| /* |
| * M68K helper routines |
| * |
| * Copyright (c) 2007 CodeSourcery |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "hw/semihosting/semihost.h" |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| void m68k_cpu_do_interrupt(CPUState *cs) |
| { |
| cs->exception_index = -1; |
| } |
| |
| static inline void do_interrupt_m68k_hardirq(CPUM68KState *env) |
| { |
| } |
| |
| #else |
| |
| static void cf_rte(CPUM68KState *env) |
| { |
| uint32_t sp; |
| uint32_t fmt; |
| |
| sp = env->aregs[7]; |
| fmt = cpu_ldl_kernel(env, sp); |
| env->pc = cpu_ldl_kernel(env, sp + 4); |
| sp |= (fmt >> 28) & 3; |
| env->aregs[7] = sp + 8; |
| |
| cpu_m68k_set_sr(env, fmt); |
| } |
| |
| static void m68k_rte(CPUM68KState *env) |
| { |
| uint32_t sp; |
| uint16_t fmt; |
| uint16_t sr; |
| |
| sp = env->aregs[7]; |
| throwaway: |
| sr = cpu_lduw_kernel(env, sp); |
| sp += 2; |
| env->pc = cpu_ldl_kernel(env, sp); |
| sp += 4; |
| if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) { |
| /* all except 68000 */ |
| fmt = cpu_lduw_kernel(env, sp); |
| sp += 2; |
| switch (fmt >> 12) { |
| case 0: |
| break; |
| case 1: |
| env->aregs[7] = sp; |
| cpu_m68k_set_sr(env, sr); |
| goto throwaway; |
| case 2: |
| case 3: |
| sp += 4; |
| break; |
| case 4: |
| sp += 8; |
| break; |
| case 7: |
| sp += 52; |
| break; |
| } |
| } |
| env->aregs[7] = sp; |
| cpu_m68k_set_sr(env, sr); |
| } |
| |
| static const char *m68k_exception_name(int index) |
| { |
| switch (index) { |
| case EXCP_ACCESS: |
| return "Access Fault"; |
| case EXCP_ADDRESS: |
| return "Address Error"; |
| case EXCP_ILLEGAL: |
| return "Illegal Instruction"; |
| case EXCP_DIV0: |
| return "Divide by Zero"; |
| case EXCP_CHK: |
| return "CHK/CHK2"; |
| case EXCP_TRAPCC: |
| return "FTRAPcc, TRAPcc, TRAPV"; |
| case EXCP_PRIVILEGE: |
| return "Privilege Violation"; |
| case EXCP_TRACE: |
| return "Trace"; |
| case EXCP_LINEA: |
| return "A-Line"; |
| case EXCP_LINEF: |
| return "F-Line"; |
| case EXCP_DEBEGBP: /* 68020/030 only */ |
| return "Copro Protocol Violation"; |
| case EXCP_FORMAT: |
| return "Format Error"; |
| case EXCP_UNINITIALIZED: |
| return "Unitialized Interruot"; |
| case EXCP_SPURIOUS: |
| return "Spurious Interrupt"; |
| case EXCP_INT_LEVEL_1: |
| return "Level 1 Interrupt"; |
| case EXCP_INT_LEVEL_1 + 1: |
| return "Level 2 Interrupt"; |
| case EXCP_INT_LEVEL_1 + 2: |
| return "Level 3 Interrupt"; |
| case EXCP_INT_LEVEL_1 + 3: |
| return "Level 4 Interrupt"; |
| case EXCP_INT_LEVEL_1 + 4: |
| return "Level 5 Interrupt"; |
| case EXCP_INT_LEVEL_1 + 5: |
| return "Level 6 Interrupt"; |
| case EXCP_INT_LEVEL_1 + 6: |
| return "Level 7 Interrupt"; |
| case EXCP_TRAP0: |
| return "TRAP #0"; |
| case EXCP_TRAP0 + 1: |
| return "TRAP #1"; |
| case EXCP_TRAP0 + 2: |
| return "TRAP #2"; |
| case EXCP_TRAP0 + 3: |
| return "TRAP #3"; |
| case EXCP_TRAP0 + 4: |
| return "TRAP #4"; |
| case EXCP_TRAP0 + 5: |
| return "TRAP #5"; |
| case EXCP_TRAP0 + 6: |
| return "TRAP #6"; |
| case EXCP_TRAP0 + 7: |
| return "TRAP #7"; |
| case EXCP_TRAP0 + 8: |
| return "TRAP #8"; |
| case EXCP_TRAP0 + 9: |
| return "TRAP #9"; |
| case EXCP_TRAP0 + 10: |
| return "TRAP #10"; |
| case EXCP_TRAP0 + 11: |
