhs->bits & DECNEG;		/* save sign bit */ | 
|  | decNumberCopy(res, lhs); | 
|  | res->bits&=~DECNEG;			/* clear the sign */ | 
|  | res->bits|=sign;			/* set from rhs */ | 
|  | return res; | 
|  | } /* decNumberCopySign */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberGetBCD -- get the coefficient in BCD8		      */ | 
|  | /*   dn is the source decNumber					      */ | 
|  | /*   bcd is the uInt array that will receive dn->digits BCD bytes,    */ | 
|  | /*     most-significant at offset 0				      */ | 
|  | /*   returns bcd						      */ | 
|  | /*								      */ | 
|  | /* bcd must have at least dn->digits bytes.  No error is possible; if */ | 
|  | /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0.   */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | uByte * decNumberGetBCD(const decNumber *dn, uint8_t *bcd) { | 
|  | uByte *ub=bcd+dn->digits-1;	   /* -> lsd */ | 
|  | const Unit *up=dn->lsu;	   /* Unit pointer, -> lsu */ | 
|  |  | 
|  | #if DECDPUN==1		   /* trivial simple copy */ | 
|  | for (; ub>=bcd; ub--, up++) *ub=*up; | 
|  | #else				   /* chopping needed */ | 
|  | uInt u=*up;			   /* work */ | 
|  | uInt cut=DECDPUN;		   /* downcounter through unit */ | 
|  | for (; ub>=bcd; ub--) { | 
|  | *ub=(uByte)(u%10);	   /* [*6554 trick inhibits, here] */ | 
|  | u=u/10; | 
|  | cut--; | 
|  | if (cut>0) continue;	   /* more in this unit */ | 
|  | up++; | 
|  | u=*up; | 
|  | cut=DECDPUN; | 
|  | } | 
|  | #endif | 
|  | return bcd; | 
|  | } /* decNumberGetBCD */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberSetBCD -- set (replace) the coefficient from BCD8	      */ | 
|  | /*   dn is the target decNumber					      */ | 
|  | /*   bcd is the uInt array that will source n BCD bytes, most-	      */ | 
|  | /*     significant at offset 0					      */ | 
|  | /*   n is the number of digits in the source BCD array (bcd)	      */ | 
|  | /*   returns dn							      */ | 
|  | /*								      */ | 
|  | /* dn must have space for at least n digits.  No error is possible;   */ | 
|  | /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1   */ | 
|  | /* and bcd[0] zero.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) { | 
|  | Unit *up = dn->lsu + D2U(n) - 1;      /* -> msu [target pointer] */ | 
|  | const uByte *ub=bcd;			/* -> source msd */ | 
|  |  | 
|  | #if DECDPUN==1			/* trivial simple copy */ | 
|  | for (; ub<bcd+n; ub++, up--) *up=*ub; | 
|  | #else					/* some assembly needed */ | 
|  | /* calculate how many digits in msu, and hence first cut */ | 
|  | Int cut=MSUDIGITS(n);		/* [faster than remainder] */ | 
|  | for (;up>=dn->lsu; up--) {		/* each Unit from msu */ | 
|  | *up=0;				/* will take <=DECDPUN digits */ | 
|  | for (; cut>0; ub++, cut--) *up=X10(*up)+*ub; | 
|  | cut=DECDPUN;			/* next Unit has all digits */ | 
|  | } | 
|  | #endif | 
|  | dn->digits=n;				/* set digit count */ | 
|  | return dn; | 
|  | } /* decNumberSetBCD */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberIsNormal -- test normality of a decNumber		      */ | 
|  | /*   dn is the decNumber to test				      */ | 
|  | /*   set is the context to use for Emin				      */ | 
|  | /*   returns 1 if |dn| is finite and >=Nmin, 0 otherwise	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | Int decNumberIsNormal(const decNumber *dn, decContext *set) { | 
|  | Int ae;				/* adjusted exponent */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | 
|  | #endif | 
|  |  | 
|  | if (decNumberIsSpecial(dn)) return 0; /* not finite */ | 
|  | if (decNumberIsZero(dn)) return 0;	/* not non-zero */ | 
|  |  | 
|  | ae=dn->exponent+dn->digits-1;		/* adjusted exponent */ | 
|  | if (ae<set->emin) return 0;		/* is subnormal */ | 
|  | return 1; | 
|  | } /* decNumberIsNormal */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberIsSubnormal -- test subnormality of a decNumber	      */ | 
|  | /*   dn is the decNumber to test				      */ | 
|  | /*   set is the context to use for Emin				      */ | 
|  | /*   returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise    */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | Int decNumberIsSubnormal(const decNumber *dn, decContext *set) { | 
|  | Int ae;				/* adjusted exponent */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0; | 
|  | #endif | 
|  |  | 
|  | if (decNumberIsSpecial(dn)) return 0; /* not finite */ | 
|  | if (decNumberIsZero(dn)) return 0;	/* not non-zero */ | 
|  |  | 
|  | ae=dn->exponent+dn->digits-1;		/* adjusted exponent */ | 
|  | if (ae<set->emin) return 1;		/* is subnormal */ | 
|  | return 0; | 
|  | } /* decNumberIsSubnormal */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberTrim -- remove insignificant zeros			      */ | 
|  | /*								      */ | 
|  | /*   dn is the number to trim					      */ | 
|  | /*   returns dn							      */ | 
|  | /*								      */ | 
|  | /* All fields are updated as required.	This is a utility operation,  */ | 
|  | /* so special values are unchanged and no error is possible.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decNumber * decNumberTrim(decNumber *dn) { | 
|  | Int  dropped;			   /* work */ | 
|  | decContext set;		   /* .. */ | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn; | 
|  | #endif | 
|  | decContextDefault(&set, DEC_INIT_BASE);    /* clamp=0 */ | 
|  | return decTrim(dn, &set, 0, &dropped); | 
|  | } /* decNumberTrim */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberVersion -- return the name and version of this module     */ | 
|  | /*								      */ | 
|  | /* No error is possible.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | const char * decNumberVersion(void) { | 
|  | return DECVERSION; | 
|  | } /* decNumberVersion */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberZero -- set a number to 0				      */ | 
|  | /*								      */ | 
|  | /*   dn is the number to set, with space for one digit		      */ | 
|  | /*   returns dn							      */ | 
|  | /*								      */ | 
|  | /* No error is possible.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Memset is not used as it is much slower in some environments. */ | 
|  | decNumber * decNumberZero(decNumber *dn) { | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; | 
|  | #endif | 
|  |  | 
|  | dn->bits=0; | 
|  | dn->exponent=0; | 
|  | dn->digits=1; | 
|  | dn->lsu[0]=0; | 
|  | return dn; | 
|  | } /* decNumberZero */ | 
|  |  | 
|  | /* ================================================================== */ | 
|  | /* Local routines						      */ | 
|  | /* ================================================================== */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decToString -- lay out a number into a string		      */ | 
|  | /*								      */ | 
|  | /*   dn	    is the number to lay out				      */ | 
|  | /*   string is where to lay out the number			      */ | 
|  | /*   eng    is 1 if Engineering, 0 if Scientific		      */ | 
|  | /*								      */ | 
|  | /* string must be at least dn->digits+14 characters long	      */ | 
|  | /* No error is possible.					      */ | 
|  | /*								      */ | 
|  | /* Note that this routine can generate a -0 or 0.000.  These are      */ | 
|  | /* never generated in subset to-number or arithmetic, but can occur   */ | 
|  | /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234).	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* If DECCHECK is enabled the string "?" is returned if a number is */ | 
|  | /* invalid. */ | 
|  | static void decToString(const decNumber *dn, char *string, Flag eng) { | 
|  | Int exp=dn->exponent;	      /* local copy */ | 
|  | Int e;		      /* E-part value */ | 
|  | Int pre;		      /* digits before the '.' */ | 
|  | Int cut;		      /* for counting digits in a Unit */ | 
|  | char *c=string;	      /* work [output pointer] */ | 
|  | const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */ | 
|  | uInt u, pow;		      /* work */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { | 
|  | strcpy(string, "?"); | 
|  | return;} | 
|  | #endif | 
|  |  | 
|  | if (decNumberIsNegative(dn)) {   /* Negatives get a minus */ | 
|  | *c='-'; | 
|  | c++; | 
|  | } | 
|  | if (dn->bits&DECSPECIAL) {	   /* Is a special value */ | 
|  | if (decNumberIsInfinite(dn)) { | 
|  | strcpy(c,	  "Inf"); | 
|  | strcpy(c+3, "inity"); | 
|  | return;} | 
|  | /* a NaN */ | 
|  | if (dn->bits&DECSNAN) {	   /* signalling NaN */ | 
|  | *c='s'; | 
|  | c++; | 
|  | } | 
|  | strcpy(c, "NaN"); | 
|  | c+=3;			   /* step past */ | 
|  | /* if not a clean non-zero coefficient, that's all there is in a */ | 
|  | /* NaN string */ | 
|  | if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return; | 
|  | /* [drop through to add integer] */ | 
|  | } | 
|  |  | 
|  | /* calculate how many digits in msu, and hence first cut */ | 
|  | cut=MSUDIGITS(dn->digits);	   /* [faster than remainder] */ | 
|  | cut--;			   /* power of ten for digit */ | 
|  |  | 
|  | if (exp==0) {			   /* simple integer [common fastpath] */ | 
|  | for (;up>=dn->lsu; up--) {	   /* each Unit from msu */ | 
|  | u=*up;			   /* contains DECDPUN digits to lay out */ | 
|  | for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow); | 
|  | cut=DECDPUN-1;		   /* next Unit has all digits */ | 
|  | } | 
|  | *c='\0';			   /* terminate the string */ | 
|  | return;} | 
|  |  | 
|  | /* non-0 exponent -- assume plain form */ | 
|  | pre=dn->digits+exp;		   /* digits before '.' */ | 
|  | e=0;				   /* no E */ | 
|  | if ((exp>0) || (pre<-5)) {	   /* need exponential form */ | 
|  | e=exp+dn->digits-1;		   /* calculate E value */ | 
|  | pre=1;			   /* assume one digit before '.' */ | 
|  | if (eng && (e!=0)) {	   /* engineering: may need to adjust */ | 
|  | Int adj;			   /* adjustment */ | 
|  | /* The C remainder operator is undefined for negative numbers, so */ | 
|  | /* a positive remainder calculation must be used here */ | 
|  | if (e<0) { | 
|  | adj=(-e)%3; | 
|  | if (adj!=0) adj=3-adj; | 
|  | } | 
|  | else { /* e>0 */ | 
|  | adj=e%3; | 
|  | } | 
|  | e=e-adj; | 
|  | /* if dealing with zero still produce an exponent which is a */ | 
|  | /* multiple of three, as expected, but there will only be the */ | 
|  | /* one zero before the E, still.	Otherwise note the padding. */ | 
|  | if (!ISZERO(dn)) pre+=adj; | 
|  | else {  /* is zero */ | 
|  | if (adj!=0) {		   /* 0.00Esnn needed */ | 
|  | e=e+3; | 
|  | pre=-(2-adj); | 
|  | } | 
|  | } /* zero */ | 
|  | } /* eng */ | 
|  | } /* need exponent */ | 
|  |  | 
|  | /* lay out the digits of the coefficient, adding 0s and . as needed */ | 
|  | u=*up; | 
|  | if (pre>0) {			   /* xxx.xxx or xx00 (engineering) form */ | 
|  | Int n=pre; | 
|  | for (; pre>0; pre--, c++, cut--) { | 
|  | if (cut<0) {		   /* need new Unit */ | 
|  | if (up==dn->lsu) break;	   /* out of input digits (pre>digits) */ | 
|  | up--; | 
|  | cut=DECDPUN-1; | 
|  | u=*up; | 
|  | } | 
|  | TODIGIT(u, cut, c, pow); | 
|  | } | 
|  | if (n<dn->digits) {		   /* more to come, after '.' */ | 
|  | *c='.'; c++; | 
|  | for (;; c++, cut--) { | 
|  | if (cut<0) {		   /* need new Unit */ | 
|  | if (up==dn->lsu) break;  /* out of input digits */ | 
|  | up--; | 
|  | cut=DECDPUN-1; | 
|  | u=*up; | 
|  | } | 
|  | TODIGIT(u, cut, c, pow); | 
|  | } | 
|  | } | 
|  | else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */ | 
|  | } | 
|  | else {			   /* 0.xxx or 0.000xxx form */ | 
|  | *c='0'; c++; | 
|  | *c='.'; c++; | 
|  | for (; pre<0; pre++, c++) *c='0';	/* add any 0's after '.' */ | 
|  | for (; ; c++, cut--) { | 
|  | if (cut<0) {		   /* need new Unit */ | 
|  | if (up==dn->lsu) break;	   /* out of input digits */ | 
|  | up--; | 
|  | cut=DECDPUN-1; | 
|  | u=*up; | 
|  | } | 
|  | TODIGIT(u, cut, c, pow); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Finally add the E-part, if needed.	 It will never be 0, has a | 
|  | base maximum and minimum of +999999999 through -999999999, but | 
|  | could range down to -1999999998 for anormal numbers */ | 
|  | if (e!=0) { | 
|  | Flag had=0;		      /* 1=had non-zero */ | 
|  | *c='E'; c++; | 
|  | *c='+'; c++;	      /* assume positive */ | 
|  | u=e;		      /* .. */ | 
|  | if (e<0) { | 
|  | *(c-1)='-';	      /* oops, need - */ | 
|  | u=-e;		      /* uInt, please */ | 
|  | } | 
|  | /* lay out the exponent [_itoa or equivalent is not ANSI C] */ | 
|  | for (cut=9; cut>=0; cut--) { | 
|  | TODIGIT(u, cut, c, pow); | 
|  | if (*c=='0' && !had) continue;	/* skip leading zeros */ | 
|  | had=1;				/* had non-0 */ | 
|  | c++;				/* step for next */ | 
|  | } /* cut */ | 
|  | } | 
|  | *c='\0';	    /* terminate the string (all paths) */ | 
|  | return; | 
|  | } /* decToString */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decAddOp -- add/subtract operation				      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A + B					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*   negate is DECNEG if rhs should be negated, or 0 otherwise	      */ | 
|  | /*   status accumulates status for the caller			      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /* Inexact in status must be 0 for correct Exact zero sign in result  */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* If possible, the coefficient is calculated directly into C.	      */ | 
|  | /* However, if:							      */ | 
|  | /*   -- a digits+1 calculation is needed because the numbers are      */ | 
|  | /*	unaligned and span more than set->digits digits		      */ | 
|  | /*   -- a carry to digits+1 digits looks possible		      */ | 
|  | /*   -- C is the same as A or B, and the result would destructively   */ | 
|  | /*	overlap the A or B coefficient				      */ | 
|  | /* then the result must be calculated into a temporary buffer.	In    */ | 
|  | /* this case a local (stack) buffer is used if possible, and only if  */ | 
|  | /* too long for that does malloc become the final resort.	      */ | 
|  | /*								      */ | 
|  | /* Misalignment is handled as follows:				      */ | 
|  | /*   Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp.    */ | 
|  | /*   BPad: Apply the padding by a combination of shifting (whole      */ | 
|  | /*	   units) and multiplication (part units).		      */ | 
|  | /*								      */ | 
|  | /* Addition, especially x=x+1, is speed-critical.		      */ | 
|  | /* The static buffer is larger than might be expected to allow for    */ | 
|  | /* calls from higher-level functions (notably exp).		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber * decAddOp(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set, | 
|  | uByte negate, uInt *status) { | 
|  | #if DECSUBSET | 
|  | decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */ | 
|  | decNumber *allocrhs=NULL;	   /* .., rhs */ | 
|  | #endif | 
|  | Int	rhsshift;		   /* working shift (in Units) */ | 
|  | Int	maxdigits;		   /* longest logical length */ | 
|  | Int	mult;			   /* multiplier */ | 
|  | Int	residue;		   /* rounding accumulator */ | 
|  | uByte bits;			   /* result bits */ | 
|  | Flag	diffsign;		   /* non-0 if arguments have different sign */ | 
|  | Unit	*acc;			   /* accumulator for result */ | 
|  | Unit	accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */ | 
|  | /* allocations when called from */ | 
|  | /* other operations, notable exp] */ | 
|  | Unit	*allocacc=NULL;		   /* -> allocated acc buffer, iff allocated */ | 
|  | Int	reqdigits=set->digits;	   /* local copy; requested DIGITS */ | 
|  | Int	padding;		   /* work */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {				   /* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operands and set lostDigits status, as needed */ | 
|  | if (lhs->digits>reqdigits) { | 
|  | alloclhs=decRoundOperand(lhs, set, status); | 
|  | if (alloclhs==NULL) break; | 
|  | lhs=alloclhs; | 
|  | } | 
|  | if (rhs->digits>reqdigits) { | 
|  | allocrhs=decRoundOperand(rhs, set, status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* [following code does not require input rounding] */ | 
|  |  | 
|  | /* note whether signs differ [used all paths] */ | 
|  | diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG); | 
|  |  | 
|  | /* handle infinities and NaNs */ | 
|  | if (SPECIALARGS) {			/* a special bit set */ | 
|  | if (SPECIALARGS & (DECSNAN | DECNAN))  /* a NaN */ | 
|  | decNaNs(res, lhs, rhs, set, status); | 
|  | else { /* one or two infinities */ | 
|  | if (decNumberIsInfinite(lhs)) { /* LHS is infinity */ | 
|  | /* two infinities with different signs is invalid */ | 
|  | if (decNumberIsInfinite(rhs) && diffsign) { | 
|  | *status|=DEC_Invalid_operation; | 
|  | break; | 
|  | } | 
|  | bits=lhs->bits & DECNEG;	/* get sign from LHS */ | 
|  | } | 
|  | else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */ | 
|  | bits|=DECINF; | 
|  | decNumberZero(res); | 
|  | res->bits=bits;			/* set +/- infinity */ | 
|  | } /* an infinity */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Quick exit for add 0s; return the non-0, modified as need be */ | 
|  | if (ISZERO(lhs)) { | 
|  | Int adjust;			/* work */ | 
|  | Int lexp=lhs->exponent;		/* save in case LHS==RES */ | 
|  | bits=lhs->bits;			/* .. */ | 
|  | residue=0;			/* clear accumulator */ | 
|  | decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */ | 
|  | res->bits^=negate;		/* flip if rhs was negated */ | 
|  | #if DECSUBSET | 
|  | if (set->extended) {		/* exponents on zeros count */ | 
|  | #endif | 
|  | /* exponent will be the lower of the two */ | 
|  | adjust=lexp-res->exponent;	/* adjustment needed [if -ve] */ | 
|  | if (ISZERO(res)) {		/* both 0: special IEEE 854 rules */ | 
|  | if (adjust<0) res->exponent=lexp;  /* set exponent */ | 
|  | /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */ | 
|  | if (diffsign) { | 
|  | if (set->round!=DEC_ROUND_FLOOR) res->bits=0; | 
|  | else res->bits=DECNEG;	/* preserve 0 sign */ | 
|  | } | 
|  | } | 
|  | else { /* non-0 res */ | 
|  | if (adjust<0) {     /* 0-padding needed */ | 
|  | if ((res->digits-adjust)>set->digits) { | 
|  | adjust=res->digits-set->digits;	  /* to fit exactly */ | 
|  | *status|=DEC_Rounded;		  /* [but exact] */ | 
|  | } | 
|  | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | 
|  | res->exponent+=adjust;		  /* set the exponent. */ | 
|  | } | 
|  | } /* non-0 res */ | 
|  | #if DECSUBSET | 
|  | } /* extended */ | 
|  | #endif | 
|  | decFinish(res, set, &residue, status);	  /* clean and finalize */ | 
|  | break;} | 
|  |  | 
|  | if (ISZERO(rhs)) {			/* [lhs is non-zero] */ | 
|  | Int adjust;			/* work */ | 
|  | Int rexp=rhs->exponent;		/* save in case RHS==RES */ | 
|  | bits=rhs->bits;			/* be clean */ | 
|  | residue=0;			/* clear accumulator */ | 
|  | decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */ | 
|  | #if DECSUBSET | 
|  | if (set->extended) {		/* exponents on zeros count */ | 
|  | #endif | 
|  | /* exponent will be the lower of the two */ | 
|  | /* [0-0 case handled above] */ | 
|  | adjust=rexp-res->exponent;	/* adjustment needed [if -ve] */ | 
|  | if (adjust<0) {	    /* 0-padding needed */ | 
|  | if ((res->digits-adjust)>set->digits) { | 
|  | adjust=res->digits-set->digits;	/* to fit exactly */ | 
|  | *status|=DEC_Rounded;		/* [but exact] */ | 
|  | } | 
|  | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | 
|  | res->exponent+=adjust;		/* set the exponent. */ | 
|  | } | 
|  | #if DECSUBSET | 
|  | } /* extended */ | 
|  | #endif | 
|  | decFinish(res, set, &residue, status);	  /* clean and finalize */ | 
|  | break;} | 
|  |  | 
|  | /* [NB: both fastpath and mainpath code below assume these cases */ | 
|  | /* (notably 0-0) have already been handled] */ | 
|  |  | 
|  | /* calculate the padding needed to align the operands */ | 
|  | padding=rhs->exponent-lhs->exponent; | 
|  |  | 
|  | /* Fastpath cases where the numbers are aligned and normal, the RHS */ | 
|  | /* is all in one unit, no operand rounding is needed, and no carry, */ | 
|  | /* lengthening, or borrow is needed */ | 
|  | if (padding==0 | 
|  | && rhs->digits<=DECDPUN | 
|  | && rhs->exponent>=set->emin	/* [some normals drop through] */ | 
|  | && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */ | 
|  | && rhs->digits<=reqdigits | 
|  | && lhs->digits<=reqdigits) { | 
|  | Int partial=*lhs->lsu; | 
|  | if (!diffsign) {			/* adding */ | 
|  | partial+=*rhs->lsu; | 
|  | if ((partial<=DECDPUNMAX)	/* result fits in unit */ | 
|  | && (lhs->digits>=DECDPUN ||	/* .. and no digits-count change */ | 
|  | partial<(Int)powers[lhs->digits])) { /* .. */ | 
|  | if (res!=lhs) decNumberCopy(res, lhs);  /* not in place */ | 
|  | *res->lsu=(Unit)partial;	/* [copy could have overwritten RHS] */ | 
|  | break; | 
|  | } | 
|  | /* else drop out for careful add */ | 
|  | } | 
|  | else {				/* signs differ */ | 
|  | partial-=*rhs->lsu; | 
|  | if (partial>0) { /* no borrow needed, and non-0 result */ | 
|  | if (res!=lhs) decNumberCopy(res, lhs);  /* not in place */ | 
|  | *res->lsu=(Unit)partial; | 
|  | /* this could have reduced digits [but result>0] */ | 
|  | res->digits=decGetDigits(res->lsu, D2U(res->digits)); | 
|  | break; | 
|  | } | 
|  | /* else drop out for careful subtract */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now align (pad) the lhs or rhs so they can be added or */ | 
|  | /* subtracted, as necessary.  If one number is much larger than */ | 
|  | /* the other (that is, if in plain form there is a least one */ | 
|  | /* digit between the lowest digit of one and the highest of the */ | 
|  | /* other) padding with up to DIGITS-1 trailing zeros may be */ | 
|  | /* needed; then apply rounding (as exotic rounding modes may be */ | 
|  | /* affected by the residue). */ | 
|  | rhsshift=0;		      /* rhs shift to left (padding) in Units */ | 
|  | bits=lhs->bits;	      /* assume sign is that of LHS */ | 
|  | mult=1;		      /* likely multiplier */ | 
|  |  | 
|  | /* [if padding==0 the operands are aligned; no padding is needed] */ | 
|  | if (padding!=0) { | 
|  | /* some padding needed; always pad the RHS, as any required */ | 
|  | /* padding can then be effected by a simple combination of */ | 
|  | /* shifts and a multiply */ | 
|  | Flag swapped=0; | 
|  | if (padding<0) {			/* LHS needs the padding */ | 
|  | const decNumber *t; | 
|  | padding=-padding;		/* will be +ve */ | 
|  | bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */ | 
|  | t=lhs; lhs=rhs; rhs=t; | 
|  | swapped=1; | 
|  | } | 
|  |  | 
|  | /* If, after pad, rhs would be longer than lhs by digits+1 or */ | 
|  | /* more then lhs cannot affect the answer, except as a residue, */ | 
|  | /* so only need to pad up to a length of DIGITS+1. */ | 
|  | if (rhs->digits+padding > lhs->digits+reqdigits+1) { | 
|  | /* The RHS is sufficient */ | 
|  | /* for residue use the relative sign indication... */ | 
|  | Int shift=reqdigits-rhs->digits;     /* left shift needed */ | 
|  | residue=1;			     /* residue for rounding */ | 
|  | if (diffsign) residue=-residue;	     /* signs differ */ | 
|  | /* copy, shortening if necessary */ | 
|  | decCopyFit(res, rhs, set, &residue, status); | 
|  | /* if it was already shorter, then need to pad with zeros */ | 
|  | if (shift>0) { | 
|  | res->digits=decShiftToMost(res->lsu, res->digits, shift); | 
|  | res->exponent-=shift;		     /* adjust the exponent. */ | 
|  | } | 
|  | /* flip the result sign if unswapped and rhs was negated */ | 
|  | if (!swapped) res->bits^=negate; | 
|  | decFinish(res, set, &residue, status);	  /* done */ | 
|  | break;} | 
|  |  | 
|  | /* LHS digits may affect result */ | 
|  | rhsshift=D2U(padding+1)-1;	/* this much by Unit shift .. */ | 
|  | mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */ | 
|  | } /* padding needed */ | 
|  |  | 
|  | if (diffsign) mult=-mult;		/* signs differ */ | 
|  |  | 
|  | /* determine the longer operand */ | 
|  | maxdigits=rhs->digits+padding;	/* virtual length of RHS */ | 
|  | if (lhs->digits>maxdigits) maxdigits=lhs->digits; | 
|  |  | 
|  | /* Decide on the result buffer to use; if possible place directly */ | 
|  | /* into result. */ | 
|  | acc=res->lsu;			/* assume add direct to result */ | 
|  | /* If destructive overlap, or the number is too long, or a carry or */ | 
|  | /* borrow to DIGITS+1 might be possible, a buffer must be used. */ | 
|  | /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */ | 
|  | if ((maxdigits>=reqdigits)		/* is, or could be, too large */ | 
|  | || (res==rhs && rhsshift>0)) {	/* destructive overlap */ | 
|  | /* buffer needed, choose it; units for maxdigits digits will be */ | 
|  | /* needed, +1 Unit for carry or borrow */ | 
|  | Int need=D2U(maxdigits)+1; | 
|  | acc=accbuff;			/* assume use local buffer */ | 
|  | if (need*sizeof(Unit)>sizeof(accbuff)) { | 
|  | /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */ | 
|  | allocacc=(Unit *)malloc(need*sizeof(Unit)); | 
|  | if (allocacc==NULL) {		/* hopeless -- abandon */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | acc=allocacc; | 
|  | } | 
|  | } | 
|  |  | 
|  | res->bits=(uByte)(bits&DECNEG);	/* it's now safe to overwrite.. */ | 
|  | res->exponent=lhs->exponent;	/* .. operands (even if aliased) */ | 
|  |  | 
|  | #if DECTRACE | 
|  | decDumpAr('A', lhs->lsu, D2U(lhs->digits)); | 
|  | decDumpAr('B', rhs->lsu, D2U(rhs->digits)); | 
|  | printf("	:h: %ld %ld\n", rhsshift, mult); | 
|  | #endif | 
|  |  | 
|  | /* add [A+B*m] or subtract [A+B*(-m)] */ | 
|  | res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits), | 
|  | rhs->lsu, D2U(rhs->digits), | 
|  | rhsshift, acc, mult) | 
|  | *DECDPUN;	   /* [units -> digits] */ | 
|  | if (res->digits<0) {	   /* borrowed... */ | 
|  | res->digits=-res->digits; | 
|  | res->bits^=DECNEG;	   /* flip the sign */ | 
|  | } | 
|  | #if DECTRACE | 
|  | decDumpAr('+', acc, D2U(res->digits)); | 
|  | #endif | 
|  |  | 
