| /* |
| * Postcopy migration for RAM |
| * |
| * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates |
| * |
| * Authors: |
| * Dave Gilbert <dgilbert@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| /* |
| * Postcopy is a migration technique where the execution flips from the |
| * source to the destination before all the data has been copied. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/madvise.h" |
| #include "exec/target_page.h" |
| #include "migration.h" |
| #include "qemu-file.h" |
| #include "savevm.h" |
| #include "postcopy-ram.h" |
| #include "ram.h" |
| #include "qapi/error.h" |
| #include "qemu/notify.h" |
| #include "qemu/rcu.h" |
| #include "system/system.h" |
| #include "qemu/error-report.h" |
| #include "trace.h" |
| #include "hw/boards.h" |
| #include "system/ramblock.h" |
| #include "socket.h" |
| #include "yank_functions.h" |
| #include "tls.h" |
| #include "qemu/userfaultfd.h" |
| #include "qemu/mmap-alloc.h" |
| #include "options.h" |
| |
| /* Arbitrary limit on size of each discard command, |
| * keeps them around ~200 bytes |
| */ |
| #define MAX_DISCARDS_PER_COMMAND 12 |
| |
| typedef struct PostcopyDiscardState { |
| const char *ramblock_name; |
| uint16_t cur_entry; |
| /* |
| * Start and length of a discard range (bytes) |
| */ |
| uint64_t start_list[MAX_DISCARDS_PER_COMMAND]; |
| uint64_t length_list[MAX_DISCARDS_PER_COMMAND]; |
| unsigned int nsentwords; |
| unsigned int nsentcmds; |
| } PostcopyDiscardState; |
| |
| static NotifierWithReturnList postcopy_notifier_list; |
| |
| void postcopy_infrastructure_init(void) |
| { |
| notifier_with_return_list_init(&postcopy_notifier_list); |
| } |
| |
| void postcopy_add_notifier(NotifierWithReturn *nn) |
| { |
| notifier_with_return_list_add(&postcopy_notifier_list, nn); |
| } |
| |
| void postcopy_remove_notifier(NotifierWithReturn *n) |
| { |
| notifier_with_return_remove(n); |
| } |
| |
| int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp) |
| { |
| struct PostcopyNotifyData pnd; |
| pnd.reason = reason; |
| |
| return notifier_with_return_list_notify(&postcopy_notifier_list, |
| &pnd, errp); |
| } |
| |
| /* |
| * NOTE: this routine is not thread safe, we can't call it concurrently. But it |
| * should be good enough for migration's purposes. |
| */ |
| void postcopy_thread_create(MigrationIncomingState *mis, |
| QemuThread *thread, const char *name, |
| void *(*fn)(void *), int joinable) |
| { |
| qemu_event_init(&mis->thread_sync_event, false); |
| qemu_thread_create(thread, name, fn, mis, joinable); |
| qemu_event_wait(&mis->thread_sync_event); |
| qemu_event_destroy(&mis->thread_sync_event); |
| } |
| |
| /* Postcopy needs to detect accesses to pages that haven't yet been copied |
| * across, and efficiently map new pages in, the techniques for doing this |
| * are target OS specific. |
| */ |
| #if defined(__linux__) |
| #include <poll.h> |
| #include <sys/ioctl.h> |
| #include <sys/syscall.h> |
| #endif |
| |
| #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD) |
| #include <sys/eventfd.h> |
| #include <linux/userfaultfd.h> |
| |
| /* |
| * Here we use 24 buckets, which means the last bucket will cover [2^24 us, |
| * 2^25 us) ~= [16, 32) seconds. It should be far enough to record even |
| * extreme (perf-wise broken) 1G pages moving over, which can sometimes |
| * take a few seconds due to various reasons. Anything more than that |
| * might be unsensible to account anymore. |
| */ |
| #define BLOCKTIME_LATENCY_BUCKET_N (24) |
| |
| /* All the time records are in unit of nanoseconds */ |
| typedef struct PostcopyBlocktimeContext { |
| /* blocktime per vCPU */ |
| uint64_t *vcpu_blocktime_total; |
| /* count of faults per vCPU */ |
| uint64_t *vcpu_faults_count; |
| /* |
| * count of currently blocked faults per vCPU. |
| * |
| * NOTE: Normally there should only be one fault in-progress per vCPU |
| * thread, so logically it _seems_ vcpu_faults_count[] for any vCPU |
| * should be either zero or one. However, there can be reasons we see |
