| /* |
| * ARM Nested Vectored Interrupt Controller |
| * |
| * Copyright (c) 2006-2007 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the GPL. |
| * |
| * The ARMv7M System controller is fairly tightly tied in with the |
| * NVIC. Much of that is also implemented here. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "hw/sysbus.h" |
| #include "qemu/timer.h" |
| #include "hw/arm/arm.h" |
| #include "hw/intc/armv7m_nvic.h" |
| #include "target/arm/cpu.h" |
| #include "exec/exec-all.h" |
| #include "qemu/log.h" |
| #include "trace.h" |
| |
| /* IRQ number counting: |
| * |
| * the num-irq property counts the number of external IRQ lines |
| * |
| * NVICState::num_irq counts the total number of exceptions |
| * (external IRQs, the 15 internal exceptions including reset, |
| * and one for the unused exception number 0). |
| * |
| * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. |
| * |
| * NVIC_MAX_VECTORS is the highest permitted number of exceptions. |
| * |
| * Iterating through all exceptions should typically be done with |
| * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. |
| * |
| * The external qemu_irq lines are the NVIC's external IRQ lines, |
| * so line 0 is exception 16. |
| * |
| * In the terminology of the architecture manual, "interrupts" are |
| * a subcategory of exception referring to the external interrupts |
| * (which are exception numbers NVIC_FIRST_IRQ and upward). |
| * For historical reasons QEMU tends to use "interrupt" and |
| * "exception" more or less interchangeably. |
| */ |
| #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS |
| #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) |
| |
| /* Effective running priority of the CPU when no exception is active |
| * (higher than the highest possible priority value) |
| */ |
| #define NVIC_NOEXC_PRIO 0x100 |
| |
| static const uint8_t nvic_id[] = { |
| 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 |
| }; |
| |
| static int nvic_pending_prio(NVICState *s) |
| { |
| /* return the group priority of the current pending interrupt, |
| * or NVIC_NOEXC_PRIO if no interrupt is pending |
| */ |
| return s->vectpending_prio; |
| } |
| |
| /* Return the value of the ISCR RETTOBASE bit: |
| * 1 if there is exactly one active exception |
| * 0 if there is more than one active exception |
| * UNKNOWN if there are no active exceptions (we choose 1, |
| * which matches the choice Cortex-M3 is documented as making). |
| * |
| * NB: some versions of the documentation talk about this |
| * counting "active exceptions other than the one shown by IPSR"; |
| * this is only different in the obscure corner case where guest |
| * code has manually deactivated an exception and is about |
| * to fail an exception-return integrity check. The definition |
| * above is the one from the v8M ARM ARM and is also in line |
| * with the behaviour documented for the Cortex-M3. |
| */ |
| static bool nvic_rettobase(NVICState *s) |
| { |
| int irq, nhand = 0; |
| bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); |
| |
| for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { |
| if (s->vectors[irq].active || |
| (check_sec && irq < NVIC_INTERNAL_VECTORS && |
| s->sec_vectors[irq].active)) { |
| nhand++; |
| if (nhand == 2) { |
| return 0; |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Return the value of the ISCR ISRPENDING bit: |
| * 1 if an external interrupt is pending |
| * 0 if no external interrupt is pending |
| */ |
| static bool nvic_isrpending(NVICState *s) |
| { |
| int irq; |
| |
| /* We can shortcut if the highest priority pending interrupt |
| * happens to be external or if there is nothing pending. |
| */ |
| if (s->vectpending > NVIC_FIRST_IRQ) { |
| return true; |
| } |
| if (s->vectpending == 0) { |
| return false; |
| } |
| |
| for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { |
| if (s->vectors[irq].pending) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* Return a mask word which clears the subpriority bits from |
| * a priority value for an M-profile exception, leaving only |
| * the group priority. |
| */ |
| static inline uint32_t nvic_gprio_mask(NVICState *s) |
| { |
| return ~0U << (s->prigroup[M_REG_NS] + 1); |
| } |
| |
| /* Recompute vectpending and exception_prio */ |
| static void nvic_recompute_state(NVICState *s) |
| { |
| int i; |
| int pend_prio = NVIC_NOEXC_PRIO; |
| int active_prio = NVIC_NOEXC_PRIO; |
| int pend_irq = 0; |
| |
| for (i = 1; i < s->num_irq; i++) { |
| VecInfo *vec = &s->vectors[i]; |
| |
| if (vec->enabled && vec->pending && vec->prio < pend_prio) { |
| pend_prio = vec->prio; |
| pend_irq = i; |
| } |
| if (vec->active && vec->prio < active_prio) { |
| active_prio = vec->prio; |
| } |
| } |
| |
| if (active_prio > 0) { |
| active_prio &= nvic_gprio_mask(s); |
| } |
| |
| if (pend_prio > 0) { |
| pend_prio &= nvic_gprio_mask(s); |
| } |
| |
| s->vectpending = pend_irq; |
| s->vectpending_prio = pend_prio; |
| s->exception_prio = active_prio; |
| |
| trace_nvic_recompute_state(s->vectpending, |
| s->vectpending_prio, |
| s->exception_prio); |
| } |
| |
| /* Return the current execution priority of the CPU |
| * (equivalent to the pseudocode ExecutionPriority function). |
| * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. |