|  | /* If a buffer was used the result must be copied back, possibly */ | 
|  | /* shortening.  (If no buffer was used then the result must have */ | 
|  | /* fit, so can't need rounding and residue must be 0.) */ | 
|  | residue=0;			   /* clear accumulator */ | 
|  | if (acc!=res->lsu) { | 
|  | #if DECSUBSET | 
|  | if (set->extended) {	   /* round from first significant digit */ | 
|  | #endif | 
|  | /* remove leading zeros that were added due to rounding up to */ | 
|  | /* integral Units -- before the test for rounding. */ | 
|  | if (res->digits>reqdigits) | 
|  | res->digits=decGetDigits(acc, D2U(res->digits)); | 
|  | decSetCoeff(res, set, acc, res->digits, &residue, status); | 
|  | #if DECSUBSET | 
|  | } | 
|  | else { /* subset arithmetic rounds from original significant digit */ | 
|  | /* May have an underestimate.  This only occurs when both */ | 
|  | /* numbers fit in DECDPUN digits and are padding with a */ | 
|  | /* negative multiple (-10, -100...) and the top digit(s) become */ | 
|  | /* 0.  (This only matters when using X3.274 rules where the */ | 
|  | /* leading zero could be included in the rounding.) */ | 
|  | if (res->digits<maxdigits) { | 
|  | *(acc+D2U(res->digits))=0; /* ensure leading 0 is there */ | 
|  | res->digits=maxdigits; | 
|  | } | 
|  | else { | 
|  | /* remove leading zeros that added due to rounding up to */ | 
|  | /* integral Units (but only those in excess of the original */ | 
|  | /* maxdigits length, unless extended) before test for rounding. */ | 
|  | if (res->digits>reqdigits) { | 
|  | res->digits=decGetDigits(acc, D2U(res->digits)); | 
|  | if (res->digits<maxdigits) res->digits=maxdigits; | 
|  | } | 
|  | } | 
|  | decSetCoeff(res, set, acc, res->digits, &residue, status); | 
|  | /* Now apply rounding if needed before removing leading zeros. */ | 
|  | /* This is safe because subnormals are not a possibility */ | 
|  | if (residue!=0) { | 
|  | decApplyRound(res, set, residue, status); | 
|  | residue=0;		     /* did what needed to be done */ | 
|  | } | 
|  | } /* subset */ | 
|  | #endif | 
|  | } /* used buffer */ | 
|  |  | 
|  | /* strip leading zeros [these were left on in case of subset subtract] */ | 
|  | res->digits=decGetDigits(res->lsu, D2U(res->digits)); | 
|  |  | 
|  | /* apply checks and rounding */ | 
|  | decFinish(res, set, &residue, status); | 
|  |  | 
|  | /* "When the sum of two operands with opposite signs is exactly */ | 
|  | /* zero, the sign of that sum shall be '+' in all rounding modes */ | 
|  | /* except round toward -Infinity, in which mode that sign shall be */ | 
|  | /* '-'."  [Subset zeros also never have '-', set by decFinish.] */ | 
|  | if (ISZERO(res) && diffsign | 
|  | #if DECSUBSET | 
|  | && set->extended | 
|  | #endif | 
|  | && (*status&DEC_Inexact)==0) { | 
|  | if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG;   /* sign - */ | 
|  | else res->bits&=~DECNEG;  /* sign + */ | 
|  | } | 
|  | } while(0);				     /* end protected */ | 
|  |  | 
|  | if (allocacc!=NULL) free(allocacc);	     /* drop any storage used */ | 
|  | #if DECSUBSET | 
|  | if (allocrhs!=NULL) free(allocrhs);	     /* .. */ | 
|  | if (alloclhs!=NULL) free(alloclhs);	     /* .. */ | 
|  | #endif | 
|  | return res; | 
|  | } /* decAddOp */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decDivideOp -- division operation				      */ | 
|  | /*								      */ | 
|  | /*  This routine performs the calculations for all four division      */ | 
|  | /*  operators (divide, divideInteger, remainder, remainderNear).      */ | 
|  | /*								      */ | 
|  | /*  C=A op B							      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*   op	 is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively.    */ | 
|  | /*   status is the usual accumulator				      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /*   The underlying algorithm of this routine is the same as in the   */ | 
|  | /*   1981 S/370 implementation, that is, non-restoring long division  */ | 
|  | /*   with bi-unit (rather than bi-digit) estimation for each unit     */ | 
|  | /*   multiplier.  In this pseudocode overview, complications for the  */ | 
|  | /*   Remainder operators and division residues for exact rounding are */ | 
|  | /*   omitted for clarity.					      */ | 
|  | /*								      */ | 
|  | /*     Prepare operands and handle special values		      */ | 
|  | /*     Test for x/0 and then 0/x				      */ | 
|  | /*     Exp =Exp1 - Exp2						      */ | 
|  | /*     Exp =Exp +len(var1) -len(var2)				      */ | 
|  | /*     Sign=Sign1 * Sign2					      */ | 
|  | /*     Pad accumulator (Var1) to double-length with 0's (pad1)	      */ | 
|  | /*     Pad Var2 to same length as Var1				      */ | 
|  | /*     msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round  */ | 
|  | /*     have=0							      */ | 
|  | /*     Do until (have=digits+1 OR residue=0)			      */ | 
|  | /*	 if exp<0 then if integer divide/residue then leave	      */ | 
|  | /*	 this_unit=0						      */ | 
|  | /*	 Do forever						      */ | 
|  | /*	    compare numbers					      */ | 
|  | /*	    if <0 then leave inner_loop				      */ | 
|  | /*	    if =0 then (* quick exit without subtract *) do	      */ | 
|  | /*	       this_unit=this_unit+1; output this_unit		      */ | 
|  | /*	       leave outer_loop; end				      */ | 
|  | /*	    Compare lengths of numbers (mantissae):		      */ | 
|  | /*	    If same then tops2=msu2pair -- {units 1&2 of var2}	      */ | 
|  | /*		    else tops2=msu2plus -- {0, unit 1 of var2}	      */ | 
|  | /*	    tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */ | 
|  | /*	    mult=tops1/tops2  -- Good and safe guess at divisor	      */ | 
|  | /*	    if mult=0 then mult=1				      */ | 
|  | /*	    this_unit=this_unit+mult				      */ | 
|  | /*	    subtract						      */ | 
|  | /*	    end inner_loop					      */ | 
|  | /*	  if have\=0 | this_unit\=0 then do			      */ | 
|  | /*	    output this_unit					      */ | 
|  | /*	    have=have+1; end					      */ | 
|  | /*	  var2=var2/10						      */ | 
|  | /*	  exp=exp-1						      */ | 
|  | /*	  end outer_loop					      */ | 
|  | /*     exp=exp+1   -- set the proper exponent			      */ | 
|  | /*     if have=0 then generate answer=0				      */ | 
|  | /*     Return (Result is defined by Var1)			      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Two working buffers are needed during the division; one (digits+   */ | 
|  | /* 1) to accumulate the result, and the other (up to 2*digits+1) for  */ | 
|  | /* long subtractions.  These are acc and var1 respectively.	      */ | 
|  | /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/ | 
|  | /* The static buffers may be larger than might be expected to allow   */ | 
|  | /* for calls from higher-level functions (notably exp).		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber * decDivideOp(decNumber *res, | 
|  | const decNumber *lhs, const decNumber *rhs, | 
|  | decContext *set, Flag op, uInt *status) { | 
|  | #if DECSUBSET | 
|  | decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */ | 
|  | decNumber *allocrhs=NULL;	   /* .., rhs */ | 
|  | #endif | 
|  | Unit	accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */ | 
|  | Unit	*acc=accbuff;		   /* -> accumulator array for result */ | 
|  | Unit	*allocacc=NULL;		   /* -> allocated buffer, iff allocated */ | 
|  | Unit	*accnext;		   /* -> where next digit will go */ | 
|  | Int	acclength;		   /* length of acc needed [Units] */ | 
|  | Int	accunits;		   /* count of units accumulated */ | 
|  | Int	accdigits;		   /* count of digits accumulated */ | 
|  |  | 
|  | Unit	varbuff[SD2U(DECBUFFER*2+DECDPUN)*sizeof(Unit)]; /* buffer for var1 */ | 
|  | Unit	*var1=varbuff;		   /* -> var1 array for long subtraction */ | 
|  | Unit	*varalloc=NULL;		   /* -> allocated buffer, iff used */ | 
|  | Unit	*msu1;			   /* -> msu of var1 */ | 
|  |  | 
|  | const Unit *var2;		   /* -> var2 array */ | 
|  | const Unit *msu2;		   /* -> msu of var2 */ | 
|  | Int	msu2plus;		   /* msu2 plus one [does not vary] */ | 
|  | eInt	msu2pair;		   /* msu2 pair plus one [does not vary] */ | 
|  |  | 
|  | Int	var1units, var2units;	   /* actual lengths */ | 
|  | Int	var2ulen;		   /* logical length (units) */ | 
|  | Int	var1initpad=0;		   /* var1 initial padding (digits) */ | 
|  | Int	maxdigits;		   /* longest LHS or required acc length */ | 
|  | Int	mult;			   /* multiplier for subtraction */ | 
|  | Unit	thisunit;		   /* current unit being accumulated */ | 
|  | Int	residue;		   /* for rounding */ | 
|  | Int	reqdigits=set->digits;	   /* requested DIGITS */ | 
|  | Int	exponent;		   /* working exponent */ | 
|  | Int	maxexponent=0;		   /* DIVIDE maximum exponent if unrounded */ | 
|  | uByte bits;			   /* working sign */ | 
|  | Unit	*target;		   /* work */ | 
|  | const Unit *source;		   /* .. */ | 
|  | uLong const *pow;                /* .. */ | 
|  | Int	shift, cut;		   /* .. */ | 
|  | #if DECSUBSET | 
|  | Int	dropped;		   /* work */ | 
|  | #endif | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {				   /* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operands and set lostDigits status, as needed */ | 
|  | if (lhs->digits>reqdigits) { | 
|  | alloclhs=decRoundOperand(lhs, set, status); | 
|  | if (alloclhs==NULL) break; | 
|  | lhs=alloclhs; | 
|  | } | 
|  | if (rhs->digits>reqdigits) { | 
|  | allocrhs=decRoundOperand(rhs, set, status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* [following code does not require input rounding] */ | 
|  |  | 
|  | bits=(lhs->bits^rhs->bits)&DECNEG;	/* assumed sign for divisions */ | 
|  |  | 
|  | /* handle infinities and NaNs */ | 
|  | if (SPECIALARGS) {			/* a special bit set */ | 
|  | if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */ | 
|  | decNaNs(res, lhs, rhs, set, status); | 
|  | break; | 
|  | } | 
|  | /* one or two infinities */ | 
|  | if (decNumberIsInfinite(lhs)) {	/* LHS (dividend) is infinite */ | 
|  | if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */ | 
|  | op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */ | 
|  | *status|=DEC_Invalid_operation; | 
|  | break; | 
|  | } | 
|  | /* [Note that infinity/0 raises no exceptions] */ | 
|  | decNumberZero(res); | 
|  | res->bits=bits|DECINF;		/* set +/- infinity */ | 
|  | break; | 
|  | } | 
|  | else {				/* RHS (divisor) is infinite */ | 
|  | residue=0; | 
|  | if (op&(REMAINDER|REMNEAR)) { | 
|  | /* result is [finished clone of] lhs */ | 
|  | decCopyFit(res, lhs, set, &residue, status); | 
|  | } | 
|  | else {	 /* a division */ | 
|  | decNumberZero(res); | 
|  | res->bits=bits;		/* set +/- zero */ | 
|  | /* for DIVIDEINT the exponent is always 0.  For DIVIDE, result */ | 
|  | /* is a 0 with infinitely negative exponent, clamped to minimum */ | 
|  | if (op&DIVIDE) { | 
|  | res->exponent=set->emin-set->digits+1; | 
|  | *status|=DEC_Clamped; | 
|  | } | 
|  | } | 
|  | decFinish(res, set, &residue, status); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* handle 0 rhs (x/0) */ | 
|  | if (ISZERO(rhs)) {			/* x/0 is always exceptional */ | 
|  | if (ISZERO(lhs)) { | 
|  | decNumberZero(res);		/* [after lhs test] */ | 
|  | *status|=DEC_Division_undefined;/* 0/0 will become NaN */ | 
|  | } | 
|  | else { | 
|  | decNumberZero(res); | 
|  | if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation; | 
|  | else { | 
|  | *status|=DEC_Division_by_zero; /* x/0 */ | 
|  | res->bits=bits|DECINF;	 /* .. is +/- Infinity */ | 
|  | } | 
|  | } | 
|  | break;} | 
|  |  | 
|  | /* handle 0 lhs (0/x) */ | 
|  | if (ISZERO(lhs)) {			/* 0/x [x!=0] */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) decNumberZero(res); | 
|  | else { | 
|  | #endif | 
|  | if (op&DIVIDE) { | 
|  | residue=0; | 
|  | exponent=lhs->exponent-rhs->exponent; /* ideal exponent */ | 
|  | decNumberCopy(res, lhs);	/* [zeros always fit] */ | 
|  | res->bits=bits;		/* sign as computed */ | 
|  | res->exponent=exponent;	/* exponent, too */ | 
|  | decFinalize(res, set, &residue, status);   /* check exponent */ | 
|  | } | 
|  | else if (op&DIVIDEINT) { | 
|  | decNumberZero(res);		/* integer 0 */ | 
|  | res->bits=bits;		/* sign as computed */ | 
|  | } | 
|  | else {				/* a remainder */ | 
|  | exponent=rhs->exponent;	/* [save in case overwrite] */ | 
|  | decNumberCopy(res, lhs);	/* [zeros always fit] */ | 
|  | if (exponent<res->exponent) res->exponent=exponent; /* use lower */ | 
|  | } | 
|  | #if DECSUBSET | 
|  | } | 
|  | #endif | 
|  | break;} | 
|  |  | 
|  | /* Precalculate exponent.  This starts off adjusted (and hence fits */ | 
|  | /* in 31 bits) and becomes the usual unadjusted exponent as the */ | 
|  | /* division proceeds.  The order of evaluation is important, here, */ | 
|  | /* to avoid wrap. */ | 
|  | exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits); | 
|  |  | 
|  | /* If the working exponent is -ve, then some quick exits are */ | 
|  | /* possible because the quotient is known to be <1 */ | 
|  | /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */ | 
|  | if (exponent<0 && !(op==DIVIDE)) { | 
|  | if (op&DIVIDEINT) { | 
|  | decNumberZero(res);		     /* integer part is 0 */ | 
|  | #if DECSUBSET | 
|  | if (set->extended) | 
|  | #endif | 
|  | res->bits=bits;		     /* set +/- zero */ | 
|  | break;} | 
|  | /* fastpath remainders so long as the lhs has the smaller */ | 
|  | /* (or equal) exponent */ | 
|  | if (lhs->exponent<=rhs->exponent) { | 
|  | if (op&REMAINDER || exponent<-1) { | 
|  | /* It is REMAINDER or safe REMNEAR; result is [finished */ | 
|  | /* clone of] lhs  (r = x - 0*y) */ | 
|  | residue=0; | 
|  | decCopyFit(res, lhs, set, &residue, status); | 
|  | decFinish(res, set, &residue, status); | 
|  | break; | 
|  | } | 
|  | /* [unsafe REMNEAR drops through] */ | 
|  | } | 
|  | } /* fastpaths */ | 
|  |  | 
|  | /* Long (slow) division is needed; roll up the sleeves... */ | 
|  |  | 
|  | /* The accumulator will hold the quotient of the division. */ | 
|  | /* If it needs to be too long for stack storage, then allocate. */ | 
|  | acclength=D2U(reqdigits+DECDPUN);	/* in Units */ | 
|  | if (acclength*sizeof(Unit)>sizeof(accbuff)) { | 
|  | /* printf("malloc dvacc %ld units\n", acclength); */ | 
|  | allocacc=(Unit *)malloc(acclength*sizeof(Unit)); | 
|  | if (allocacc==NULL) {		/* hopeless -- abandon */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | acc=allocacc;			/* use the allocated space */ | 
|  | } | 
|  |  | 
|  | /* var1 is the padded LHS ready for subtractions. */ | 
|  | /* If it needs to be too long for stack storage, then allocate. */ | 
|  | /* The maximum units needed for var1 (long subtraction) is: */ | 
|  | /* Enough for */ | 
|  | /*	   (rhs->digits+reqdigits-1) -- to allow full slide to right */ | 
|  | /* or  (lhs->digits)	     -- to allow for long lhs */ | 
|  | /* whichever is larger */ | 
|  | /*	 +1		   -- for rounding of slide to right */ | 
|  | /*	 +1		   -- for leading 0s */ | 
|  | /*	 +1		   -- for pre-adjust if a remainder or DIVIDEINT */ | 
|  | /* [Note: unused units do not participate in decUnitAddSub data] */ | 
|  | maxdigits=rhs->digits+reqdigits-1; | 
|  | if (lhs->digits>maxdigits) maxdigits=lhs->digits; | 
|  | var1units=D2U(maxdigits)+2; | 
|  | /* allocate a guard unit above msu1 for REMAINDERNEAR */ | 
|  | if (!(op&DIVIDE)) var1units++; | 
|  | if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) { | 
|  | /* printf("malloc dvvar %ld units\n", var1units+1); */ | 
|  | varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit)); | 
|  | if (varalloc==NULL) {		/* hopeless -- abandon */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | var1=varalloc;			/* use the allocated space */ | 
|  | } | 
|  |  | 
|  | /* Extend the lhs and rhs to full long subtraction length.	The lhs */ | 
|  | /* is truly extended into the var1 buffer, with 0 padding, so a */ | 
|  | /* subtract in place is always possible.  The rhs (var2) has */ | 
|  | /* virtual padding (implemented by decUnitAddSub). */ | 
|  | /* One guard unit was allocated above msu1 for rem=rem+rem in */ | 
|  | /* REMAINDERNEAR. */ | 
|  | msu1=var1+var1units-1;		/* msu of var1 */ | 
|  | source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */ | 
|  | for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source; | 
|  | for (; target>=var1; target--) *target=0; | 
|  |  | 
|  | /* rhs (var2) is left-aligned with var1 at the start */ | 
|  | var2ulen=var1units;			/* rhs logical length (units) */ | 
|  | var2units=D2U(rhs->digits);		/* rhs actual length (units) */ | 
|  | var2=rhs->lsu;			/* -> rhs array */ | 
|  | msu2=var2+var2units-1;		/* -> msu of var2 [never changes] */ | 
|  | /* now set up the variables which will be used for estimating the */ | 
|  | /* multiplication factor.  If these variables are not exact, add */ | 
|  | /* 1 to make sure that the multiplier is never overestimated. */ | 
|  | msu2plus=*msu2;			/* it's value .. */ | 
|  | if (var2units>1) msu2plus++;	/* .. +1 if any more */ | 
|  | msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */ | 
|  | if (var2units>1) {			/* .. [else treat 2nd as 0] */ | 
|  | msu2pair+=*(msu2-1);		/* .. */ | 
|  | if (var2units>2) msu2pair++;	/* .. +1 if any more */ | 
|  | } | 
|  |  | 
|  | /* The calculation is working in units, which may have leading zeros, */ | 
|  | /* but the exponent was calculated on the assumption that they are */ | 
|  | /* both left-aligned.  Adjust the exponent to compensate: add the */ | 
|  | /* number of leading zeros in var1 msu and subtract those in var2 msu. */ | 
|  | /* [This is actually done by counting the digits and negating, as */ | 
|  | /* lead1=DECDPUN-digits1, and similarly for lead2.] */ | 
|  | for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--; | 
|  | for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++; | 
|  |  | 
|  | /* Now, if doing an integer divide or remainder, ensure that */ | 
|  | /* the result will be Unit-aligned.	 To do this, shift the var1 */ | 
|  | /* accumulator towards least if need be.  (It's much easier to */ | 
|  | /* do this now than to reassemble the residue afterwards, if */ | 
|  | /* doing a remainder.)  Also ensure the exponent is not negative. */ | 
|  | if (!(op&DIVIDE)) { | 
|  | Unit *u;				/* work */ | 
|  | /* save the initial 'false' padding of var1, in digits */ | 
|  | var1initpad=(var1units-D2U(lhs->digits))*DECDPUN; | 
|  | /* Determine the shift to do. */ | 
|  | if (exponent<0) cut=-exponent; | 
|  | else cut=DECDPUN-exponent%DECDPUN; | 
|  | decShiftToLeast(var1, var1units, cut); | 
|  | exponent+=cut;			/* maintain numerical value */ | 
|  | var1initpad-=cut;			/* .. and reduce padding */ | 
|  | /* clean any most-significant units which were just emptied */ | 
|  | for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0; | 
|  | } /* align */ | 
|  | else { /* is DIVIDE */ | 
|  | maxexponent=lhs->exponent-rhs->exponent;	  /* save */ | 
|  | /* optimization: if the first iteration will just produce 0, */ | 
|  | /* preadjust to skip it [valid for DIVIDE only] */ | 
|  | if (*msu1<*msu2) { | 
|  | var2ulen--;			/* shift down */ | 
|  | exponent-=DECDPUN;		/* update the exponent */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ---- start the long-division loops ------------------------------ */ | 
|  | accunits=0;				/* no units accumulated yet */ | 
|  | accdigits=0;			/* .. or digits */ | 
|  | accnext=acc+acclength-1;		/* -> msu of acc [NB: allows digits+1] */ | 
|  | for (;;) {				/* outer forever loop */ | 
|  | thisunit=0;			/* current unit assumed 0 */ | 
|  | /* find the next unit */ | 
|  | for (;;) {			/* inner forever loop */ | 
|  | /* strip leading zero units [from either pre-adjust or from */ | 
|  | /* subtract last time around].	Leave at least one unit. */ | 
|  | for (; *msu1==0 && msu1>var1; msu1--) var1units--; | 
|  |  | 
|  | if (var1units<var2ulen) break;	     /* var1 too low for subtract */ | 
|  | if (var1units==var2ulen) {	     /* unit-by-unit compare needed */ | 
|  | /* compare the two numbers, from msu */ | 
|  | const Unit *pv1, *pv2; | 
|  | Unit v2;			     /* units to compare */ | 
|  | pv2=msu2;			     /* -> msu */ | 
|  | for (pv1=msu1; ; pv1--, pv2--) { | 
|  | /* v1=*pv1 -- always OK */ | 
|  | v2=0;			     /* assume in padding */ | 
|  | if (pv2>=var2) v2=*pv2;	     /* in range */ | 
|  | if (*pv1!=v2) break;	     /* no longer the same */ | 
|  | if (pv1==var1) break;	     /* done; leave pv1 as is */ | 
|  | } | 
|  | /* here when all inspected or a difference seen */ | 
|  | if (*pv1<v2) break;		     /* var1 too low to subtract */ | 
|  | if (*pv1==v2) {		     /* var1 == var2 */ | 
|  | /* reach here if var1 and var2 are identical; subtraction */ | 
|  | /* would increase digit by one, and the residue will be 0 so */ | 
|  | /* the calculation is done; leave the loop with residue=0. */ | 
|  | thisunit++;			     /* as though subtracted */ | 
|  | *var1=0;			     /* set var1 to 0 */ | 
|  | var1units=1;		     /* .. */ | 
|  | break;  /* from inner */ | 
|  | } /* var1 == var2 */ | 
|  | /* *pv1>v2.  Prepare for real subtraction; the lengths are equal */ | 
|  | /* Estimate the multiplier (there's always a msu1-1)... */ | 
|  | /* Bring in two units of var2 to provide a good estimate. */ | 
|  | mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair); | 
|  | } /* lengths the same */ | 
|  | else { /* var1units > var2ulen, so subtraction is safe */ | 
|  | /* The var2 msu is one unit towards the lsu of the var1 msu, */ | 
|  | /* so only one unit for var2 can be used. */ | 
|  | mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus); | 
|  | } | 
|  | if (mult==0) mult=1;		     /* must always be at least 1 */ | 
|  | /* subtraction needed; var1 is > var2 */ | 
|  | thisunit=(Unit)(thisunit+mult);	     /* accumulate */ | 
|  | /* subtract var1-var2, into var1; only the overlap needs */ | 
|  | /* processing, as this is an in-place calculation */ | 
|  | shift=var2ulen-var2units; | 
|  | #if DECTRACE | 
|  | decDumpAr('1', &var1[shift], var1units-shift); | 
|  | decDumpAr('2', var2, var2units); | 
|  | printf("m=%ld\n", -mult); | 
|  | #endif | 
|  | decUnitAddSub(&var1[shift], var1units-shift, | 
|  | var2, var2units, 0, | 
|  | &var1[shift], -mult); | 
|  | #if DECTRACE | 
|  | decDumpAr('#', &var1[shift], var1units-shift); | 
|  | #endif | 
|  | /* var1 now probably has leading zeros; these are removed at the */ | 
|  | /* top of the inner loop. */ | 
|  | } /* inner loop */ | 
|  |  | 
|  | /* The next unit has been calculated in full; unless it's a */ | 
|  | /* leading zero, add to acc */ | 
|  | if (accunits!=0 || thisunit!=0) {	     /* is first or non-zero */ | 
|  | *accnext=thisunit;		     /* store in accumulator */ | 
|  | /* account exactly for the new digits */ | 
|  | if (accunits==0) { | 
|  | accdigits++;			     /* at least one */ | 
|  | for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++; | 
|  | } | 
|  | else accdigits+=DECDPUN; | 
|  | accunits++;			     /* update count */ | 
|  | accnext--;			     /* ready for next */ | 
|  | if (accdigits>reqdigits) break;	     /* have enough digits */ | 
|  | } | 
|  |  | 
|  | /* if the residue is zero, the operation is done (unless divide */ | 
|  | /* or divideInteger and still not enough digits yet) */ | 
|  | if (*var1==0 && var1units==1) {	     /* residue is 0 */ | 
|  | if (op&(REMAINDER|REMNEAR)) break; | 
|  | if ((op&DIVIDE) && (exponent<=maxexponent)) break; | 
|  | /* [drop through if divideInteger] */ | 
|  | } | 
|  | /* also done enough if calculating remainder or integer */ | 
|  | /* divide and just did the last ('units') unit */ | 
|  | if (exponent==0 && !(op&DIVIDE)) break; | 
|  |  | 
|  | /* to get here, var1 is less than var2, so divide var2 by the per- */ | 
|  | /* Unit power of ten and go for the next digit */ | 
|  | var2ulen--;			     /* shift down */ | 
|  | exponent-=DECDPUN;		     /* update the exponent */ | 
|  | } /* outer loop */ | 
|  |  | 
|  | /* ---- division is complete --------------------------------------- */ | 
|  | /* here: acc      has at least reqdigits+1 of good results (or fewer */ | 
|  | /*		      if early stop), starting at accnext+1 (its lsu) */ | 
|  | /*	     var1     has any residue at the stopping point */ | 
|  | /*	     accunits is the number of digits collected in acc */ | 
|  | if (accunits==0) {		   /* acc is 0 */ | 
|  | accunits=1;		   /* show have a unit .. */ | 
|  | accdigits=1;		   /* .. */ | 
|  | *accnext=0;		   /* .. whose value is 0 */ | 
|  | } | 
|  | else accnext++;		   /* back to last placed */ | 
|  | /* accnext now -> lowest unit of result */ | 
|  |  | 
|  | residue=0;			   /* assume no residue */ | 
|  | if (op&DIVIDE) { | 
|  | /* record the presence of any residue, for rounding */ | 
|  | if (*var1!=0 || var1units>1) residue=1; | 
|  | else { /* no residue */ | 
|  | /* Had an exact division; clean up spurious trailing 0s. */ | 
|  | /* There will be at most DECDPUN-1, from the final multiply, */ | 
|  | /* and then only if the result is non-0 (and even) and the */ | 
|  | /* exponent is 'loose'. */ | 
|  | #if DECDPUN>1 | 
|  | Unit lsu=*accnext; | 
|  | if (!(lsu&0x01) && (lsu!=0)) { | 
|  | /* count the trailing zeros */ | 
|  | Int drop=0; | 
|  | for (;; drop++) {    /* [will terminate because lsu!=0] */ | 
|  | if (exponent>=maxexponent) break;	  /* don't chop real 0s */ | 
|  | #if DECDPUN<=4 | 
|  | if ((lsu-QUOT10(lsu, drop+1) | 
|  | *powers[drop+1])!=0) break;	  /* found non-0 digit */ | 
|  | #else | 
|  | if (lsu%powers[drop+1]!=0) break;	  /* found non-0 digit */ | 
|  | #endif | 
|  | exponent++; | 
|  | } | 
|  | if (drop>0) { | 
|  | accunits=decShiftToLeast(accnext, accunits, drop); | 
|  | accdigits=decGetDigits(accnext, accunits); | 
|  | accunits=D2U(accdigits); | 
|  | /* [exponent was adjusted in the loop] */ | 