| * >1 faults on the same vCPU thread. |
| * |
| * CASE (1): since the process to resolve faults (ioctl(UFFDIO_COPY), |
| * for example) is done before taking the mutex that protects the |
| * blocktime context, it can happen that we read more than one faulted |
| * addresses per vCPU. |
| * |
| * One example when we can see >1 faulted addresses for one vCPU: |
| * |
| * vcpu1 thread fault thread resolve thread |
| * ============ ============ ============== |
| * |
| * faulted on addr1 |
| * read uffd msg (addr1) |
| * MUTEX_LOCK |
| * add entry (cpu1, addr1) |
| * MUTEX_UNLOCK |
| * request remote fault (addr1) |
| * resolve fault (addr1) |
| * addr1 resolved, continue.. |
| * faulted on addr2 |
| * read uffd msg (addr2) |
| * MUTEX_LOCK |
| * add entry (cpu1, addr2) <--------------- [A] |
| * MUTEX_UNLOCK |
| * MUTEX_LOCK |
| * remove entry (cpu1, addr1) |
| * MUTEX_UNLOCK |
| * |
| * In above case, we may see (cpu1, addr1) and (cpu1, addr2) entries to |
| * appear together at [A], when it gets the lock before the resolve |
| * thread. Use this counter to maintain such case, and only when it |
| * reaches zero we know the vCPU is not blocked anymore. |
| * |
| * CASE (2): theoretically (the author admit to not have verified |
| * this..), one vCPU thread can also generate more than one userfaultfd |
| * message on the same address. It can happen e.g. for whatever reason |
| * the fault got retried before a resolution arrives. In that extremely |
| * rare case, we could also see two (cpu1, addr1) entries. |
| * |
| * In all cases, be prepared with such re-entrancies with this array. |
| * |
| * Using uint8_t should be far enough for now. For example, when |
| * there're only one resolve thread (postcopy ram listening thread), |
| * the max (concurrent fault entries) should be two. |
| */ |
| uint8_t *vcpu_faults_current; |
| /* |
| * The hash that contains addr1->[(cpu1,ts1),(cpu2,ts2) ...] mappings. |
| * Each of the entry is a tuple of (CPU index, fault timestamp) showing |
| * that a fault was requested. |
| */ |
| GHashTable *vcpu_addr_hash; |
| /* |
| * Each bucket stores the count of faults that were resolved within the |
| * bucket window [2^N us, 2^(N+1) us). |
| */ |
| uint64_t latency_buckets[BLOCKTIME_LATENCY_BUCKET_N]; |
| /* total blocktime when all vCPUs are stopped */ |
| uint64_t total_blocktime; |
| /* point in time when last page fault was initiated */ |
| uint64_t last_begin; |
| /* number of vCPU are suspended */ |
| int smp_cpus_down; |
| |
| /* |
| * Fast path for looking up vcpu_index from tid. NOTE: this result |
| * only reflects the vcpu setup when postcopy is running. It may not |
| * always match with the current vcpu setup because vcpus can be hot |
| * attached/detached after migration completes. However this should be |
| * stable when blocktime is using the structure. |
| */ |
| GHashTable *tid_to_vcpu_hash; |
| /* Count of non-vCPU faults. This is only for debugging purpose. */ |
| uint64_t non_vcpu_faults; |
| /* total blocktime when a non-vCPU thread is stopped */ |
| uint64_t non_vcpu_blocktime_total; |
| |
| /* |
| * Handler for exit event, necessary for |
| * releasing whole blocktime_ctx |
| */ |
| Notifier exit_notifier; |
| } PostcopyBlocktimeContext; |
| |
| typedef struct { |
| /* The time the fault was triggered */ |
| uint64_t fault_time; |
| /* |
| * The vCPU index that was blocked, when cpu==-1, it means it's a |
| * fault from non-vCPU threads. |
| */ |
| int cpu; |
| } BlocktimeVCPUEntry; |
| |
| /* Alloc an entry to record a vCPU fault */ |
| static BlocktimeVCPUEntry * |
| blocktime_vcpu_entry_alloc(int cpu, uint64_t fault_time) |
| { |
| BlocktimeVCPUEntry *entry = g_new(BlocktimeVCPUEntry, 1); |
| |
| entry->fault_time = fault_time; |
| entry->cpu = cpu; |
| |
| return entry; |
| } |
| |
| /* Free a @GList of @BlocktimeVCPUEntry */ |
| static void blocktime_vcpu_list_free(gpointer data) |
| { |
| g_list_free_full(data, g_free); |
| } |
| |
| static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx) |