| */ |
| static inline int nvic_exec_prio(NVICState *s) |
| { |
| CPUARMState *env = &s->cpu->env; |
| int running; |
| |
| if (env->v7m.faultmask[env->v7m.secure]) { |
| running = -1; |
| } else if (env->v7m.primask[env->v7m.secure]) { |
| running = 0; |
| } else if (env->v7m.basepri[env->v7m.secure] > 0) { |
| running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s); |
| } else { |
| running = NVIC_NOEXC_PRIO; /* lower than any possible priority */ |
| } |
| /* consider priority of active handler */ |
| return MIN(running, s->exception_prio); |
| } |
| |
| bool armv7m_nvic_can_take_pending_exception(void *opaque) |
| { |
| NVICState *s = opaque; |
| |
| return nvic_exec_prio(s) > nvic_pending_prio(s); |
| } |
| |
| int armv7m_nvic_raw_execution_priority(void *opaque) |
| { |
| NVICState *s = opaque; |
| |
| return s->exception_prio; |
| } |
| |
| /* caller must call nvic_irq_update() after this */ |
| static void set_prio(NVICState *s, unsigned irq, uint8_t prio) |
| { |
| assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ |
| assert(irq < s->num_irq); |
| |
| s->vectors[irq].prio = prio; |
| |
| trace_nvic_set_prio(irq, prio); |
| } |
| |
| /* Recompute state and assert irq line accordingly. |
| * Must be called after changes to: |
| * vec->active, vec->enabled, vec->pending or vec->prio for any vector |
| * prigroup |
| */ |
| static void nvic_irq_update(NVICState *s) |
| { |
| int lvl; |
| int pend_prio; |
| |
| nvic_recompute_state(s); |
| pend_prio = nvic_pending_prio(s); |
| |
| /* Raise NVIC output if this IRQ would be taken, except that we |
| * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which |
| * will be checked for in arm_v7m_cpu_exec_interrupt()); changes |
| * to those CPU registers don't cause us to recalculate the NVIC |
| * pending info. |
| */ |
| lvl = (pend_prio < s->exception_prio); |
| trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); |
| qemu_set_irq(s->excpout, lvl); |
| } |
| |
| static void armv7m_nvic_clear_pending(void *opaque, int irq) |
| { |
| NVICState *s = (NVICState *)opaque; |
| VecInfo *vec; |
| |
| assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); |
| |
| vec = &s->vectors[irq]; |
| trace_nvic_clear_pending(irq, vec->enabled, vec->prio); |
| if (vec->pending) { |
| vec->pending = 0; |
| nvic_irq_update(s); |
| } |
| } |
| |
| void armv7m_nvic_set_pending(void *opaque, int irq) |
| { |
| NVICState *s = (NVICState *)opaque; |
| VecInfo *vec; |
| |
| assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); |
| |
| vec = &s->vectors[irq]; |
| trace_nvic_set_pending(irq, vec->enabled, vec->prio); |
| |
| |
| if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { |
| /* If a synchronous exception is pending then it may be |
| * escalated to HardFault if: |
| * * it is equal or lower priority to current execution |
| * * it is disabled |
| * (ie we need to take it immediately but we can't do so). |
| * Asynchronous exceptions (and interrupts) simply remain pending. |
| * |
| * For QEMU, we don't have any imprecise (asynchronous) faults, |
| * so we can assume that PREFETCH_ABORT and DATA_ABORT are always |
| * synchronous. |
| * Debug exceptions are awkward because only Debug exceptions |
| * resulting from the BKPT instruction should be escalated, |
| * but we don't currently implement any Debug exceptions other |
| * than those that result from BKPT, so we treat all debug exceptions |
| * as needing escalation. |
| * |
| * This all means we can identify whether to escalate based only on |
| * the exception number and don't (yet) need the caller to explicitly |
| * tell us whether this exception is synchronous or not. |
| */ |
| int running = nvic_exec_prio(s); |
| bool escalate = false; |
| |
| if (vec->prio >= running) { |
| trace_nvic_escalate_prio(irq, vec->prio, running); |
| escalate = true; |
| } else if (!vec->enabled) { |
| trace_nvic_escalate_disabled(irq); |
| escalate = true; |
| } |
| |
| if (escalate) { |
| if (running < 0) { |
| /* We want to escalate to HardFault but we can't take a |
| * synchronous HardFault at this point either. This is a |
| * Lockup condition due to a guest bug. We don't model |
| * Lockup, so report via cpu_abort() instead. |
| */ |
| cpu_abort(&s->cpu->parent_obj, |
| "Lockup: can't escalate %d to HardFault " |
| "(current priority %d)\n", irq, running); |
| } |
| |
| /* We can do the escalation, so we take HardFault instead */ |
| irq = ARMV7M_EXCP_HARD; |
| vec = &s->vectors[irq]; |
| s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; |
| } |
| } |
| |
| if (!vec->pending) { |
| vec->pending = 1; |
| nvic_irq_update(s); |
| } |
| } |
| |
| /* Make pending IRQ active. */ |
| void armv7m_nvic_acknowledge_irq(void *opaque) |
| { |
| NVICState *s = (NVICState *)opaque; |
| CPUARMState *env = &s->cpu->env; |
| const int pending = s->vectpending; |
| const int running = nvic_exec_prio(s); |
| VecInfo *vec; |
| |
| assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); |
| |
| vec = &s->vectors[pending]; |
| |
| assert(vec->enabled); |
| assert(vec->pending); |
| |
| assert(s->vectpending_prio < running); |
| |
| trace_nvic_acknowledge_irq(pending, s->vectpending_prio); |
| |
| vec->active = 1; |
| vec->pending = 0; |
| |
| env->v7m.exception = s->vectpending; |
| |