|  | } | 
|  | } /* neither odd nor 0 */ | 
|  | #endif | 
|  | } /* exact divide */ | 
|  | } /* divide */ | 
|  | else /* op!=DIVIDE */ { | 
|  | /* check for coefficient overflow */ | 
|  | if (accdigits+exponent>reqdigits) { | 
|  | *status|=DEC_Division_impossible; | 
|  | break; | 
|  | } | 
|  | if (op & (REMAINDER|REMNEAR)) { | 
|  | /* [Here, the exponent will be 0, because var1 was adjusted */ | 
|  | /* appropriately.] */ | 
|  | Int postshift;			     /* work */ | 
|  | Flag wasodd=0;			     /* integer was odd */ | 
|  | Unit *quotlsu;			     /* for save */ | 
|  | Int  quotdigits;		     /* .. */ | 
|  |  | 
|  | bits=lhs->bits;			     /* remainder sign is always as lhs */ | 
|  |  | 
|  | /* Fastpath when residue is truly 0 is worthwhile [and */ | 
|  | /* simplifies the code below] */ | 
|  | if (*var1==0 && var1units==1) {	     /* residue is 0 */ | 
|  | Int exp=lhs->exponent;	     /* save min(exponents) */ | 
|  | if (rhs->exponent<exp) exp=rhs->exponent; | 
|  | decNumberZero(res);		     /* 0 coefficient */ | 
|  | #if DECSUBSET | 
|  | if (set->extended) | 
|  | #endif | 
|  | res->exponent=exp;		     /* .. with proper exponent */ | 
|  | res->bits=(uByte)(bits&DECNEG);	   /* [cleaned] */ | 
|  | decFinish(res, set, &residue, status);   /* might clamp */ | 
|  | break; | 
|  | } | 
|  | /* note if the quotient was odd */ | 
|  | if (*accnext & 0x01) wasodd=1;	     /* acc is odd */ | 
|  | quotlsu=accnext;		     /* save in case need to reinspect */ | 
|  | quotdigits=accdigits;		     /* .. */ | 
|  |  | 
|  | /* treat the residue, in var1, as the value to return, via acc */ | 
|  | /* calculate the unused zero digits.  This is the smaller of: */ | 
|  | /*   var1 initial padding (saved above) */ | 
|  | /*   var2 residual padding, which happens to be given by: */ | 
|  | postshift=var1initpad+exponent-lhs->exponent+rhs->exponent; | 
|  | /* [the 'exponent' term accounts for the shifts during divide] */ | 
|  | if (var1initpad<postshift) postshift=var1initpad; | 
|  |  | 
|  | /* shift var1 the requested amount, and adjust its digits */ | 
|  | var1units=decShiftToLeast(var1, var1units, postshift); | 
|  | accnext=var1; | 
|  | accdigits=decGetDigits(var1, var1units); | 
|  | accunits=D2U(accdigits); | 
|  |  | 
|  | exponent=lhs->exponent;		/* exponent is smaller of lhs & rhs */ | 
|  | if (rhs->exponent<exponent) exponent=rhs->exponent; | 
|  |  | 
|  | /* Now correct the result if doing remainderNear; if it */ | 
|  | /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */ | 
|  | /* the integer was odd then the result should be rem-rhs. */ | 
|  | if (op&REMNEAR) { | 
|  | Int compare, tarunits;	/* work */ | 
|  | Unit *up;			/* .. */ | 
|  | /* calculate remainder*2 into the var1 buffer (which has */ | 
|  | /* 'headroom' of an extra unit and hence enough space) */ | 
|  | /* [a dedicated 'double' loop would be faster, here] */ | 
|  | tarunits=decUnitAddSub(accnext, accunits, accnext, accunits, | 
|  | 0, accnext, 1); | 
|  | /* decDumpAr('r', accnext, tarunits); */ | 
|  |  | 
|  | /* Here, accnext (var1) holds tarunits Units with twice the */ | 
|  | /* remainder's coefficient, which must now be compared to the */ | 
|  | /* RHS.  The remainder's exponent may be smaller than the RHS's. */ | 
|  | compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits), | 
|  | rhs->exponent-exponent); | 
|  | if (compare==BADINT) {	     /* deep trouble */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  |  | 
|  | /* now restore the remainder by dividing by two; the lsu */ | 
|  | /* is known to be even. */ | 
|  | for (up=accnext; up<accnext+tarunits; up++) { | 
|  | Int half;		   /* half to add to lower unit */ | 
|  | half=*up & 0x01; | 
|  | *up/=2;		   /* [shift] */ | 
|  | if (!half) continue; | 
|  | *(up-1)+=DIV_ROUND_UP(DECDPUNMAX, 2); | 
|  | } | 
|  | /* [accunits still describes the original remainder length] */ | 
|  |  | 
|  | if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */ | 
|  | Int exp, expunits, exprem;	     /* work */ | 
|  | /* This is effectively causing round-up of the quotient, */ | 
|  | /* so if it was the rare case where it was full and all */ | 
|  | /* nines, it would overflow and hence division-impossible */ | 
|  | /* should be raised */ | 
|  | Flag allnines=0;		     /* 1 if quotient all nines */ | 
|  | if (quotdigits==reqdigits) {     /* could be borderline */ | 
|  | for (up=quotlsu; ; up++) { | 
|  | if (quotdigits>DECDPUN) { | 
|  | if (*up!=DECDPUNMAX) break;/* non-nines */ | 
|  | } | 
|  | else {			     /* this is the last Unit */ | 
|  | if (*up==powers[quotdigits]-1) allnines=1; | 
|  | break; | 
|  | } | 
|  | quotdigits-=DECDPUN;	     /* checked those digits */ | 
|  | } /* up */ | 
|  | } /* borderline check */ | 
|  | if (allnines) { | 
|  | *status|=DEC_Division_impossible; | 
|  | break;} | 
|  |  | 
|  | /* rem-rhs is needed; the sign will invert.	 Again, var1 */ | 
|  | /* can safely be used for the working Units array. */ | 
|  | exp=rhs->exponent-exponent;	     /* RHS padding needed */ | 
|  | /* Calculate units and remainder from exponent. */ | 
|  | expunits=exp/DECDPUN; | 
|  | exprem=exp%DECDPUN; | 
|  | /* subtract [A+B*(-m)]; the result will always be negative */ | 
|  | accunits=-decUnitAddSub(accnext, accunits, | 
|  | rhs->lsu, D2U(rhs->digits), | 
|  | expunits, accnext, -(Int)powers[exprem]); | 
|  | accdigits=decGetDigits(accnext, accunits); /* count digits exactly */ | 
|  | accunits=D2U(accdigits);	/* and recalculate the units for copy */ | 
|  | /* [exponent is as for original remainder] */ | 
|  | bits^=DECNEG;		/* flip the sign */ | 
|  | } | 
|  | } /* REMNEAR */ | 
|  | } /* REMAINDER or REMNEAR */ | 
|  | } /* not DIVIDE */ | 
|  |  | 
|  | /* Set exponent and bits */ | 
|  | res->exponent=exponent; | 
|  | res->bits=(uByte)(bits&DECNEG);	     /* [cleaned] */ | 
|  |  | 
|  | /* Now the coefficient. */ | 
|  | decSetCoeff(res, set, accnext, accdigits, &residue, status); | 
|  |  | 
|  | decFinish(res, set, &residue, status);   /* final cleanup */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | /* If a divide then strip trailing zeros if subset [after round] */ | 
|  | if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, &dropped); | 
|  | #endif | 
|  | } while(0);				     /* end protected */ | 
|  |  | 
|  | if (varalloc!=NULL) free(varalloc);	/* drop any storage used */ | 
|  | if (allocacc!=NULL) free(allocacc);	/* .. */ | 
|  | #if DECSUBSET | 
|  | if (allocrhs!=NULL) free(allocrhs);	/* .. */ | 
|  | if (alloclhs!=NULL) free(alloclhs);	/* .. */ | 
|  | #endif | 
|  | return res; | 
|  | } /* decDivideOp */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decMultiplyOp -- multiplication operation			      */ | 
|  | /*								      */ | 
|  | /*  This routine performs the multiplication C=A x B.		      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X*X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*   status is the usual accumulator				      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* 'Classic' multiplication is used rather than Karatsuba, as the     */ | 
|  | /* latter would give only a minor improvement for the short numbers   */ | 
|  | /* expected to be handled most (and uses much more memory).	      */ | 
|  | /*								      */ | 
|  | /* There are two major paths here: the general-purpose ('old code')   */ | 
|  | /* path which handles all DECDPUN values, and a fastpath version      */ | 
|  | /* which is used if 64-bit ints are available, DECDPUN<=4, and more   */ | 
|  | /* than two calls to decUnitAddSub would be made.		      */ | 
|  | /*								      */ | 
|  | /* The fastpath version lumps units together into 8-digit or 9-digit  */ | 
|  | /* chunks, and also uses a lazy carry strategy to minimise expensive  */ | 
|  | /* 64-bit divisions.  The chunks are then broken apart again into     */ | 
|  | /* units for continuing processing.  Despite this overhead, the	      */ | 
|  | /* fastpath can speed up some 16-digit operations by 10x (and much    */ | 
|  | /* more for higher-precision calculations).			      */ | 
|  | /*								      */ | 
|  | /* A buffer always has to be used for the accumulator; in the	      */ | 
|  | /* fastpath, buffers are also always needed for the chunked copies of */ | 
|  | /* of the operand coefficients.					      */ | 
|  | /* Static buffers are larger than needed just for multiply, to allow  */ | 
|  | /* for calls from other operations (notably exp).		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | #define FASTMUL (DECUSE64 && DECDPUN<5) | 
|  | static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set, | 
|  | uInt *status) { | 
|  | Int	 accunits;		   /* Units of accumulator in use */ | 
|  | Int	 exponent;		   /* work */ | 
|  | Int	 residue=0;		   /* rounding residue */ | 
|  | uByte	 bits;			   /* result sign */ | 
|  | Unit	*acc;			   /* -> accumulator Unit array */ | 
|  | Int	 needbytes;		   /* size calculator */ | 
|  | void	*allocacc=NULL;		   /* -> allocated accumulator, iff allocated */ | 
|  | Unit	accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */ | 
|  | /* *4 for calls from other operations) */ | 
|  | const Unit *mer, *mermsup;	   /* work */ | 
|  | Int	madlength;		   /* Units in multiplicand */ | 
|  | Int	shift;			   /* Units to shift multiplicand by */ | 
|  |  | 
|  | #if FASTMUL | 
|  | /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */ | 
|  | /* (DECDPUN is 2 or 4) then work in base 10**8 */ | 
|  | #if DECDPUN & 1		   /* odd */ | 
|  | #define FASTBASE 1000000000  /* base */ | 
|  | #define FASTDIGS		9  /* digits in base */ | 
|  | #define FASTLAZY	       18  /* carry resolution point [1->18] */ | 
|  | #else | 
|  | #define FASTBASE	100000000 | 
|  | #define FASTDIGS		8 | 
|  | #define FASTLAZY	     1844  /* carry resolution point [1->1844] */ | 
|  | #endif | 
|  | /* three buffers are used, two for chunked copies of the operands */ | 
|  | /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */ | 
|  | /* lazy carry evaluation */ | 
|  | uInt   zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ | 
|  | uInt  *zlhi=zlhibuff;		  /* -> lhs array */ | 
|  | uInt  *alloclhi=NULL;		  /* -> allocated buffer, iff allocated */ | 
|  | uInt   zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */ | 
|  | uInt  *zrhi=zrhibuff;		  /* -> rhs array */ | 
|  | uInt  *allocrhi=NULL;		  /* -> allocated buffer, iff allocated */ | 
|  | uLong  zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */ | 
|  | /* [allocacc is shared for both paths, as only one will run] */ | 
|  | uLong *zacc=zaccbuff;	   /* -> accumulator array for exact result */ | 
|  | #if DECDPUN==1 | 
|  | Int	   zoff;		   /* accumulator offset */ | 
|  | #endif | 
|  | uInt  *lip, *rip;		   /* item pointers */ | 
|  | uInt  *lmsi, *rmsi;		   /* most significant items */ | 
|  | Int	   ilhs, irhs, iacc;	   /* item counts in the arrays */ | 
|  | Int	   lazy;		   /* lazy carry counter */ | 
|  | uLong  lcarry;		   /* uLong carry */ | 
|  | uInt   carry;		   /* carry (NB not uLong) */ | 
|  | Int	   count;		   /* work */ | 
|  | const  Unit *cup;		   /* .. */ | 
|  | Unit  *up;			   /* .. */ | 
|  | uLong *lp;			   /* .. */ | 
|  | Int	   p;			   /* .. */ | 
|  | #endif | 
|  |  | 
|  | #if DECSUBSET | 
|  | decNumber *alloclhs=NULL;	   /* -> allocated buffer, iff allocated */ | 
|  | decNumber *allocrhs=NULL;	   /* -> allocated buffer, iff allocated */ | 
|  | #endif | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | /* precalculate result sign */ | 
|  | bits=(uByte)((lhs->bits^rhs->bits)&DECNEG); | 
|  |  | 
|  | /* handle infinities and NaNs */ | 
|  | if (SPECIALARGS) {		   /* a special bit set */ | 
|  | if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */ | 
|  | decNaNs(res, lhs, rhs, set, status); | 
|  | return res;} | 
|  | /* one or two infinities; Infinity * 0 is invalid */ | 
|  | if (((lhs->bits & DECINF)==0 && ISZERO(lhs)) | 
|  | ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) { | 
|  | *status|=DEC_Invalid_operation; | 
|  | return res;} | 
|  | decNumberZero(res); | 
|  | res->bits=bits|DECINF;	   /* infinity */ | 
|  | return res;} | 
|  |  | 
|  | /* For best speed, as in DMSRCN [the original Rexx numerics */ | 
|  | /* module], use the shorter number as the multiplier (rhs) and */ | 
|  | /* the longer as the multiplicand (lhs) to minimise the number of */ | 
|  | /* adds (partial products) */ | 
|  | if (lhs->digits<rhs->digits) {   /* swap... */ | 
|  | const decNumber *hold=lhs; | 
|  | lhs=rhs; | 
|  | rhs=hold; | 
|  | } | 
|  |  | 
|  | do {				   /* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operands and set lostDigits status, as needed */ | 
|  | if (lhs->digits>set->digits) { | 
|  | alloclhs=decRoundOperand(lhs, set, status); | 
|  | if (alloclhs==NULL) break; | 
|  | lhs=alloclhs; | 
|  | } | 
|  | if (rhs->digits>set->digits) { | 
|  | allocrhs=decRoundOperand(rhs, set, status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* [following code does not require input rounding] */ | 
|  |  | 
|  | #if FASTMUL			   /* fastpath can be used */ | 
|  | /* use the fast path if there are enough digits in the shorter */ | 
|  | /* operand to make the setup and takedown worthwhile */ | 
|  | #define NEEDTWO (DECDPUN*2)	   /* within two decUnitAddSub calls */ | 
|  | if (rhs->digits>NEEDTWO) {	   /* use fastpath... */ | 
|  | /* calculate the number of elements in each array */ | 
|  | ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */ | 
|  | irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */ | 
|  | iacc=ilhs+irhs; | 
|  |  | 
|  | /* allocate buffers if required, as usual */ | 
|  | needbytes=ilhs*sizeof(uInt); | 
|  | if (needbytes>(Int)sizeof(zlhibuff)) { | 
|  | alloclhi=(uInt *)malloc(needbytes); | 
|  | zlhi=alloclhi;} | 
|  | needbytes=irhs*sizeof(uInt); | 
|  | if (needbytes>(Int)sizeof(zrhibuff)) { | 
|  | allocrhi=(uInt *)malloc(needbytes); | 
|  | zrhi=allocrhi;} | 
|  |  | 
|  | /* Allocating the accumulator space needs a special case when */ | 
|  | /* DECDPUN=1 because when converting the accumulator to Units */ | 
|  | /* after the multiplication each 8-byte item becomes 9 1-byte */ | 
|  | /* units.	 Therefore iacc extra bytes are needed at the front */ | 
|  | /* (rounded up to a multiple of 8 bytes), and the uLong */ | 
|  | /* accumulator starts offset the appropriate number of units */ | 
|  | /* to the right to avoid overwrite during the unchunking. */ | 
|  | needbytes=iacc*sizeof(uLong); | 
|  | #if DECDPUN==1 | 
|  | zoff=(iacc+7)/8;	      /* items to offset by */ | 
|  | needbytes+=zoff*8; | 
|  | #endif | 
|  | if (needbytes>(Int)sizeof(zaccbuff)) { | 
|  | allocacc=(uLong *)malloc(needbytes); | 
|  | zacc=(uLong *)allocacc;} | 
|  | if (zlhi==NULL||zrhi==NULL||zacc==NULL) { | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  |  | 
|  | acc=(Unit *)zacc;	      /* -> target Unit array */ | 
|  | #if DECDPUN==1 | 
|  | zacc+=zoff;	      /* start uLong accumulator to right */ | 
|  | #endif | 
|  |  | 
|  | /* assemble the chunked copies of the left and right sides */ | 
|  | for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++) | 
|  | for (p=0, *lip=0; p<FASTDIGS && count>0; | 
|  | p+=DECDPUN, cup++, count-=DECDPUN) | 
|  | *lip+=*cup*powers[p]; | 
|  | lmsi=lip-1;     /* save -> msi */ | 
|  | for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++) | 
|  | for (p=0, *rip=0; p<FASTDIGS && count>0; | 
|  | p+=DECDPUN, cup++, count-=DECDPUN) | 
|  | *rip+=*cup*powers[p]; | 
|  | rmsi=rip-1;     /* save -> msi */ | 
|  |  | 
|  | /* zero the accumulator */ | 
|  | for (lp=zacc; lp<zacc+iacc; lp++) *lp=0; | 
|  |  | 
|  | /* Start the multiplication */ | 
|  | /* Resolving carries can dominate the cost of accumulating the */ | 
|  | /* partial products, so this is only done when necessary. */ | 
|  | /* Each uLong item in the accumulator can hold values up to */ | 
|  | /* 2**64-1, and each partial product can be as large as */ | 
|  | /* (10**FASTDIGS-1)**2.  When FASTDIGS=9, this can be added to */ | 
|  | /* itself 18.4 times in a uLong without overflowing, so during */ | 
|  | /* the main calculation resolution is carried out every 18th */ | 
|  | /* add -- every 162 digits.  Similarly, when FASTDIGS=8, the */ | 
|  | /* partial products can be added to themselves 1844.6 times in */ | 
|  | /* a uLong without overflowing, so intermediate carry */ | 
|  | /* resolution occurs only every 14752 digits.  Hence for common */ | 
|  | /* short numbers usually only the one final carry resolution */ | 
|  | /* occurs. */ | 
|  | /* (The count is set via FASTLAZY to simplify experiments to */ | 
|  | /* measure the value of this approach: a 35% improvement on a */ | 
|  | /* [34x34] multiply.) */ | 
|  | lazy=FASTLAZY;			     /* carry delay count */ | 
|  | for (rip=zrhi; rip<=rmsi; rip++) {     /* over each item in rhs */ | 
|  | lp=zacc+(rip-zrhi);		     /* where to add the lhs */ | 
|  | for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */ | 
|  | *lp+=(uLong)(*lip)*(*rip);	     /* [this should in-line] */ | 
|  | } /* lip loop */ | 
|  | lazy--; | 
|  | if (lazy>0 && rip!=rmsi) continue; | 
|  | lazy=FASTLAZY;			     /* reset delay count */ | 
|  | /* spin up the accumulator resolving overflows */ | 
|  | for (lp=zacc; lp<zacc+iacc; lp++) { | 
|  | if (*lp<FASTBASE) continue;	     /* it fits */ | 
|  | lcarry=*lp/FASTBASE;		     /* top part [slow divide] */ | 
|  | /* lcarry can exceed 2**32-1, so check again; this check */ | 
|  | /* and occasional extra divide (slow) is well worth it, as */ | 
|  | /* it allows FASTLAZY to be increased to 18 rather than 4 */ | 
|  | /* in the FASTDIGS=9 case */ | 
|  | if (lcarry<FASTBASE) carry=(uInt)lcarry;  /* [usual] */ | 
|  | else { /* two-place carry [fairly rare] */ | 
|  | uInt carry2=(uInt)(lcarry/FASTBASE);    /* top top part */ | 
|  | *(lp+2)+=carry2;			    /* add to item+2 */ | 
|  | *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */ | 
|  | carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */ | 
|  | } | 
|  | *(lp+1)+=carry;		     /* add to item above [inline] */ | 
|  | *lp-=((uLong)FASTBASE*carry);	     /* [inline] */ | 
|  | } /* carry resolution */ | 
|  | } /* rip loop */ | 
|  |  | 
|  | /* The multiplication is complete; time to convert back into */ | 
|  | /* units.	 This can be done in-place in the accumulator and in */ | 
|  | /* 32-bit operations, because carries were resolved after the */ | 
|  | /* final add.  This needs N-1 divides and multiplies for */ | 
|  | /* each item in the accumulator (which will become up to N */ | 
|  | /* units, where 2<=N<=9). */ | 
|  | for (lp=zacc, up=acc; lp<zacc+iacc; lp++) { | 
|  | uInt item=(uInt)*lp;		     /* decapitate to uInt */ | 
|  | for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) { | 
|  | uInt part=item/(DECDPUNMAX+1); | 
|  | *up=(Unit)(item-(part*(DECDPUNMAX+1))); | 
|  | item=part; | 
|  | } /* p */ | 
|  | *up=(Unit)item; up++;		     /* [final needs no division] */ | 
|  | } /* lp */ | 
|  | accunits=up-acc;			     /* count of units */ | 
|  | } | 
|  | else { /* here to use units directly, without chunking ['old code'] */ | 
|  | #endif | 
|  |  | 
|  | /* if accumulator will be too long for local storage, then allocate */ | 
|  | acc=accbuff;		   /* -> assume buffer for accumulator */ | 
|  | needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit); | 
|  | if (needbytes>(Int)sizeof(accbuff)) { | 
|  | allocacc=(Unit *)malloc(needbytes); | 
|  | if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;} | 
|  | acc=(Unit *)allocacc;		     /* use the allocated space */ | 
|  | } | 
|  |  | 
|  | /* Now the main long multiplication loop */ | 
|  | /* Unlike the equivalent in the IBM Java implementation, there */ | 
|  | /* is no advantage in calculating from msu to lsu.  So, do it */ | 
|  | /* by the book, as it were. */ | 
|  | /* Each iteration calculates ACC=ACC+MULTAND*MULT */ | 
|  | accunits=1;		   /* accumulator starts at '0' */ | 
|  | *acc=0;			   /* .. (lsu=0) */ | 
|  | shift=0;			   /* no multiplicand shift at first */ | 
|  | madlength=D2U(lhs->digits);  /* this won't change */ | 
|  | mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */ | 
|  |  | 
|  | for (mer=rhs->lsu; mer<mermsup; mer++) { | 
|  | /* Here, *mer is the next Unit in the multiplier to use */ | 
|  | /* If non-zero [optimization] add it... */ | 
|  | if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift, | 
|  | lhs->lsu, madlength, 0, | 
|  | &acc[shift], *mer) | 
|  | + shift; | 
|  | else { /* extend acc with a 0; it will be used shortly */ | 
|  | *(acc+accunits)=0;	   /* [this avoids length of <=0 later] */ | 
|  | accunits++; | 
|  | } | 
|  | /* multiply multiplicand by 10**DECDPUN for next Unit to left */ | 
|  | shift++;		   /* add this for 'logical length' */ | 
|  | } /* n */ | 
|  | #if FASTMUL | 
|  | } /* unchunked units */ | 
|  | #endif | 
|  | /* common end-path */ | 
|  | #if DECTRACE | 
|  | decDumpAr('*', acc, accunits);	     /* Show exact result */ | 
|  | #endif | 
|  |  | 
|  | /* acc now contains the exact result of the multiplication, */ | 
|  | /* possibly with a leading zero unit; build the decNumber from */ | 
|  | /* it, noting if any residue */ | 
|  | res->bits=bits;			     /* set sign */ | 
|  | res->digits=decGetDigits(acc, accunits); /* count digits exactly */ | 
|  |  | 
|  | /* There can be a 31-bit wrap in calculating the exponent. */ | 
|  | /* This can only happen if both input exponents are negative and */ | 
|  | /* both their magnitudes are large.	 If there was a wrap, set a */ | 
|  | /* safe very negative exponent, from which decFinalize() will */ | 
|  | /* raise a hard underflow shortly. */ | 
|  | exponent=lhs->exponent+rhs->exponent;    /* calculate exponent */ | 
|  | if (lhs->exponent<0 && rhs->exponent<0 && exponent>0) | 
|  | exponent=-2*DECNUMMAXE;		     /* force underflow */ | 
|  | res->exponent=exponent;		     /* OK to overwrite now */ | 
|  |  | 
|  |  | 
|  | /* Set the coefficient.  If any rounding, residue records */ | 
|  | decSetCoeff(res, set, acc, res->digits, &residue, status); | 
|  | decFinish(res, set, &residue, status);   /* final cleanup */ | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | if (allocacc!=NULL) free(allocacc);	/* drop any storage used */ | 
|  | #if DECSUBSET | 
|  | if (allocrhs!=NULL) free(allocrhs);	/* .. */ | 
|  | if (alloclhs!=NULL) free(alloclhs);	/* .. */ | 
|  | #endif | 
|  | #if FASTMUL | 
|  | if (allocrhi!=NULL) free(allocrhi);	/* .. */ | 
|  | if (alloclhi!=NULL) free(alloclhi);	/* .. */ | 
|  | #endif | 
|  | return res; | 
|  | } /* decMultiplyOp */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decExpOp -- effect exponentiation				      */ | 
|  | /*								      */ | 
|  | /*   This computes C = exp(A)					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context; note that rounding mode has no effect	      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits. status is updated but    */ | 
|  | /* not set.							      */ | 
|  | /*								      */ | 
|  | /* Restrictions:						      */ | 
|  | /*								      */ | 
|  | /*   digits, emax, and -emin in the context must be less than	      */ | 
|  | /*   2*DEC_MAX_MATH (1999998), and the rhs must be within these	      */ | 
|  | /*   bounds or a zero.	This is an internal routine, so these	      */ | 
|  | /*   restrictions are contractual and not enforced.		      */ | 
|  | /*								      */ | 
|  | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */ | 
|  | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
|  | /* error in rare cases.						      */ | 
|  | /*								      */ | 
|  | /* Finite results will always be full precision and Inexact, except   */ | 
|  | /* when A is a zero or -Infinity (giving 1 or 0 respectively).	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This approach used here is similar to the algorithm described in   */ | 
|  | /*								      */ | 
|  | /*   Variable Precision Exponential Function, T. E. Hull and	      */ | 
|  | /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */ | 
|  | /*   pp79-91, ACM, June 1986.					      */ | 
|  | /*								      */ | 
|  | /* with the main difference being that the iterations in the series   */ | 
|  | /* evaluation are terminated dynamically (which does not require the  */ | 
|  | /* extra variable-precision variables which are expensive in this     */ | 
|  | /* context).							      */ | 
|  | /*								      */ | 
|  | /* The error analysis in Hull & Abrham's paper applies except for the */ | 
|  | /* round-off error accumulation during the series evaluation.  This   */ | 
|  | /* code does not precalculate the number of iterations and so cannot  */ | 
|  | /* use Horner's scheme.	 Instead, the accumulation is done at double- */ | 
|  | /* precision, which ensures that the additions of the terms are exact */ | 
|  | /* and do not accumulate round-off (and any round-off errors in the   */ | 
|  | /* terms themselves move 'to the right' faster than they can	      */ | 
|  | /* accumulate).	 This code also extends the calculation by allowing,  */ | 
|  | /* in the spirit of other decNumber operators, the input to be more   */ | 
|  | /* precise than the result (the precision used is based on the more   */ | 
|  | /* precise of the input or requested result).			      */ | 
|  | /*								      */ | 
|  | /* Implementation notes:					      */ | 
|  | /*								      */ | 
|  | /* 1. This is separated out as decExpOp so it can be called from      */ | 
|  | /*    other Mathematical functions (notably Ln) with a wider range    */ | 
|  | /*    than normal.  In particular, it can handle the slightly wider   */ | 
|  | /*    (double) range needed by Ln (which has to be able to calculate  */ | 