| return "TRAP #11"; |
| case EXCP_TRAP0 + 12: |
| return "TRAP #12"; |
| case EXCP_TRAP0 + 13: |
| return "TRAP #13"; |
| case EXCP_TRAP0 + 14: |
| return "TRAP #14"; |
| case EXCP_TRAP0 + 15: |
| return "TRAP #15"; |
| case EXCP_FP_BSUN: |
| return "FP Branch/Set on unordered condition"; |
| case EXCP_FP_INEX: |
| return "FP Inexact Result"; |
| case EXCP_FP_DZ: |
| return "FP Divide by Zero"; |
| case EXCP_FP_UNFL: |
| return "FP Underflow"; |
| case EXCP_FP_OPERR: |
| return "FP Operand Error"; |
| case EXCP_FP_OVFL: |
| return "FP Overflow"; |
| case EXCP_FP_SNAN: |
| return "FP Signaling NAN"; |
| case EXCP_FP_UNIMP: |
| return "FP Unimplemented Data Type"; |
| case EXCP_MMU_CONF: /* 68030/68851 only */ |
| return "MMU Configuration Error"; |
| case EXCP_MMU_ILLEGAL: /* 68851 only */ |
| return "MMU Illegal Operation"; |
| case EXCP_MMU_ACCESS: /* 68851 only */ |
| return "MMU Access Level Violation"; |
| case 64 ... 255: |
| return "User Defined Vector"; |
| } |
| return "Unassigned"; |
| } |
| |
| static void cf_interrupt_all(CPUM68KState *env, int is_hw) |
| { |
| CPUState *cs = env_cpu(env); |
| uint32_t sp; |
| uint32_t sr; |
| uint32_t fmt; |
| uint32_t retaddr; |
| uint32_t vector; |
| |
| fmt = 0; |
| retaddr = env->pc; |
| |
| if (!is_hw) { |
| switch (cs->exception_index) { |
| case EXCP_RTE: |
| /* Return from an exception. */ |
| cf_rte(env); |
| return; |
| case EXCP_HALT_INSN: |
| if (semihosting_enabled() |
| && (env->sr & SR_S) != 0 |
| && (env->pc & 3) == 0 |
| && cpu_lduw_code(env, env->pc - 4) == 0x4e71 |
| && cpu_ldl_code(env, env->pc) == 0x4e7bf000) { |
| env->pc += 4; |
| do_m68k_semihosting(env, env->dregs[0]); |
| return; |
| } |
| cs->halted = 1; |
| cs->exception_index = EXCP_HLT; |
| cpu_loop_exit(cs); |
| return; |
| } |
| if (cs->exception_index >= EXCP_TRAP0 |
| && cs->exception_index <= EXCP_TRAP15) { |
| /* Move the PC after the trap instruction. */ |
| retaddr += 2; |
| } |
| } |
| |
| vector = cs->exception_index << 2; |
| |
| sr = env->sr | cpu_m68k_get_ccr(env); |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| static int count; |
| qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n", |
| ++count, m68k_exception_name(cs->exception_index), |
| vector, env->pc, env->aregs[7], sr); |
| } |
| |
| fmt |= 0x40000000; |
| fmt |= vector << 16; |
| fmt |= sr; |
| |
| env->sr |= SR_S; |
| if (is_hw) { |
| env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT); |
| env->sr &= ~SR_M; |
| } |
| m68k_switch_sp(env); |
| sp = env->aregs[7]; |
| fmt |= (sp & 3) << 28; |
| |
| /* ??? This could cause MMU faults. */ |
| sp &= ~3; |
| sp -= 4; |
| cpu_stl_kernel(env, sp, retaddr); |
| sp -= 4; |
| cpu_stl_kernel(env, sp, fmt); |
| env->aregs[7] = sp; |
| /* Jump to vector. */ |
| env->pc = cpu_ldl_kernel(env, env->vbr + vector); |
| } |
| |
| static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp, |
| uint16_t format, uint16_t sr, |
| uint32_t addr, uint32_t retaddr) |
| { |
| if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) { |
| /* all except 68000 */ |
| CPUState *cs = env_cpu(env); |
| switch (format) { |
| case 4: |
| *sp -= 4; |
| cpu_stl_kernel(env, *sp, env->pc); |
| *sp -= 4; |