| nvic_irq_update(s); |
| } |
| |
| int armv7m_nvic_complete_irq(void *opaque, int irq) |
| { |
| NVICState *s = (NVICState *)opaque; |
| VecInfo *vec; |
| int ret; |
| |
| assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); |
| |
| vec = &s->vectors[irq]; |
| |
| trace_nvic_complete_irq(irq); |
| |
| if (!vec->active) { |
| /* Tell the caller this was an illegal exception return */ |
| return -1; |
| } |
| |
| ret = nvic_rettobase(s); |
| |
| vec->active = 0; |
| if (vec->level) { |
| /* Re-pend the exception if it's still held high; only |
| * happens for extenal IRQs |
| */ |
| assert(irq >= NVIC_FIRST_IRQ); |
| vec->pending = 1; |
| } |
| |
| nvic_irq_update(s); |
| |
| return ret; |
| } |
| |
| /* callback when external interrupt line is changed */ |
| static void set_irq_level(void *opaque, int n, int level) |
| { |
| NVICState *s = opaque; |
| VecInfo *vec; |
| |
| n += NVIC_FIRST_IRQ; |
| |
| assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); |
| |
| trace_nvic_set_irq_level(n, level); |
| |
| /* The pending status of an external interrupt is |
| * latched on rising edge and exception handler return. |
| * |
| * Pulsing the IRQ will always run the handler |
| * once, and the handler will re-run until the |
| * level is low when the handler completes. |
| */ |
| vec = &s->vectors[n]; |
| if (level != vec->level) { |
| vec->level = level; |
| if (level) { |
| armv7m_nvic_set_pending(s, n); |
| } |
| } |
| } |
| |
| static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) |
| { |
| ARMCPU *cpu = s->cpu; |
| uint32_t val; |
| |
| switch (offset) { |
| case 4: /* Interrupt Control Type. */ |
| return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; |
| case 0xd00: /* CPUID Base. */ |
| return cpu->midr; |
| case 0xd04: /* Interrupt Control State. */ |
| /* VECTACTIVE */ |
| val = cpu->env.v7m.exception; |
| /* VECTPENDING */ |
| val |= (s->vectpending & 0xff) << 12; |
| /* ISRPENDING - set if any external IRQ is pending */ |
| if (nvic_isrpending(s)) { |
| val |= (1 << 22); |
| } |
| /* RETTOBASE - set if only one handler is active */ |
| if (nvic_rettobase(s)) { |
| val |= (1 << 11); |
| } |
| /* PENDSTSET */ |
| if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { |
| val |= (1 << 26); |
| } |
| /* PENDSVSET */ |
| if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { |
| val |= (1 << 28); |
| } |
| /* NMIPENDSET */ |
| if (s->vectors[ARMV7M_EXCP_NMI].pending) { |
| val |= (1 << 31); |
| } |
| /* ISRPREEMPT not implemented */ |
| return val; |
| case 0xd08: /* Vector Table Offset. */ |
| return cpu->env.v7m.vecbase[attrs.secure]; |
| case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ |
| val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); |
| if (attrs.secure) { |
| /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ |
| val |= cpu->env.v7m.aircr; |
| } else { |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If |
| * security isn't supported then BFHFNMINS is RAO (and |
| * the bit in env.v7m.aircr is always set). |
| */ |
| val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; |
| } |
| } |
| return val; |
| case 0xd10: /* System Control. */ |
| /* TODO: Implement SLEEPONEXIT. */ |
| return 0; |
| case 0xd14: /* Configuration Control. */ |
| /* The BFHFNMIGN bit is the only non-banked bit; we |
| * keep it in the non-secure copy of the register. |
| */ |
| val = cpu->env.v7m.ccr[attrs.secure]; |
| val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; |
| return val; |
| case 0xd24: /* System Handler Status. */ |
| val = 0; |
| if (s->vectors[ARMV7M_EXCP_MEM].active) { |
| val |= (1 << 0); |
| } |
| if (s->vectors[ARMV7M_EXCP_BUS].active) { |
| val |= (1 << 1); |
| } |
| if (s->vectors[ARMV7M_EXCP_USAGE].active) { |
| val |= (1 << 3); |
| } |
| if (s->vectors[ARMV7M_EXCP_SVC].active) { |
| val |= (1 << 7); |
| } |
| if (s->vectors[ARMV7M_EXCP_DEBUG].active) { |
| val |= (1 << 8); |
| } |
| if (s->vectors[ARMV7M_EXCP_PENDSV].active) { |
| val |= (1 << 10); |
| } |
| if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { |
| val |= (1 << 11); |
| } |
| if (s->vectors[ARMV7M_EXCP_USAGE].pending) { |
| val |= (1 << 12); |
| } |
| if (s->vectors[ARMV7M_EXCP_MEM].pending) { |
| val |= (1 << 13); |
| } |
| if (s->vectors[ARMV7M_EXCP_BUS].pending) { |
| val |= (1 << 14); |
| } |
| if (s->vectors[ARMV7M_EXCP_SVC].pending) { |
| val |= (1 << 15); |
| } |
| if (s->vectors[ARMV7M_EXCP_MEM].enabled) { |
| val |= (1 << 16); |
| } |
| if (s->vectors[ARMV7M_EXCP_BUS].enabled) { |
| val |= (1 << 17); |
| } |
| if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { |
| val |= (1 << 18); |
| } |
| return val; |
| case 0xd28: /* Configurable Fault Status. */ |
| /* The BFSR bits [15:8] are shared between security states |
| * and we store them in the NS copy |
| */ |
| val = cpu->env.v7m.cfsr[attrs.secure]; |
| val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; |
| return val; |
| case 0xd2c: /* Hard Fault Status. */ |
| return cpu->env.v7m.hfsr; |
| case 0xd30: /* Debug Fault Status. */ |
| return cpu->env.v7m.dfsr; |
| case 0xd34: /* MMFAR MemManage Fault Address */ |
| return cpu->env.v7m.mmfar[attrs.secure]; |
| case 0xd38: /* Bus Fault Address. */ |
| return cpu->env.v7m.bfar; |
| case 0xd3c: /* Aux Fault Status. */ |