|  | /*    exp(-x) where x can be the tiniest number (Ntiny).	      */ | 
|  | /*								      */ | 
|  | /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop	      */ | 
|  | /*    iterations by approximately a third with additional (although    */ | 
|  | /*    diminishing) returns as the range is reduced to even smaller    */ | 
|  | /*    fractions.  However, h (the power of 10 used to correct the     */ | 
|  | /*    result at the end, see below) must be kept <=8 as otherwise     */ | 
|  | /*    the final result cannot be computed.  Hence the leverage is a   */ | 
|  | /*    sliding value (8-h), where potentially the range is reduced     */ | 
|  | /*    more for smaller values.					      */ | 
|  | /*								      */ | 
|  | /*    The leverage that can be applied in this way is severely	      */ | 
|  | /*    limited by the cost of the raise-to-the power at the end,	      */ | 
|  | /*    which dominates when the number of iterations is small (less    */ | 
|  | /*    than ten) or when rhs is short.  As an example, the adjustment  */ | 
|  | /*    x**10,000,000 needs 31 multiplications, all but one full-width. */ | 
|  | /*								      */ | 
|  | /* 3. The restrictions (especially precision) could be raised with    */ | 
|  | /*    care, but the full decNumber range seems very hard within the   */ | 
|  | /*    32-bit limits.						      */ | 
|  | /*								      */ | 
|  | /* 4. The working precisions for the static buffers are twice the     */ | 
|  | /*    obvious size to allow for calls from decNumberPower.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber *decExpOp(decNumber *res, const decNumber *rhs, | 
|  | decContext *set, uInt *status) { | 
|  | uInt ignore=0;		   /* working status */ | 
|  | Int h;			   /* adjusted exponent for 0.xxxx */ | 
|  | Int p;			   /* working precision */ | 
|  | Int residue;			   /* rounding residue */ | 
|  | uInt needbytes;		   /* for space calculations */ | 
|  | const decNumber *x=rhs;	   /* (may point to safe copy later) */ | 
|  | decContext aset, tset, dset;	   /* working contexts */ | 
|  | Int comp;			   /* work */ | 
|  |  | 
|  | /* the argument is often copied to normalize it, so (unusually) it */ | 
|  | /* is treated like other buffers, using DECBUFFER, +1 in case */ | 
|  | /* DECBUFFER is 0 */ | 
|  | decNumber bufr[D2N(DECBUFFER*2+1)]; | 
|  | decNumber *allocrhs=NULL;	   /* non-NULL if rhs buffer allocated */ | 
|  |  | 
|  | /* the working precision will be no more than set->digits+8+1 */ | 
|  | /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */ | 
|  | /* is 0 (and twice that for the accumulator) */ | 
|  |  | 
|  | /* buffer for t, term (working precision plus) */ | 
|  | decNumber buft[D2N(DECBUFFER*2+9+1)]; | 
|  | decNumber *allocbuft=NULL;	   /* -> allocated buft, iff allocated */ | 
|  | decNumber *t=buft;		   /* term */ | 
|  | /* buffer for a, accumulator (working precision * 2), at least 9 */ | 
|  | decNumber bufa[D2N(DECBUFFER*4+18+1)]; | 
|  | decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */ | 
|  | decNumber *a=bufa;		   /* accumulator */ | 
|  | /* decNumber for the divisor term; this needs at most 9 digits */ | 
|  | /* and so can be fixed size [16 so can use standard context] */ | 
|  | decNumber bufd[D2N(16)]; | 
|  | decNumber *d=bufd;		   /* divisor */ | 
|  | decNumber numone;		   /* constant 1 */ | 
|  |  | 
|  | #if DECCHECK | 
|  | Int iterations=0;		   /* for later sanity check */ | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {					/* protect allocated storage */ | 
|  | if (SPECIALARG) {			/* handle infinities and NaNs */ | 
|  | if (decNumberIsInfinite(rhs)) {	/* an infinity */ | 
|  | if (decNumberIsNegative(rhs))	/* -Infinity -> +0 */ | 
|  | decNumberZero(res); | 
|  | else decNumberCopy(res, rhs);	/* +Infinity -> self */ | 
|  | } | 
|  | else decNaNs(res, rhs, NULL, set, status); /* a NaN */ | 
|  | break;} | 
|  |  | 
|  | if (ISZERO(rhs)) {			/* zeros -> exact 1 */ | 
|  | decNumberZero(res);		/* make clean 1 */ | 
|  | *res->lsu=1;			/* .. */ | 
|  | break;}				/* [no status to set] */ | 
|  |  | 
|  | /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */ | 
|  | /* positive and negative tiny cases which will result in inexact */ | 
|  | /* 1.  This also allows the later add-accumulate to always be */ | 
|  | /* exact (because its length will never be more than twice the */ | 
|  | /* working precision). */ | 
|  | /* The comparator (tiny) needs just one digit, so use the */ | 
|  | /* decNumber d for it (reused as the divisor, etc., below); its */ | 
|  | /* exponent is such that if x is positive it will have */ | 
|  | /* set->digits-1 zeros between the decimal point and the digit, */ | 
|  | /* which is 4, and if x is negative one more zero there as the */ | 
|  | /* more precise result will be of the form 0.9999999 rather than */ | 
|  | /* 1.0000001.  Hence, tiny will be 0.0000004  if digits=7 and x>0 */ | 
|  | /* or 0.00000004 if digits=7 and x<0.  If RHS not larger than */ | 
|  | /* this then the result will be 1.000000 */ | 
|  | decNumberZero(d);			/* clean */ | 
|  | *d->lsu=4;				/* set 4 .. */ | 
|  | d->exponent=-set->digits;		/* * 10**(-d) */ | 
|  | if (decNumberIsNegative(rhs)) d->exponent--;  /* negative case */ | 
|  | comp=decCompare(d, rhs, 1);		/* signless compare */ | 
|  | if (comp==BADINT) { | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | if (comp>=0) {			/* rhs < d */ | 
|  | Int shift=set->digits-1; | 
|  | decNumberZero(res);		/* set 1 */ | 
|  | *res->lsu=1;			/* .. */ | 
|  | res->digits=decShiftToMost(res->lsu, 1, shift); | 
|  | res->exponent=-shift;		     /* make 1.0000... */ | 
|  | *status|=DEC_Inexact | DEC_Rounded;    /* .. inexactly */ | 
|  | break;} /* tiny */ | 
|  |  | 
|  | /* set up the context to be used for calculating a, as this is */ | 
|  | /* used on both paths below */ | 
|  | decContextDefault(&aset, DEC_INIT_DECIMAL64); | 
|  | /* accumulator bounds are as requested (could underflow) */ | 
|  | aset.emax=set->emax;		/* usual bounds */ | 
|  | aset.emin=set->emin;		/* .. */ | 
|  | aset.clamp=0;			/* and no concrete format */ | 
|  |  | 
|  | /* calculate the adjusted (Hull & Abrham) exponent (where the */ | 
|  | /* decimal point is just to the left of the coefficient msd) */ | 
|  | h=rhs->exponent+rhs->digits; | 
|  | /* if h>8 then 10**h cannot be calculated safely; however, when */ | 
|  | /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */ | 
|  | /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */ | 
|  | /* overflow (or underflow to 0) is guaranteed -- so this case can */ | 
|  | /* be handled by simply forcing the appropriate excess */ | 
|  | if (h>8) {				/* overflow/underflow */ | 
|  | /* set up here so Power call below will over or underflow to */ | 
|  | /* zero; set accumulator to either 2 or 0.02 */ | 
|  | /* [stack buffer for a is always big enough for this] */ | 
|  | decNumberZero(a); | 
|  | *a->lsu=2;			/* not 1 but < exp(1) */ | 
|  | if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */ | 
|  | h=8;				/* clamp so 10**h computable */ | 
|  | p=9;				/* set a working precision */ | 
|  | } | 
|  | else {				/* h<=8 */ | 
|  | Int maxlever=(rhs->digits>8?1:0); | 
|  | /* [could/should increase this for precisions >40 or so, too] */ | 
|  |  | 
|  | /* if h is 8, cannot normalize to a lower upper limit because */ | 
|  | /* the final result will not be computable (see notes above), */ | 
|  | /* but leverage can be applied whenever h is less than 8. */ | 
|  | /* Apply as much as possible, up to a MAXLEVER digits, which */ | 
|  | /* sets the tradeoff against the cost of the later a**(10**h). */ | 
|  | /* As h is increased, the working precision below also */ | 
|  | /* increases to compensate for the "constant digits at the */ | 
|  | /* front" effect. */ | 
|  | Int lever=MINI(8-h, maxlever);	/* leverage attainable */ | 
|  | Int use=-rhs->digits-lever;	/* exponent to use for RHS */ | 
|  | h+=lever;				/* apply leverage selected */ | 
|  | if (h<0) {			/* clamp */ | 
|  | use+=h;				/* [may end up subnormal] */ | 
|  | h=0; | 
|  | } | 
|  | /* Take a copy of RHS if it needs normalization (true whenever x>=1) */ | 
|  | if (rhs->exponent!=use) { | 
|  | decNumber *newrhs=bufr;		/* assume will fit on stack */ | 
|  | needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufr)) {	/* need malloc space */ | 
|  | allocrhs=(decNumber *)malloc(needbytes); | 
|  | if (allocrhs==NULL) {		/* hopeless -- abandon */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | newrhs=allocrhs;		/* use the allocated space */ | 
|  | } | 
|  | decNumberCopy(newrhs, rhs);	/* copy to safe space */ | 
|  | newrhs->exponent=use;		/* normalize; now <1 */ | 
|  | x=newrhs;			/* ready for use */ | 
|  | /* decNumberShow(x); */ | 
|  | } | 
|  |  | 
|  | /* Now use the usual power series to evaluate exp(x).  The */ | 
|  | /* series starts as 1 + x + x^2/2 ... so prime ready for the */ | 
|  | /* third term by setting the term variable t=x, the accumulator */ | 
|  | /* a=1, and the divisor d=2. */ | 
|  |  | 
|  | /* First determine the working precision.	 From Hull & Abrham */ | 
|  | /* this is set->digits+h+2.  However, if x is 'over-precise' we */ | 
|  | /* need to allow for all its digits to potentially participate */ | 
|  | /* (consider an x where all the excess digits are 9s) so in */ | 
|  | /* this case use x->digits+h+2 */ | 
|  | p=MAXI(x->digits, set->digits)+h+2;    /* [h<=8] */ | 
|  |  | 
|  | /* a and t are variable precision, and depend on p, so space */ | 
|  | /* must be allocated for them if necessary */ | 
|  |  | 
|  | /* the accumulator needs to be able to hold 2p digits so that */ | 
|  | /* the additions on the second and subsequent iterations are */ | 
|  | /* sufficiently exact. */ | 
|  | needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufa)) {	/* need malloc space */ | 
|  | allocbufa=(decNumber *)malloc(needbytes); | 
|  | if (allocbufa==NULL) {		/* hopeless -- abandon */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | a=allocbufa;			/* use the allocated space */ | 
|  | } | 
|  | /* the term needs to be able to hold p digits (which is */ | 
|  | /* guaranteed to be larger than x->digits, so the initial copy */ | 
|  | /* is safe); it may also be used for the raise-to-power */ | 
|  | /* calculation below, which needs an extra two digits */ | 
|  | needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(buft)) {	/* need malloc space */ | 
|  | allocbuft=(decNumber *)malloc(needbytes); | 
|  | if (allocbuft==NULL) {		/* hopeless -- abandon */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | t=allocbuft;			/* use the allocated space */ | 
|  | } | 
|  |  | 
|  | decNumberCopy(t, x);		/* term=x */ | 
|  | decNumberZero(a); *a->lsu=1;	/* accumulator=1 */ | 
|  | decNumberZero(d); *d->lsu=2;	/* divisor=2 */ | 
|  | decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */ | 
|  |  | 
|  | /* set up the contexts for calculating a, t, and d */ | 
|  | decContextDefault(&tset, DEC_INIT_DECIMAL64); | 
|  | dset=tset; | 
|  | /* accumulator bounds are set above, set precision now */ | 
|  | aset.digits=p*2;			/* double */ | 
|  | /* term bounds avoid any underflow or overflow */ | 
|  | tset.digits=p; | 
|  | tset.emin=DEC_MIN_EMIN;		/* [emax is plenty] */ | 
|  | /* [dset.digits=16, etc., are sufficient] */ | 
|  |  | 
|  | /* finally ready to roll */ | 
|  | for (;;) { | 
|  | #if DECCHECK | 
|  | iterations++; | 
|  | #endif | 
|  | /* only the status from the accumulation is interesting */ | 
|  | /* [but it should remain unchanged after first add] */ | 
|  | decAddOp(a, a, t, &aset, 0, status);	       /* a=a+t */ | 
|  | decMultiplyOp(t, t, x, &tset, &ignore);	       /* t=t*x */ | 
|  | decDivideOp(t, t, d, &tset, DIVIDE, &ignore);  /* t=t/d */ | 
|  | /* the iteration ends when the term cannot affect the result, */ | 
|  | /* if rounded to p digits, which is when its value is smaller */ | 
|  | /* than the accumulator by p+1 digits.	There must also be */ | 
|  | /* full precision in a. */ | 
|  | if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1)) | 
|  | && (a->digits>=p)) break; | 
|  | decAddOp(d, d, &numone, &dset, 0, &ignore);    /* d=d+1 */ | 
|  | } /* iterate */ | 
|  |  | 
|  | #if DECCHECK | 
|  | /* just a sanity check; comment out test to show always */ | 
|  | if (iterations>p+3) | 
|  | printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", | 
|  | iterations, *status, p, x->digits); | 
|  | #endif | 
|  | } /* h<=8 */ | 
|  |  | 
|  | /* apply postconditioning: a=a**(10**h) -- this is calculated */ | 
|  | /* at a slightly higher precision than Hull & Abrham suggest */ | 
|  | if (h>0) { | 
|  | Int seenbit=0;		   /* set once a 1-bit is seen */ | 
|  | Int i;			   /* counter */ | 
|  | Int n=powers[h];		   /* always positive */ | 
|  | aset.digits=p+2;		   /* sufficient precision */ | 
|  | /* avoid the overhead and many extra digits of decNumberPower */ | 
|  | /* as all that is needed is the short 'multipliers' loop; here */ | 
|  | /* accumulate the answer into t */ | 
|  | decNumberZero(t); *t->lsu=1; /* acc=1 */ | 
|  | for (i=1;;i++){		   /* for each bit [top bit ignored] */ | 
|  | /* abandon if have had overflow or terminal underflow */ | 
|  | if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */ | 
|  | if (*status&DEC_Overflow || ISZERO(t)) break;} | 
|  | n=n<<1;			   /* move next bit to testable position */ | 
|  | if (n<0) {		   /* top bit is set */ | 
|  | seenbit=1;		   /* OK, have a significant bit */ | 
|  | decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */ | 
|  | } | 
|  | if (i==31) break;	   /* that was the last bit */ | 
|  | if (!seenbit) continue;	   /* no need to square 1 */ | 
|  | decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */ | 
|  | } /*i*/ /* 32 bits */ | 
|  | /* decNumberShow(t); */ | 
|  | a=t;			   /* and carry on using t instead of a */ | 
|  | } | 
|  |  | 
|  | /* Copy and round the result to res */ | 
|  | residue=1;				/* indicate dirt to right .. */ | 
|  | if (ISZERO(a)) residue=0;		/* .. unless underflowed to 0 */ | 
|  | aset.digits=set->digits;		/* [use default rounding] */ | 
|  | decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ | 
|  | decFinish(res, set, &residue, status);	 /* cleanup/set flags */ | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | if (allocrhs !=NULL) free(allocrhs);	/* drop any storage used */ | 
|  | if (allocbufa!=NULL) free(allocbufa); /* .. */ | 
|  | if (allocbuft!=NULL) free(allocbuft); /* .. */ | 
|  | /* [status is handled by caller] */ | 
|  | return res; | 
|  | } /* decExpOp */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Initial-estimate natural logarithm table			      */ | 
|  | /*								      */ | 
|  | /*   LNnn -- 90-entry 16-bit table for values from .10 through .99.   */ | 
|  | /*	     The result is a 4-digit encode of the coefficient (c=the */ | 
|  | /*	     top 14 bits encoding 0-9999) and a 2-digit encode of the */ | 
|  | /*	     exponent (e=the bottom 2 bits encoding 0-3)	      */ | 
|  | /*								      */ | 
|  | /*	     The resulting value is given by:			      */ | 
|  | /*								      */ | 
|  | /*	       v = -c * 10**(-e-3)				      */ | 
|  | /*								      */ | 
|  | /*	     where e and c are extracted from entry k = LNnn[x-10]    */ | 
|  | /*	     where x is truncated (NB) into the range 10 through 99,  */ | 
|  | /*	     and then c = k>>2 and e = k&3.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static const uShort LNnn[90] = { | 
|  | 9016,  8652,  8316,  8008,  7724,  7456,  7208, | 
|  | 6972,	 6748,	6540,  6340,  6148,  5968,  5792,  5628,  5464,	 5312, | 
|  | 5164,	 5020,	4884,  4748,  4620,  4496,  4376,  4256,  4144,	 4032, | 
|  | 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629, | 
|  | 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837, | 
|  | 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321, | 
|  | 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717, | 
|  | 10197,	 9685,	9177,  8677,  8185,  7697,  7213,  6737,  6269,	 5801, | 
|  | 5341,	 4889,	4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254, | 
|  | 10130,	 6046, 20055}; | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decLnOp -- effect natural logarithm				      */ | 
|  | /*								      */ | 
|  | /*   This computes C = ln(A)					      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A				      */ | 
|  | /*   rhs is A							      */ | 
|  | /*   set is the context; note that rounding mode has no effect	      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Notable cases:						      */ | 
|  | /*   A<0 -> Invalid						      */ | 
|  | /*   A=0 -> -Infinity (Exact)					      */ | 
|  | /*   A=+Infinity -> +Infinity (Exact)				      */ | 
|  | /*   A=1 exactly -> 0 (Exact)					      */ | 
|  | /*								      */ | 
|  | /* Restrictions (as for Exp):					      */ | 
|  | /*								      */ | 
|  | /*   digits, emax, and -emin in the context must be less than	      */ | 
|  | /*   DEC_MAX_MATH+11 (1000010), and the rhs must be within these      */ | 
|  | /*   bounds or a zero.	This is an internal routine, so these	      */ | 
|  | /*   restrictions are contractual and not enforced.		      */ | 
|  | /*								      */ | 
|  | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */ | 
|  | /* almost always be correctly rounded, but may be up to 1 ulp in      */ | 
|  | /* error in rare cases.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* The result is calculated using Newton's method, with each	      */ | 
|  | /* iteration calculating a' = a + x * exp(-a) - 1.  See, for example, */ | 
|  | /* Epperson 1989.						      */ | 
|  | /*								      */ | 
|  | /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */ | 
|  | /* This has to be calculated at the sum of the precision of x and the */ | 
|  | /* working precision.						      */ | 
|  | /*								      */ | 
|  | /* Implementation notes:					      */ | 
|  | /*								      */ | 
|  | /* 1. This is separated out as decLnOp so it can be called from	      */ | 
|  | /*    other Mathematical functions (e.g., Log 10) with a wider range  */ | 
|  | /*    than normal.  In particular, it can handle the slightly wider   */ | 
|  | /*    (+9+2) range needed by a power function.			      */ | 
|  | /*								      */ | 
|  | /* 2. The speed of this function is about 10x slower than exp, as     */ | 
|  | /*    it typically needs 4-6 iterations for short numbers, and the    */ | 
|  | /*    extra precision needed adds a squaring effect, twice.	      */ | 
|  | /*								      */ | 
|  | /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40,   */ | 
|  | /*    as these are common requests.  ln(10) is used by log10(x).      */ | 
|  | /*								      */ | 
|  | /* 4. An iteration might be saved by widening the LNnn table, and     */ | 
|  | /*    would certainly save at least one if it were made ten times     */ | 
|  | /*    bigger, too (for truncated fractions 0.100 through 0.999).      */ | 
|  | /*    However, for most practical evaluations, at least four or five  */ | 
|  | /*    iterations will be needed -- so this would only speed up by      */ | 
|  | /*    20-25% and that probably does not justify increasing the table  */ | 
|  | /*    size.							      */ | 
|  | /*								      */ | 
|  | /* 5. The static buffers are larger than might be expected to allow   */ | 
|  | /*    for calls from decNumberPower.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber *decLnOp(decNumber *res, const decNumber *rhs, | 
|  | decContext *set, uInt *status) { | 
|  | uInt ignore=0;		   /* working status accumulator */ | 
|  | uInt needbytes;		   /* for space calculations */ | 
|  | Int residue;			   /* rounding residue */ | 
|  | Int r;			   /* rhs=f*10**r [see below] */ | 
|  | Int p;			   /* working precision */ | 
|  | Int pp;			   /* precision for iteration */ | 
|  | Int t;			   /* work */ | 
|  |  | 
|  | /* buffers for a (accumulator, typically precision+2) and b */ | 
|  | /* (adjustment calculator, same size) */ | 
|  | decNumber bufa[D2N(DECBUFFER+12)]; | 
|  | decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */ | 
|  | decNumber *a=bufa;		   /* accumulator/work */ | 
|  | decNumber bufb[D2N(DECBUFFER*2+2)]; | 
|  | decNumber *allocbufb=NULL;	   /* -> allocated bufa, iff allocated */ | 
|  | decNumber *b=bufb;		   /* adjustment/work */ | 
|  |  | 
|  | decNumber  numone;		   /* constant 1 */ | 
|  | decNumber  cmp;		   /* work */ | 
|  | decContext aset, bset;	   /* working contexts */ | 
|  |  | 
|  | #if DECCHECK | 
|  | Int iterations=0;		   /* for later sanity check */ | 
|  | if (decCheckOperands(res, DECUNUSED, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {					/* protect allocated storage */ | 
|  | if (SPECIALARG) {			/* handle infinities and NaNs */ | 
|  | if (decNumberIsInfinite(rhs)) {	/* an infinity */ | 
|  | if (decNumberIsNegative(rhs))	/* -Infinity -> error */ | 
|  | *status|=DEC_Invalid_operation; | 
|  | else decNumberCopy(res, rhs);	/* +Infinity -> self */ | 
|  | } | 
|  | else decNaNs(res, rhs, NULL, set, status); /* a NaN */ | 
|  | break;} | 
|  |  | 
|  | if (ISZERO(rhs)) {			/* +/- zeros -> -Infinity */ | 
|  | decNumberZero(res);		/* make clean */ | 
|  | res->bits=DECINF|DECNEG;		/* set - infinity */ | 
|  | break;}				/* [no status to set] */ | 
|  |  | 
|  | /* Non-zero negatives are bad... */ | 
|  | if (decNumberIsNegative(rhs)) {	/* -x -> error */ | 
|  | *status|=DEC_Invalid_operation; | 
|  | break;} | 
|  |  | 
|  | /* Here, rhs is positive, finite, and in range */ | 
|  |  | 
|  | /* lookaside fastpath code for ln(2) and ln(10) at common lengths */ | 
|  | if (rhs->exponent==0 && set->digits<=40) { | 
|  | #if DECDPUN==1 | 
|  | if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */ | 
|  | #else | 
|  | if (rhs->lsu[0]==10 && rhs->digits==2) {			/* ln(10) */ | 
|  | #endif | 
|  | aset=*set; aset.round=DEC_ROUND_HALF_EVEN; | 
|  | #define LN10 "2.302585092994045684017991454684364207601" | 
|  | decNumberFromString(res, LN10, &aset); | 
|  | *status|=(DEC_Inexact | DEC_Rounded); /* is inexact */ | 
|  | break;} | 
|  | if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */ | 
|  | aset=*set; aset.round=DEC_ROUND_HALF_EVEN; | 
|  | #define LN2 "0.6931471805599453094172321214581765680755" | 
|  | decNumberFromString(res, LN2, &aset); | 
|  | *status|=(DEC_Inexact | DEC_Rounded); | 
|  | break;} | 
|  | } /* integer and short */ | 
|  |  | 
|  | /* Determine the working precision.	 This is normally the */ | 
|  | /* requested precision + 2, with a minimum of 9.  However, if */ | 
|  | /* the rhs is 'over-precise' then allow for all its digits to */ | 
|  | /* potentially participate (consider an rhs where all the excess */ | 
|  | /* digits are 9s) so in this case use rhs->digits+2. */ | 
|  | p=MAXI(rhs->digits, MAXI(set->digits, 7))+2; | 
|  |  | 
|  | /* Allocate space for the accumulator and the high-precision */ | 
|  | /* adjustment calculator, if necessary.  The accumulator must */ | 
|  | /* be able to hold p digits, and the adjustment up to */ | 
|  | /* rhs->digits+p digits.  They are also made big enough for 16 */ | 
|  | /* digits so that they can be used for calculating the initial */ | 
|  | /* estimate. */ | 
|  | needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufa)) {     /* need malloc space */ | 
|  | allocbufa=(decNumber *)malloc(needbytes); | 
|  | if (allocbufa==NULL) {	      /* hopeless -- abandon */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | a=allocbufa;		      /* use the allocated space */ | 
|  | } | 
|  | pp=p+rhs->digits; | 
|  | needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit); | 
|  | if (needbytes>sizeof(bufb)) {     /* need malloc space */ | 
|  | allocbufb=(decNumber *)malloc(needbytes); | 
|  | if (allocbufb==NULL) {	      /* hopeless -- abandon */ | 
|  | *status|=DEC_Insufficient_storage; | 
|  | break;} | 
|  | b=allocbufb;		      /* use the allocated space */ | 
|  | } | 
|  |  | 
|  | /* Prepare an initial estimate in acc. Calculate this by */ | 
|  | /* considering the coefficient of x to be a normalized fraction, */ | 
|  | /* f, with the decimal point at far left and multiplied by */ | 
|  | /* 10**r.  Then, rhs=f*10**r and 0.1<=f<1, and */ | 
|  | /*	 ln(x) = ln(f) + ln(10)*r */ | 
|  | /* Get the initial estimate for ln(f) from a small lookup */ | 
|  | /* table (see above) indexed by the first two digits of f, */ | 
|  | /* truncated. */ | 
|  |  | 
|  | decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */ | 
|  | r=rhs->exponent+rhs->digits;	/* 'normalised' exponent */ | 
|  | decNumberFromInt32(a, r);		/* a=r */ | 
|  | decNumberFromInt32(b, 2302585);	/* b=ln(10) (2.302585) */ | 
|  | b->exponent=-6;			/*  .. */ | 
|  | decMultiplyOp(a, a, b, &aset, &ignore);  /* a=a*b */ | 
|  | /* now get top two digits of rhs into b by simple truncate and */ | 
|  | /* force to integer */ | 
|  | residue=0;				/* (no residue) */ | 
|  | aset.digits=2; aset.round=DEC_ROUND_DOWN; | 
|  | decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */ | 
|  | b->exponent=0;			/* make integer */ | 
|  | t=decGetInt(b);			/* [cannot fail] */ | 
|  | if (t<10) t=X10(t);			/* adjust single-digit b */ | 
|  | t=LNnn[t-10];			/* look up ln(b) */ | 
|  | decNumberFromInt32(b, t>>2);	/* b=ln(b) coefficient */ | 
|  | b->exponent=-(t&3)-3;		/* set exponent */ | 
|  | b->bits=DECNEG;			/* ln(0.10)->ln(0.99) always -ve */ | 
|  | aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */ | 
|  | decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */ | 
|  | /* the initial estimate is now in a, with up to 4 digits correct. */ | 
|  | /* When rhs is at or near Nmax the estimate will be low, so we */ | 
|  | /* will approach it from below, avoiding overflow when calling exp. */ | 
|  |  | 
