blob: cfc425697403d068321281f4037b4379450b75c4 [file] [log] [blame]
/* This is the Linux kernel elf-loading code, ported into user space */
#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <errno.h>
#include <unistd.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <string.h>
#include "qemu.h"
#include "disas.h"
/* this flag is uneffective under linux too, should be deleted */
#ifndef MAP_DENYWRITE
#define MAP_DENYWRITE 0
#endif
/* should probably go in elf.h */
#ifndef ELIBBAD
#define ELIBBAD 80
#endif
#ifdef TARGET_I386
#define ELF_START_MMAP 0x80000000
/*
* This is used to ensure we don't load something for the wrong architecture.
*/
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
/*
* These are used to set parameters in the core dumps.
*/
#define ELF_CLASS ELFCLASS32
#define ELF_DATA ELFDATA2LSB
#define ELF_ARCH EM_386
/* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
starts %edx contains a pointer to a function which might be
registered using `atexit'. This provides a mean for the
dynamic linker to call DT_FINI functions for shared libraries
that have been loaded before the code runs.
A value of 0 tells we have no such handler. */
#define ELF_PLAT_INIT(_r) _r->edx = 0
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
{
regs->esp = infop->start_stack;
regs->eip = infop->entry;
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
#endif
#ifdef TARGET_ARM
#define ELF_START_MMAP 0x80000000
#define elf_check_arch(x) ( (x) == EM_ARM )
#define ELF_CLASS ELFCLASS32
#ifdef TARGET_WORDS_BIGENDIAN
#define ELF_DATA ELFDATA2MSB
#else
#define ELF_DATA ELFDATA2LSB
#endif
#define ELF_ARCH EM_ARM
#define ELF_PLAT_INIT(_r) _r->ARM_r0 = 0
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
{
target_long *stack = (void *)infop->start_stack;
memset(regs, 0, sizeof(*regs));
regs->ARM_cpsr = 0x10;
regs->ARM_pc = infop->entry;
regs->ARM_sp = infop->start_stack;
regs->ARM_r2 = tswapl(stack[2]); /* envp */
regs->ARM_r1 = tswapl(stack[1]); /* argv */
/* XXX: it seems that r0 is zeroed after ! */
// regs->ARM_r0 = tswapl(stack[0]); /* argc */
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
#endif
#ifdef TARGET_SPARC
#define ELF_START_MMAP 0x80000000
#define elf_check_arch(x) ( (x) == EM_SPARC )
#define ELF_CLASS ELFCLASS32
#define ELF_DATA ELFDATA2MSB
#define ELF_ARCH EM_SPARC
/*XXX*/
#define ELF_PLAT_INIT(_r)
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
{
regs->psr = 0;
regs->pc = infop->entry;
regs->npc = regs->pc + 4;
regs->y = 0;
regs->u_regs[14] = infop->start_stack - 16 * 4;
}
#endif
#ifdef TARGET_PPC
#define ELF_START_MMAP 0x80000000
#define elf_check_arch(x) ( (x) == EM_PPC )
#define ELF_CLASS ELFCLASS32
#ifdef TARGET_WORDS_BIGENDIAN
#define ELF_DATA ELFDATA2MSB
#else
#define ELF_DATA ELFDATA2LSB
#endif
#define ELF_ARCH EM_PPC
/* Note that isn't exactly what regular kernel does
* but this is what the ABI wants and is needed to allow
* execution of PPC BSD programs.
*/
#define ELF_PLAT_INIT(_r) \
do { \
target_ulong *pos = (target_ulong *)bprm->p, tmp = 1; \
_r->gpr[3] = bprm->argc; \
_r->gpr[4] = (unsigned long)++pos; \
for (; tmp != 0; pos++) \
tmp = *pos; \
_r->gpr[5] = (unsigned long)pos; \
} while (0)
/*
* We need to put in some extra aux table entries to tell glibc what
* the cache block size is, so it can use the dcbz instruction safely.
*/
#define AT_DCACHEBSIZE 19
#define AT_ICACHEBSIZE 20
#define AT_UCACHEBSIZE 21
/* A special ignored type value for PPC, for glibc compatibility. */
#define AT_IGNOREPPC 22
/*
* The requirements here are:
* - keep the final alignment of sp (sp & 0xf)
* - make sure the 32-bit value at the first 16 byte aligned position of
* AUXV is greater than 16 for glibc compatibility.
* AT_IGNOREPPC is used for that.
* - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
* even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
*/
#define DLINFO_ARCH_ITEMS 3
#define ARCH_DLINFO \
do { \
sp -= DLINFO_ARCH_ITEMS * 2; \
NEW_AUX_ENT(0, AT_DCACHEBSIZE, 0x20); \
NEW_AUX_ENT(1, AT_ICACHEBSIZE, 0x20); \
NEW_AUX_ENT(2, AT_UCACHEBSIZE, 0); \
/* \
* Now handle glibc compatibility. \
*/ \
sp -= 2*2; \
NEW_AUX_ENT(0, AT_IGNOREPPC, AT_IGNOREPPC); \
NEW_AUX_ENT(1, AT_IGNOREPPC, AT_IGNOREPPC); \
} while (0)
static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
{
_regs->msr = 1 << MSR_PR; /* Set user mode */
_regs->gpr[1] = infop->start_stack;
_regs->nip = infop->entry;
}
#define USE_ELF_CORE_DUMP
#define ELF_EXEC_PAGESIZE 4096
#endif
#include "elf.h"
/*
* MAX_ARG_PAGES defines the number of pages allocated for arguments
* and envelope for the new program. 32 should suffice, this gives
* a maximum env+arg of 128kB w/4KB pages!
*/
#define MAX_ARG_PAGES 32
/*
* This structure is used to hold the arguments that are
* used when loading binaries.
*/
struct linux_binprm {
char buf[128];
unsigned long page[MAX_ARG_PAGES];
unsigned long p;
int sh_bang;
int fd;
int e_uid, e_gid;
int argc, envc;
char * filename; /* Name of binary */
unsigned long loader, exec;
int dont_iput; /* binfmt handler has put inode */
};
struct exec
{
unsigned int a_info; /* Use macros N_MAGIC, etc for access */
unsigned int a_text; /* length of text, in bytes */
unsigned int a_data; /* length of data, in bytes */
unsigned int a_bss; /* length of uninitialized data area, in bytes */
unsigned int a_syms; /* length of symbol table data in file, in bytes */
unsigned int a_entry; /* start address */
unsigned int a_trsize; /* length of relocation info for text, in bytes */
unsigned int a_drsize; /* length of relocation info for data, in bytes */
};
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413
#define QMAGIC 0314
/* max code+data+bss space allocated to elf interpreter */
#define INTERP_MAP_SIZE (32 * 1024 * 1024)
/* max code+data+bss+brk space allocated to ET_DYN executables */
#define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
/* from personality.h */
/* Flags for bug emulation. These occupy the top three bytes. */
#define STICKY_TIMEOUTS 0x4000000
#define WHOLE_SECONDS 0x2000000
/* Personality types. These go in the low byte. Avoid using the top bit,
* it will conflict with error returns.
*/
#define PER_MASK (0x00ff)
#define PER_LINUX (0x0000)
#define PER_SVR4 (0x0001 | STICKY_TIMEOUTS)
#define PER_SVR3 (0x0002 | STICKY_TIMEOUTS)
#define PER_SCOSVR3 (0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS)
#define PER_WYSEV386 (0x0004 | STICKY_TIMEOUTS)
#define PER_ISCR4 (0x0005 | STICKY_TIMEOUTS)
#define PER_BSD (0x0006)
#define PER_XENIX (0x0007 | STICKY_TIMEOUTS)
/* Necessary parameters */
#define NGROUPS 32
#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
#define INTERPRETER_NONE 0
#define INTERPRETER_AOUT 1
#define INTERPRETER_ELF 2
#define DLINFO_ITEMS 11
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
{
memcpy(to, from, n);
}
extern unsigned long x86_stack_size;
static int load_aout_interp(void * exptr, int interp_fd);
#ifdef BSWAP_NEEDED
static void bswap_ehdr(Elf32_Ehdr *ehdr)
{
bswap16s(&ehdr->e_type); /* Object file type */
bswap16s(&ehdr->e_machine); /* Architecture */
bswap32s(&ehdr->e_version); /* Object file version */
bswap32s(&ehdr->e_entry); /* Entry point virtual address */
bswap32s(&ehdr->e_phoff); /* Program header table file offset */
bswap32s(&ehdr->e_shoff); /* Section header table file offset */
bswap32s(&ehdr->e_flags); /* Processor-specific flags */
bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