| /* TODO: Implement fault status registers. */ |
| qemu_log_mask(LOG_UNIMP, |
| "Aux Fault status registers unimplemented\n"); |
| return 0; |
| case 0xd40: /* PFR0. */ |
| return 0x00000030; |
| case 0xd44: /* PRF1. */ |
| return 0x00000200; |
| case 0xd48: /* DFR0. */ |
| return 0x00100000; |
| case 0xd4c: /* AFR0. */ |
| return 0x00000000; |
| case 0xd50: /* MMFR0. */ |
| return 0x00000030; |
| case 0xd54: /* MMFR1. */ |
| return 0x00000000; |
| case 0xd58: /* MMFR2. */ |
| return 0x00000000; |
| case 0xd5c: /* MMFR3. */ |
| return 0x00000000; |
| case 0xd60: /* ISAR0. */ |
| return 0x01141110; |
| case 0xd64: /* ISAR1. */ |
| return 0x02111000; |
| case 0xd68: /* ISAR2. */ |
| return 0x21112231; |
| case 0xd6c: /* ISAR3. */ |
| return 0x01111110; |
| case 0xd70: /* ISAR4. */ |
| return 0x01310102; |
| /* TODO: Implement debug registers. */ |
| case 0xd90: /* MPU_TYPE */ |
| /* Unified MPU; if the MPU is not present this value is zero */ |
| return cpu->pmsav7_dregion << 8; |
| break; |
| case 0xd94: /* MPU_CTRL */ |
| return cpu->env.v7m.mpu_ctrl[attrs.secure]; |
| case 0xd98: /* MPU_RNR */ |
| return cpu->env.pmsav7.rnr[attrs.secure]; |
| case 0xd9c: /* MPU_RBAR */ |
| case 0xda4: /* MPU_RBAR_A1 */ |
| case 0xdac: /* MPU_RBAR_A2 */ |
| case 0xdb4: /* MPU_RBAR_A3 */ |
| { |
| int region = cpu->env.pmsav7.rnr[attrs.secure]; |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PMSAv8M handling of the aliases is different from v7M: |
| * aliases A1, A2, A3 override the low two bits of the region |
| * number in MPU_RNR, and there is no 'region' field in the |
| * RBAR register. |
| */ |
| int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ |
| if (aliasno) { |
| region = deposit32(region, 0, 2, aliasno); |
| } |
| if (region >= cpu->pmsav7_dregion) { |
| return 0; |
| } |
| return cpu->env.pmsav8.rbar[attrs.secure][region]; |
| } |
| |
| if (region >= cpu->pmsav7_dregion) { |
| return 0; |
| } |
| return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf); |
| } |
| case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ |
| case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ |
| case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ |
| case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ |
| { |
| int region = cpu->env.pmsav7.rnr[attrs.secure]; |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PMSAv8M handling of the aliases is different from v7M: |
| * aliases A1, A2, A3 override the low two bits of the region |
| * number in MPU_RNR. |
| */ |
| int aliasno = (offset - 0xda0) / 8; /* 0..3 */ |
| if (aliasno) { |
| region = deposit32(region, 0, 2, aliasno); |
| } |
| if (region >= cpu->pmsav7_dregion) { |
| return 0; |
| } |
| return cpu->env.pmsav8.rlar[attrs.secure][region]; |
| } |
| |
| if (region >= cpu->pmsav7_dregion) { |
| return 0; |
| } |
| return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | |
| (cpu->env.pmsav7.drsr[region] & 0xffff); |
| } |
| case 0xdc0: /* MPU_MAIR0 */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| return cpu->env.pmsav8.mair0[attrs.secure]; |
| case 0xdc4: /* MPU_MAIR1 */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| return cpu->env.pmsav8.mair1[attrs.secure]; |
| default: |
| bad_offset: |
| qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); |
| return 0; |
| } |
| } |
| |
| static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, |
| MemTxAttrs attrs) |
| { |
| ARMCPU *cpu = s->cpu; |
| |
| switch (offset) { |
| case 0xd04: /* Interrupt Control State. */ |
| if (value & (1 << 31)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); |
| } |
| if (value & (1 << 28)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); |
| } else if (value & (1 << 27)) { |
| armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV); |
| } |
| if (value & (1 << 26)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); |
| } else if (value & (1 << 25)) { |
| armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK); |
| } |
| break; |
| case 0xd08: /* Vector Table Offset. */ |
| cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; |
| break; |
| case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ |
| if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { |
| if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { |
| if (attrs.secure || |
| !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { |
| qemu_irq_pulse(s->sysresetreq); |
| } |
| } |
| if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Setting VECTCLRACTIVE when not in DEBUG mode " |
| "is UNPREDICTABLE\n"); |
| } |
| if (value & R_V7M_AIRCR_VECTRESET_MASK) { |
| /* NB: this bit is RES0 in v8M */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Setting VECTRESET when not in DEBUG mode " |
| "is UNPREDICTABLE\n"); |
| } |
| s->prigroup[attrs.secure] = extract32(value, |
| R_V7M_AIRCR_PRIGROUP_SHIFT, |
| R_V7M_AIRCR_PRIGROUP_LENGTH); |
| if (attrs.secure) { |
| /* These bits are only writable by secure */ |
| cpu->env.v7m.aircr = value & |
| (R_V7M_AIRCR_SYSRESETREQS_MASK | |
| R_V7M_AIRCR_BFHFNMINS_MASK | |
| R_V7M_AIRCR_PRIS_MASK); |
| } |
| nvic_irq_update(s); |
| } |
| break; |
| case 0xd10: /* System Control. */ |
| /* TODO: Implement control registers. */ |
| qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); |
| break; |
