| /* |
| * QEMU RISC-V Boot Helper |
| * |
| * Copyright (c) 2017 SiFive, Inc. |
| * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/datadir.h" |
| #include "qemu/units.h" |
| #include "qemu/error-report.h" |
| #include "exec/cpu-defs.h" |
| #include "hw/boards.h" |
| #include "hw/loader.h" |
| #include "hw/riscv/boot.h" |
| #include "hw/riscv/boot_opensbi.h" |
| #include "elf.h" |
| #include "sysemu/device_tree.h" |
| #include "sysemu/qtest.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/reset.h" |
| |
| #include <libfdt.h> |
| |
| bool riscv_is_32bit(RISCVHartArrayState *harts) |
| { |
| RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(&harts->harts[0]); |
| return mcc->misa_mxl_max == MXL_RV32; |
| } |
| |
| /* |
| * Return the per-socket PLIC hart topology configuration string |
| * (caller must free with g_free()) |
| */ |
| char *riscv_plic_hart_config_string(int hart_count) |
| { |
| g_autofree const char **vals = g_new(const char *, hart_count + 1); |
| int i; |
| |
| for (i = 0; i < hart_count; i++) { |
| CPUState *cs = qemu_get_cpu(i); |
| CPURISCVState *env = &RISCV_CPU(cs)->env; |
| |
| if (kvm_enabled()) { |
| vals[i] = "S"; |
| } else if (riscv_has_ext(env, RVS)) { |
| vals[i] = "MS"; |
| } else { |
| vals[i] = "M"; |
| } |
| } |
| vals[i] = NULL; |
| |
| /* g_strjoinv() obliges us to cast away const here */ |
| return g_strjoinv(",", (char **)vals); |
| } |
| |
| target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts, |
| target_ulong firmware_end_addr) { |
| if (riscv_is_32bit(harts)) { |
| return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB); |
| } else { |
| return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB); |
| } |
| } |
| |
| const char *riscv_default_firmware_name(RISCVHartArrayState *harts) |
| { |
| if (riscv_is_32bit(harts)) { |
| return RISCV32_BIOS_BIN; |
| } |
| |
| return RISCV64_BIOS_BIN; |
| } |
| |
| static char *riscv_find_bios(const char *bios_filename) |
| { |
| char *filename; |
| |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename); |
| if (filename == NULL) { |
| if (!qtest_enabled()) { |
| /* |
| * We only ship OpenSBI binary bios images in the QEMU source. |
| * For machines that use images other than the default bios, |
| * running QEMU test will complain hence let's suppress the error |
| * report for QEMU testing. |
| */ |
| error_report("Unable to find the RISC-V BIOS \"%s\"", |
| bios_filename); |
| exit(1); |
| } |
| } |
| |
| return filename; |
| } |
| |
| char *riscv_find_firmware(const char *firmware_filename, |
| const char *default_machine_firmware) |
| { |
| char *filename = NULL; |
| |
| if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) { |
| /* |
| * The user didn't specify -bios, or has specified "-bios default". |
| * That means we are going to load the OpenSBI binary included in |
| * the QEMU source. |
| */ |
| filename = riscv_find_bios(default_machine_firmware); |
| } else if (strcmp(firmware_filename, "none")) { |
| filename = riscv_find_bios(firmware_filename); |
| } |
| |
| return filename; |
| } |
| |
| target_ulong riscv_find_and_load_firmware(MachineState *machine, |
| const char *default_machine_firmware, |
| hwaddr *firmware_load_addr, |
| symbol_fn_t sym_cb) |
| { |
| char *firmware_filename; |
| target_ulong firmware_end_addr = *firmware_load_addr; |
| |
| firmware_filename = riscv_find_firmware(machine->firmware, |
| default_machine_firmware); |
| |
| if (firmware_filename) { |
| /* If not "none" load the firmware */ |
| firmware_end_addr = riscv_load_firmware(firmware_filename, |
| firmware_load_addr, sym_cb); |
| g_free(firmware_filename); |
| } |
| |
| return firmware_end_addr; |
| } |
| |
| target_ulong riscv_load_firmware(const char *firmware_filename, |
| hwaddr *firmware_load_addr, |
| symbol_fn_t sym_cb) |
| { |
| uint64_t firmware_entry, firmware_end; |
| ssize_t firmware_size; |
| |
| g_assert(firmware_filename != NULL); |
| |
| if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL, |
| &firmware_entry, NULL, &firmware_end, NULL, |
| 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) { |
| *firmware_load_addr = firmware_entry; |
| return firmware_end; |
| } |
| |
| firmware_size = load_image_targphys_as(firmware_filename, |
| *firmware_load_addr, |
| current_machine->ram_size, NULL); |
| |
| if (firmware_size > 0) { |
| return *firmware_load_addr + firmware_size; |
| } |
| |
| error_report("could not load firmware '%s'", firmware_filename); |
| exit(1); |
| } |
| |
| static void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry) |
| { |
| const char *filename = machine->initrd_filename; |
| uint64_t mem_size = machine->ram_size; |
| void *fdt = machine->fdt; |
| hwaddr start, end; |
| ssize_t size; |
| |
| g_assert(filename != NULL); |
| |
| /* |