bswap16s(&ehdr->e_phnum); /* Program header table entry count */
bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
bswap16s(&ehdr->e_shnum); /* Section header table entry count */
bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
}
static void bswap_phdr(Elf32_Phdr *phdr)
{
bswap32s(&phdr->p_type); /* Segment type */
bswap32s(&phdr->p_offset); /* Segment file offset */
bswap32s(&phdr->p_vaddr); /* Segment virtual address */
bswap32s(&phdr->p_paddr); /* Segment physical address */
bswap32s(&phdr->p_filesz); /* Segment size in file */
bswap32s(&phdr->p_memsz); /* Segment size in memory */
bswap32s(&phdr->p_flags); /* Segment flags */
bswap32s(&phdr->p_align); /* Segment alignment */
}
static void bswap_shdr(Elf32_Shdr *shdr)
{
bswap32s(&shdr->sh_name);
bswap32s(&shdr->sh_type);
bswap32s(&shdr->sh_flags);
bswap32s(&shdr->sh_addr);
bswap32s(&shdr->sh_offset);
bswap32s(&shdr->sh_size);
bswap32s(&shdr->sh_link);
bswap32s(&shdr->sh_info);
bswap32s(&shdr->sh_addralign);
bswap32s(&shdr->sh_entsize);
}
static void bswap_sym(Elf32_Sym *sym)
{
bswap32s(&sym->st_name);
bswap32s(&sym->st_value);
bswap32s(&sym->st_size);
bswap16s(&sym->st_shndx);
}
#endif
static void * get_free_page(void)
{
void * retval;
/* User-space version of kernel get_free_page. Returns a page-aligned
* page-sized chunk of memory.
*/
retval = (void *)target_mmap(0, qemu_host_page_size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if((long)retval == -1) {
perror("get_free_page");
exit(-1);
}
else {
return(retval);
}
}
static void free_page(void * pageaddr)
{
target_munmap((unsigned long)pageaddr, qemu_host_page_size);
}
/*
* 'copy_string()' copies argument/envelope strings from user
* memory to free pages in kernel mem. These are in a format ready
* to be put directly into the top of new user memory.
*
*/
static unsigned long copy_strings(int argc,char ** argv,unsigned long *page,
unsigned long p)
{
char *tmp, *tmp1, *pag = NULL;
int len, offset = 0;
if (!p) {
return 0; /* bullet-proofing */
}
while (argc-- > 0) {
tmp = argv[argc];
if (!tmp) {
fprintf(stderr, "VFS: argc is wrong");
exit(-1);
}
tmp1 = tmp;
while (*tmp++);
len = tmp - tmp1;
if (p < len) { /* this shouldn't happen - 128kB */
return 0;
}
while (len) {
--p; --tmp; --len;
if (--offset < 0) {
offset = p % TARGET_PAGE_SIZE;
pag = (char *) page[p/TARGET_PAGE_SIZE];
if (!pag) {
pag = (char *)get_free_page();
page[p/TARGET_PAGE_SIZE] = (unsigned long)pag;
if (!pag)
return 0;
}
}
if (len == 0 || offset == 0) {
*(pag + offset) = *tmp;
}
else {
int bytes_to_copy = (len > offset) ? offset : len;
tmp -= bytes_to_copy;
p -= bytes_to_copy;
offset -= bytes_to_copy;
len -= bytes_to_copy;
memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
}
}
}
return p;
}
static int in_group_p(gid_t g)
{
/* return TRUE if we're in the specified group, FALSE otherwise */
int ngroup;
int i;
gid_t grouplist[NGROUPS];
ngroup = getgroups(NGROUPS, grouplist);
for(i = 0; i < ngroup; i++) {
if(grouplist[i] == g) {
return 1;
}
}
return 0;
}
static int count(char ** vec)
{
int i;
for(i = 0; *vec; i++) {
vec++;
}
return(i);
}
static int prepare_binprm(struct linux_binprm *bprm)
{
struct stat st;
int mode;
int retval, id_change;
if(fstat(bprm->fd, &st) < 0) {
return(-errno);
}
mode = st.st_mode;
if(!S_ISREG(mode)) { /* Must be regular file */
return(-EACCES);
}
if(!(mode & 0111)) { /* Must have at least one execute bit set */
return(-EACCES);
}
bprm->e_uid = geteuid();
bprm->e_gid = getegid();
id_change = 0;
/* Set-uid? */
if(mode & S_ISUID) {
bprm->e_uid = st.st_uid;
if(bprm->e_uid != geteuid()) {
id_change = 1;
}
}
/* Set-gid? */
/*
* If setgid is set but no group execute bit then this
* is a candidate for mandatory locking, not a setgid
* executable.