| case 0xd14: /* Configuration Control. */ |
| /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ |
| value &= (R_V7M_CCR_STKALIGN_MASK | |
| R_V7M_CCR_BFHFNMIGN_MASK | |
| R_V7M_CCR_DIV_0_TRP_MASK | |
| R_V7M_CCR_UNALIGN_TRP_MASK | |
| R_V7M_CCR_USERSETMPEND_MASK | |
| R_V7M_CCR_NONBASETHRDENA_MASK); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ |
| value |= R_V7M_CCR_NONBASETHRDENA_MASK |
| | R_V7M_CCR_STKALIGN_MASK; |
| } |
| if (attrs.secure) { |
| /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ |
| cpu->env.v7m.ccr[M_REG_NS] = |
| (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) |
| | (value & R_V7M_CCR_BFHFNMIGN_MASK); |
| value &= ~R_V7M_CCR_BFHFNMIGN_MASK; |
| } |
| |
| cpu->env.v7m.ccr[attrs.secure] = value; |
| break; |
| case 0xd24: /* System Handler Control. */ |
| s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; |
| s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; |
| s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; |
| s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; |
| s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; |
| s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; |
| s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; |
| s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; |
| s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; |
| s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; |
| s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; |
| s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; |
| s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; |
| s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; |
| nvic_irq_update(s); |
| break; |
| case 0xd28: /* Configurable Fault Status. */ |
| cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */ |
| if (attrs.secure) { |
| /* The BFSR bits [15:8] are shared between security states |
| * and we store them in the NS copy. |
| */ |
| cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); |
| } |
| break; |
| case 0xd2c: /* Hard Fault Status. */ |
| cpu->env.v7m.hfsr &= ~value; /* W1C */ |
| break; |
| case 0xd30: /* Debug Fault Status. */ |
| cpu->env.v7m.dfsr &= ~value; /* W1C */ |
| break; |
| case 0xd34: /* Mem Manage Address. */ |
| cpu->env.v7m.mmfar[attrs.secure] = value; |
| return; |
| case 0xd38: /* Bus Fault Address. */ |
| cpu->env.v7m.bfar = value; |
| return; |
| case 0xd3c: /* Aux Fault Status. */ |
| qemu_log_mask(LOG_UNIMP, |
| "NVIC: Aux fault status registers unimplemented\n"); |
| break; |
| case 0xd90: /* MPU_TYPE */ |
| return; /* RO */ |
| case 0xd94: /* MPU_CTRL */ |
| if ((value & |
| (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) |
| == R_V7M_MPU_CTRL_HFNMIENA_MASK) { |
| qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " |
| "UNPREDICTABLE\n"); |
| } |
| cpu->env.v7m.mpu_ctrl[attrs.secure] |
| = value & (R_V7M_MPU_CTRL_ENABLE_MASK | |
| R_V7M_MPU_CTRL_HFNMIENA_MASK | |
| R_V7M_MPU_CTRL_PRIVDEFENA_MASK); |
| tlb_flush(CPU(cpu)); |
| break; |
| case 0xd98: /* MPU_RNR */ |
| if (value >= cpu->pmsav7_dregion) { |
| qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" |
| PRIu32 "/%" PRIu32 "\n", |
| value, cpu->pmsav7_dregion); |
| } else { |
| cpu->env.pmsav7.rnr[attrs.secure] = value; |
| } |
| break; |
| case 0xd9c: /* MPU_RBAR */ |
| case 0xda4: /* MPU_RBAR_A1 */ |
| case 0xdac: /* MPU_RBAR_A2 */ |
| case 0xdb4: /* MPU_RBAR_A3 */ |
| { |
| int region; |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PMSAv8M handling of the aliases is different from v7M: |
| * aliases A1, A2, A3 override the low two bits of the region |
| * number in MPU_RNR, and there is no 'region' field in the |
| * RBAR register. |
| */ |
| int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ |
| |
| region = cpu->env.pmsav7.rnr[attrs.secure]; |
| if (aliasno) { |
| region = deposit32(region, 0, 2, aliasno); |
| } |
| if (region >= cpu->pmsav7_dregion) { |
| return; |
| } |
| cpu->env.pmsav8.rbar[attrs.secure][region] = value; |
| tlb_flush(CPU(cpu)); |
| return; |
| } |
| |
| if (value & (1 << 4)) { |
| /* VALID bit means use the region number specified in this |
| * value and also update MPU_RNR.REGION with that value. |
| */ |
| region = extract32(value, 0, 4); |
| if (region >= cpu->pmsav7_dregion) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "MPU region out of range %u/%" PRIu32 "\n", |
| region, cpu->pmsav7_dregion); |
| return; |
| } |
| cpu->env.pmsav7.rnr[attrs.secure] = region; |
| } else { |
| region = cpu->env.pmsav7.rnr[attrs.secure]; |
| } |
| |
| if (region >= cpu->pmsav7_dregion) { |
| return; |
| } |
| |
| cpu->env.pmsav7.drbar[region] = value & ~0x1f; |
| tlb_flush(CPU(cpu)); |
| break; |
| } |
| case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ |
| case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ |
| case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ |
| case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ |
| { |
| int region = cpu->env.pmsav7.rnr[attrs.secure]; |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| /* PMSAv8M handling of the aliases is different from v7M: |
| * aliases A1, A2, A3 override the low two bits of the region |
| * number in MPU_RNR. |
| */ |
| int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ |
| |