| cpu_stl_kernel(env, *sp, addr); |
| break; |
| case 3: |
| case 2: |
| *sp -= 4; |
| cpu_stl_kernel(env, *sp, addr); |
| break; |
| } |
| *sp -= 2; |
| cpu_stw_kernel(env, *sp, (format << 12) + (cs->exception_index << 2)); |
| } |
| *sp -= 4; |
| cpu_stl_kernel(env, *sp, retaddr); |
| *sp -= 2; |
| cpu_stw_kernel(env, *sp, sr); |
| } |
| |
| static void m68k_interrupt_all(CPUM68KState *env, int is_hw) |
| { |
| CPUState *cs = env_cpu(env); |
| uint32_t sp; |
| uint32_t retaddr; |
| uint32_t vector; |
| uint16_t sr, oldsr; |
| |
| retaddr = env->pc; |
| |
| if (!is_hw) { |
| switch (cs->exception_index) { |
| case EXCP_RTE: |
| /* Return from an exception. */ |
| m68k_rte(env); |
| return; |
| case EXCP_TRAP0 ... EXCP_TRAP15: |
| /* Move the PC after the trap instruction. */ |
| retaddr += 2; |
| break; |
| } |
| } |
| |
| vector = cs->exception_index << 2; |
| |
| sr = env->sr | cpu_m68k_get_ccr(env); |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| static int count; |
| qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n", |
| ++count, m68k_exception_name(cs->exception_index), |
| vector, env->pc, env->aregs[7], sr); |
| } |
| |
| /* |
| * MC68040UM/AD, chapter 9.3.10 |
| */ |
| |
| /* "the processor first make an internal copy" */ |
| oldsr = sr; |
| /* "set the mode to supervisor" */ |
| sr |= SR_S; |
| /* "suppress tracing" */ |
| sr &= ~SR_T; |
| /* "sets the processor interrupt mask" */ |
| if (is_hw) { |
| sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT); |
| } |
| cpu_m68k_set_sr(env, sr); |
| sp = env->aregs[7]; |
| |
| sp &= ~1; |
| if (cs->exception_index == EXCP_ACCESS) { |
| if (env->mmu.fault) { |
| cpu_abort(cs, "DOUBLE MMU FAULT\n"); |
| } |
| env->mmu.fault = true; |
| sp -= 4; |
| cpu_stl_kernel(env, sp, 0); /* push data 3 */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, 0); /* push data 2 */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, 0); /* push data 1 */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, 0); /* write back 1 / push data 0 */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, 0); /* write back 1 address */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, 0); /* write back 2 data */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, 0); /* write back 2 address */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, 0); /* write back 3 data */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, env->mmu.ar); /* write back 3 address */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, env->mmu.ar); /* fault address */ |
| sp -= 2; |
| cpu_stw_kernel(env, sp, 0); /* write back 1 status */ |
| sp -= 2; |
| cpu_stw_kernel(env, sp, 0); /* write back 2 status */ |
| sp -= 2; |
| cpu_stw_kernel(env, sp, 0); /* write back 3 status */ |
| sp -= 2; |
| cpu_stw_kernel(env, sp, env->mmu.ssw); /* special status word */ |
| sp -= 4; |
| cpu_stl_kernel(env, sp, env->mmu.ar); /* effective address */ |
| do_stack_frame(env, &sp, 7, oldsr, 0, retaddr); |
| env->mmu.fault = false; |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| qemu_log(" " |
| "ssw: %08x ea: %08x sfc: %d dfc: %d\n", |
| env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc); |
| } |
| } else if (cs->exception_index == EXCP_ADDRESS) { |