*/
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
bprm->e_gid = st.st_gid;
if (!in_group_p(bprm->e_gid)) {
id_change = 1;
}
}
memset(bprm->buf, 0, sizeof(bprm->buf));
retval = lseek(bprm->fd, 0L, SEEK_SET);
if(retval >= 0) {
retval = read(bprm->fd, bprm->buf, 128);
}
if(retval < 0) {
perror("prepare_binprm");
exit(-1);
/* return(-errno); */
}
else {
return(retval);
}
}
unsigned long setup_arg_pages(unsigned long p, struct linux_binprm * bprm,
struct image_info * info)
{
unsigned long stack_base, size, error;
int i;
/* Create enough stack to hold everything. If we don't use
* it for args, we'll use it for something else...
*/
size = x86_stack_size;
if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
error = target_mmap(0,
size + qemu_host_page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (error == -1) {
perror("stk mmap");
exit(-1);
}
/* we reserve one extra page at the top of the stack as guard */
target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
p += stack_base;
if (bprm->loader) {
bprm->loader += stack_base;
}
bprm->exec += stack_base;
for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
if (bprm->page[i]) {
info->rss++;
memcpy((void *)stack_base, (void *)bprm->page[i], TARGET_PAGE_SIZE);
free_page((void *)bprm->page[i]);
}
stack_base += TARGET_PAGE_SIZE;
}
return p;
}
static void set_brk(unsigned long start, unsigned long end)
{
/* page-align the start and end addresses... */
start = HOST_PAGE_ALIGN(start);
end = HOST_PAGE_ALIGN(end);
if (end <= start)
return;
if(target_mmap(start, end - start,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
perror("cannot mmap brk");
exit(-1);
}
}
/* We need to explicitly zero any fractional pages after the data
section (i.e. bss). This would contain the junk from the file that
should not be in memory. */
static void padzero(unsigned long elf_bss)
{
unsigned long nbyte;
char * fpnt;
/* XXX: this is really a hack : if the real host page size is
smaller than the target page size, some pages after the end
of the file may not be mapped. A better fix would be to
patch target_mmap(), but it is more complicated as the file
size must be known */
if (qemu_real_host_page_size < qemu_host_page_size) {
unsigned long end_addr, end_addr1;
end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
~(qemu_real_host_page_size - 1);
end_addr = HOST_PAGE_ALIGN(elf_bss);
if (end_addr1 < end_addr) {
mmap((void *)end_addr1, end_addr - end_addr1,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
}
}
nbyte = elf_bss & (qemu_host_page_size-1);
if (nbyte) {
nbyte = qemu_host_page_size - nbyte;
fpnt = (char *) elf_bss;
do {
*fpnt++ = 0;
} while (--nbyte);
}
}
static unsigned int * create_elf_tables(char *p, int argc, int envc,
struct elfhdr * exec,
unsigned long load_addr,
unsigned long load_bias,
unsigned long interp_load_addr, int ibcs,
struct image_info *info)
{
target_ulong *argv, *envp;
target_ulong *sp, *csp;
int v;
/*
* Force 16 byte _final_ alignment here for generality.
*/
sp = (unsigned int *) (~15UL & (unsigned long) p);
csp = sp;
csp -= (DLINFO_ITEMS + 1) * 2;
#ifdef DLINFO_ARCH_ITEMS
csp -= DLINFO_ARCH_ITEMS*2;
#endif
csp -= envc+1;
csp -= argc+1;
csp -= (!ibcs ? 3 : 1); /* argc itself */
if ((unsigned long)csp & 15UL)
sp -= ((unsigned long)csp & 15UL) / sizeof(*sp);
#define NEW_AUX_ENT(nr, id, val) \
put_user (id, sp + (nr * 2)); \
put_user (val, sp + (nr * 2 + 1))
sp -= 2;
NEW_AUX_ENT (0, AT_NULL, 0);
sp -= DLINFO_ITEMS*2;
NEW_AUX_ENT( 0, AT_PHDR, (target_ulong)(load_addr + exec->e_phoff));
NEW_AUX_ENT( 1, AT_PHENT, (target_ulong)(sizeof (struct elf_phdr)));
NEW_AUX_ENT( 2, AT_PHNUM, (target_ulong)(exec->e_phnum));
NEW_AUX_ENT( 3, AT_PAGESZ, (target_ulong)(TARGET_PAGE_SIZE));
NEW_AUX_ENT( 4, AT_BASE, (target_ulong)(interp_load_addr));
NEW_AUX_ENT( 5, AT_FLAGS, (target_ulong)0);
NEW_AUX_ENT( 6, AT_ENTRY, load_bias + exec->e_entry);
NEW_AUX_ENT( 7, AT_UID, (target_ulong) getuid());
NEW_AUX_ENT( 8, AT_EUID, (target_ulong) geteuid());
NEW_AUX_ENT( 9, AT_GID, (target_ulong) getgid());
NEW_AUX_ENT(11, AT_EGID, (target_ulong) getegid());
#ifdef ARCH_DLINFO
/*
* ARCH_DLINFO must come last so platform specific code can enforce
* special alignment requirements on the AUXV if necessary (eg. PPC).