| region = cpu->env.pmsav7.rnr[attrs.secure]; |
| if (aliasno) { |
| region = deposit32(region, 0, 2, aliasno); |
| } |
| if (region >= cpu->pmsav7_dregion) { |
| return; |
| } |
| cpu->env.pmsav8.rlar[attrs.secure][region] = value; |
| tlb_flush(CPU(cpu)); |
| return; |
| } |
| |
| if (region >= cpu->pmsav7_dregion) { |
| return; |
| } |
| |
| cpu->env.pmsav7.drsr[region] = value & 0xff3f; |
| cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; |
| tlb_flush(CPU(cpu)); |
| break; |
| } |
| case 0xdc0: /* MPU_MAIR0 */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (cpu->pmsav7_dregion) { |
| /* Register is RES0 if no MPU regions are implemented */ |
| cpu->env.pmsav8.mair0[attrs.secure] = value; |
| } |
| /* We don't need to do anything else because memory attributes |
| * only affect cacheability, and we don't implement caching. |
| */ |
| break; |
| case 0xdc4: /* MPU_MAIR1 */ |
| if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| goto bad_offset; |
| } |
| if (cpu->pmsav7_dregion) { |
| /* Register is RES0 if no MPU regions are implemented */ |
| cpu->env.pmsav8.mair1[attrs.secure] = value; |
| } |
| /* We don't need to do anything else because memory attributes |
| * only affect cacheability, and we don't implement caching. |
| */ |
| break; |
| case 0xf00: /* Software Triggered Interrupt Register */ |
| { |
| int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; |
| if (excnum < s->num_irq) { |
| armv7m_nvic_set_pending(s, excnum); |
| } |
| break; |
| } |
| default: |
| bad_offset: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad write offset 0x%x\n", offset); |
| } |
| } |
| |
| static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) |
| { |
| /* Return true if unprivileged access to this register is permitted. */ |
| switch (offset) { |
| case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ |
| /* For access via STIR_NS it is the NS CCR.USERSETMPEND that |
| * controls access even though the CPU is in Secure state (I_QDKX). |
| */ |
| return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; |
| default: |
| /* All other user accesses cause a BusFault unconditionally */ |
| return false; |
| } |
| } |
| |
| static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| NVICState *s = (NVICState *)opaque; |
| uint32_t offset = addr; |
| unsigned i, startvec, end; |
| uint32_t val; |
| |
| if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { |
| /* Generate BusFault for unprivileged accesses */ |
| return MEMTX_ERROR; |
| } |
| |
| switch (offset) { |
| /* reads of set and clear both return the status */ |
| case 0x100 ... 0x13f: /* NVIC Set enable */ |
| offset += 0x80; |
| /* fall through */ |
| case 0x180 ... 0x1bf: /* NVIC Clear enable */ |
| val = 0; |
| startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (s->vectors[startvec + i].enabled) { |
| val |= (1 << i); |
| } |
| } |
| break; |
| case 0x200 ... 0x23f: /* NVIC Set pend */ |
| offset += 0x80; |
| /* fall through */ |
| case 0x280 ... 0x2bf: /* NVIC Clear pend */ |
| val = 0; |
| startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (s->vectors[startvec + i].pending) { |
| val |= (1 << i); |
| } |
| } |
| break; |
| case 0x300 ... 0x33f: /* NVIC Active */ |
| val = 0; |
| startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (s->vectors[startvec + i].active) { |
| val |= (1 << i); |
| } |
| } |
| break; |
| case 0x400 ... 0x5ef: /* NVIC Priority */ |
| val = 0; |
| startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0; i < size && startvec + i < s->num_irq; i++) { |
| val |= s->vectors[startvec + i].prio << (8 * i); |
| } |
| break; |
| case 0xd18 ... 0xd23: /* System Handler Priority. */ |
| val = 0; |
| for (i = 0; i < size; i++) { |
| val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8); |
| } |
| break; |
| case 0xfe0 ... 0xfff: /* ID. */ |
| if (offset & 3) { |
| val = 0; |
| } else { |
| val = nvic_id[(offset - 0xfe0) >> 2]; |
| } |
| break; |
| default: |
| if (size == 4) { |
| val = nvic_readl(s, offset, attrs); |
| } else { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad read of size %d at offset 0x%x\n", |
| size, offset); |
| val = 0; |
| } |
| } |
| |
| trace_nvic_sysreg_read(addr, val, size); |
| *data = val; |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| NVICState *s = (NVICState *)opaque; |
| uint32_t offset = addr; |
| unsigned i, startvec, end; |
| unsigned setval = 0; |
| |
| trace_nvic_sysreg_write(addr, value, size); |
| |
| if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { |
| /* Generate BusFault for unprivileged accesses */ |
| return MEMTX_ERROR; |
| } |
| |
| switch (offset) { |
| case 0x100 ... 0x13f: /* NVIC Set enable */ |
| offset += 0x80; |
| setval = 1; |
| /* fall through */ |
| case 0x180 ... 0x1bf: /* NVIC Clear enable */ |
| startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; |
| |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (value & (1 << i)) { |
| s->vectors[startvec + i].enabled = setval; |
| } |
| } |
| nvic_irq_update(s); |
| return MEMTX_OK; |
| case 0x200 ... 0x23f: /* NVIC Set pend */ |
| /* the special logic in armv7m_nvic_set_pending() |
| * is not needed since IRQs are never escalated |
| */ |
| offset += 0x80; |
| setval = 1; |
| /* fall through */ |