|  | decNumberZero(&numone); *numone.lsu=1;   /* constant 1 for adjustment */ | 
|  |  | 
|  | /* accumulator bounds are as requested (could underflow, but */ | 
|  | /* cannot overflow) */ | 
|  | aset.emax=set->emax; | 
|  | aset.emin=set->emin; | 
|  | aset.clamp=0;			/* no concrete format */ | 
|  | /* set up a context to be used for the multiply and subtract */ | 
|  | bset=aset; | 
|  | bset.emax=DEC_MAX_MATH*2;		/* use double bounds for the */ | 
|  | bset.emin=-DEC_MAX_MATH*2;		/* adjustment calculation */ | 
|  | /* [see decExpOp call below] */ | 
|  | /* for each iteration double the number of digits to calculate, */ | 
|  | /* up to a maximum of p */ | 
|  | pp=9;				/* initial precision */ | 
|  | /* [initially 9 as then the sequence starts 7+2, 16+2, and */ | 
|  | /* 34+2, which is ideal for standard-sized numbers] */ | 
|  | aset.digits=pp;			/* working context */ | 
|  | bset.digits=pp+rhs->digits;		/* wider context */ | 
|  | for (;;) {				/* iterate */ | 
|  | #if DECCHECK | 
|  | iterations++; | 
|  | if (iterations>24) break;		/* consider 9 * 2**24 */ | 
|  | #endif | 
|  | /* calculate the adjustment (exp(-a)*x-1) into b.	 This is a */ | 
|  | /* catastrophic subtraction but it really is the difference */ | 
|  | /* from 1 that is of interest. */ | 
|  | /* Use the internal entry point to Exp as it allows the double */ | 
|  | /* range for calculating exp(-a) when a is the tiniest subnormal. */ | 
|  | a->bits^=DECNEG;			/* make -a */ | 
|  | decExpOp(b, a, &bset, &ignore);	/* b=exp(-a) */ | 
|  | a->bits^=DECNEG;			/* restore sign of a */ | 
|  | /* now multiply by rhs and subtract 1, at the wider precision */ | 
|  | decMultiplyOp(b, b, rhs, &bset, &ignore);	       /* b=b*rhs */ | 
|  | decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */ | 
|  |  | 
|  | /* the iteration ends when the adjustment cannot affect the */ | 
|  | /* result by >=0.5 ulp (at the requested digits), which */ | 
|  | /* is when its value is smaller than the accumulator by */ | 
|  | /* set->digits+1 digits (or it is zero) -- this is a looser */ | 
|  | /* requirement than for Exp because all that happens to the */ | 
|  | /* accumulator after this is the final rounding (but note that */ | 
|  | /* there must also be full precision in a, or a=0). */ | 
|  |  | 
|  | if (decNumberIsZero(b) || | 
|  | (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { | 
|  | if (a->digits==p) break; | 
|  | if (decNumberIsZero(a)) { | 
|  | decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */ | 
|  | if (cmp.lsu[0]==0) a->exponent=0;	       /* yes, exact 0 */ | 
|  | else *status|=(DEC_Inexact | DEC_Rounded);  /* no, inexact */ | 
|  | break; | 
|  | } | 
|  | /* force padding if adjustment has gone to 0 before full length */ | 
|  | if (decNumberIsZero(b)) b->exponent=a->exponent-p; | 
|  | } | 
|  |  | 
|  | /* not done yet ... */ | 
|  | decAddOp(a, a, b, &aset, 0, &ignore);  /* a=a+b for next estimate */ | 
|  | if (pp==p) continue;		     /* precision is at maximum */ | 
|  | /* lengthen the next calculation */ | 
|  | pp=pp*2;				     /* double precision */ | 
|  | if (pp>p) pp=p;			     /* clamp to maximum */ | 
|  | aset.digits=pp;			     /* working context */ | 
|  | bset.digits=pp+rhs->digits;	     /* wider context */ | 
|  | } /* Newton's iteration */ | 
|  |  | 
|  | #if DECCHECK | 
|  | /* just a sanity check; remove the test to show always */ | 
|  | if (iterations>24) | 
|  | printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", | 
|  | iterations, *status, p, rhs->digits); | 
|  | #endif | 
|  |  | 
|  | /* Copy and round the result to res */ | 
|  | residue=1;				/* indicate dirt to right */ | 
|  | if (ISZERO(a)) residue=0;		/* .. unless underflowed to 0 */ | 
|  | aset.digits=set->digits;		/* [use default rounding] */ | 
|  | decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */ | 
|  | decFinish(res, set, &residue, status);	 /* cleanup/set flags */ | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */ | 
|  | if (allocbufb!=NULL) free(allocbufb); /* .. */ | 
|  | /* [status is handled by caller] */ | 
|  | return res; | 
|  | } /* decLnOp */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decQuantizeOp  -- force exponent to requested value		      */ | 
|  | /*								      */ | 
|  | /*   This computes C = op(A, B), where op adjusts the coefficient     */ | 
|  | /*   of C (by rounding or shifting) such that the exponent (-scale)   */ | 
|  | /*   of C has the value B or matches the exponent of B.		      */ | 
|  | /*   The numerical value of C will equal A, except for the effects of */ | 
|  | /*   any rounding that occurred.				      */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A or B			      */ | 
|  | /*   lhs is A, the number to adjust				      */ | 
|  | /*   rhs is B, the requested exponent				      */ | 
|  | /*   set is the context						      */ | 
|  | /*   quant is 1 for quantize or 0 for rescale			      */ | 
|  | /*   status is the status accumulator (this can be called without     */ | 
|  | /*	    risk of control loss)				      */ | 
|  | /*								      */ | 
|  | /* C must have space for set->digits digits.			      */ | 
|  | /*								      */ | 
|  | /* Unless there is an error or the result is infinite, the exponent   */ | 
|  | /* after the operation is guaranteed to be that requested.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set, | 
|  | Flag quant, uInt *status) { | 
|  | #if DECSUBSET | 
|  | decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */ | 
|  | decNumber *allocrhs=NULL;	   /* .., rhs */ | 
|  | #endif | 
|  | const decNumber *inrhs=rhs;	   /* save original rhs */ | 
|  | Int	reqdigits=set->digits;	   /* requested DIGITS */ | 
|  | Int	reqexp;			   /* requested exponent [-scale] */ | 
|  | Int	residue=0;		   /* rounding residue */ | 
|  | Int	etiny=set->emin-(reqdigits-1); | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {				   /* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operands and set lostDigits status, as needed */ | 
|  | if (lhs->digits>reqdigits) { | 
|  | alloclhs=decRoundOperand(lhs, set, status); | 
|  | if (alloclhs==NULL) break; | 
|  | lhs=alloclhs; | 
|  | } | 
|  | if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */ | 
|  | allocrhs=decRoundOperand(rhs, set, status); | 
|  | if (allocrhs==NULL) break; | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* [following code does not require input rounding] */ | 
|  |  | 
|  | /* Handle special values */ | 
|  | if (SPECIALARGS) { | 
|  | /* NaNs get usual processing */ | 
|  | if (SPECIALARGS & (DECSNAN | DECNAN)) | 
|  | decNaNs(res, lhs, rhs, set, status); | 
|  | /* one infinity but not both is bad */ | 
|  | else if ((lhs->bits ^ rhs->bits) & DECINF) | 
|  | *status|=DEC_Invalid_operation; | 
|  | /* both infinity: return lhs */ | 
|  | else decNumberCopy(res, lhs);	     /* [nop if in place] */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* set requested exponent */ | 
|  | if (quant) reqexp=inrhs->exponent;	/* quantize -- match exponents */ | 
|  | else {				/* rescale -- use value of rhs */ | 
|  | /* Original rhs must be an integer that fits and is in range, */ | 
|  | /* which could be from -1999999997 to +999999999, thanks to */ | 
|  | /* subnormals */ | 
|  | reqexp=decGetInt(inrhs);		     /* [cannot fail] */ | 
|  | } | 
|  |  | 
|  | #if DECSUBSET | 
|  | if (!set->extended) etiny=set->emin;     /* no subnormals */ | 
|  | #endif | 
|  |  | 
|  | if (reqexp==BADINT			     /* bad (rescale only) or .. */ | 
|  | || reqexp==BIGODD || reqexp==BIGEVEN    /* very big (ditto) or .. */ | 
|  | || (reqexp<etiny)			     /* < lowest */ | 
|  | || (reqexp>set->emax)) {		     /* > emax */ | 
|  | *status|=DEC_Invalid_operation; | 
|  | break;} | 
|  |  | 
|  | /* the RHS has been processed, so it can be overwritten now if necessary */ | 
|  | if (ISZERO(lhs)) {			     /* zero coefficient unchanged */ | 
|  | decNumberCopy(res, lhs);		     /* [nop if in place] */ | 
|  | res->exponent=reqexp;		     /* .. just set exponent */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) res->bits=0;	     /* subset specification; no -0 */ | 
|  | #endif | 
|  | } | 
|  | else {				     /* non-zero lhs */ | 
|  | Int adjust=reqexp-lhs->exponent;	     /* digit adjustment needed */ | 
|  | /* if adjusted coefficient will definitely not fit, give up now */ | 
|  | if ((lhs->digits-adjust)>reqdigits) { | 
|  | *status|=DEC_Invalid_operation; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (adjust>0) {			     /* increasing exponent */ | 
|  | /* this will decrease the length of the coefficient by adjust */ | 
|  | /* digits, and must round as it does so */ | 
|  | decContext workset;		     /* work */ | 
|  | workset=*set;			     /* clone rounding, etc. */ | 
|  | workset.digits=lhs->digits-adjust;   /* set requested length */ | 
|  | /* [note that the latter can be <1, here] */ | 
|  | decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */ | 
|  | decApplyRound(res, &workset, residue, status);	  /* .. and round */ | 
|  | residue=0;					  /* [used] */ | 
|  | /* If just rounded a 999s case, exponent will be off by one; */ | 
|  | /* adjust back (after checking space), if so. */ | 
|  | if (res->exponent>reqexp) { | 
|  | /* re-check needed, e.g., for quantize(0.9999, 0.001) under */ | 
|  | /* set->digits==3 */ | 
|  | if (res->digits==reqdigits) {	     /* cannot shift by 1 */ | 
|  | *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */ | 
|  | *status|=DEC_Invalid_operation; | 
|  | break; | 
|  | } | 
|  | res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */ | 
|  | res->exponent--;		     /* (re)adjust the exponent. */ | 
|  | } | 
|  | #if DECSUBSET | 
|  | if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */ | 
|  | #endif | 
|  | } /* increase */ | 
|  | else /* adjust<=0 */ {		     /* decreasing or = exponent */ | 
|  | /* this will increase the length of the coefficient by -adjust */ | 
|  | /* digits, by adding zero or more trailing zeros; this is */ | 
|  | /* already checked for fit, above */ | 
|  | decNumberCopy(res, lhs);	     /* [it will fit] */ | 
|  | /* if padding needed (adjust<0), add it now... */ | 
|  | if (adjust<0) { | 
|  | res->digits=decShiftToMost(res->lsu, res->digits, -adjust); | 
|  | res->exponent+=adjust;	     /* adjust the exponent */ | 
|  | } | 
|  | } /* decrease */ | 
|  | } /* non-zero */ | 
|  |  | 
|  | /* Check for overflow [do not use Finalize in this case, as an */ | 
|  | /* overflow here is a "don't fit" situation] */ | 
|  | if (res->exponent>set->emax-res->digits+1) {  /* too big */ | 
|  | *status|=DEC_Invalid_operation; | 
|  | break; | 
|  | } | 
|  | else { | 
|  | decFinalize(res, set, &residue, status);	  /* set subnormal flags */ | 
|  | *status&=~DEC_Underflow;		/* suppress Underflow [754r] */ | 
|  | } | 
|  | } while(0);				/* end protected */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | if (allocrhs!=NULL) free(allocrhs);	/* drop any storage used */ | 
|  | if (alloclhs!=NULL) free(alloclhs);	/* .. */ | 
|  | #endif | 
|  | return res; | 
|  | } /* decQuantizeOp */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decCompareOp -- compare, min, or max two Numbers		      */ | 
|  | /*								      */ | 
|  | /*   This computes C = A ? B and carries out one of four operations:  */ | 
|  | /*     COMPARE	  -- returns the signum (as a number) giving the      */ | 
|  | /*		     result of a comparison unless one or both	      */ | 
|  | /*		     operands is a NaN (in which case a NaN results)  */ | 
|  | /*     COMPSIG	  -- as COMPARE except that a quiet NaN raises	      */ | 
|  | /*		     Invalid operation.				      */ | 
|  | /*     COMPMAX	  -- returns the larger of the operands, using the    */ | 
|  | /*		     754r maxnum operation			      */ | 
|  | /*     COMPMAXMAG -- ditto, comparing absolute values		      */ | 
|  | /*     COMPMIN	  -- the 754r minnum operation			      */ | 
|  | /*     COMPMINMAG -- ditto, comparing absolute values		      */ | 
|  | /*     COMTOTAL	  -- returns the signum (as a number) giving the      */ | 
|  | /*		     result of a comparison using 754r total ordering */ | 
|  | /*								      */ | 
|  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */ | 
|  | /*   lhs is A							      */ | 
|  | /*   rhs is B							      */ | 
|  | /*   set is the context						      */ | 
|  | /*   op	 is the operation flag					      */ | 
|  | /*   status is the usual accumulator				      */ | 
|  | /*								      */ | 
|  | /* C must have space for one digit for COMPARE or set->digits for     */ | 
|  | /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* The emphasis here is on speed for common cases, and avoiding	      */ | 
|  | /* coefficient comparison if possible.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber *decCompareOp(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set, | 
|  | Flag op, uInt *status) { | 
|  | #if DECSUBSET | 
|  | decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */ | 
|  | decNumber *allocrhs=NULL;	   /* .., rhs */ | 
|  | #endif | 
|  | Int	result=0;		   /* default result value */ | 
|  | uByte merged;			   /* work */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(res, lhs, rhs, set)) return res; | 
|  | #endif | 
|  |  | 
|  | do {				   /* protect allocated storage */ | 
|  | #if DECSUBSET | 
|  | if (!set->extended) { | 
|  | /* reduce operands and set lostDigits status, as needed */ | 
|  | if (lhs->digits>set->digits) { | 
|  | alloclhs=decRoundOperand(lhs, set, status); | 
|  | if (alloclhs==NULL) {result=BADINT; break;} | 
|  | lhs=alloclhs; | 
|  | } | 
|  | if (rhs->digits>set->digits) { | 
|  | allocrhs=decRoundOperand(rhs, set, status); | 
|  | if (allocrhs==NULL) {result=BADINT; break;} | 
|  | rhs=allocrhs; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* [following code does not require input rounding] */ | 
|  |  | 
|  | /* If total ordering then handle differing signs 'up front' */ | 
|  | if (op==COMPTOTAL) {		/* total ordering */ | 
|  | if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) { | 
|  | result=-1; | 
|  | break; | 
|  | } | 
|  | if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) { | 
|  | result=+1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* handle NaNs specially; let infinities drop through */ | 
|  | /* This assumes sNaN (even just one) leads to NaN. */ | 
|  | merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN); | 
|  | if (merged) {			/* a NaN bit set */ | 
|  | if (op==COMPARE);			/* result will be NaN */ | 
|  | else if (op==COMPSIG)		/* treat qNaN as sNaN */ | 
|  | *status|=DEC_Invalid_operation | DEC_sNaN; | 
|  | else if (op==COMPTOTAL) {	/* total ordering, always finite */ | 
|  | /* signs are known to be the same; compute the ordering here */ | 
|  | /* as if the signs are both positive, then invert for negatives */ | 
|  | if (!decNumberIsNaN(lhs)) result=-1; | 
|  | else if (!decNumberIsNaN(rhs)) result=+1; | 
|  | /* here if both NaNs */ | 
|  | else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1; | 
|  | else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1; | 
|  | else { /* both NaN or both sNaN */ | 
|  | /* now it just depends on the payload */ | 
|  | result=decUnitCompare(lhs->lsu, D2U(lhs->digits), | 
|  | rhs->lsu, D2U(rhs->digits), 0); | 
|  | /* [Error not possible, as these are 'aligned'] */ | 
|  | } /* both same NaNs */ | 
|  | if (decNumberIsNegative(lhs)) result=-result; | 
|  | break; | 
|  | } /* total order */ | 
|  |  | 
|  | else if (merged & DECSNAN);	     /* sNaN -> qNaN */ | 
|  | else { /* here if MIN or MAX and one or two quiet NaNs */ | 
|  | /* min or max -- 754r rules ignore single NaN */ | 
|  | if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) { | 
|  | /* just one NaN; force choice to be the non-NaN operand */ | 
|  | op=COMPMAX; | 
|  | if (lhs->bits & DECNAN) result=-1; /* pick rhs */ | 
|  | else result=+1; /* pick lhs */ | 
|  | break; | 
|  | } | 
|  | } /* max or min */ | 
|  | op=COMPNAN;			     /* use special path */ | 
|  | decNaNs(res, lhs, rhs, set, status);   /* propagate NaN */ | 
|  | break; | 
|  | } | 
|  | /* have numbers */ | 
|  | if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1); | 
|  | else result=decCompare(lhs, rhs, 0);    /* sign matters */ | 
|  | } while(0);				     /* end protected */ | 
|  |  | 
|  | if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */ | 
|  | else { | 
|  | if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */ | 
|  | if (op==COMPTOTAL && result==0) { | 
|  | /* operands are numerically equal or same NaN (and same sign, */ | 
|  | /* tested first); if identical, leave result 0 */ | 
|  | if (lhs->exponent!=rhs->exponent) { | 
|  | if (lhs->exponent<rhs->exponent) result=-1; | 
|  | else result=+1; | 
|  | if (decNumberIsNegative(lhs)) result=-result; | 
|  | } /* lexp!=rexp */ | 
|  | } /* total-order by exponent */ | 
|  | decNumberZero(res);		/* [always a valid result] */ | 
|  | if (result!=0) {			/* must be -1 or +1 */ | 
|  | *res->lsu=1; | 
|  | if (result<0) res->bits=DECNEG; | 
|  | } | 
|  | } | 
|  | else if (op==COMPNAN);		/* special, drop through */ | 
|  | else {				/* MAX or MIN, non-NaN result */ | 
|  | Int residue=0;			/* rounding accumulator */ | 
|  | /* choose the operand for the result */ | 
|  | const decNumber *choice; | 
|  | if (result==0) { /* operands are numerically equal */ | 
|  | /* choose according to sign then exponent (see 754r) */ | 
|  | uByte slhs=(lhs->bits & DECNEG); | 
|  | uByte srhs=(rhs->bits & DECNEG); | 
|  | #if DECSUBSET | 
|  | if (!set->extended) {		/* subset: force left-hand */ | 
|  | op=COMPMAX; | 
|  | result=+1; | 
|  | } | 
|  | else | 
|  | #endif | 
|  | if (slhs!=srhs) {	   /* signs differ */ | 
|  | if (slhs) result=-1;	   /* rhs is max */ | 
|  | else result=+1;	   /* lhs is max */ | 
|  | } | 
|  | else if (slhs && srhs) {  /* both negative */ | 
|  | if (lhs->exponent<rhs->exponent) result=+1; | 
|  | else result=-1; | 
|  | /* [if equal, use lhs, technically identical] */ | 
|  | } | 
|  | else {			   /* both positive */ | 
|  | if (lhs->exponent>rhs->exponent) result=+1; | 
|  | else result=-1; | 
|  | /* [ditto] */ | 
|  | } | 
|  | } /* numerically equal */ | 
|  | /* here result will be non-0; reverse if looking for MIN */ | 
|  | if (op==COMPMIN || op==COMPMINMAG) result=-result; | 
|  | choice=(result>0 ? lhs : rhs);	/* choose */ | 
|  | /* copy chosen to result, rounding if need be */ | 
|  | decCopyFit(res, choice, set, &residue, status); | 
|  | decFinish(res, set, &residue, status); | 
|  | } | 
|  | } | 
|  | #if DECSUBSET | 
|  | if (allocrhs!=NULL) free(allocrhs);	/* free any storage used */ | 
|  | if (alloclhs!=NULL) free(alloclhs);	/* .. */ | 
|  | #endif | 
|  | return res; | 
|  | } /* decCompareOp */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decCompare -- compare two decNumbers by numerical value	      */ | 
|  | /*								      */ | 
|  | /*  This routine compares A ? B without altering them.		      */ | 
|  | /*								      */ | 
|  | /*  Arg1 is A, a decNumber which is not a NaN			      */ | 
|  | /*  Arg2 is B, a decNumber which is not a NaN			      */ | 
|  | /*  Arg3 is 1 for a sign-independent compare, 0 otherwise	      */ | 
|  | /*								      */ | 
|  | /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */ | 
|  | /*  (the only possible failure is an allocation error)		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Int decCompare(const decNumber *lhs, const decNumber *rhs, | 
|  | Flag abs) { | 
|  | Int	result;			   /* result value */ | 
|  | Int	sigr;			   /* rhs signum */ | 
|  | Int	compare;		   /* work */ | 
|  |  | 
|  | result=1;				     /* assume signum(lhs) */ | 
|  | if (ISZERO(lhs)) result=0; | 
|  | if (abs) { | 
|  | if (ISZERO(rhs)) return result;	     /* LHS wins or both 0 */ | 
|  | /* RHS is non-zero */ | 
|  | if (result==0) return -1;		     /* LHS is 0; RHS wins */ | 
|  | /* [here, both non-zero, result=1] */ | 
|  | } | 
|  | else {				     /* signs matter */ | 
|  | if (result && decNumberIsNegative(lhs)) result=-1; | 
|  | sigr=1;				     /* compute signum(rhs) */ | 
|  | if (ISZERO(rhs)) sigr=0; | 
|  | else if (decNumberIsNegative(rhs)) sigr=-1; | 
|  | if (result > sigr) return +1;	     /* L > R, return 1 */ | 
|  | if (result < sigr) return -1;	     /* L < R, return -1 */ | 
|  | if (result==0) return 0;		       /* both 0 */ | 
|  | } | 
|  |  | 
|  | /* signums are the same; both are non-zero */ | 
|  | if ((lhs->bits | rhs->bits) & DECINF) {    /* one or more infinities */ | 
|  | if (decNumberIsInfinite(rhs)) { | 
|  | if (decNumberIsInfinite(lhs)) result=0;/* both infinite */ | 
|  | else result=-result;		     /* only rhs infinite */ | 
|  | } | 
|  | return result; | 
|  | } | 
|  | /* must compare the coefficients, allowing for exponents */ | 
|  | if (lhs->exponent>rhs->exponent) {	     /* LHS exponent larger */ | 
|  | /* swap sides, and sign */ | 
|  | const decNumber *temp=lhs; | 
|  | lhs=rhs; | 
|  | rhs=temp; | 
|  | result=-result; | 
|  | } | 
|  | compare=decUnitCompare(lhs->lsu, D2U(lhs->digits), | 
|  | rhs->lsu, D2U(rhs->digits), | 
|  | rhs->exponent-lhs->exponent); | 
|  | if (compare!=BADINT) compare*=result;	     /* comparison succeeded */ | 
|  | return compare; | 
|  | } /* decCompare */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decUnitCompare -- compare two >=0 integers in Unit arrays	      */ | 
|  | /*								      */ | 
|  | /*  This routine compares A ? B*10**E where A and B are unit arrays   */ | 
|  | /*  A is a plain integer					      */ | 
|  | /*  B has an exponent of E (which must be non-negative)		      */ | 
|  | /*								      */ | 
|  | /*  Arg1 is A first Unit (lsu)					      */ | 
|  | /*  Arg2 is A length in Units					      */ | 
|  | /*  Arg3 is B first Unit (lsu)					      */ | 
|  | /*  Arg4 is B length in Units					      */ | 
|  | /*  Arg5 is E (0 if the units are aligned)			      */ | 
|  | /*								      */ | 
|  | /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */ | 
|  | /*  (the only possible failure is an allocation error, which can      */ | 
|  | /*  only occur if E!=0)						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Int decUnitCompare(const Unit *a, Int alength, | 
|  | const Unit *b, Int blength, Int exp) { | 
|  | Unit	*acc;			   /* accumulator for result */ | 
|  | Unit	accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */ | 
|  | Unit	*allocacc=NULL;		   /* -> allocated acc buffer, iff allocated */ | 
|  | Int	accunits, need;		   /* units in use or needed for acc */ | 
|  | const Unit *l, *r, *u;	   /* work */ | 
|  | Int	expunits, exprem, result;  /* .. */ | 
|  |  | 
|  | if (exp==0) {			   /* aligned; fastpath */ | 
|  | if (alength>blength) return 1; | 
|  | if (alength<blength) return -1; | 
|  | /* same number of units in both -- need unit-by-unit compare */ | 
|  | l=a+alength-1; | 
|  | r=b+alength-1; | 
|  | for (;l>=a; l--, r--) { | 
|  | if (*l>*r) return 1; | 
|  | if (*l<*r) return -1; | 
|  | } | 
|  | return 0;			   /* all units match */ | 
|  | } /* aligned */ | 
|  |  | 
|  | /* Unaligned.	 If one is >1 unit longer than the other, padded */ | 
|  | /* approximately, then can return easily */ | 
|  | if (alength>blength+(Int)D2U(exp)) return 1; | 
|  | if (alength+1<blength+(Int)D2U(exp)) return -1; | 
|  |  | 
|  | /* Need to do a real subtract.  For this, a result buffer is needed */ | 
|  | /* even though only the sign is of interest.	Its length needs */ | 
|  | /* to be the larger of alength and padded blength, +2 */ | 
|  | need=blength+D2U(exp);		/* maximum real length of B */ | 
|  | if (need<alength) need=alength; | 
|  | need+=2; | 
|  | acc=accbuff;				/* assume use local buffer */ | 
|  | if (need*sizeof(Unit)>sizeof(accbuff)) { | 
|  | allocacc=(Unit *)malloc(need*sizeof(Unit)); | 
|  | if (allocacc==NULL) return BADINT;	/* hopeless -- abandon */ | 
|  | acc=allocacc; | 
|  | } | 
|  | /* Calculate units and remainder from exponent. */ | 
|  | expunits=exp/DECDPUN; | 
|  | exprem=exp%DECDPUN; | 
|  | /* subtract [A+B*(-m)] */ | 
|  | accunits=decUnitAddSub(a, alength, b, blength, expunits, acc, | 
|  | -(Int)powers[exprem]); | 
|  | /* [UnitAddSub result may have leading zeros, even on zero] */ | 
|  | if (accunits<0) result=-1;		/* negative result */ | 
|  | else {				/* non-negative result */ | 
|  | /* check units of the result before freeing any storage */ | 
|  | for (u=acc; u<acc+accunits-1 && *u==0;) u++; | 
|  | result=(*u==0 ? 0 : +1); | 
|  | } | 
|  | /* clean up and return the result */ | 
|  | if (allocacc!=NULL) free(allocacc);	/* drop any storage used */ | 
|  | return result; | 
|  | } /* decUnitCompare */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays   */ | 
|  | /*								      */ | 
|  | /*  This routine performs the calculation:			      */ | 
|  | /*								      */ | 
|  | /*  C=A+(B*M)							      */ | 
|  | /*								      */ | 
|  | /*  Where M is in the range -DECDPUNMAX through +DECDPUNMAX.	      */ | 
|  | /*								      */ | 
|  | /*  A may be shorter or longer than B.				      */ | 
|  | /*								      */ | 
|  | /*  Leading zeros are not removed after a calculation.	The result is */ | 
|  | /*  either the same length as the longer of A and B (adding any	      */ | 
|  | /*  shift), or one Unit longer than that (if a Unit carry occurred).  */ | 
|  | /*								      */ | 
|  | /*  A and B content are not altered unless C is also A or B.	      */ | 
|  | /*  C may be the same array as A or B, but only if no zero padding is */ | 
|  | /*  requested (that is, C may be B only if bshift==0).		      */ | 
|  | /*  C is filled from the lsu; only those units necessary to complete  */ | 
|  | /*  the calculation are referenced.				      */ | 
|  | /*								      */ | 