| do_stack_frame(env, &sp, 2, oldsr, 0, retaddr); |
| } else if (cs->exception_index == EXCP_ILLEGAL || |
| cs->exception_index == EXCP_DIV0 || |
| cs->exception_index == EXCP_CHK || |
| cs->exception_index == EXCP_TRAPCC || |
| cs->exception_index == EXCP_TRACE) { |
| /* FIXME: addr is not only env->pc */ |
| do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr); |
| } else if (is_hw && oldsr & SR_M && |
| cs->exception_index >= EXCP_SPURIOUS && |
| cs->exception_index <= EXCP_INT_LEVEL_7) { |
| do_stack_frame(env, &sp, 0, oldsr, 0, retaddr); |
| oldsr = sr; |
| env->aregs[7] = sp; |
| cpu_m68k_set_sr(env, sr &= ~SR_M); |
| sp = env->aregs[7] & ~1; |
| do_stack_frame(env, &sp, 1, oldsr, 0, retaddr); |
| } else { |
| do_stack_frame(env, &sp, 0, oldsr, 0, retaddr); |
| } |
| |
| env->aregs[7] = sp; |
| /* Jump to vector. */ |
| env->pc = cpu_ldl_kernel(env, env->vbr + vector); |
| } |
| |
| static void do_interrupt_all(CPUM68KState *env, int is_hw) |
| { |
| if (m68k_feature(env, M68K_FEATURE_M68000)) { |
| m68k_interrupt_all(env, is_hw); |
| return; |
| } |
| cf_interrupt_all(env, is_hw); |
| } |
| |
| void m68k_cpu_do_interrupt(CPUState *cs) |
| { |
| M68kCPU *cpu = M68K_CPU(cs); |
| CPUM68KState *env = &cpu->env; |
| |
| do_interrupt_all(env, 0); |
| } |
| |
| static inline void do_interrupt_m68k_hardirq(CPUM68KState *env) |
| { |
| do_interrupt_all(env, 1); |
| } |
| |
| void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, |
| unsigned size, MMUAccessType access_type, |
| int mmu_idx, MemTxAttrs attrs, |
| MemTxResult response, uintptr_t retaddr) |
| { |
| M68kCPU *cpu = M68K_CPU(cs); |
| CPUM68KState *env = &cpu->env; |
| |
| cpu_restore_state(cs, retaddr, true); |
| |
| if (m68k_feature(env, M68K_FEATURE_M68040)) { |
| env->mmu.mmusr = 0; |
| env->mmu.ssw |= M68K_ATC_040; |
| /* FIXME: manage MMU table access error */ |
| env->mmu.ssw &= ~M68K_TM_040; |
| if (env->sr & SR_S) { /* SUPERVISOR */ |
| env->mmu.ssw |= M68K_TM_040_SUPER; |
| } |
| if (access_type == MMU_INST_FETCH) { /* instruction or data */ |
| env->mmu.ssw |= M68K_TM_040_CODE; |
| } else { |
| env->mmu.ssw |= M68K_TM_040_DATA; |
| } |
| env->mmu.ssw &= ~M68K_BA_SIZE_MASK; |
| switch (size) { |
| case 1: |
| env->mmu.ssw |= M68K_BA_SIZE_BYTE; |
| break; |
| case 2: |
| env->mmu.ssw |= M68K_BA_SIZE_WORD; |
| break; |
| case 4: |
| env->mmu.ssw |= M68K_BA_SIZE_LONG; |
| break; |
| } |
| |
| if (access_type != MMU_DATA_STORE) { |
| env->mmu.ssw |= M68K_RW_040; |
| } |
| |
| env->mmu.ar = addr; |
| |
| cs->exception_index = EXCP_ACCESS; |
| cpu_loop_exit(cs); |
| } |
| } |
| #endif |
| |
| bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| M68kCPU *cpu = M68K_CPU(cs); |
| CPUM68KState *env = &cpu->env; |
| |
| if (interrupt_request & CPU_INTERRUPT_HARD |
| && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) { |
| /* Real hardware gets the interrupt vector via an IACK cycle |
| at this point. Current emulated hardware doesn't rely on |
| this, so we provide/save the vector when the interrupt is |
| first signalled. */ |
| cs->exception_index = env->pending_vector; |
| do_interrupt_m68k_hardirq(env); |
| return true; |
| } |
| return false; |
| } |