| case 0x280 ... 0x2bf: /* NVIC Clear pend */ |
| startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { |
| if (value & (1 << i)) { |
| s->vectors[startvec + i].pending = setval; |
| } |
| } |
| nvic_irq_update(s); |
| return MEMTX_OK; |
| case 0x300 ... 0x33f: /* NVIC Active */ |
| return MEMTX_OK; /* R/O */ |
| case 0x400 ... 0x5ef: /* NVIC Priority */ |
| startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ |
| |
| for (i = 0; i < size && startvec + i < s->num_irq; i++) { |
| set_prio(s, startvec + i, (value >> (i * 8)) & 0xff); |
| } |
| nvic_irq_update(s); |
| return MEMTX_OK; |
| case 0xd18 ... 0xd23: /* System Handler Priority. */ |
| for (i = 0; i < size; i++) { |
| unsigned hdlidx = (offset - 0xd14) + i; |
| set_prio(s, hdlidx, (value >> (i * 8)) & 0xff); |
| } |
| nvic_irq_update(s); |
| return MEMTX_OK; |
| } |
| if (size == 4) { |
| nvic_writel(s, offset, value, attrs); |
| return MEMTX_OK; |
| } |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); |
| /* This is UNPREDICTABLE; treat as RAZ/WI */ |
| return MEMTX_OK; |
| } |
| |
| static const MemoryRegionOps nvic_sysreg_ops = { |
| .read_with_attrs = nvic_sysreg_read, |
| .write_with_attrs = nvic_sysreg_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| if (attrs.secure) { |
| /* S accesses to the alias act like NS accesses to the real region */ |
| attrs.secure = 0; |
| return nvic_sysreg_write(opaque, addr, value, size, attrs); |
| } else { |
| /* NS attrs are RAZ/WI for privileged, and BusFault for user */ |
| if (attrs.user) { |
| return MEMTX_ERROR; |
| } |
| return MEMTX_OK; |
| } |
| } |
| |
| static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| if (attrs.secure) { |
| /* S accesses to the alias act like NS accesses to the real region */ |
| attrs.secure = 0; |
| return nvic_sysreg_read(opaque, addr, data, size, attrs); |
| } else { |
| /* NS attrs are RAZ/WI for privileged, and BusFault for user */ |
| if (attrs.user) { |
| return MEMTX_ERROR; |
| } |
| *data = 0; |
| return MEMTX_OK; |
| } |
| } |
| |
| static const MemoryRegionOps nvic_sysreg_ns_ops = { |
| .read_with_attrs = nvic_sysreg_ns_read, |
| .write_with_attrs = nvic_sysreg_ns_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static int nvic_post_load(void *opaque, int version_id) |
| { |
| NVICState *s = opaque; |
| unsigned i; |
| |
| /* Check for out of range priority settings */ |
| if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 || |
| s->vectors[ARMV7M_EXCP_NMI].prio != -2 || |
| s->vectors[ARMV7M_EXCP_HARD].prio != -1) { |
| return 1; |
| } |
| for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { |
| if (s->vectors[i].prio & ~0xff) { |
| return 1; |
| } |
| } |
| |
| nvic_recompute_state(s); |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_VecInfo = { |
| .name = "armv7m_nvic_info", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT16(prio, VecInfo), |
| VMSTATE_UINT8(enabled, VecInfo), |
| VMSTATE_UINT8(pending, VecInfo), |
| VMSTATE_UINT8(active, VecInfo), |
| VMSTATE_UINT8(level, VecInfo), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static bool nvic_security_needed(void *opaque) |
| { |
| NVICState *s = opaque; |
| |
| return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); |
| } |
| |
| static int nvic_security_post_load(void *opaque, int version_id) |
| { |
| NVICState *s = opaque; |
| int i; |
| |
| /* Check for out of range priority settings */ |
| if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1) { |
| return 1; |
| } |
| for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { |
| if (s->sec_vectors[i].prio & ~0xff) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_nvic_security = { |
| .name = "nvic/m-security", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = nvic_security_needed, |
| .post_load = &nvic_security_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, |
| vmstate_VecInfo, VecInfo), |
| VMSTATE_UINT32(prigroup[M_REG_S], NVICState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_nvic = { |
| .name = "armv7m_nvic", |
| .version_id = 4, |
| .minimum_version_id = 4, |
| .post_load = &nvic_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, |
| vmstate_VecInfo, VecInfo), |
| VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_nvic_security, |
| NULL |
| } |
| }; |
| |
| static Property props_nvic[] = { |
| /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ |
| DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), |
| DEFINE_PROP_END_OF_LIST() |
| }; |
| |
| static void armv7m_nvic_reset(DeviceState *dev) |
| { |
| NVICState *s = NVIC(dev); |
| |
| s->vectors[ARMV7M_EXCP_NMI].enabled = 1; |
| s->vectors[ARMV7M_EXCP_HARD].enabled = 1; |
| /* MEM, BUS, and USAGE are enabled through |
| * the System Handler Control register |
| */ |
| s->vectors[ARMV7M_EXCP_SVC].enabled = 1; |
| s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; |
| s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; |
| s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; |
| |
| s->vectors[ARMV7M_EXCP_RESET].prio = -3; |
| s->vectors[ARMV7M_EXCP_NMI].prio = -2; |
| s->vectors[ARMV7M_EXCP_HARD].prio = -1; |
| |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { |
| s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; |
| s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; |