*/
ARCH_DLINFO;
#endif
#undef NEW_AUX_ENT
sp -= envc+1;
envp = sp;
sp -= argc+1;
argv = sp;
if (!ibcs) {
put_user((target_ulong)envp,--sp);
put_user((target_ulong)argv,--sp);
}
put_user(argc,--sp);
info->arg_start = (unsigned int)((unsigned long)p & 0xffffffff);
while (argc-->0) {
put_user((target_ulong)p,argv++);
do {
get_user(v, p);
p++;
} while (v != 0);
}
put_user(0,argv);
info->arg_end = info->env_start = (unsigned int)((unsigned long)p & 0xffffffff);
while (envc-->0) {
put_user((target_ulong)p,envp++);
do {
get_user(v, p);
p++;
} while (v != 0);
}
put_user(0,envp);
info->env_end = (unsigned int)((unsigned long)p & 0xffffffff);
return sp;
}
static unsigned long load_elf_interp(struct elfhdr * interp_elf_ex,
int interpreter_fd,
unsigned long *interp_load_addr)
{
struct elf_phdr *elf_phdata = NULL;
struct elf_phdr *eppnt;
unsigned long load_addr = 0;
int load_addr_set = 0;
int retval;
unsigned long last_bss, elf_bss;
unsigned long error;
int i;
elf_bss = 0;
last_bss = 0;
error = 0;
#ifdef BSWAP_NEEDED
bswap_ehdr(interp_elf_ex);
#endif
/* First of all, some simple consistency checks */
if ((interp_elf_ex->e_type != ET_EXEC &&
interp_elf_ex->e_type != ET_DYN) ||
!elf_check_arch(interp_elf_ex->e_machine)) {
return ~0UL;
}
/* Now read in all of the header information */
if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
return ~0UL;
elf_phdata = (struct elf_phdr *)
malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
if (!elf_phdata)
return ~0UL;
/*
* If the size of this structure has changed, then punt, since
* we will be doing the wrong thing.
*/
if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
free(elf_phdata);
return ~0UL;
}
retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
if(retval >= 0) {
retval = read(interpreter_fd,
(char *) elf_phdata,
sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
}
if (retval < 0) {
perror("load_elf_interp");
exit(-1);
free (elf_phdata);
return retval;
}
#ifdef BSWAP_NEEDED
eppnt = elf_phdata;
for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
bswap_phdr(eppnt);
}
#endif
if (interp_elf_ex->e_type == ET_DYN) {
/* in order to avoid harcoding the interpreter load
address in qemu, we allocate a big enough memory zone */
error = target_mmap(0, INTERP_MAP_SIZE,
PROT_NONE, MAP_PRIVATE | MAP_ANON,
-1, 0);
if (error == -1) {
perror("mmap");
exit(-1);
}
load_addr = error;
load_addr_set = 1;
}
eppnt = elf_phdata;
for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
if (eppnt->p_type == PT_LOAD) {
int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
int elf_prot = 0;
unsigned long vaddr = 0;
unsigned long k;
if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
elf_type |= MAP_FIXED;
vaddr = eppnt->p_vaddr;
}
error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
elf_prot,
elf_type,
interpreter_fd,
eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
if (error > -1024UL) {
/* Real error */
close(interpreter_fd);
free(elf_phdata);
return ~0UL;
}
if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
load_addr = error;
load_addr_set = 1;
}
/*
* Find the end of the file mapping for this phdr, and keep
* track of the largest address we see for this.
*/
k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
if (k > elf_bss) elf_bss = k;
/*
* Do the same thing for the memory mapping - between
* elf_bss and last_bss is the bss section.