| |
| static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cs->exception_index = tt; |
| cpu_loop_exit_restore(cs, raddr); |
| } |
| |
| static void raise_exception(CPUM68KState *env, int tt) |
| { |
| raise_exception_ra(env, tt, 0); |
| } |
| |
| void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt) |
| { |
| raise_exception(env, tt); |
| } |
| |
| void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den) |
| { |
| uint32_t num = env->dregs[destr]; |
| uint32_t quot, rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; /* always cleared, even if overflow */ |
| if (quot > 0xffff) { |
| env->cc_v = -1; |
| /* real 68040 keeps N and unset Z on overflow, |
| * whereas documentation says "undefined" |
| */ |
| env->cc_z = 1; |
| return; |
| } |
| env->dregs[destr] = deposit32(quot, 16, 16, rem); |
| env->cc_z = (int16_t)quot; |
| env->cc_n = (int16_t)quot; |
| env->cc_v = 0; |
| } |
| |
| void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den) |
| { |
| int32_t num = env->dregs[destr]; |
| uint32_t quot, rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; /* always cleared, even if overflow */ |
| if (quot != (int16_t)quot) { |
| env->cc_v = -1; |
| /* nothing else is modified */ |
| /* real 68040 keeps N and unset Z on overflow, |
| * whereas documentation says "undefined" |
| */ |
| env->cc_z = 1; |
| return; |
| } |
| env->dregs[destr] = deposit32(quot, 16, 16, rem); |
| env->cc_z = (int16_t)quot; |
| env->cc_n = (int16_t)quot; |
| env->cc_v = 0; |
| } |
| |
| void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den) |
| { |
| uint32_t num = env->dregs[numr]; |
| uint32_t quot, rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; |
| env->cc_z = quot; |
| env->cc_n = quot; |
| env->cc_v = 0; |
| |
| if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { |
| if (numr == regr) { |
| env->dregs[numr] = quot; |
| } else { |
| env->dregs[regr] = rem; |
| } |
| } else { |
| env->dregs[regr] = rem; |
| env->dregs[numr] = quot; |
| } |
| } |
| |
| void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den) |
| { |
| int32_t num = env->dregs[numr]; |
| int32_t quot, rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; |
| env->cc_z = quot; |
| env->cc_n = quot; |
| env->cc_v = 0; |
| |
| if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { |
| if (numr == regr) { |
| env->dregs[numr] = quot; |
| } else { |
| env->dregs[regr] = rem; |
| } |
| } else { |
| env->dregs[regr] = rem; |
| env->dregs[numr] = quot; |
| } |
| } |
| |
| void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den) |
| { |
| uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); |
| uint64_t quot; |
| uint32_t rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; /* always cleared, even if overflow */ |
| if (quot > 0xffffffffULL) { |
| env->cc_v = -1; |
| /* real 68040 keeps N and unset Z on overflow, |
| * whereas documentation says "undefined" |
| */ |
| env->cc_z = 1; |
| return; |
| } |
| env->cc_z = quot; |
| env->cc_n = quot; |
| env->cc_v = 0; |
| |
| /* |
| * If Dq and Dr are the same, the quotient is returned. |
| * therefore we set Dq last. |
| */ |
| |
| env->dregs[regr] = rem; |
| env->dregs[numr] = quot; |
| } |
| |