| s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; |
| s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; |
| |
| /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ |
| s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; |
| } |
| |
| /* Strictly speaking the reset handler should be enabled. |
| * However, we don't simulate soft resets through the NVIC, |
| * and the reset vector should never be pended. |
| * So we leave it disabled to catch logic errors. |
| */ |
| |
| s->exception_prio = NVIC_NOEXC_PRIO; |
| s->vectpending = 0; |
| s->vectpending_is_s_banked = false; |
| s->vectpending_prio = NVIC_NOEXC_PRIO; |
| } |
| |
| static void nvic_systick_trigger(void *opaque, int n, int level) |
| { |
| NVICState *s = opaque; |
| |
| if (level) { |
| /* SysTick just asked us to pend its exception. |
| * (This is different from an external interrupt line's |
| * behaviour.) |
| */ |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); |
| } |
| } |
| |
| static void armv7m_nvic_realize(DeviceState *dev, Error **errp) |
| { |
| NVICState *s = NVIC(dev); |
| SysBusDevice *systick_sbd; |
| Error *err = NULL; |
| int regionlen; |
| |
| s->cpu = ARM_CPU(qemu_get_cpu(0)); |
| assert(s->cpu); |
| |
| if (s->num_irq > NVIC_MAX_IRQ) { |
| error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); |
| return; |
| } |
| |
| qdev_init_gpio_in(dev, set_irq_level, s->num_irq); |
| |
| /* include space for internal exception vectors */ |
| s->num_irq += NVIC_FIRST_IRQ; |
| |
| object_property_set_bool(OBJECT(&s->systick), true, "realized", &err); |
| if (err != NULL) { |
| error_propagate(errp, err); |
| return; |
| } |
| systick_sbd = SYS_BUS_DEVICE(&s->systick); |
| sysbus_connect_irq(systick_sbd, 0, |
| qdev_get_gpio_in_named(dev, "systick-trigger", 0)); |
| |
| /* The NVIC and System Control Space (SCS) starts at 0xe000e000 |
| * and looks like this: |
| * 0x004 - ICTR |
| * 0x010 - 0xff - systick |
| * 0x100..0x7ec - NVIC |
| * 0x7f0..0xcff - Reserved |
| * 0xd00..0xd3c - SCS registers |
| * 0xd40..0xeff - Reserved or Not implemented |
| * 0xf00 - STIR |
| * |
| * Some registers within this space are banked between security states. |
| * In v8M there is a second range 0xe002e000..0xe002efff which is the |
| * NonSecure alias SCS; secure accesses to this behave like NS accesses |
| * to the main SCS range, and non-secure accesses (including when |
| * the security extension is not implemented) are RAZ/WI. |
| * Note that both the main SCS range and the alias range are defined |
| * to be exempt from memory attribution (R_BLJT) and so the memory |
| * transaction attribute always matches the current CPU security |
| * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops |
| * wrappers we change attrs.secure to indicate the NS access; so |
| * generally code determining which banked register to use should |
| * use attrs.secure; code determining actual behaviour of the system |
| * should use env->v7m.secure. |
| */ |
| regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; |
| memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); |
| /* The system register region goes at the bottom of the priority |
| * stack as it covers the whole page. |
| */ |
| memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, |
| "nvic_sysregs", 0x1000); |
| memory_region_add_subregion(&s->container, 0, &s->sysregmem); |
| memory_region_add_subregion_overlap(&s->container, 0x10, |
| sysbus_mmio_get_region(systick_sbd, 0), |
| 1); |
| |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { |
| memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), |
| &nvic_sysreg_ns_ops, s, |
| "nvic_sysregs_ns", 0x1000); |
| memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); |
| } |
| |
| sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); |
| } |
| |
| static void armv7m_nvic_instance_init(Object *obj) |
| { |
| /* We have a different default value for the num-irq property |
| * than our superclass. This function runs after qdev init |
| * has set the defaults from the Property array and before |
| * any user-specified property setting, so just modify the |
| * value in the GICState struct. |
| */ |
| DeviceState *dev = DEVICE(obj); |
| NVICState *nvic = NVIC(obj); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| |
| object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK); |
| qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default()); |
| |
| sysbus_init_irq(sbd, &nvic->excpout); |
| qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); |
| qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1); |
| } |
| |
| static void armv7m_nvic_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->vmsd = &vmstate_nvic; |
| dc->props = props_nvic; |
| dc->reset = armv7m_nvic_reset; |
| dc->realize = armv7m_nvic_realize; |
| } |
| |
| static const TypeInfo armv7m_nvic_info = { |
| .name = TYPE_NVIC, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_init = armv7m_nvic_instance_init, |
| .instance_size = sizeof(NVICState), |
| .class_init = armv7m_nvic_class_init, |
| .class_size = sizeof(SysBusDeviceClass), |
| }; |
| |
| static void armv7m_nvic_register_types(void) |
| { |
| type_register_static(&armv7m_nvic_info); |
| } |
| |
| type_init(armv7m_nvic_register_types) |