|  | /*  Arg1 is A first Unit (lsu)					      */ | 
|  | /*  Arg2 is A length in Units					      */ | 
|  | /*  Arg3 is B first Unit (lsu)					      */ | 
|  | /*  Arg4 is B length in Units					      */ | 
|  | /*  Arg5 is B shift in Units  (>=0; pads with 0 units if positive)    */ | 
|  | /*  Arg6 is C first Unit (lsu)					      */ | 
|  | /*  Arg7 is M, the multiplier					      */ | 
|  | /*								      */ | 
|  | /*  returns the count of Units written to C, which will be non-zero   */ | 
|  | /*  and negated if the result is negative.  That is, the sign of the  */ | 
|  | /*  returned Int is the sign of the result (positive for zero) and    */ | 
|  | /*  the absolute value of the Int is the count of Units.	      */ | 
|  | /*								      */ | 
|  | /*  It is the caller's responsibility to make sure that C size is     */ | 
|  | /*  safe, allowing space if necessary for a one-Unit carry.	      */ | 
|  | /*								      */ | 
|  | /*  This routine is severely performance-critical; *any* change here  */ | 
|  | /*  must be measured (timed) to assure no performance degradation.    */ | 
|  | /*  In particular, trickery here tends to be counter-productive, as   */ | 
|  | /*  increased complexity of code hurts register optimizations on      */ | 
|  | /*  register-poor architectures.  Avoiding divisions is nearly	      */ | 
|  | /*  always a Good Idea, however.				      */ | 
|  | /*								      */ | 
|  | /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark  */ | 
|  | /* (IBM Warwick, UK) for some of the ideas used in this routine.      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Int decUnitAddSub(const Unit *a, Int alength, | 
|  | const Unit *b, Int blength, Int bshift, | 
|  | Unit *c, Int m) { | 
|  | const Unit *alsu=a;		   /* A lsu [need to remember it] */ | 
|  | Unit *clsu=c;			   /* C ditto */ | 
|  | Unit *minC;			   /* low water mark for C */ | 
|  | Unit *maxC;			   /* high water mark for C */ | 
|  | eInt carry=0;			   /* carry integer (could be Long) */ | 
|  | Int  add;			   /* work */ | 
|  | #if DECDPUN<=4		   /* myriadal, millenary, etc. */ | 
|  | Int  est;			   /* estimated quotient */ | 
|  | #endif | 
|  |  | 
|  | #if DECTRACE | 
|  | if (alength<1 || blength<1) | 
|  | printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); | 
|  | #endif | 
|  |  | 
|  | maxC=c+alength;		   /* A is usually the longer */ | 
|  | minC=c+blength;		   /* .. and B the shorter */ | 
|  | if (bshift!=0) {		   /* B is shifted; low As copy across */ | 
|  | minC+=bshift; | 
|  | /* if in place [common], skip copy unless there's a gap [rare] */ | 
|  | if (a==c && bshift<=alength) { | 
|  | c+=bshift; | 
|  | a+=bshift; | 
|  | } | 
|  | else for (; c<clsu+bshift; a++, c++) {  /* copy needed */ | 
|  | if (a<alsu+alength) *c=*a; | 
|  | else *c=0; | 
|  | } | 
|  | } | 
|  | if (minC>maxC) { /* swap */ | 
|  | Unit *hold=minC; | 
|  | minC=maxC; | 
|  | maxC=hold; | 
|  | } | 
|  |  | 
|  | /* For speed, do the addition as two loops; the first where both A */ | 
|  | /* and B contribute, and the second (if necessary) where only one or */ | 
|  | /* other of the numbers contribute. */ | 
|  | /* Carry handling is the same (i.e., duplicated) in each case. */ | 
|  | for (; c<minC; c++) { | 
|  | carry+=*a; | 
|  | a++; | 
|  | carry+=((eInt)*b)*m;		/* [special-casing m=1/-1 */ | 
|  | b++;				/* here is not a win] */ | 
|  | /* here carry is new Unit of digits; it could be +ve or -ve */ | 
|  | if ((ueInt)carry<=DECDPUNMAX) {	/* fastpath 0-DECDPUNMAX */ | 
|  | *c=(Unit)carry; | 
|  | carry=0; | 
|  | continue; | 
|  | } | 
|  | #if DECDPUN==4			     /* use divide-by-multiply */ | 
|  | if (carry>=0) { | 
|  | est=(((ueInt)carry>>11)*53687)>>18; | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ | 
|  | carry=est;			     /* likely quotient [89%] */ | 
|  | if (*c<DECDPUNMAX+1) continue;	     /* estimate was correct */ | 
|  | carry++; | 
|  | *c-=DECDPUNMAX+1; | 
|  | continue; | 
|  | } | 
|  | /* negative case */ | 
|  | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ | 
|  | est=(((ueInt)carry>>11)*53687)>>18; | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
|  | carry=est-(DECDPUNMAX+1);		     /* correctly negative */ | 
|  | if (*c<DECDPUNMAX+1) continue;	     /* was OK */ | 
|  | carry++; | 
|  | *c-=DECDPUNMAX+1; | 
|  | #elif DECDPUN==3 | 
|  | if (carry>=0) { | 
|  | est=(((ueInt)carry>>3)*16777)>>21; | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ | 
|  | carry=est;			     /* likely quotient [99%] */ | 
|  | if (*c<DECDPUNMAX+1) continue;	     /* estimate was correct */ | 
|  | carry++; | 
|  | *c-=DECDPUNMAX+1; | 
|  | continue; | 
|  | } | 
|  | /* negative case */ | 
|  | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ | 
|  | est=(((ueInt)carry>>3)*16777)>>21; | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
|  | carry=est-(DECDPUNMAX+1);		     /* correctly negative */ | 
|  | if (*c<DECDPUNMAX+1) continue;	     /* was OK */ | 
|  | carry++; | 
|  | *c-=DECDPUNMAX+1; | 
|  | #elif DECDPUN<=2 | 
|  | /* Can use QUOT10 as carry <= 4 digits */ | 
|  | if (carry>=0) { | 
|  | est=QUOT10(carry, DECDPUN); | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ | 
|  | carry=est;			     /* quotient */ | 
|  | continue; | 
|  | } | 
|  | /* negative case */ | 
|  | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ | 
|  | est=QUOT10(carry, DECDPUN); | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
|  | carry=est-(DECDPUNMAX+1);		     /* correctly negative */ | 
|  | #else | 
|  | /* remainder operator is undefined if negative, so must test */ | 
|  | if ((ueInt)carry<(DECDPUNMAX+1)*2) {   /* fastpath carry +1 */ | 
|  | *c=(Unit)(carry-(DECDPUNMAX+1));     /* [helps additions] */ | 
|  | carry=1; | 
|  | continue; | 
|  | } | 
|  | if (carry>=0) { | 
|  | *c=(Unit)(carry%(DECDPUNMAX+1)); | 
|  | carry=carry/(DECDPUNMAX+1); | 
|  | continue; | 
|  | } | 
|  | /* negative case */ | 
|  | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ | 
|  | *c=(Unit)(carry%(DECDPUNMAX+1)); | 
|  | carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); | 
|  | #endif | 
|  | } /* c */ | 
|  |  | 
|  | /* now may have one or other to complete */ | 
|  | /* [pretest to avoid loop setup/shutdown] */ | 
|  | if (c<maxC) for (; c<maxC; c++) { | 
|  | if (a<alsu+alength) {		/* still in A */ | 
|  | carry+=*a; | 
|  | a++; | 
|  | } | 
|  | else {				/* inside B */ | 
|  | carry+=((eInt)*b)*m; | 
|  | b++; | 
|  | } | 
|  | /* here carry is new Unit of digits; it could be +ve or -ve and */ | 
|  | /* magnitude up to DECDPUNMAX squared */ | 
|  | if ((ueInt)carry<=DECDPUNMAX) {	/* fastpath 0-DECDPUNMAX */ | 
|  | *c=(Unit)carry; | 
|  | carry=0; | 
|  | continue; | 
|  | } | 
|  | /* result for this unit is negative or >DECDPUNMAX */ | 
|  | #if DECDPUN==4			     /* use divide-by-multiply */ | 
|  | if (carry>=0) { | 
|  | est=(((ueInt)carry>>11)*53687)>>18; | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ | 
|  | carry=est;			     /* likely quotient [79.7%] */ | 
|  | if (*c<DECDPUNMAX+1) continue;	     /* estimate was correct */ | 
|  | carry++; | 
|  | *c-=DECDPUNMAX+1; | 
|  | continue; | 
|  | } | 
|  | /* negative case */ | 
|  | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ | 
|  | est=(((ueInt)carry>>11)*53687)>>18; | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
|  | carry=est-(DECDPUNMAX+1);		     /* correctly negative */ | 
|  | if (*c<DECDPUNMAX+1) continue;	     /* was OK */ | 
|  | carry++; | 
|  | *c-=DECDPUNMAX+1; | 
|  | #elif DECDPUN==3 | 
|  | if (carry>=0) { | 
|  | est=(((ueInt)carry>>3)*16777)>>21; | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ | 
|  | carry=est;			     /* likely quotient [99%] */ | 
|  | if (*c<DECDPUNMAX+1) continue;	     /* estimate was correct */ | 
|  | carry++; | 
|  | *c-=DECDPUNMAX+1; | 
|  | continue; | 
|  | } | 
|  | /* negative case */ | 
|  | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ | 
|  | est=(((ueInt)carry>>3)*16777)>>21; | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
|  | carry=est-(DECDPUNMAX+1);		     /* correctly negative */ | 
|  | if (*c<DECDPUNMAX+1) continue;	     /* was OK */ | 
|  | carry++; | 
|  | *c-=DECDPUNMAX+1; | 
|  | #elif DECDPUN<=2 | 
|  | if (carry>=0) { | 
|  | est=QUOT10(carry, DECDPUN); | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */ | 
|  | carry=est;			     /* quotient */ | 
|  | continue; | 
|  | } | 
|  | /* negative case */ | 
|  | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ | 
|  | est=QUOT10(carry, DECDPUN); | 
|  | *c=(Unit)(carry-est*(DECDPUNMAX+1)); | 
|  | carry=est-(DECDPUNMAX+1);		     /* correctly negative */ | 
|  | #else | 
|  | if ((ueInt)carry<(DECDPUNMAX+1)*2){    /* fastpath carry 1 */ | 
|  | *c=(Unit)(carry-(DECDPUNMAX+1)); | 
|  | carry=1; | 
|  | continue; | 
|  | } | 
|  | /* remainder operator is undefined if negative, so must test */ | 
|  | if (carry>=0) { | 
|  | *c=(Unit)(carry%(DECDPUNMAX+1)); | 
|  | carry=carry/(DECDPUNMAX+1); | 
|  | continue; | 
|  | } | 
|  | /* negative case */ | 
|  | carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */ | 
|  | *c=(Unit)(carry%(DECDPUNMAX+1)); | 
|  | carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1); | 
|  | #endif | 
|  | } /* c */ | 
|  |  | 
|  | /* OK, all A and B processed; might still have carry or borrow */ | 
|  | /* return number of Units in the result, negated if a borrow */ | 
|  | if (carry==0) return c-clsu;	   /* no carry, so no more to do */ | 
|  | if (carry>0) {		   /* positive carry */ | 
|  | *c=(Unit)carry;		   /* place as new unit */ | 
|  | c++;			   /* .. */ | 
|  | return c-clsu; | 
|  | } | 
|  | /* -ve carry: it's a borrow; complement needed */ | 
|  | add=1;			   /* temporary carry... */ | 
|  | for (c=clsu; c<maxC; c++) { | 
|  | add=DECDPUNMAX+add-*c; | 
|  | if (add<=DECDPUNMAX) { | 
|  | *c=(Unit)add; | 
|  | add=0; | 
|  | } | 
|  | else { | 
|  | *c=0; | 
|  | add=1; | 
|  | } | 
|  | } | 
|  | /* add an extra unit iff it would be non-zero */ | 
|  | #if DECTRACE | 
|  | printf("UAS borrow: add %ld, carry %ld\n", add, carry); | 
|  | #endif | 
|  | if ((add-carry-1)!=0) { | 
|  | *c=(Unit)(add-carry-1); | 
|  | c++;		      /* interesting, include it */ | 
|  | } | 
|  | return clsu-c;	      /* -ve result indicates borrowed */ | 
|  | } /* decUnitAddSub */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decTrim -- trim trailing zeros or normalize			      */ | 
|  | /*								      */ | 
|  | /*   dn is the number to trim or normalize			      */ | 
|  | /*   set is the context to use to check for clamp		      */ | 
|  | /*   all is 1 to remove all trailing zeros, 0 for just fraction ones  */ | 
|  | /*   dropped returns the number of discarded trailing zeros	      */ | 
|  | /*   returns dn							      */ | 
|  | /*								      */ | 
|  | /* If clamp is set in the context then the number of zeros trimmed    */ | 
|  | /* may be limited if the exponent is high.			      */ | 
|  | /* All fields are updated as required.	This is a utility operation,  */ | 
|  | /* so special values are unchanged and no error is possible.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber * decTrim(decNumber *dn, decContext *set, Flag all, | 
|  | Int *dropped) { | 
|  | Int	d, exp;			   /* work */ | 
|  | uInt	cut;			   /* .. */ | 
|  | Unit	*up;			   /* -> current Unit */ | 
|  |  | 
|  | #if DECCHECK | 
|  | if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn; | 
|  | #endif | 
|  |  | 
|  | *dropped=0;				/* assume no zeros dropped */ | 
|  | if ((dn->bits & DECSPECIAL)		/* fast exit if special .. */ | 
|  | || (*dn->lsu & 0x01)) return dn;	/* .. or odd */ | 
|  | if (ISZERO(dn)) {			/* .. or 0 */ | 
|  | dn->exponent=0;			/* (sign is preserved) */ | 
|  | return dn; | 
|  | } | 
|  |  | 
|  | /* have a finite number which is even */ | 
|  | exp=dn->exponent; | 
|  | cut=1;			   /* digit (1-DECDPUN) in Unit */ | 
|  | up=dn->lsu;			   /* -> current Unit */ | 
|  | for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */ | 
|  | /* slice by powers */ | 
|  | #if DECDPUN<=4 | 
|  | uInt quot=QUOT10(*up, cut); | 
|  | if ((*up-quot*powers[cut])!=0) break;  /* found non-0 digit */ | 
|  | #else | 
|  | if (*up%powers[cut]!=0) break;	     /* found non-0 digit */ | 
|  | #endif | 
|  | /* have a trailing 0 */ | 
|  | if (!all) {			   /* trimming */ | 
|  | /* [if exp>0 then all trailing 0s are significant for trim] */ | 
|  | if (exp<=0) {		   /* if digit might be significant */ | 
|  | if (exp==0) break;	   /* then quit */ | 
|  | exp++;			   /* next digit might be significant */ | 
|  | } | 
|  | } | 
|  | cut++;			   /* next power */ | 
|  | if (cut>DECDPUN) {		   /* need new Unit */ | 
|  | up++; | 
|  | cut=1; | 
|  | } | 
|  | } /* d */ | 
|  | if (d==0) return dn;		   /* none to drop */ | 
|  |  | 
|  | /* may need to limit drop if clamping */ | 
|  | if (set->clamp) { | 
|  | Int maxd=set->emax-set->digits+1-dn->exponent; | 
|  | if (maxd<=0) return dn;	   /* nothing possible */ | 
|  | if (d>maxd) d=maxd; | 
|  | } | 
|  |  | 
|  | /* effect the drop */ | 
|  | decShiftToLeast(dn->lsu, D2U(dn->digits), d); | 
|  | dn->exponent+=d;		   /* maintain numerical value */ | 
|  | dn->digits-=d;		   /* new length */ | 
|  | *dropped=d;			   /* report the count */ | 
|  | return dn; | 
|  | } /* decTrim */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decReverse -- reverse a Unit array in place			      */ | 
|  | /*								      */ | 
|  | /*   ulo    is the start of the array				      */ | 
|  | /*   uhi    is the end of the array (highest Unit to include)	      */ | 
|  | /*								      */ | 
|  | /* The units ulo through uhi are reversed in place (if the number     */ | 
|  | /* of units is odd, the middle one is untouched).  Note that the      */ | 
|  | /* digit(s) in each unit are unaffected.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decReverse(Unit *ulo, Unit *uhi) { | 
|  | Unit temp; | 
|  | for (; ulo<uhi; ulo++, uhi--) { | 
|  | temp=*ulo; | 
|  | *ulo=*uhi; | 
|  | *uhi=temp; | 
|  | } | 
|  | return; | 
|  | } /* decReverse */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decShiftToMost -- shift digits in array towards most significant   */ | 
|  | /*								      */ | 
|  | /*   uar    is the array					      */ | 
|  | /*   digits is the count of digits in use in the array		      */ | 
|  | /*   shift  is the number of zeros to pad with (least significant);   */ | 
|  | /*     it must be zero or positive				      */ | 
|  | /*								      */ | 
|  | /*   returns the new length of the integer in the array, in digits    */ | 
|  | /*								      */ | 
|  | /* No overflow is permitted (that is, the uar array must be known to  */ | 
|  | /* be large enough to hold the result, after shifting).		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Int decShiftToMost(Unit *uar, Int digits, Int shift) { | 
|  | Unit	*target, *source, *first;  /* work */ | 
|  | Int	cut;			   /* odd 0's to add */ | 
|  | uInt	next;			   /* work */ | 
|  |  | 
|  | if (shift==0) return digits;	   /* [fastpath] nothing to do */ | 
|  | if ((digits+shift)<=DECDPUN) {   /* [fastpath] single-unit case */ | 
|  | *uar=(Unit)(*uar*powers[shift]); | 
|  | return digits+shift; | 
|  | } | 
|  |  | 
|  | next=0;			   /* all paths */ | 
|  | source=uar+D2U(digits)-1;	   /* where msu comes from */ | 
|  | target=source+D2U(shift);	   /* where upper part of first cut goes */ | 
|  | cut=DECDPUN-MSUDIGITS(shift);	   /* where to slice */ | 
|  | if (cut==0) {			   /* unit-boundary case */ | 
|  | for (; source>=uar; source--, target--) *target=*source; | 
|  | } | 
|  | else { | 
|  | first=uar+D2U(digits+shift)-1; /* where msu of source will end up */ | 
|  | for (; source>=uar; source--, target--) { | 
|  | /* split the source Unit and accumulate remainder for next */ | 
|  | #if DECDPUN<=4 | 
|  | uInt quot=QUOT10(*source, cut); | 
|  | uInt rem=*source-quot*powers[cut]; | 
|  | next+=quot; | 
|  | #else | 
|  | uInt rem=*source%powers[cut]; | 
|  | next+=*source/powers[cut]; | 
|  | #endif | 
|  | if (target<=first) *target=(Unit)next;   /* write to target iff valid */ | 
|  | next=rem*powers[DECDPUN-cut];	       /* save remainder for next Unit */ | 
|  | } | 
|  | } /* shift-move */ | 
|  |  | 
|  | /* propagate any partial unit to one below and clear the rest */ | 
|  | for (; target>=uar; target--) { | 
|  | *target=(Unit)next; | 
|  | next=0; | 
|  | } | 
|  | return digits+shift; | 
|  | } /* decShiftToMost */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decShiftToLeast -- shift digits in array towards least significant */ | 
|  | /*								      */ | 
|  | /*   uar   is the array						      */ | 
|  | /*   units is length of the array, in units			      */ | 
|  | /*   shift is the number of digits to remove from the lsu end; it     */ | 
|  | /*     must be zero or positive and <= than units*DECDPUN.	      */ | 
|  | /*								      */ | 
|  | /*   returns the new length of the integer in the array, in units     */ | 
|  | /*								      */ | 
|  | /* Removed digits are discarded (lost).	 Units not required to hold   */ | 
|  | /* the final result are unchanged.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Int decShiftToLeast(Unit *uar, Int units, Int shift) { | 
|  | Unit	*target, *up;		   /* work */ | 
|  | Int	cut, count;		   /* work */ | 
|  | Int	quot, rem;		   /* for division */ | 
|  |  | 
|  | if (shift==0) return units;	   /* [fastpath] nothing to do */ | 
|  | if (shift==units*DECDPUN) {	   /* [fastpath] little to do */ | 
|  | *uar=0;			   /* all digits cleared gives zero */ | 
|  | return 1;			   /* leaves just the one */ | 
|  | } | 
|  |  | 
|  | target=uar;			   /* both paths */ | 
|  | cut=MSUDIGITS(shift); | 
|  | if (cut==DECDPUN) {		   /* unit-boundary case; easy */ | 
|  | up=uar+D2U(shift); | 
|  | for (; up<uar+units; target++, up++) *target=*up; | 
|  | return target-uar; | 
|  | } | 
|  |  | 
|  | /* messier */ | 
|  | up=uar+D2U(shift-cut);	   /* source; correct to whole Units */ | 
|  | count=units*DECDPUN-shift;	   /* the maximum new length */ | 
|  | #if DECDPUN<=4 | 
|  | quot=QUOT10(*up, cut); | 
|  | #else | 
|  | quot=*up/powers[cut]; | 
|  | #endif | 
|  | for (; ; target++) { | 
|  | *target=(Unit)quot; | 
|  | count-=(DECDPUN-cut); | 
|  | if (count<=0) break; | 
|  | up++; | 
|  | quot=*up; | 
|  | #if DECDPUN<=4 | 
|  | quot=QUOT10(quot, cut); | 
|  | rem=*up-quot*powers[cut]; | 
|  | #else | 
|  | rem=quot%powers[cut]; | 
|  | quot=quot/powers[cut]; | 
|  | #endif | 
|  | *target=(Unit)(*target+rem*powers[DECDPUN-cut]); | 
|  | count-=cut; | 
|  | if (count<=0) break; | 
|  | } | 
|  | return target-uar+1; | 
|  | } /* decShiftToLeast */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decRoundOperand -- round an operand	[used for subset only]	      */ | 
|  | /*								      */ | 
|  | /*   dn is the number to round (dn->digits is > set->digits)	      */ | 
|  | /*   set is the relevant context				      */ | 
|  | /*   status is the status accumulator				      */ | 
|  | /*								      */ | 
|  | /*   returns an allocated decNumber with the rounded result.	      */ | 
|  | /*								      */ | 
|  | /* lostDigits and other status may be set by this.		      */ | 
|  | /*								      */ | 
|  | /* Since the input is an operand, it must not be modified.	      */ | 
|  | /* Instead, return an allocated decNumber, rounded as required.	      */ | 
|  | /* It is the caller's responsibility to free the allocated storage.   */ | 
|  | /*								      */ | 
|  | /* If no storage is available then the result cannot be used, so NULL */ | 
|  | /* is returned.							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber *decRoundOperand(const decNumber *dn, decContext *set, | 
|  | uInt *status) { | 
|  | decNumber *res;			/* result structure */ | 
|  | uInt newstatus=0;			/* status from round */ | 
|  | Int  residue=0;			/* rounding accumulator */ | 
|  |  | 
|  | /* Allocate storage for the returned decNumber, big enough for the */ | 
|  | /* length specified by the context */ | 
|  | res=(decNumber *)malloc(sizeof(decNumber) | 
|  | +(D2U(set->digits)-1)*sizeof(Unit)); | 
|  | if (res==NULL) { | 
|  | *status|=DEC_Insufficient_storage; | 
|  | return NULL; | 
|  | } | 
|  | decCopyFit(res, dn, set, &residue, &newstatus); | 
|  | decApplyRound(res, set, residue, &newstatus); | 
|  |  | 
|  | /* If that set Inexact then "lost digits" is raised... */ | 
|  | if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits; | 
|  | *status|=newstatus; | 
|  | return res; | 
|  | } /* decRoundOperand */ | 
|  | #endif | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decCopyFit -- copy a number, truncating the coefficient if needed  */ | 
|  | /*								      */ | 
|  | /*   dest is the target decNumber				      */ | 
|  | /*   src  is the source decNumber				      */ | 
|  | /*   set is the context [used for length (digits) and rounding mode]  */ | 
|  | /*   residue is the residue accumulator				      */ | 
|  | /*   status contains the current status to be updated		      */ | 
|  | /*								      */ | 
|  | /* (dest==src is allowed and will be a no-op if fits)		      */ | 
|  | /* All fields are updated as required.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decCopyFit(decNumber *dest, const decNumber *src, | 
|  | decContext *set, Int *residue, uInt *status) { | 
|  | dest->bits=src->bits; | 
|  | dest->exponent=src->exponent; | 
|  | decSetCoeff(dest, set, src->lsu, src->digits, residue, status); | 
|  | } /* decCopyFit */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decSetCoeff -- set the coefficient of a number		      */ | 
|  | /*								      */ | 
|  | /*   dn	   is the number whose coefficient array is to be set.	      */ | 
|  | /*	   It must have space for set->digits digits		      */ | 
|  | /*   set   is the context [for size]				      */ | 
|  | /*   lsu   -> lsu of the source coefficient [may be dn->lsu]	      */ | 
|  | /*   len   is digits in the source coefficient [may be dn->digits]    */ | 
|  | /*   residue is the residue accumulator.  This has values as in	      */ | 
|  | /*	   decApplyRound, and will be unchanged unless the	      */ | 
|  | /*	   target size is less than len.  In this case, the	      */ | 
|  | /*	   coefficient is truncated and the residue is updated to     */ | 
|  | /*	   reflect the previous residue and the dropped digits.	      */ | 
|  | /*   status is the status accumulator, as usual			      */ | 
|  | /*								      */ | 
|  | /* The coefficient may already be in the number, or it can be an      */ | 
|  | /* external intermediate array.	 If it is in the number, lsu must ==  */ | 
|  | /* dn->lsu and len must == dn->digits.				      */ | 
|  | /*								      */ | 
|  | /* Note that the coefficient length (len) may be < set->digits, and   */ | 
|  | /* in this case this merely copies the coefficient (or is a no-op     */ | 
|  | /* if dn->lsu==lsu).						      */ | 
|  | /*								      */ | 
|  | /* Note also that (only internally, from decQuantizeOp and	      */ | 
|  | /* decSetSubnormal) the value of set->digits may be less than one,    */ | 
|  | /* indicating a round to left.	This routine handles that case	      */ | 
|  | /* correctly; caller ensures space.				      */ | 
|  | /*								      */ | 
|  | /* dn->digits, dn->lsu (and as required), and dn->exponent are	      */ | 
|  | /* updated as necessary.   dn->bits (sign) is unchanged.	      */ | 
|  | /*								      */ | 
|  | /* DEC_Rounded status is set if any digits are discarded.	      */ | 
|  | /* DEC_Inexact status is set if any non-zero digits are discarded, or */ | 
|  | /*			 incoming residue was non-0 (implies rounded) */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* mapping array: maps 0-9 to canonical residues, so that a residue */ | 
|  | /* can be adjusted in the range [-1, +1] and achieve correct rounding */ | 
|  | /*			       0  1  2	3  4  5	 6  7  8  9 */ | 
|  | static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; | 
|  | static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu, | 
|  | Int len, Int *residue, uInt *status) { | 
|  | Int	discard;	      /* number of digits to discard */ | 
|  | uInt	cut;		      /* cut point in Unit */ | 
|  | const Unit *up;	      /* work */ | 
|  | Unit	*target;	      /* .. */ | 
|  | Int	count;		      /* .. */ | 
|  | #if DECDPUN<=4 | 
|  | uInt	temp;		      /* .. */ | 
|  | #endif | 
|  |  | 
|  | discard=len-set->digits;    /* digits to discard */ | 
|  | if (discard<=0) {	      /* no digits are being discarded */ | 
|  | if (dn->lsu!=lsu) {	      /* copy needed */ | 
|  | /* copy the coefficient array to the result number; no shift needed */ | 
|  | count=len;	      /* avoids D2U */ | 
|  | up=lsu; | 
|  | for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) | 
|  | *target=*up; | 
|  | dn->digits=len;	      /* set the new length */ | 
|  | } | 
|  | /* dn->exponent and residue are unchanged, record any inexactitude */ | 
|  | if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* some digits must be discarded ... */ | 
|  | dn->exponent+=discard;      /* maintain numerical value */ | 
|  | *status|=DEC_Rounded;	      /* accumulate Rounded status */ | 
|  | if (*residue>1) *residue=1; /* previous residue now to right, so reduce */ | 
|  |  | 
|  | if (discard>len) {	      /* everything, +1, is being discarded */ | 
|  | /* guard digit is 0 */ | 
|  | /* residue is all the number [NB could be all 0s] */ | 
|  | if (*residue<=0) {	      /* not already positive */ | 
|  | count=len;	      /* avoids D2U */ | 
|  | for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */ | 
|  | *residue=1; | 
|  | break;		      /* no need to check any others */ | 
|  | } | 
|  | } | 
|  | if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */ | 