*/
k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
if (k > last_bss) last_bss = k;
}
/* Now use mmap to map the library into memory. */
close(interpreter_fd);
/*
* Now fill out the bss section. First pad the last page up
* to the page boundary, and then perform a mmap to make sure
* that there are zeromapped pages up to and including the last
* bss page.
*/
padzero(elf_bss);
elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
/* Map the last of the bss segment */
if (last_bss > elf_bss) {
target_mmap(elf_bss, last_bss-elf_bss,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
}
free(elf_phdata);
*interp_load_addr = load_addr;
return ((unsigned long) interp_elf_ex->e_entry) + load_addr;
}
/* Best attempt to load symbols from this ELF object. */
static void load_symbols(struct elfhdr *hdr, int fd)
{
unsigned int i;
struct elf_shdr sechdr, symtab, strtab;
char *strings;
lseek(fd, hdr->e_shoff, SEEK_SET);
for (i = 0; i < hdr->e_shnum; i++) {
if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
return;
#ifdef BSWAP_NEEDED
bswap_shdr(&sechdr);
#endif
if (sechdr.sh_type == SHT_SYMTAB) {
symtab = sechdr;
lseek(fd, hdr->e_shoff
+ sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
if (read(fd, &strtab, sizeof(strtab))
!= sizeof(strtab))
return;
#ifdef BSWAP_NEEDED
bswap_shdr(&strtab);
#endif
goto found;
}
}
return; /* Shouldn't happen... */
found:
/* Now know where the strtab and symtab are. Snarf them. */
disas_symtab = malloc(symtab.sh_size);
disas_strtab = strings = malloc(strtab.sh_size);
if (!disas_symtab || !disas_strtab)
return;
lseek(fd, symtab.sh_offset, SEEK_SET);
if (read(fd, disas_symtab, symtab.sh_size) != symtab.sh_size)
return;
#ifdef BSWAP_NEEDED
for (i = 0; i < symtab.sh_size / sizeof(struct elf_sym); i++)
bswap_sym(disas_symtab + sizeof(struct elf_sym)*i);
#endif
lseek(fd, strtab.sh_offset, SEEK_SET);
if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
return;
disas_num_syms = symtab.sh_size / sizeof(struct elf_sym);
}
static int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
struct image_info * info)
{
struct elfhdr elf_ex;
struct elfhdr interp_elf_ex;
struct exec interp_ex;
int interpreter_fd = -1; /* avoid warning */
unsigned long load_addr, load_bias;
int load_addr_set = 0;
unsigned int interpreter_type = INTERPRETER_NONE;
unsigned char ibcs2_interpreter;
int i;
unsigned long mapped_addr;
struct elf_phdr * elf_ppnt;
struct elf_phdr *elf_phdata;
unsigned long elf_bss, k, elf_brk;
int retval;
char * elf_interpreter;
unsigned long elf_entry, interp_load_addr = 0;
int status;
unsigned long start_code, end_code, end_data;
unsigned long elf_stack;
char passed_fileno[6];
ibcs2_interpreter = 0;
status = 0;
load_addr = 0;
load_bias = 0;
elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
#ifdef BSWAP_NEEDED
bswap_ehdr(&elf_ex);
#endif
if (elf_ex.e_ident[0] != 0x7f ||
strncmp(&elf_ex.e_ident[1], "ELF",3) != 0) {
return -ENOEXEC;
}
/* First of all, some simple consistency checks */
if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
(! elf_check_arch(elf_ex.e_machine))) {
return -ENOEXEC;
}
/* Now read in all of the header information */
elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
if (elf_phdata == NULL) {
return -ENOMEM;
}
retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
if(retval > 0) {
retval = read(bprm->fd, (char *) elf_phdata,
elf_ex.e_phentsize * elf_ex.e_phnum);
}
if (retval < 0) {
perror("load_elf_binary");
exit(-1);
free (elf_phdata);