| * We want to put the initrd far enough into RAM that when the |
| * kernel is uncompressed it will not clobber the initrd. However |
| * on boards without much RAM we must ensure that we still leave |
| * enough room for a decent sized initrd, and on boards with large |
| * amounts of RAM, we put the initrd at 512MB to allow large kernels |
| * to boot. |
| * So for boards with less than 1GB of RAM we put the initrd |
| * halfway into RAM, and for boards with 1GB of RAM or more we put |
| * the initrd at 512MB. |
| */ |
| start = kernel_entry + MIN(mem_size / 2, 512 * MiB); |
| |
| size = load_ramdisk(filename, start, mem_size - start); |
| if (size == -1) { |
| size = load_image_targphys(filename, start, mem_size - start); |
| if (size == -1) { |
| error_report("could not load ramdisk '%s'", filename); |
| exit(1); |
| } |
| } |
| |
| /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */ |
| if (fdt) { |
| end = start + size; |
| qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-start", start); |
| qemu_fdt_setprop_u64(fdt, "/chosen", "linux,initrd-end", end); |
| } |
| } |
| |
| target_ulong riscv_load_kernel(MachineState *machine, |
| RISCVHartArrayState *harts, |
| target_ulong kernel_start_addr, |
| bool load_initrd, |
| symbol_fn_t sym_cb) |
| { |
| const char *kernel_filename = machine->kernel_filename; |
| uint64_t kernel_load_base, kernel_entry; |
| void *fdt = machine->fdt; |
| |
| g_assert(kernel_filename != NULL); |
| |
| /* |
| * NB: Use low address not ELF entry point to ensure that the fw_dynamic |
| * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL |
| * behaviour, as well as fw_dynamic with a raw binary, all of which jump to |
| * the (expected) load address load address. This allows kernels to have |
| * separate SBI and ELF entry points (used by FreeBSD, for example). |
| */ |
| if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL, |
| NULL, &kernel_load_base, NULL, NULL, 0, |
| EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) { |
| kernel_entry = kernel_load_base; |
| goto out; |
| } |
| |
| if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL, |
| NULL, NULL, NULL) > 0) { |
| goto out; |
| } |
| |
| if (load_image_targphys_as(kernel_filename, kernel_start_addr, |
| current_machine->ram_size, NULL) > 0) { |
| kernel_entry = kernel_start_addr; |
| goto out; |
| } |
| |
| error_report("could not load kernel '%s'", kernel_filename); |
| exit(1); |
| |
| out: |
| /* |
| * For 32 bit CPUs 'kernel_entry' can be sign-extended by |
| * load_elf_ram_sym(). |
| */ |
| if (riscv_is_32bit(harts)) { |
| kernel_entry = extract64(kernel_entry, 0, 32); |
| } |
| |
| if (load_initrd && machine->initrd_filename) { |
| riscv_load_initrd(machine, kernel_entry); |
| } |
| |
| if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) { |
| qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", |
| machine->kernel_cmdline); |
| } |
| |
| return kernel_entry; |
| } |
| |
| /* |
| * This function makes an assumption that the DRAM interval |
| * 'dram_base' + 'dram_size' is contiguous. |
| * |
| * Considering that 'dram_end' is the lowest value between |
| * the end of the DRAM block and MachineState->ram_size, the |
| * FDT location will vary according to 'dram_base': |
| * |
| * - if 'dram_base' is less that 3072 MiB, the FDT will be |
| * put at the lowest value between 3072 MiB and 'dram_end'; |
| * |
| * - if 'dram_base' is higher than 3072 MiB, the FDT will be |
| * put at 'dram_end'. |
| * |
| * The FDT is fdt_packed() during the calculation. |
| */ |
| uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size, |
| MachineState *ms) |
| { |
| int ret = fdt_pack(ms->fdt); |
| hwaddr dram_end, temp; |
| int fdtsize; |
| |
| /* Should only fail if we've built a corrupted tree */ |
| g_assert(ret == 0); |
| |
| fdtsize = fdt_totalsize(ms->fdt); |
| if (fdtsize <= 0) { |
| error_report("invalid device-tree"); |
| exit(1); |
| } |
| |
| /* |
| * A dram_size == 0, usually from a MemMapEntry[].size element, |
| * means that the DRAM block goes all the way to ms->ram_size. |
| */ |
| dram_end = dram_base; |
| dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size; |
| |
| /* |
| * We should put fdt as far as possible to avoid kernel/initrd overwriting |
| * its content. But it should be addressable by 32 bit system as well. |
| * Thus, put it at an 2MB aligned address that less than fdt size from the |
| * end of dram or 3GB whichever is lesser. |
| */ |
| temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end; |
| |
| return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB); |
| } |
| |
| /* |
| * 'fdt_addr' is received as hwaddr because boards might put |
| * the FDT beyond 32-bit addressing boundary. |
| */ |
| void riscv_load_fdt(hwaddr fdt_addr, void *fdt) |
| { |
| uint32_t fdtsize = fdt_totalsize(fdt); |