|  | *dn->lsu=0;		      /* coefficient will now be 0 */ | 
|  | dn->digits=1;	      /* .. */ | 
|  | return; | 
|  | } /* total discard */ | 
|  |  | 
|  | /* partial discard [most common case] */ | 
|  | /* here, at least the first (most significant) discarded digit exists */ | 
|  |  | 
|  | /* spin up the number, noting residue during the spin, until get to */ | 
|  | /* the Unit with the first discarded digit.  When reach it, extract */ | 
|  | /* it and remember its position */ | 
|  | count=0; | 
|  | for (up=lsu;; up++) { | 
|  | count+=DECDPUN; | 
|  | if (count>=discard) break; /* full ones all checked */ | 
|  | if (*up!=0) *residue=1; | 
|  | } /* up */ | 
|  |  | 
|  | /* here up -> Unit with first discarded digit */ | 
|  | cut=discard-(count-DECDPUN)-1; | 
|  | if (cut==DECDPUN-1) {	      /* unit-boundary case (fast) */ | 
|  | Unit half=(Unit)powers[DECDPUN]>>1; | 
|  | /* set residue directly */ | 
|  | if (*up>=half) { | 
|  | if (*up>half) *residue=7; | 
|  | else *residue+=5;	      /* add sticky bit */ | 
|  | } | 
|  | else { /* <half */ | 
|  | if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */ | 
|  | } | 
|  | if (set->digits<=0) {     /* special for Quantize/Subnormal :-( */ | 
|  | *dn->lsu=0;	      /* .. result is 0 */ | 
|  | dn->digits=1;	      /* .. */ | 
|  | } | 
|  | else {		      /* shift to least */ | 
|  | count=set->digits;      /* now digits to end up with */ | 
|  | dn->digits=count;	      /* set the new length */ | 
|  | up++;		      /* move to next */ | 
|  | /* on unit boundary, so shift-down copy loop is simple */ | 
|  | for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN) | 
|  | *target=*up; | 
|  | } | 
|  | } /* unit-boundary case */ | 
|  |  | 
|  | else { /* discard digit is in low digit(s), and not top digit */ | 
|  | uInt  discard1;		   /* first discarded digit */ | 
|  | uInt  quot, rem;		   /* for divisions */ | 
|  | if (cut==0) quot=*up;	   /* is at bottom of unit */ | 
|  | else /* cut>0 */ {		   /* it's not at bottom of unit */ | 
|  | #if DECDPUN<=4 | 
|  | quot=QUOT10(*up, cut); | 
|  | rem=*up-quot*powers[cut]; | 
|  | #else | 
|  | rem=*up%powers[cut]; | 
|  | quot=*up/powers[cut]; | 
|  | #endif | 
|  | if (rem!=0) *residue=1; | 
|  | } | 
|  | /* discard digit is now at bottom of quot */ | 
|  | #if DECDPUN<=4 | 
|  | temp=(quot*6554)>>16;	   /* fast /10 */ | 
|  | /* Vowels algorithm here not a win (9 instructions) */ | 
|  | discard1=quot-X10(temp); | 
|  | quot=temp; | 
|  | #else | 
|  | discard1=quot%10; | 
|  | quot=quot/10; | 
|  | #endif | 
|  | /* here, discard1 is the guard digit, and residue is everything */ | 
|  | /* else [use mapping array to accumulate residue safely] */ | 
|  | *residue+=resmap[discard1]; | 
|  | cut++;			   /* update cut */ | 
|  | /* here: up -> Unit of the array with bottom digit */ | 
|  | /*	     cut is the division point for each Unit */ | 
|  | /*	     quot holds the uncut high-order digits for the current unit */ | 
|  | if (set->digits<=0) {	   /* special for Quantize/Subnormal :-( */ | 
|  | *dn->lsu=0;		   /* .. result is 0 */ | 
|  | dn->digits=1;		   /* .. */ | 
|  | } | 
|  | else {			   /* shift to least needed */ | 
|  | count=set->digits;	   /* now digits to end up with */ | 
|  | dn->digits=count;		   /* set the new length */ | 
|  | /* shift-copy the coefficient array to the result number */ | 
|  | for (target=dn->lsu; ; target++) { | 
|  | *target=(Unit)quot; | 
|  | count-=(DECDPUN-cut); | 
|  | if (count<=0) break; | 
|  | up++; | 
|  | quot=*up; | 
|  | #if DECDPUN<=4 | 
|  | quot=QUOT10(quot, cut); | 
|  | rem=*up-quot*powers[cut]; | 
|  | #else | 
|  | rem=quot%powers[cut]; | 
|  | quot=quot/powers[cut]; | 
|  | #endif | 
|  | *target=(Unit)(*target+rem*powers[DECDPUN-cut]); | 
|  | count-=cut; | 
|  | if (count<=0) break; | 
|  | } /* shift-copy loop */ | 
|  | } /* shift to least */ | 
|  | } /* not unit boundary */ | 
|  |  | 
|  | if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */ | 
|  | return; | 
|  | } /* decSetCoeff */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decApplyRound -- apply pending rounding to a number		      */ | 
|  | /*								      */ | 
|  | /*   dn	   is the number, with space for set->digits digits	      */ | 
|  | /*   set   is the context [for size and rounding mode]		      */ | 
|  | /*   residue indicates pending rounding, being any accumulated	      */ | 
|  | /*	   guard and sticky information.  It may be:		      */ | 
|  | /*	   6-9: rounding digit is >5				      */ | 
|  | /*	   5:	rounding digit is exactly half-way		      */ | 
|  | /*	   1-4: rounding digit is <5 and >0			      */ | 
|  | /*	   0:	the coefficient is exact			      */ | 
|  | /*	  -1:	as 1, but the hidden digits are subtractive, that     */ | 
|  | /*		is, of the opposite sign to dn.	 In this case the     */ | 
|  | /*		coefficient must be non-0.  This case occurs when     */ | 
|  | /*		subtracting a small number (which can be reduced to   */ | 
|  | /*		a sticky bit); see decAddOp.			      */ | 
|  | /*   status is the status accumulator, as usual			      */ | 
|  | /*								      */ | 
|  | /* This routine applies rounding while keeping the length of the      */ | 
|  | /* coefficient constant.  The exponent and status are unchanged	      */ | 
|  | /* except if:							      */ | 
|  | /*								      */ | 
|  | /*   -- the coefficient was increased and is all nines (in which      */ | 
|  | /*	case Overflow could occur, and is handled directly here so    */ | 
|  | /*	the caller does not need to re-test for overflow)	      */ | 
|  | /*								      */ | 
|  | /*   -- the coefficient was decreased and becomes all nines (in which */ | 
|  | /*	case Underflow could occur, and is also handled directly).    */ | 
|  | /*								      */ | 
|  | /* All fields in dn are updated as required.			      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decApplyRound(decNumber *dn, decContext *set, Int residue, | 
|  | uInt *status) { | 
|  | Int  bump;		      /* 1 if coefficient needs to be incremented */ | 
|  | /* -1 if coefficient needs to be decremented */ | 
|  |  | 
|  | if (residue==0) return;     /* nothing to apply */ | 
|  |  | 
|  | bump=0;		      /* assume a smooth ride */ | 
|  |  | 
|  | /* now decide whether, and how, to round, depending on mode */ | 
|  | switch (set->round) { | 
|  | case DEC_ROUND_05UP: {    /* round zero or five up (for reround) */ | 
|  | /* This is the same as DEC_ROUND_DOWN unless there is a */ | 
|  | /* positive residue and the lsd of dn is 0 or 5, in which case */ | 
|  | /* it is bumped; when residue is <0, the number is therefore */ | 
|  | /* bumped down unless the final digit was 1 or 6 (in which */ | 
|  | /* case it is bumped down and then up -- a no-op) */ | 
|  | Int lsd5=*dn->lsu%5;     /* get lsd and quintate */ | 
|  | if (residue<0 && lsd5!=1) bump=-1; | 
|  | else if (residue>0 && lsd5==0) bump=1; | 
|  | /* [bump==1 could be applied directly; use common path for clarity] */ | 
|  | break;} /* r-05 */ | 
|  |  | 
|  | case DEC_ROUND_DOWN: { | 
|  | /* no change, except if negative residue */ | 
|  | if (residue<0) bump=-1; | 
|  | break;} /* r-d */ | 
|  |  | 
|  | case DEC_ROUND_HALF_DOWN: { | 
|  | if (residue>5) bump=1; | 
|  | break;} /* r-h-d */ | 
|  |  | 
|  | case DEC_ROUND_HALF_EVEN: { | 
|  | if (residue>5) bump=1;		/* >0.5 goes up */ | 
|  | else if (residue==5) {		/* exactly 0.5000... */ | 
|  | /* 0.5 goes up iff [new] lsd is odd */ | 
|  | if (*dn->lsu & 0x01) bump=1; | 
|  | } | 
|  | break;} /* r-h-e */ | 
|  |  | 
|  | case DEC_ROUND_HALF_UP: { | 
|  | if (residue>=5) bump=1; | 
|  | break;} /* r-h-u */ | 
|  |  | 
|  | case DEC_ROUND_UP: { | 
|  | if (residue>0) bump=1; | 
|  | break;} /* r-u */ | 
|  |  | 
|  | case DEC_ROUND_CEILING: { | 
|  | /* same as _UP for positive numbers, and as _DOWN for negatives */ | 
|  | /* [negative residue cannot occur on 0] */ | 
|  | if (decNumberIsNegative(dn)) { | 
|  | if (residue<0) bump=-1; | 
|  | } | 
|  | else { | 
|  | if (residue>0) bump=1; | 
|  | } | 
|  | break;} /* r-c */ | 
|  |  | 
|  | case DEC_ROUND_FLOOR: { | 
|  | /* same as _UP for negative numbers, and as _DOWN for positive */ | 
|  | /* [negative residue cannot occur on 0] */ | 
|  | if (!decNumberIsNegative(dn)) { | 
|  | if (residue<0) bump=-1; | 
|  | } | 
|  | else { | 
|  | if (residue>0) bump=1; | 
|  | } | 
|  | break;} /* r-f */ | 
|  |  | 
|  | default: {	    /* e.g., DEC_ROUND_MAX */ | 
|  | *status|=DEC_Invalid_context; | 
|  | #if DECTRACE || (DECCHECK && DECVERB) | 
|  | printf("Unknown rounding mode: %d\n", set->round); | 
|  | #endif | 
|  | break;} | 
|  | } /* switch */ | 
|  |  | 
|  | /* now bump the number, up or down, if need be */ | 
|  | if (bump==0) return;			     /* no action required */ | 
|  |  | 
|  | /* Simply use decUnitAddSub unless bumping up and the number is */ | 
|  | /* all nines.	 In this special case set to 100... explicitly */ | 
|  | /* and adjust the exponent by one (as otherwise could overflow */ | 
|  | /* the array) */ | 
|  | /* Similarly handle all-nines result if bumping down. */ | 
|  | if (bump>0) { | 
|  | Unit *up;				     /* work */ | 
|  | uInt count=dn->digits;		     /* digits to be checked */ | 
|  | for (up=dn->lsu; ; up++) { | 
|  | if (count<=DECDPUN) { | 
|  | /* this is the last Unit (the msu) */ | 
|  | if (*up!=powers[count]-1) break;     /* not still 9s */ | 
|  | /* here if it, too, is all nines */ | 
|  | *up=(Unit)powers[count-1];	     /* here 999 -> 100 etc. */ | 
|  | for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */ | 
|  | dn->exponent++;			     /* and bump exponent */ | 
|  | /* [which, very rarely, could cause Overflow...] */ | 
|  | if ((dn->exponent+dn->digits)>set->emax+1) { | 
|  | decSetOverflow(dn, set, status); | 
|  | } | 
|  | return;				     /* done */ | 
|  | } | 
|  | /* a full unit to check, with more to come */ | 
|  | if (*up!=DECDPUNMAX) break;	     /* not still 9s */ | 
|  | count-=DECDPUN; | 
|  | } /* up */ | 
|  | } /* bump>0 */ | 
|  | else {				     /* -1 */ | 
|  | /* here checking for a pre-bump of 1000... (leading 1, all */ | 
|  | /* other digits zero) */ | 
|  | Unit *up, *sup;			     /* work */ | 
|  | uInt count=dn->digits;		     /* digits to be checked */ | 
|  | for (up=dn->lsu; ; up++) { | 
|  | if (count<=DECDPUN) { | 
|  | /* this is the last Unit (the msu) */ | 
|  | if (*up!=powers[count-1]) break;     /* not 100.. */ | 
|  | /* here if have the 1000... case */ | 
|  | sup=up;				     /* save msu pointer */ | 
|  | *up=(Unit)powers[count]-1;	     /* here 100 in msu -> 999 */ | 
|  | /* others all to all-nines, too */ | 
|  | for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1; | 
|  | dn->exponent--;			     /* and bump exponent */ | 
|  |  | 
|  | /* iff the number was at the subnormal boundary (exponent=etiny) */ | 
|  | /* then the exponent is now out of range, so it will in fact get */ | 
|  | /* clamped to etiny and the final 9 dropped. */ | 
|  | /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */ | 
|  | /*	  dn->exponent, set->digits); */ | 
|  | if (dn->exponent+1==set->emin-set->digits+1) { | 
|  | if (count==1 && dn->digits==1) *sup=0;  /* here 9 -> 0[.9] */ | 
|  | else { | 
|  | *sup=(Unit)powers[count-1]-1;    /* here 999.. in msu -> 99.. */ | 
|  | dn->digits--; | 
|  | } | 
|  | dn->exponent++; | 
|  | *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; | 
|  | } | 
|  | return;				     /* done */ | 
|  | } | 
|  |  | 
|  | /* a full unit to check, with more to come */ | 
|  | if (*up!=0) break;		     /* not still 0s */ | 
|  | count-=DECDPUN; | 
|  | } /* up */ | 
|  |  | 
|  | } /* bump<0 */ | 
|  |  | 
|  | /* Actual bump needed.  Do it. */ | 
|  | decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump); | 
|  | } /* decApplyRound */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFinish -- finish processing a number			      */ | 
|  | /*								      */ | 
|  | /*   dn is the number						      */ | 
|  | /*   set is the context						      */ | 
|  | /*   residue is the rounding accumulator (as in decApplyRound)	      */ | 
|  | /*   status is the accumulator					      */ | 
|  | /*								      */ | 
|  | /* This finishes off the current number by:			      */ | 
|  | /*    1. If not extended:					      */ | 
|  | /*	 a. Converting a zero result to clean '0'		      */ | 
|  | /*	 b. Reducing positive exponents to 0, if would fit in digits  */ | 
|  | /*    2. Checking for overflow and subnormals (always)		      */ | 
|  | /* Note this is just Finalize when no subset arithmetic.	      */ | 
|  | /* All fields are updated as required.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decFinish(decNumber *dn, decContext *set, Int *residue, | 
|  | uInt *status) { | 
|  | if (!set->extended) { | 
|  | if ISZERO(dn) {		   /* value is zero */ | 
|  | dn->exponent=0;		   /* clean exponent .. */ | 
|  | dn->bits=0;		   /* .. and sign */ | 
|  | return;			   /* no error possible */ | 
|  | } | 
|  | if (dn->exponent>=0) {	   /* non-negative exponent */ | 
|  | /* >0; reduce to integer if possible */ | 
|  | if (set->digits >= (dn->exponent+dn->digits)) { | 
|  | dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent); | 
|  | dn->exponent=0; | 
|  | } | 
|  | } | 
|  | } /* !extended */ | 
|  |  | 
|  | decFinalize(dn, set, residue, status); | 
|  | } /* decFinish */ | 
|  | #endif | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFinalize -- final check, clamp, and round of a number	      */ | 
|  | /*								      */ | 
|  | /*   dn is the number						      */ | 
|  | /*   set is the context						      */ | 
|  | /*   residue is the rounding accumulator (as in decApplyRound)	      */ | 
|  | /*   status is the status accumulator				      */ | 
|  | /*								      */ | 
|  | /* This finishes off the current number by checking for subnormal     */ | 
|  | /* results, applying any pending rounding, checking for overflow,     */ | 
|  | /* and applying any clamping.					      */ | 
|  | /* Underflow and overflow conditions are raised as appropriate.	      */ | 
|  | /* All fields are updated as required.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decFinalize(decNumber *dn, decContext *set, Int *residue, | 
|  | uInt *status) { | 
|  | Int shift;				/* shift needed if clamping */ | 
|  | Int tinyexp=set->emin-dn->digits+1;	/* precalculate subnormal boundary */ | 
|  |  | 
|  | /* Must be careful, here, when checking the exponent as the */ | 
|  | /* adjusted exponent could overflow 31 bits [because it may already */ | 
|  | /* be up to twice the expected]. */ | 
|  |  | 
|  | /* First test for subnormal.	This must be done before any final */ | 
|  | /* round as the result could be rounded to Nmin or 0. */ | 
|  | if (dn->exponent<=tinyexp) {		/* prefilter */ | 
|  | Int comp; | 
|  | decNumber nmin; | 
|  | /* A very nasty case here is dn == Nmin and residue<0 */ | 
|  | if (dn->exponent<tinyexp) { | 
|  | /* Go handle subnormals; this will apply round if needed. */ | 
|  | decSetSubnormal(dn, set, residue, status); | 
|  | return; | 
|  | } | 
|  | /* Equals case: only subnormal if dn=Nmin and negative residue */ | 
|  | decNumberZero(&nmin); | 
|  | nmin.lsu[0]=1; | 
|  | nmin.exponent=set->emin; | 
|  | comp=decCompare(dn, &nmin, 1);		  /* (signless compare) */ | 
|  | if (comp==BADINT) {				  /* oops */ | 
|  | *status|=DEC_Insufficient_storage;	  /* abandon... */ | 
|  | return; | 
|  | } | 
|  | if (*residue<0 && comp==0) {		  /* neg residue and dn==Nmin */ | 
|  | decApplyRound(dn, set, *residue, status);	  /* might force down */ | 
|  | decSetSubnormal(dn, set, residue, status); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now apply any pending round (this could raise overflow). */ | 
|  | if (*residue!=0) decApplyRound(dn, set, *residue, status); | 
|  |  | 
|  | /* Check for overflow [redundant in the 'rare' case] or clamp */ | 
|  | if (dn->exponent<=set->emax-set->digits+1) return;   /* neither needed */ | 
|  |  | 
|  |  | 
|  | /* here when might have an overflow or clamp to do */ | 
|  | if (dn->exponent>set->emax-dn->digits+1) {	       /* too big */ | 
|  | decSetOverflow(dn, set, status); | 
|  | return; | 
|  | } | 
|  | /* here when the result is normal but in clamp range */ | 
|  | if (!set->clamp) return; | 
|  |  | 
|  | /* here when need to apply the IEEE exponent clamp (fold-down) */ | 
|  | shift=dn->exponent-(set->emax-set->digits+1); | 
|  |  | 
|  | /* shift coefficient (if non-zero) */ | 
|  | if (!ISZERO(dn)) { | 
|  | dn->digits=decShiftToMost(dn->lsu, dn->digits, shift); | 
|  | } | 
|  | dn->exponent-=shift;	 /* adjust the exponent to match */ | 
|  | *status|=DEC_Clamped;	 /* and record the dirty deed */ | 
|  | return; | 
|  | } /* decFinalize */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decSetOverflow -- set number to proper overflow value	      */ | 
|  | /*								      */ | 
|  | /*   dn is the number (used for sign [only] and result)		      */ | 
|  | /*   set is the context [used for the rounding mode, etc.]	      */ | 
|  | /*   status contains the current status to be updated		      */ | 
|  | /*								      */ | 
|  | /* This sets the sign of a number and sets its value to either	      */ | 
|  | /* Infinity or the maximum finite value, depending on the sign of     */ | 
|  | /* dn and the rounding mode, following IEEE 854 rules.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) { | 
|  | Flag needmax=0;		   /* result is maximum finite value */ | 
|  | uByte sign=dn->bits&DECNEG;	   /* clean and save sign bit */ | 
|  |  | 
|  | if (ISZERO(dn)) {		   /* zero does not overflow magnitude */ | 
|  | Int emax=set->emax;			     /* limit value */ | 
|  | if (set->clamp) emax-=set->digits-1;     /* lower if clamping */ | 
|  | if (dn->exponent>emax) {		     /* clamp required */ | 
|  | dn->exponent=emax; | 
|  | *status|=DEC_Clamped; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | decNumberZero(dn); | 
|  | switch (set->round) { | 
|  | case DEC_ROUND_DOWN: { | 
|  | needmax=1;		   /* never Infinity */ | 
|  | break;} /* r-d */ | 
|  | case DEC_ROUND_05UP: { | 
|  | needmax=1;		   /* never Infinity */ | 
|  | break;} /* r-05 */ | 
|  | case DEC_ROUND_CEILING: { | 
|  | if (sign) needmax=1;	   /* Infinity if non-negative */ | 
|  | break;} /* r-c */ | 
|  | case DEC_ROUND_FLOOR: { | 
|  | if (!sign) needmax=1;	   /* Infinity if negative */ | 
|  | break;} /* r-f */ | 
|  | default: break;		   /* Infinity in all other cases */ | 
|  | } | 
|  | if (needmax) { | 
|  | decSetMaxValue(dn, set); | 
|  | dn->bits=sign;		   /* set sign */ | 
|  | } | 
|  | else dn->bits=sign|DECINF;	   /* Value is +/-Infinity */ | 
|  | *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded; | 
|  | } /* decSetOverflow */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decSetMaxValue -- set number to +Nmax (maximum normal value)	      */ | 
|  | /*								      */ | 
|  | /*   dn is the number to set					      */ | 
|  | /*   set is the context [used for digits and emax]		      */ | 
|  | /*								      */ | 
|  | /* This sets the number to the maximum positive value.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decSetMaxValue(decNumber *dn, decContext *set) { | 
|  | Unit *up;			   /* work */ | 
|  | Int count=set->digits;	   /* nines to add */ | 
|  | dn->digits=count; | 
|  | /* fill in all nines to set maximum value */ | 
|  | for (up=dn->lsu; ; up++) { | 
|  | if (count>DECDPUN) *up=DECDPUNMAX;	/* unit full o'nines */ | 
|  | else {				/* this is the msu */ | 
|  | *up=(Unit)(powers[count]-1); | 
|  | break; | 
|  | } | 
|  | count-=DECDPUN;		   /* filled those digits */ | 
|  | } /* up */ | 
|  | dn->bits=0;			   /* + sign */ | 
|  | dn->exponent=set->emax-set->digits+1; | 
|  | } /* decSetMaxValue */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decSetSubnormal -- process value whose exponent is <Emin	      */ | 
|  | /*								      */ | 
|  | /*   dn is the number (used as input as well as output; it may have   */ | 
|  | /*	   an allowed subnormal value, which may need to be rounded)  */ | 
|  | /*   set is the context [used for the rounding mode]		      */ | 
|  | /*   residue is any pending residue				      */ | 
|  | /*   status contains the current status to be updated		      */ | 
|  | /*								      */ | 
|  | /* If subset mode, set result to zero and set Underflow flags.	      */ | 
|  | /*								      */ | 
|  | /* Value may be zero with a low exponent; this does not set Subnormal */ | 
|  | /* but the exponent will be clamped to Etiny.			      */ | 
|  | /*								      */ | 
|  | /* Otherwise ensure exponent is not out of range, and round as	      */ | 
|  | /* necessary.  Underflow is set if the result is Inexact.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue, | 
|  | uInt *status) { | 
|  | decContext workset;	      /* work */ | 
|  | Int	     etiny, adjust;   /* .. */ | 
|  |  | 
|  | #if DECSUBSET | 
|  | /* simple set to zero and 'hard underflow' for subset */ | 
|  | if (!set->extended) { | 
|  | decNumberZero(dn); | 
|  | /* always full overflow */ | 
|  | *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded; | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Full arithmetic -- allow subnormals, rounded to minimum exponent */ | 
|  | /* (Etiny) if needed */ | 
|  | etiny=set->emin-(set->digits-1);	/* smallest allowed exponent */ | 
|  |  | 
|  | if ISZERO(dn) {			/* value is zero */ | 
|  | /* residue can never be non-zero here */ | 
|  | #if DECCHECK | 
|  | if (*residue!=0) { | 
|  | printf("++ Subnormal 0 residue %ld\n", (LI)*residue); | 
|  | *status|=DEC_Invalid_operation; | 
|  | } | 
|  | #endif | 
|  | if (dn->exponent<etiny) {		/* clamp required */ | 
|  | dn->exponent=etiny; | 
|  | *status|=DEC_Clamped; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | *status|=DEC_Subnormal;		/* have a non-zero subnormal */ | 
|  | adjust=etiny-dn->exponent;		/* calculate digits to remove */ | 
|  | if (adjust<=0) {			/* not out of range; unrounded */ | 
|  | /* residue can never be non-zero here, except in the Nmin-residue */ | 
|  | /* case (which is a subnormal result), so can take fast-path here */ | 
|  | /* it may already be inexact (from setting the coefficient) */ | 
|  | if (*status&DEC_Inexact) *status|=DEC_Underflow; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* adjust>0, so need to rescale the result so exponent becomes Etiny */ | 
|  | /* [this code is similar to that in rescale] */ | 
|  | workset=*set;				/* clone rounding, etc. */ | 
|  | workset.digits=dn->digits-adjust;	/* set requested length */ | 
|  | workset.emin-=adjust;			/* and adjust emin to match */ | 
|  | /* [note that the latter can be <1, here, similar to Rescale case] */ | 
|  | decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status); | 
|  | decApplyRound(dn, &workset, *residue, status); | 
|  |  | 
|  | /* Use 754R/854 default rule: Underflow is set iff Inexact */ | 
|  | /* [independent of whether trapped] */ | 
|  | if (*status&DEC_Inexact) *status|=DEC_Underflow; | 
|  |  | 
|  | /* if rounded up a 999s case, exponent will be off by one; adjust */ | 
|  | /* back if so [it will fit, because it was shortened earlier] */ | 
|  | if (dn->exponent>etiny) { | 
|  | dn->digits=decShiftToMost(dn->lsu, dn->digits, 1); | 
|  | dn->exponent--;			/* (re)adjust the exponent. */ | 
|  | } | 
|  |  | 
|  | /* if rounded to zero, it is by definition clamped... */ | 
|  | if (ISZERO(dn)) *status|=DEC_Clamped; | 
|  | } /* decSetSubnormal */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decCheckMath - check entry conditions for a math function	      */ | 
|  | /*								      */ | 
|  | /*   This checks the context and the operand			      */ | 
|  | /*								      */ | 
|  | /*   rhs is the operand to check				      */ | 
|  | /*   set is the context to check				      */ | 
|  | /*   status is unchanged if both are good			      */ | 
|  | /*								      */ | 
|  | /* returns non-zero if status is changed, 0 otherwise		      */ | 
|  | /*								      */ | 
|  | /* Restrictions enforced:					      */ | 
|  | /*								      */ | 
|  | /*   digits, emax, and -emin in the context must be less than	      */ | 
|  | /*   DEC_MAX_MATH (999999), and A must be within these bounds if      */ | 
|  | /*   non-zero.	Invalid_operation is set in the status if a	      */ | 
|  | /*   restriction is violated.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static uInt decCheckMath(const decNumber *rhs, decContext *set, | 
|  | uInt *status) { | 
|  | uInt save=*status;			     /* record */ | 
|  | if (set->digits>DEC_MAX_MATH | 
|  | || set->emax>DEC_MAX_MATH | 
|  | || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context; | 
|  | else if ((rhs->digits>DEC_MAX_MATH | 
|  | || rhs->exponent+rhs->digits>DEC_MAX_MATH+1 | 
|  | || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH)) | 
|  | && !ISZERO(rhs)) *status|=DEC_Invalid_operation; | 
|  | return (*status!=save); | 
|  | } /* decCheckMath */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decGetInt -- get integer from a number			      */ | 
|  | /*								      */ | 
|  | /*   dn is the number [which will not be altered]		      */ | 
|  | /*								      */ | 
|  | /*   returns one of:						      */ | 
|  | /*     BADINT if there is a non-zero fraction			      */ | 
|  | /*     the converted integer					      */ | 
|  | /*     BIGEVEN if the integer is even and magnitude > 2*10**9	      */ | 
|  | /*     BIGODD  if the integer is odd  and magnitude > 2*10**9	      */ | 
|  | /*								      */ | 
|  | /* This checks and gets a whole number from the input decNumber.      */ | 
|  | /* The sign can be determined from dn by the caller when BIGEVEN or   */ | 
|  | /* BIGODD is returned.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Int decGetInt(const decNumber *dn) { | 