| void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den) |
| { |
| int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); |
| int64_t quot; |
| int32_t rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; /* always cleared, even if overflow */ |
| if (quot != (int32_t)quot) { |
| env->cc_v = -1; |
| /* real 68040 keeps N and unset Z on overflow, |
| * whereas documentation says "undefined" |
| */ |
| env->cc_z = 1; |
| return; |
| } |
| env->cc_z = quot; |
| env->cc_n = quot; |
| env->cc_v = 0; |
| |
| /* |
| * If Dq and Dr are the same, the quotient is returned. |
| * therefore we set Dq last. |
| */ |
| |
| env->dregs[regr] = rem; |
| env->dregs[numr] = quot; |
| } |
| |
| /* We're executing in a serial context -- no need to be atomic. */ |
| void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) |
| { |
| uint32_t Dc1 = extract32(regs, 9, 3); |
| uint32_t Dc2 = extract32(regs, 6, 3); |
| uint32_t Du1 = extract32(regs, 3, 3); |
| uint32_t Du2 = extract32(regs, 0, 3); |
| int16_t c1 = env->dregs[Dc1]; |
| int16_t c2 = env->dregs[Dc2]; |
| int16_t u1 = env->dregs[Du1]; |
| int16_t u2 = env->dregs[Du2]; |
| int16_t l1, l2; |
| uintptr_t ra = GETPC(); |
| |
| l1 = cpu_lduw_data_ra(env, a1, ra); |
| l2 = cpu_lduw_data_ra(env, a2, ra); |
| if (l1 == c1 && l2 == c2) { |
| cpu_stw_data_ra(env, a1, u1, ra); |
| cpu_stw_data_ra(env, a2, u2, ra); |
| } |
| |
| if (c1 != l1) { |
| env->cc_n = l1; |
| env->cc_v = c1; |
| } else { |
| env->cc_n = l2; |
| env->cc_v = c2; |
| } |
| env->cc_op = CC_OP_CMPW; |
| env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1); |
| env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2); |
| } |
| |
| static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2, |
| bool parallel) |
| { |
| uint32_t Dc1 = extract32(regs, 9, 3); |
| uint32_t Dc2 = extract32(regs, 6, 3); |
| uint32_t Du1 = extract32(regs, 3, 3); |
| uint32_t Du2 = extract32(regs, 0, 3); |
| uint32_t c1 = env->dregs[Dc1]; |
| uint32_t c2 = env->dregs[Dc2]; |
| uint32_t u1 = env->dregs[Du1]; |
| uint32_t u2 = env->dregs[Du2]; |
| uint32_t l1, l2; |
| uintptr_t ra = GETPC(); |
| #if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY) |
| int mmu_idx = cpu_mmu_index(env, 0); |
| TCGMemOpIdx oi; |
| #endif |
| |
| if (parallel) { |
| /* We're executing in a parallel context -- must be atomic. */ |
| #ifdef CONFIG_ATOMIC64 |
| uint64_t c, u, l; |
| if ((a1 & 7) == 0 && a2 == a1 + 4) { |
| c = deposit64(c2, 32, 32, c1); |
| u = deposit64(u2, 32, 32, u1); |
| #ifdef CONFIG_USER_ONLY |
| l = helper_atomic_cmpxchgq_be(env, a1, c, u); |
| #else |
| oi = make_memop_idx(MO_BEQ, mmu_idx); |
| l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra); |
| #endif |
| l1 = l >> 32; |
| l2 = l; |
| } else if ((a2 & 7) == 0 && a1 == a2 + 4) { |
| c = deposit64(c1, 32, 32, c2); |
| u = deposit64(u1, 32, 32, u2); |
| #ifdef CONFIG_USER_ONLY |
| l = helper_atomic_cmpxchgq_be(env, a2, c, u); |
| #else |
| oi = make_memop_idx(MO_BEQ, mmu_idx); |
| l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra); |
| #endif |
| l2 = l >> 32; |
| l1 = l; |
| } else |
| #endif |
| { |
| /* Tell the main loop we need to serialize this insn. */ |
| cpu_loop_exit_atomic(env_cpu(env), ra); |