return -errno;
}
#ifdef BSWAP_NEEDED
elf_ppnt = elf_phdata;
for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
bswap_phdr(elf_ppnt);
}
#endif
elf_ppnt = elf_phdata;
elf_bss = 0;
elf_brk = 0;
elf_stack = ~0UL;
elf_interpreter = NULL;
start_code = ~0UL;
end_code = 0;
end_data = 0;
for(i=0;i < elf_ex.e_phnum; i++) {
if (elf_ppnt->p_type == PT_INTERP) {
if ( elf_interpreter != NULL )
{
free (elf_phdata);
free(elf_interpreter);
close(bprm->fd);
return -EINVAL;
}
/* This is the program interpreter used for
* shared libraries - for now assume that this
* is an a.out format binary
*/
elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
if (elf_interpreter == NULL) {
free (elf_phdata);
close(bprm->fd);
return -ENOMEM;
}
retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
if(retval >= 0) {
retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
}
if(retval < 0) {
perror("load_elf_binary2");
exit(-1);
}
/* If the program interpreter is one of these two,
then assume an iBCS2 image. Otherwise assume
a native linux image. */
/* JRP - Need to add X86 lib dir stuff here... */
if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
ibcs2_interpreter = 1;
}
#if 0
printf("Using ELF interpreter %s\n", elf_interpreter);
#endif
if (retval >= 0) {
retval = open(path(elf_interpreter), O_RDONLY);
if(retval >= 0) {
interpreter_fd = retval;
}
else {
perror(elf_interpreter);
exit(-1);
/* retval = -errno; */
}
}
if (retval >= 0) {
retval = lseek(interpreter_fd, 0, SEEK_SET);
if(retval >= 0) {
retval = read(interpreter_fd,bprm->buf,128);
}
}
if (retval >= 0) {
interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
interp_elf_ex=*((struct elfhdr *) bprm->buf); /* elf exec-header */
}
if (retval < 0) {
perror("load_elf_binary3");
exit(-1);
free (elf_phdata);
free(elf_interpreter);
close(bprm->fd);
return retval;
}
}
elf_ppnt++;
}
/* Some simple consistency checks for the interpreter */
if (elf_interpreter){
interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
/* Now figure out which format our binary is */
if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
(N_MAGIC(interp_ex) != QMAGIC)) {
interpreter_type = INTERPRETER_ELF;
}
if (interp_elf_ex.e_ident[0] != 0x7f ||
strncmp(&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
interpreter_type &= ~INTERPRETER_ELF;
}
if (!interpreter_type) {
free(elf_interpreter);
free(elf_phdata);
close(bprm->fd);
return -ELIBBAD;
}
}
/* OK, we are done with that, now set up the arg stuff,
and then start this sucker up */
if (!bprm->sh_bang) {
char * passed_p;
if (interpreter_type == INTERPRETER_AOUT) {
snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
passed_p = passed_fileno;
if (elf_interpreter) {
bprm->p = copy_strings(1,&passed_p,bprm->page,bprm->p);
bprm->argc++;
}
}
if (!bprm->p) {
if (elf_interpreter) {
free(elf_interpreter);
}
free (elf_phdata);
close(bprm->fd);
return -E2BIG;
}
}
/* OK, This is the point of no return */
info->end_data = 0;
info->end_code = 0;
info->start_mmap = (unsigned long)ELF_START_MMAP;
info->mmap = 0;
elf_entry = (unsigned long) elf_ex.e_entry;
/* Do this so that we can load the interpreter, if need be. We will
change some of these later */
info->rss = 0;
bprm->p = setup_arg_pages(bprm->p, bprm, info);
info->start_stack = bprm->p;
/* Now we do a little grungy work by mmaping the ELF image into
* the correct location in memory. At this point, we assume that
* the image should be loaded at fixed address, not at a variable
* address.