| |
| /* copy in the device tree */ |
| qemu_fdt_dumpdtb(fdt, fdtsize); |
| |
| rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr, |
| &address_space_memory); |
| qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds, |
| rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize)); |
| } |
| |
| void riscv_rom_copy_firmware_info(MachineState *machine, |
| RISCVHartArrayState *harts, |
| hwaddr rom_base, hwaddr rom_size, |
| uint32_t reset_vec_size, |
| uint64_t kernel_entry) |
| { |
| struct fw_dynamic_info32 dinfo32; |
| struct fw_dynamic_info dinfo; |
| size_t dinfo_len; |
| |
| if (riscv_is_32bit(harts)) { |
| dinfo32.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE); |
| dinfo32.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION); |
| dinfo32.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S); |
| dinfo32.next_addr = cpu_to_le32(kernel_entry); |
| dinfo32.options = 0; |
| dinfo32.boot_hart = 0; |
| dinfo_len = sizeof(dinfo32); |
| } else { |
| dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE); |
| dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION); |
| dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S); |
| dinfo.next_addr = cpu_to_le64(kernel_entry); |
| dinfo.options = 0; |
| dinfo.boot_hart = 0; |
| dinfo_len = sizeof(dinfo); |
| } |
| |
| /** |
| * copy the dynamic firmware info. This information is specific to |
| * OpenSBI but doesn't break any other firmware as long as they don't |
| * expect any certain value in "a2" register. |
| */ |
| if (dinfo_len > (rom_size - reset_vec_size)) { |
| error_report("not enough space to store dynamic firmware info"); |
| exit(1); |
| } |
| |
| rom_add_blob_fixed_as("mrom.finfo", |
| riscv_is_32bit(harts) ? |
| (void *)&dinfo32 : (void *)&dinfo, |
| dinfo_len, |
| rom_base + reset_vec_size, |
| &address_space_memory); |
| } |
| |
| void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts, |
| hwaddr start_addr, |
| hwaddr rom_base, hwaddr rom_size, |
| uint64_t kernel_entry, |
| uint64_t fdt_load_addr) |
| { |
| int i; |
| uint32_t start_addr_hi32 = 0x00000000; |
| uint32_t fdt_load_addr_hi32 = 0x00000000; |
| |
| if (!riscv_is_32bit(harts)) { |
| start_addr_hi32 = start_addr >> 32; |
| fdt_load_addr_hi32 = fdt_load_addr >> 32; |
| } |
| /* reset vector */ |
| uint32_t reset_vec[10] = { |
| 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */ |
| 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */ |
| 0xf1402573, /* csrr a0, mhartid */ |
| 0, |
| 0, |
| 0x00028067, /* jr t0 */ |
| start_addr, /* start: .dword */ |
| start_addr_hi32, |
| fdt_load_addr, /* fdt_laddr: .dword */ |
| fdt_load_addr_hi32, |
| /* fw_dyn: */ |
| }; |
| if (riscv_is_32bit(harts)) { |
| reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */ |
| reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */ |
| } else { |
| reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */ |
| reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */ |
| } |
| |
| if (!harts->harts[0].cfg.ext_zicsr) { |
| /* |
| * The Zicsr extension has been disabled, so let's ensure we don't |
| * run the CSR instruction. Let's fill the address with a non |
| * compressed nop. |
| */ |
| reset_vec[2] = 0x00000013; /* addi x0, x0, 0 */ |
| } |
| |
| /* copy in the reset vector in little_endian byte order */ |
| for (i = 0; i < ARRAY_SIZE(reset_vec); i++) { |
| reset_vec[i] = cpu_to_le32(reset_vec[i]); |
| } |
| rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), |
| rom_base, &address_space_memory); |
| riscv_rom_copy_firmware_info(machine, harts, |
| rom_base, rom_size, |
| sizeof(reset_vec), |
| kernel_entry); |
| } |
| |
| void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr) |
| { |
| CPUState *cs; |
| |
| for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { |
| RISCVCPU *riscv_cpu = RISCV_CPU(cs); |
| riscv_cpu->env.kernel_addr = kernel_addr; |
| riscv_cpu->env.fdt_addr = fdt_addr; |
| } |
| } |
| |
| void riscv_setup_firmware_boot(MachineState *machine) |
| { |
| if (machine->kernel_filename) { |
| FWCfgState *fw_cfg; |
| fw_cfg = fw_cfg_find(); |
| |
| assert(fw_cfg); |
| /* |
| * Expose the kernel, the command line, and the initrd in fw_cfg. |
| * We don't process them here at all, it's all left to the |
| * firmware. |
| */ |
| load_image_to_fw_cfg(fw_cfg, |
| FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, |
| machine->kernel_filename, |
| true); |
| load_image_to_fw_cfg(fw_cfg, |
| FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, |
| machine->initrd_filename, false); |
| |
| if (machine->kernel_cmdline) { |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, |
| strlen(machine->kernel_cmdline) + 1); |
| fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, |
| machine->kernel_cmdline); |
| } |
| } |
| } |