| } |
| } else { |
| /* We're executing in a serial context -- no need to be atomic. */ |
| l1 = cpu_ldl_data_ra(env, a1, ra); |
| l2 = cpu_ldl_data_ra(env, a2, ra); |
| if (l1 == c1 && l2 == c2) { |
| cpu_stl_data_ra(env, a1, u1, ra); |
| cpu_stl_data_ra(env, a2, u2, ra); |
| } |
| } |
| |
| if (c1 != l1) { |
| env->cc_n = l1; |
| env->cc_v = c1; |
| } else { |
| env->cc_n = l2; |
| env->cc_v = c2; |
| } |
| env->cc_op = CC_OP_CMPL; |
| env->dregs[Dc1] = l1; |
| env->dregs[Dc2] = l2; |
| } |
| |
| void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) |
| { |
| do_cas2l(env, regs, a1, a2, false); |
| } |
| |
| void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1, |
| uint32_t a2) |
| { |
| do_cas2l(env, regs, a1, a2, true); |
| } |
| |
| struct bf_data { |
| uint32_t addr; |
| uint32_t bofs; |
| uint32_t blen; |
| uint32_t len; |
| }; |
| |
| static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len) |
| { |
| int bofs, blen; |
| |
| /* Bound length; map 0 to 32. */ |
| len = ((len - 1) & 31) + 1; |
| |
| /* Note that ofs is signed. */ |
| addr += ofs / 8; |
| bofs = ofs % 8; |
| if (bofs < 0) { |
| bofs += 8; |
| addr -= 1; |
| } |
| |
| /* Compute the number of bytes required (minus one) to |
| satisfy the bitfield. */ |
| blen = (bofs + len - 1) / 8; |
| |
| /* Canonicalize the bit offset for data loaded into a 64-bit big-endian |
| word. For the cases where BLEN is not a power of 2, adjust ADDR so |
| that we can use the next power of two sized load without crossing a |
| page boundary, unless the field itself crosses the boundary. */ |
| switch (blen) { |
| case 0: |
| bofs += 56; |
| break; |
| case 1: |
| bofs += 48; |
| break; |
| case 2: |
| if (addr & 1) { |
| bofs += 8; |
| addr -= 1; |
| } |
| /* fallthru */ |
| case 3: |
| bofs += 32; |
| break; |
| case 4: |
| if (addr & 3) { |
| bofs += 8 * (addr & 3); |
| addr &= -4; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| return (struct bf_data){ |
| .addr = addr, |
| .bofs = bofs, |
| .blen = blen, |
| .len = len, |
| }; |
| } |
| |
| static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen, |
| uintptr_t ra) |
| { |
| switch (blen) { |
| case 0: |
| return cpu_ldub_data_ra(env, addr, ra); |
| case 1: |
| return cpu_lduw_data_ra(env, addr, ra); |
| case 2: |
| case 3: |
| return cpu_ldl_data_ra(env, addr, ra); |
| case 4: |
| return cpu_ldq_data_ra(env, addr, ra); |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void bf_store(CPUM68KState *env, uint32_t addr, int blen, |
| uint64_t data, uintptr_t ra) |
| { |
| switch (blen) { |
| case 0: |
| cpu_stb_data_ra(env, addr, data, ra); |
| break; |
| case 1: |
| cpu_stw_data_ra(env, addr, data, ra); |
| break; |
| case 2: |
| case 3: |
| cpu_stl_data_ra(env, addr, data, ra); |
| break; |
| case 4: |
| cpu_stq_data_ra(env, addr, data, ra); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| |
| return (int64_t)(data << d.bofs) >> (64 - d.len); |
| } |
| |
| uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| |
| /* Put CC_N at the top of the high word; put the zero-extended value |
| at the bottom of the low word. */ |
| data <<= d.bofs; |
| data >>= 64 - d.len; |
| data |= data << (64 - d.len); |
| |