*/
for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
int elf_prot = 0;
int elf_flags = 0;
unsigned long error;
if (elf_ppnt->p_type != PT_LOAD)
continue;
if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
if (elf_ex.e_type == ET_EXEC || load_addr_set) {
elf_flags |= MAP_FIXED;
} else if (elf_ex.e_type == ET_DYN) {
/* Try and get dynamic programs out of the way of the default mmap
base, as well as whatever program they might try to exec. This
is because the brk will follow the loader, and is not movable. */
/* NOTE: for qemu, we do a big mmap to get enough space
without harcoding any address */
error = target_mmap(0, ET_DYN_MAP_SIZE,
PROT_NONE, MAP_PRIVATE | MAP_ANON,
-1, 0);
if (error == -1) {
perror("mmap");
exit(-1);
}
load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
}
error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
(elf_ppnt->p_filesz +
TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
elf_prot,
(MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
bprm->fd,
(elf_ppnt->p_offset -
TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
if (error == -1) {
perror("mmap");
exit(-1);
}
#ifdef LOW_ELF_STACK
if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
#endif
if (!load_addr_set) {
load_addr_set = 1;
load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
if (elf_ex.e_type == ET_DYN) {
load_bias += error -
TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
load_addr += load_bias;
}
}
k = elf_ppnt->p_vaddr;
if (k < start_code)
start_code = k;
k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
if (k > elf_bss)
elf_bss = k;
if ((elf_ppnt->p_flags & PF_X) && end_code < k)
end_code = k;
if (end_data < k)
end_data = k;
k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
if (k > elf_brk) elf_brk = k;
}
elf_entry += load_bias;
elf_bss += load_bias;
elf_brk += load_bias;
start_code += load_bias;
end_code += load_bias;
// start_data += load_bias;
end_data += load_bias;
if (elf_interpreter) {
if (interpreter_type & 1) {
elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
}
else if (interpreter_type & 2) {
elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
&interp_load_addr);
}
close(interpreter_fd);
free(elf_interpreter);
if (elf_entry == ~0UL) {
printf("Unable to load interpreter\n");
free(elf_phdata);
exit(-1);
return 0;
}
}
free(elf_phdata);
if (loglevel)
load_symbols(&elf_ex, bprm->fd);
if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
#ifdef LOW_ELF_STACK
info->start_stack = bprm->p = elf_stack - 4;
#endif
bprm->p = (unsigned long)
create_elf_tables((char *)bprm->p,
bprm->argc,
bprm->envc,
&elf_ex,
load_addr, load_bias,
interp_load_addr,
(interpreter_type == INTERPRETER_AOUT ? 0 : 1),
info);
if (interpreter_type == INTERPRETER_AOUT)
info->arg_start += strlen(passed_fileno) + 1;
info->start_brk = info->brk = elf_brk;
info->end_code = end_code;
info->start_code = start_code;
info->end_data = end_data;
info->start_stack = bprm->p;
/* Calling set_brk effectively mmaps the pages that we need for the bss and break
sections */
set_brk(elf_bss, elf_brk);
padzero(elf_bss);
#if 0
printf("(start_brk) %x\n" , info->start_brk);
printf("(end_code) %x\n" , info->end_code);
printf("(start_code) %x\n" , info->start_code);
printf("(end_data) %x\n" , info->end_data);
printf("(start_stack) %x\n" , info->start_stack);
printf("(brk) %x\n" , info->brk);
#endif
if ( info->personality == PER_SVR4 )
{
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
and some applications "depend" upon this behavior.
Since we do not have the power to recompile these, we
emulate the SVr4 behavior. Sigh. */
mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE, -1, 0);
}
#ifdef ELF_PLAT_INIT
/*
* The ABI may specify that certain registers be set up in special
* ways (on i386 %edx is the address of a DT_FINI function, for
* example. This macro performs whatever initialization to
* the regs structure is required.
*/
ELF_PLAT_INIT(regs);
#endif
info->entry = elf_entry;
return 0;
}
int elf_exec(const char * filename, char ** argv, char ** envp,
struct target_pt_regs * regs, struct image_info *infop)
{
struct linux_binprm bprm;
int retval;
int i;
bprm.p = TARGET_PAGE_SIZE*MAX_ARG_PAGES-sizeof(unsigned int);
for (i=0 ; i<MAX_ARG_PAGES ; i++) /* clear page-table */
bprm.page[i] = 0;
retval = open(filename, O_RDONLY);
if (retval < 0)
return retval;
bprm.fd = retval;
bprm.filename = (char *)filename;
bprm.sh_bang = 0;
bprm.loader = 0;
bprm.exec = 0;
bprm.dont_iput = 0;
bprm.argc = count(argv);
bprm.envc = count(envp);
retval = prepare_binprm(&bprm);
if(retval>=0) {
bprm.p = copy_strings(1, &bprm.filename, bprm.page, bprm.p);
bprm.exec = bprm.p;
bprm.p = copy_strings(bprm.envc,envp,bprm.page,bprm.p);
bprm.p = copy_strings(bprm.argc,argv,bprm.page,bprm.p);
if (!bprm.p) {
retval = -E2BIG;
}
}
if(retval>=0) {
retval = load_elf_binary(&bprm,regs,infop);
}
if(retval>=0) {
/* success. Initialize important registers */
init_thread(regs, infop);
return retval;
}
/* Something went wrong, return the inode and free the argument pages*/
for (i=0 ; i<MAX_ARG_PAGES ; i++) {
free_page((void *)bprm.page[i]);
}
return(retval);
}
static int load_aout_interp(void * exptr, int interp_fd)
{
printf("a.out interpreter not yet supported\n");
return(0);
}