|  | Int  theInt;				/* result accumulator */ | 
|  | const Unit *up;			/* work */ | 
|  | Int  got;				/* digits (real or not) processed */ | 
|  | Int  ilength=dn->digits+dn->exponent; /* integral length */ | 
|  | Flag neg=decNumberIsNegative(dn);	/* 1 if -ve */ | 
|  |  | 
|  | /* The number must be an integer that fits in 10 digits */ | 
|  | /* Assert, here, that 10 is enough for any rescale Etiny */ | 
|  | #if DEC_MAX_EMAX > 999999999 | 
|  | #error GetInt may need updating [for Emax] | 
|  | #endif | 
|  | #if DEC_MIN_EMIN < -999999999 | 
|  | #error GetInt may need updating [for Emin] | 
|  | #endif | 
|  | if (ISZERO(dn)) return 0;		/* zeros are OK, with any exponent */ | 
|  |  | 
|  | up=dn->lsu;				/* ready for lsu */ | 
|  | theInt=0;				/* ready to accumulate */ | 
|  | if (dn->exponent>=0) {		/* relatively easy */ | 
|  | /* no fractional part [usual]; allow for positive exponent */ | 
|  | got=dn->exponent; | 
|  | } | 
|  | else { /* -ve exponent; some fractional part to check and discard */ | 
|  | Int count=-dn->exponent;		/* digits to discard */ | 
|  | /* spin up whole units until reach the Unit with the unit digit */ | 
|  | for (; count>=DECDPUN; up++) { | 
|  | if (*up!=0) return BADINT;	/* non-zero Unit to discard */ | 
|  | count-=DECDPUN; | 
|  | } | 
|  | if (count==0) got=0;		/* [a multiple of DECDPUN] */ | 
|  | else {				/* [not multiple of DECDPUN] */ | 
|  | Int rem;				/* work */ | 
|  | /* slice off fraction digits and check for non-zero */ | 
|  | #if DECDPUN<=4 | 
|  | theInt=QUOT10(*up, count); | 
|  | rem=*up-theInt*powers[count]; | 
|  | #else | 
|  | rem=*up%powers[count];		/* slice off discards */ | 
|  | theInt=*up/powers[count]; | 
|  | #endif | 
|  | if (rem!=0) return BADINT;	/* non-zero fraction */ | 
|  | /* it looks good */ | 
|  | got=DECDPUN-count;		/* number of digits so far */ | 
|  | up++;				/* ready for next */ | 
|  | } | 
|  | } | 
|  | /* now it's known there's no fractional part */ | 
|  |  | 
|  | /* tricky code now, to accumulate up to 9.3 digits */ | 
|  | if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */ | 
|  |  | 
|  | if (ilength<11) { | 
|  | Int save=theInt; | 
|  | /* collect any remaining unit(s) */ | 
|  | for (; got<ilength; up++) { | 
|  | theInt+=*up*powers[got]; | 
|  | got+=DECDPUN; | 
|  | } | 
|  | if (ilength==10) {			/* need to check for wrap */ | 
|  | if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11; | 
|  | /* [that test also disallows the BADINT result case] */ | 
|  | else if (neg && theInt>1999999997) ilength=11; | 
|  | else if (!neg && theInt>999999999) ilength=11; | 
|  | if (ilength==11) theInt=save;	/* restore correct low bit */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ilength>10) {			/* too big */ | 
|  | if (theInt&1) return BIGODD;	/* bottom bit 1 */ | 
|  | return BIGEVEN;			/* bottom bit 0 */ | 
|  | } | 
|  |  | 
|  | if (neg) theInt=-theInt;		/* apply sign */ | 
|  | return theInt; | 
|  | } /* decGetInt */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decDecap -- decapitate the coefficient of a number		      */ | 
|  | /*								      */ | 
|  | /*   dn	  is the number to be decapitated			      */ | 
|  | /*   drop is the number of digits to be removed from the left of dn;  */ | 
|  | /*     this must be <= dn->digits (if equal, the coefficient is	      */ | 
|  | /*     set to 0)						      */ | 
|  | /*								      */ | 
|  | /* Returns dn; dn->digits will be <= the initial digits less drop     */ | 
|  | /* (after removing drop digits there may be leading zero digits	      */ | 
|  | /* which will also be removed).	 Only dn->lsu and dn->digits change.  */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber *decDecap(decNumber *dn, Int drop) { | 
|  | Unit *msu;				/* -> target cut point */ | 
|  | Int cut;				/* work */ | 
|  | if (drop>=dn->digits) {		/* losing the whole thing */ | 
|  | #if DECCHECK | 
|  | if (drop>dn->digits) | 
|  | printf("decDecap called with drop>digits [%ld>%ld]\n", | 
|  | (LI)drop, (LI)dn->digits); | 
|  | #endif | 
|  | dn->lsu[0]=0; | 
|  | dn->digits=1; | 
|  | return dn; | 
|  | } | 
|  | msu=dn->lsu+D2U(dn->digits-drop)-1;	/* -> likely msu */ | 
|  | cut=MSUDIGITS(dn->digits-drop);	/* digits to be in use in msu */ | 
|  | if (cut!=DECDPUN) *msu%=powers[cut];	/* clear left digits */ | 
|  | /* that may have left leading zero digits, so do a proper count... */ | 
|  | dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1); | 
|  | return dn; | 
|  | } /* decDecap */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decBiStr -- compare string with pairwise options		      */ | 
|  | /*								      */ | 
|  | /*   targ is the string to compare				      */ | 
|  | /*   str1 is one of the strings to compare against (length may be 0)  */ | 
|  | /*   str2 is the other; it must be the same length as str1	      */ | 
|  | /*								      */ | 
|  | /*   returns 1 if strings compare equal, (that is, it is the same     */ | 
|  | /*   length as str1 and str2, and each character of targ is in either */ | 
|  | /*   str1 or str2 in the corresponding position), or 0 otherwise      */ | 
|  | /*								      */ | 
|  | /* This is used for generic caseless compare, including the awkward   */ | 
|  | /* case of the Turkish dotted and dotless Is.  Use as (for example):  */ | 
|  | /*   if (decBiStr(test, "mike", "MIKE")) ...			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Flag decBiStr(const char *targ, const char *str1, const char *str2) { | 
|  | for (;;targ++, str1++, str2++) { | 
|  | if (*targ!=*str1 && *targ!=*str2) return 0; | 
|  | /* *targ has a match in one (or both, if terminator) */ | 
|  | if (*targ=='\0') break; | 
|  | } /* forever */ | 
|  | return 1; | 
|  | } /* decBiStr */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNaNs -- handle NaN operand or operands			      */ | 
|  | /*								      */ | 
|  | /*   res     is the result number				      */ | 
|  | /*   lhs     is the first operand				      */ | 
|  | /*   rhs     is the second operand, or NULL if none		      */ | 
|  | /*   context is used to limit payload length			      */ | 
|  | /*   status  contains the current status			      */ | 
|  | /*   returns res in case convenient				      */ | 
|  | /*								      */ | 
|  | /* Called when one or both operands is a NaN, and propagates the      */ | 
|  | /* appropriate result to res.  When an sNaN is found, it is changed   */ | 
|  | /* to a qNaN and Invalid operation is set.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decNumber * decNaNs(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set, | 
|  | uInt *status) { | 
|  | /* This decision tree ends up with LHS being the source pointer, */ | 
|  | /* and status updated if need be */ | 
|  | if (lhs->bits & DECSNAN) | 
|  | *status|=DEC_Invalid_operation | DEC_sNaN; | 
|  | else if (rhs==NULL); | 
|  | else if (rhs->bits & DECSNAN) { | 
|  | lhs=rhs; | 
|  | *status|=DEC_Invalid_operation | DEC_sNaN; | 
|  | } | 
|  | else if (lhs->bits & DECNAN); | 
|  | else lhs=rhs; | 
|  |  | 
|  | /* propagate the payload */ | 
|  | if (lhs->digits<=set->digits) decNumberCopy(res, lhs); /* easy */ | 
|  | else { /* too long */ | 
|  | const Unit *ul; | 
|  | Unit *ur, *uresp1; | 
|  | /* copy safe number of units, then decapitate */ | 
|  | res->bits=lhs->bits;		/* need sign etc. */ | 
|  | uresp1=res->lsu+D2U(set->digits); | 
|  | for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul; | 
|  | res->digits=D2U(set->digits)*DECDPUN; | 
|  | /* maybe still too long */ | 
|  | if (res->digits>set->digits) decDecap(res, res->digits-set->digits); | 
|  | } | 
|  |  | 
|  | res->bits&=~DECSNAN;	      /* convert any sNaN to NaN, while */ | 
|  | res->bits|=DECNAN;	      /* .. preserving sign */ | 
|  | res->exponent=0;	      /* clean exponent */ | 
|  | /* [coefficient was copied/decapitated] */ | 
|  | return res; | 
|  | } /* decNaNs */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decStatus -- apply non-zero status				      */ | 
|  | /*								      */ | 
|  | /*   dn	    is the number to set if error			      */ | 
|  | /*   status contains the current status (not yet in context)	      */ | 
|  | /*   set    is the context					      */ | 
|  | /*								      */ | 
|  | /* If the status is an error status, the number is set to a NaN,      */ | 
|  | /* unless the error was an overflow, divide-by-zero, or underflow,    */ | 
|  | /* in which case the number will have already been set.		      */ | 
|  | /*								      */ | 
|  | /* The context status is then updated with the new status.  Note that */ | 
|  | /* this may raise a signal, so control may never return from this     */ | 
|  | /* routine (hence resources must be recovered before it is called).   */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decStatus(decNumber *dn, uInt status, decContext *set) { | 
|  | if (status & DEC_NaNs) {		/* error status -> NaN */ | 
|  | /* if cause was an sNaN, clear and propagate [NaN is already set up] */ | 
|  | if (status & DEC_sNaN) status&=~DEC_sNaN; | 
|  | else { | 
|  | decNumberZero(dn);		/* other error: clean throughout */ | 
|  | dn->bits=DECNAN;			/* and make a quiet NaN */ | 
|  | } | 
|  | } | 
|  | decContextSetStatus(set, status);	/* [may not return] */ | 
|  | return; | 
|  | } /* decStatus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decGetDigits -- count digits in a Units array		      */ | 
|  | /*								      */ | 
|  | /*   uar is the Unit array holding the number (this is often an	      */ | 
|  | /*	    accumulator of some sort)				      */ | 
|  | /*   len is the length of the array in units [>=1]		      */ | 
|  | /*								      */ | 
|  | /*   returns the number of (significant) digits in the array	      */ | 
|  | /*								      */ | 
|  | /* All leading zeros are excluded, except the last if the array has   */ | 
|  | /* only zero Units.						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This may be called twice during some operations. */ | 
|  | static Int decGetDigits(Unit *uar, Int len) { | 
|  | Unit *up=uar+(len-1);		   /* -> msu */ | 
|  | Int  digits=(len-1)*DECDPUN+1;   /* possible digits excluding msu */ | 
|  | #if DECDPUN>4 | 
|  | uInt const *pow;		   /* work */ | 
|  | #endif | 
|  | /* (at least 1 in final msu) */ | 
|  | #if DECCHECK | 
|  | if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); | 
|  | #endif | 
|  |  | 
|  | for (; up>=uar; up--) { | 
|  | if (*up==0) {		   /* unit is all 0s */ | 
|  | if (digits==1) break;	   /* a zero has one digit */ | 
|  | digits-=DECDPUN;		   /* adjust for 0 unit */ | 
|  | continue;} | 
|  | /* found the first (most significant) non-zero Unit */ | 
|  | #if DECDPUN>1		   /* not done yet */ | 
|  | if (*up<10) break;		   /* is 1-9 */ | 
|  | digits++; | 
|  | #if DECDPUN>2		   /* not done yet */ | 
|  | if (*up<100) break;		   /* is 10-99 */ | 
|  | digits++; | 
|  | #if DECDPUN>3		   /* not done yet */ | 
|  | if (*up<1000) break;	   /* is 100-999 */ | 
|  | digits++; | 
|  | #if DECDPUN>4		   /* count the rest ... */ | 
|  | for (pow=&powers[4]; *up>=*pow; pow++) digits++; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | break; | 
|  | } /* up */ | 
|  | return digits; | 
|  | } /* decGetDigits */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* mulUInt128ByPowOf10 -- multiply a 128-bit unsigned integer by a    */ | 
|  | /* power of 10.                                                       */ | 
|  | /*                                                                    */ | 
|  | /*   The 128-bit factor composed of plow and phigh is multiplied      */ | 
|  | /*   by 10^exp.                                                       */ | 
|  | /*                                                                    */ | 
|  | /*   plow   pointer to the low 64 bits of the first factor            */ | 
|  | /*   phigh  pointer to the high 64 bits of the first factor           */ | 
|  | /*   exp    the exponent of the power of 10 of the second factor      */ | 
|  | /*                                                                    */ | 
|  | /* If the result fits in 128 bits, returns false and the              */ | 
|  | /* multiplication result through plow and phigh.                      */ | 
|  | /* Otherwise, returns true.                                           */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static bool mulUInt128ByPowOf10(uLong *plow, uLong *phigh, uInt pow10) | 
|  | { | 
|  | while (pow10 >= ARRAY_SIZE(powers)) { | 
|  | if (mulu128(plow, phigh, powers[ARRAY_SIZE(powers) - 1])) { | 
|  | /* Overflow */ | 
|  | return true; | 
|  | } | 
|  | pow10 -= ARRAY_SIZE(powers) - 1; | 
|  | } | 
|  |  | 
|  | if (pow10 > 0) { | 
|  | return mulu128(plow, phigh, powers[pow10]); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if DECTRACE | DECCHECK | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumberShow -- display a number [debug aid]		      */ | 
|  | /*   dn is the number to show					      */ | 
|  | /*								      */ | 
|  | /* Shows: sign, exponent, coefficient (msu first), digits	      */ | 
|  | /*    or: sign, special-value					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* this is public so other modules can use it */ | 
|  | void decNumberShow(const decNumber *dn) { | 
|  | const Unit *up;		   /* work */ | 
|  | uInt u, d;			   /* .. */ | 
|  | Int cut;			   /* .. */ | 
|  | char isign='+';		   /* main sign */ | 
|  | if (dn==NULL) { | 
|  | printf("NULL\n"); | 
|  | return;} | 
|  | if (decNumberIsNegative(dn)) isign='-'; | 
|  | printf(" >> %c ", isign); | 
|  | if (dn->bits&DECSPECIAL) {	   /* Is a special value */ | 
|  | if (decNumberIsInfinite(dn)) printf("Infinity"); | 
|  | else {				     /* a NaN */ | 
|  | if (dn->bits&DECSNAN) printf("sNaN");  /* signalling NaN */ | 
|  | else printf("NaN"); | 
|  | } | 
|  | /* if coefficient and exponent are 0, no more to do */ | 
|  | if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { | 
|  | printf("\n"); | 
|  | return;} | 
|  | /* drop through to report other information */ | 
|  | printf(" "); | 
|  | } | 
|  |  | 
|  | /* now carefully display the coefficient */ | 
|  | up=dn->lsu+D2U(dn->digits)-1;		/* msu */ | 
|  | printf("%ld", (LI)*up); | 
|  | for (up=up-1; up>=dn->lsu; up--) { | 
|  | u=*up; | 
|  | printf(":"); | 
|  | for (cut=DECDPUN-1; cut>=0; cut--) { | 
|  | d=u/powers[cut]; | 
|  | u-=d*powers[cut]; | 
|  | printf("%ld", (LI)d); | 
|  | } /* cut */ | 
|  | } /* up */ | 
|  | if (dn->exponent!=0) { | 
|  | char esign='+'; | 
|  | if (dn->exponent<0) esign='-'; | 
|  | printf(" E%c%ld", esign, (LI)abs(dn->exponent)); | 
|  | } | 
|  | printf(" [%ld]\n", (LI)dn->digits); | 
|  | } /* decNumberShow */ | 
|  | #endif | 
|  |  | 
|  | #if DECTRACE || DECCHECK | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decDumpAr -- display a unit array [debug/check aid]		      */ | 
|  | /*   name is a single-character tag name			      */ | 
|  | /*   ar	  is the array to display				      */ | 
|  | /*   len  is the length of the array in Units			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decDumpAr(char name, const Unit *ar, Int len) { | 
|  | Int i; | 
|  | const char *spec; | 
|  | #if DECDPUN==9 | 
|  | spec="%09d "; | 
|  | #elif DECDPUN==8 | 
|  | spec="%08d "; | 
|  | #elif DECDPUN==7 | 
|  | spec="%07d "; | 
|  | #elif DECDPUN==6 | 
|  | spec="%06d "; | 
|  | #elif DECDPUN==5 | 
|  | spec="%05d "; | 
|  | #elif DECDPUN==4 | 
|  | spec="%04d "; | 
|  | #elif DECDPUN==3 | 
|  | spec="%03d "; | 
|  | #elif DECDPUN==2 | 
|  | spec="%02d "; | 
|  | #else | 
|  | spec="%d "; | 
|  | #endif | 
|  | printf("  :%c: ", name); | 
|  | for (i=len-1; i>=0; i--) { | 
|  | if (i==len-1) printf("%ld ", (LI)ar[i]); | 
|  | else printf(spec, ar[i]); | 
|  | } | 
|  | printf("\n"); | 
|  | return;} | 
|  | #endif | 
|  |  | 
|  | #if DECCHECK | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decCheckOperands -- check operand(s) to a routine		      */ | 
|  | /*   res is the result structure (not checked; it will be set to      */ | 
|  | /*	    quiet NaN if error found (and it is not NULL))	      */ | 
|  | /*   lhs is the first operand (may be DECUNRESU)		      */ | 
|  | /*   rhs is the second (may be DECUNUSED)			      */ | 
|  | /*   set is the context (may be DECUNCONT)			      */ | 
|  | /*   returns 0 if both operands, and the context are clean, or 1      */ | 
|  | /*     otherwise (in which case the context will show an error,	      */ | 
|  | /*     unless NULL).  Note that res is not cleaned; caller should     */ | 
|  | /*     handle this so res=NULL case is safe.			      */ | 
|  | /* The caller is expected to abandon immediately if 1 is returned.    */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Flag decCheckOperands(decNumber *res, const decNumber *lhs, | 
|  | const decNumber *rhs, decContext *set) { | 
|  | Flag bad=0; | 
|  | if (set==NULL) {		   /* oops; hopeless */ | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Reference to context is NULL.\n"); | 
|  | #endif | 
|  | bad=1; | 
|  | return 1;} | 
|  | else if (set!=DECUNCONT | 
|  | && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { | 
|  | bad=1; | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Bad context [digits=%ld round=%ld].\n", | 
|  | (LI)set->digits, (LI)set->round); | 
|  | #endif | 
|  | } | 
|  | else { | 
|  | if (res==NULL) { | 
|  | bad=1; | 
|  | #if DECTRACE | 
|  | /* this one not DECVERB as standard tests include NULL */ | 
|  | printf("Reference to result is NULL.\n"); | 
|  | #endif | 
|  | } | 
|  | if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs)); | 
|  | if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs)); | 
|  | } | 
|  | if (bad) { | 
|  | if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation); | 
|  | if (res!=DECUNRESU && res!=NULL) { | 
|  | decNumberZero(res); | 
|  | res->bits=DECNAN;	      /* qNaN */ | 
|  | } | 
|  | } | 
|  | return bad; | 
|  | } /* decCheckOperands */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decCheckNumber -- check a number				      */ | 
|  | /*   dn is the number to check					      */ | 
|  | /*   returns 0 if the number is clean, or 1 otherwise		      */ | 
|  | /*								      */ | 
|  | /* The number is considered valid if it could be a result from some   */ | 
|  | /* operation in some valid context.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Flag decCheckNumber(const decNumber *dn) { | 
|  | const Unit *up;	      /* work */ | 
|  | uInt maxuint;		      /* .. */ | 
|  | Int ae, d, digits;	      /* .. */ | 
|  | Int emin, emax;	      /* .. */ | 
|  |  | 
|  | if (dn==NULL) {	      /* hopeless */ | 
|  | #if DECTRACE | 
|  | /* this one not DECVERB as standard tests include NULL */ | 
|  | printf("Reference to decNumber is NULL.\n"); | 
|  | #endif | 
|  | return 1;} | 
|  |  | 
|  | /* check special values */ | 
|  | if (dn->bits & DECSPECIAL) { | 
|  | if (dn->exponent!=0) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Exponent %ld (not 0) for a special value [%02x].\n", | 
|  | (LI)dn->exponent, dn->bits); | 
|  | #endif | 
|  | return 1;} | 
|  |  | 
|  | /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */ | 
|  | if (decNumberIsInfinite(dn)) { | 
|  | if (dn->digits!=1) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); | 
|  | #endif | 
|  | return 1;} | 
|  | if (*dn->lsu!=0) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); | 
|  | #endif | 
|  | decDumpAr('I', dn->lsu, D2U(dn->digits)); | 
|  | return 1;} | 
|  | } /* Inf */ | 
|  | /* 2002.12.26: negative NaNs can now appear through proposed IEEE */ | 
|  | /*		   concrete formats (decimal64, etc.). */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check the coefficient */ | 
|  | if (dn->digits<1 || dn->digits>DECNUMMAXP) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Digits %ld in number.\n", (LI)dn->digits); | 
|  | #endif | 
|  | return 1;} | 
|  |  | 
|  | d=dn->digits; | 
|  |  | 
|  | for (up=dn->lsu; d>0; up++) { | 
|  | if (d>DECDPUN) maxuint=DECDPUNMAX; | 
|  | else {		      /* reached the msu */ | 
|  | maxuint=powers[d]-1; | 
|  | if (dn->digits>1 && *up<powers[d-1]) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Leading 0 in number.\n"); | 
|  | decNumberShow(dn); | 
|  | #endif | 
|  | return 1;} | 
|  | } | 
|  | if (*up>maxuint) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", | 
|  | (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint); | 
|  | #endif | 
|  | return 1;} | 
|  | d-=DECDPUN; | 
|  | } | 
|  |  | 
|  | /* check the exponent.  Note that input operands can have exponents */ | 
|  | /* which are out of the set->emin/set->emax and set->digits range */ | 
|  | /* (just as they can have more digits than set->digits). */ | 
|  | ae=dn->exponent+dn->digits-1;	   /* adjusted exponent */ | 
|  | emax=DECNUMMAXE; | 
|  | emin=DECNUMMINE; | 
|  | digits=DECNUMMAXP; | 
|  | if (ae<emin-(digits-1)) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Adjusted exponent underflow [%ld].\n", (LI)ae); | 
|  | decNumberShow(dn); | 
|  | #endif | 
|  | return 1;} | 
|  | if (ae>+emax) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Adjusted exponent overflow [%ld].\n", (LI)ae); | 
|  | decNumberShow(dn); | 
|  | #endif | 
|  | return 1;} | 
|  |  | 
|  | return 0;		 /* it's OK */ | 
|  | } /* decCheckNumber */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decCheckInexact -- check a normal finite inexact result has digits */ | 
|  | /*   dn is the number to check					      */ | 
|  | /*   set is the context (for status and precision)		      */ | 
|  | /*   sets Invalid operation, etc., if some digits are missing	      */ | 
|  | /* [this check is not made for DECSUBSET compilation or when	      */ | 
|  | /* subnormal is not set]					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decCheckInexact(const decNumber *dn, decContext *set) { | 
|  | #if !DECSUBSET && DECEXTFLAG | 
|  | if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact | 
|  | && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) { | 
|  | #if DECTRACE || DECVERB | 
|  | printf("Insufficient digits [%ld] on normal Inexact result.\n", | 
|  | (LI)dn->digits); | 
|  | decNumberShow(dn); | 
|  | #endif | 
|  | decContextSetStatus(set, DEC_Invalid_operation); | 
|  | } | 
|  | #else | 
|  | /* next is a noop for quiet compiler */ | 
|  | if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation; | 
|  | #endif | 
|  | return; | 
|  | } /* decCheckInexact */ | 
|  | #endif | 
|  |  | 
|  | #if DECALLOC | 
|  | #undef malloc | 
|  | #undef free | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decMalloc -- accountable allocation routine			      */ | 
|  | /*   n is the number of bytes to allocate			      */ | 
|  | /*								      */ | 
|  | /* Semantics is the same as the stdlib malloc routine, but bytes      */ | 
|  | /* allocated are accounted for globally, and corruption fences are    */ | 
|  | /* added before and after the 'actual' storage.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This routine allocates storage with an extra twelve bytes; 8 are   */ | 
|  | /* at the start and hold:					      */ | 
|  | /*   0-3 the original length requested				      */ | 
|  | /*   4-7 buffer corruption detection fence (DECFENCE, x4)	      */ | 
|  | /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void *decMalloc(size_t n) { | 
|  | uInt	size=n+12;		   /* true size */ | 
|  | void	*alloc;			   /* -> allocated storage */ | 
|  | uInt	*j;			   /* work */ | 
|  | uByte *b, *b0;		   /* .. */ | 
|  |  | 
|  | alloc=malloc(size);		   /* -> allocated storage */ | 
|  | if (alloc==NULL) return NULL;	   /* out of strorage */ | 
|  | b0=(uByte *)alloc;		   /* as bytes */ | 
|  | decAllocBytes+=n;		   /* account for storage */ | 
|  | j=(uInt *)alloc;		   /* -> first four bytes */ | 
|  | *j=n;				   /* save n */ | 
|  | /* printf(" alloc ++ dAB: %ld (%d)\n", decAllocBytes, n); */ | 
|  | for (b=b0+4; b<b0+8; b++) *b=DECFENCE; | 
|  | for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE; | 
|  | return b0+8;			   /* -> play area */ | 
|  | } /* decMalloc */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFree -- accountable free routine				      */ | 
|  | /*   alloc is the storage to free				      */ | 
|  | /*								      */ | 
|  | /* Semantics is the same as the stdlib malloc routine, except that    */ | 
|  | /* the global storage accounting is updated and the fences are	      */ | 
|  | /* checked to ensure that no routine has written 'out of bounds'.     */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This routine first checks that the fences have not been corrupted. */ | 
|  | /* It then frees the storage using the 'truw' storage address (that   */ | 
|  | /* is, offset by 8).						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static void decFree(void *alloc) { | 
|  | uInt	*j, n;			   /* pointer, original length */ | 
|  | uByte *b, *b0;		   /* work */ | 
|  |  | 
|  | if (alloc==NULL) return;	   /* allowed; it's a nop */ | 
|  | b0=(uByte *)alloc;		   /* as bytes */ | 
|  | b0-=8;			   /* -> true start of storage */ | 
|  | j=(uInt *)b0;			   /* -> first four bytes */ | 
|  | n=*j;				   /* lift */ | 
|  | for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE) | 
|  | printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b, | 
|  | b-b0-8, (Int)b0); | 
|  | for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE) | 
|  | printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b, | 
|  | b-b0-8, (Int)b0, n); | 
|  | free(b0);			   /* drop the storage */ | 
|  | decAllocBytes-=n;		   /* account for storage */ | 
|  | /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */ | 
|  | } /* decFree */ | 
|  | #define malloc(a) decMalloc(a) | 
|  | #define free(a) decFree(a) | 
|  | #endif |