| return data; |
| } |
| |
| uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| |
| data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs); |
| |
| bf_store(env, d.addr, d.blen, data, ra); |
| |
| /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */ |
| return val << (32 - d.len); |
| } |
| |
| uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| |
| bf_store(env, d.addr, d.blen, data ^ mask, ra); |
| |
| return ((data & mask) << d.bofs) >> 32; |
| } |
| |
| uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| |
| bf_store(env, d.addr, d.blen, data & ~mask, ra); |
| |
| return ((data & mask) << d.bofs) >> 32; |
| } |
| |
| uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| |
| bf_store(env, d.addr, d.blen, data | mask, ra); |
| |
| return ((data & mask) << d.bofs) >> 32; |
| } |
| |
| uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len) |
| { |
| return (n ? clz32(n) : len) + ofs; |
| } |
| |
| uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| uint64_t n = (data & mask) << d.bofs; |
| uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len); |
| |
| /* Return FFO in the low word and N in the high word. |
| Note that because of MASK and the shift, the low word |
| is already zero. */ |
| return n | ffo; |
| } |
| |
| void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub) |
| { |
| /* From the specs: |
| * X: Not affected, C,V,Z: Undefined, |
| * N: Set if val < 0; cleared if val > ub, undefined otherwise |
| * We implement here values found from a real MC68040: |
| * X,V,Z: Not affected |
| * N: Set if val < 0; cleared if val >= 0 |
| * C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise |
| * if 0 > ub: set if val > ub and val < 0, cleared otherwise |
| */ |
| env->cc_n = val; |
| env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0; |
| |
| if (val < 0 || val > ub) { |
| CPUState *cs = env_cpu(env); |
| |
| /* Recover PC and CC_OP for the beginning of the insn. */ |
| cpu_restore_state(cs, GETPC(), true); |
| |
| /* flags have been modified by gen_flush_flags() */ |
| env->cc_op = CC_OP_FLAGS; |
| /* Adjust PC to end of the insn. */ |
| env->pc += 2; |
| |
| cs->exception_index = EXCP_CHK; |
| cpu_loop_exit(cs); |
| } |
| } |
| |
| void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub) |
| { |
| /* From the specs: |
| * X: Not affected, N,V: Undefined, |
| * Z: Set if val is equal to lb or ub |
| * C: Set if val < lb or val > ub, cleared otherwise |
| * We implement here values found from a real MC68040: |
| * X,N,V: Not affected |
| * Z: Set if val is equal to lb or ub |
| * C: if lb <= ub: set if val < lb or val > ub, cleared otherwise |
| * if lb > ub: set if val > ub and val < lb, cleared otherwise |
| */ |
| env->cc_z = val != lb && val != ub; |
| env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb; |
| |
| if (env->cc_c) { |
| CPUState *cs = env_cpu(env); |
| |
| /* Recover PC and CC_OP for the beginning of the insn. */ |
| cpu_restore_state(cs, GETPC(), true); |
| |
| /* flags have been modified by gen_flush_flags() */ |
| env->cc_op = CC_OP_FLAGS; |
| /* Adjust PC to end of the insn. */ |
| env->pc += 4; |
| |
| cs->exception_index = EXCP_CHK; |
| cpu_loop_exit(cs); |
| } |
| } |