| { |
| g_hash_table_destroy(ctx->tid_to_vcpu_hash); |
| g_hash_table_destroy(ctx->vcpu_addr_hash); |
| g_free(ctx->vcpu_blocktime_total); |
| g_free(ctx->vcpu_faults_count); |
| g_free(ctx->vcpu_faults_current); |
| g_free(ctx); |
| } |
| |
| static void migration_exit_cb(Notifier *n, void *data) |
| { |
| PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext, |
| exit_notifier); |
| destroy_blocktime_context(ctx); |
| } |
| |
| static GHashTable *blocktime_init_tid_to_vcpu_hash(void) |
| { |
| /* |
| * TID as an unsigned int can be directly used as the key. However, |
| * CPU index can NOT be directly used as value, because CPU index can |
| * be 0, which means NULL. Then when lookup we can never know whether |
| * it's 0 or "not found". Hence use an indirection for CPU index. |
| */ |
| GHashTable *table = g_hash_table_new_full(g_direct_hash, g_direct_equal, |
| NULL, g_free); |
| CPUState *cpu; |
| |
| /* |
| * Initialize the tid->cpu_id mapping for lookups. The caller needs to |
| * make sure when reaching here the CPU topology is frozen and will be |
| * stable for the whole blocktime trapping period. |
| */ |
| CPU_FOREACH(cpu) { |
| int *value = g_new(int, 1); |
| |
| *value = cpu->cpu_index; |
| g_hash_table_insert(table, |
| GUINT_TO_POINTER((uint32_t)cpu->thread_id), |
| value); |
| trace_postcopy_blocktime_tid_cpu_map(cpu->cpu_index, cpu->thread_id); |
| } |
| |
| return table; |
| } |
| |
| static struct PostcopyBlocktimeContext *blocktime_context_new(void) |
| { |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| unsigned int smp_cpus = ms->smp.cpus; |
| PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1); |
| |
| /* Initialize all counters to be zeros */ |
| memset(ctx->latency_buckets, 0, sizeof(ctx->latency_buckets)); |
| |
| ctx->vcpu_blocktime_total = g_new0(uint64_t, smp_cpus); |
| ctx->vcpu_faults_count = g_new0(uint64_t, smp_cpus); |
| ctx->vcpu_faults_current = g_new0(uint8_t, smp_cpus); |
| ctx->tid_to_vcpu_hash = blocktime_init_tid_to_vcpu_hash(); |
| |
| /* |
| * The key (host virtual addresses) will always be gpointer-sized on |
| * either 32bits or 64bits systems, so it'll fit as a direct key. |
| * |
| * The value will be a list of BlocktimeVCPUEntry entries. |
| */ |
| ctx->vcpu_addr_hash = g_hash_table_new_full(g_direct_hash, |
| g_direct_equal, |
| NULL, |
| blocktime_vcpu_list_free); |
| |
| ctx->exit_notifier.notify = migration_exit_cb; |
| qemu_add_exit_notifier(&ctx->exit_notifier); |
| |
| return ctx; |
| } |
| |
| /* |
| * This function just populates MigrationInfo from postcopy's |
| * blocktime context. It will not populate MigrationInfo, |
| * unless postcopy-blocktime capability was set. |
| * |
| * @info: pointer to MigrationInfo to populate |
| */ |
| void fill_destination_postcopy_migration_info(MigrationInfo *info) |
| { |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| PostcopyBlocktimeContext *bc = mis->blocktime_ctx; |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| uint64_t latency_total = 0, faults = 0; |
| uint32List *list_blocktime = NULL; |
| uint64List *list_latency = NULL; |
| uint64List *latency_buckets = NULL; |
| int i; |
| |
| if (!bc) { |
| return; |
| } |
| |
| for (i = ms->smp.cpus - 1; i >= 0; i--) { |
| uint64_t latency, total, count; |
| |
| /* Convert ns -> ms */ |
| QAPI_LIST_PREPEND(list_blocktime, |
| (uint32_t)(bc->vcpu_blocktime_total[i] / SCALE_MS)); |
| |
| /* The rest in nanoseconds */ |
| total = bc->vcpu_blocktime_total[i]; |
| latency_total += total; |
| count = bc->vcpu_faults_count[i]; |
| faults += count; |
| |
| if (count) { |
| latency = total / count; |
| } else { |
| /* No fault detected */ |
| latency = 0; |
| } |
| |
| QAPI_LIST_PREPEND(list_latency, latency); |
| } |
| |
| for (i = BLOCKTIME_LATENCY_BUCKET_N - 1; i >= 0; i--) { |
| QAPI_LIST_PREPEND(latency_buckets, bc->latency_buckets[i]); |
| } |
| |
| latency_total += bc->non_vcpu_blocktime_total; |
| faults += bc->non_vcpu_faults; |
| |
| info->has_postcopy_non_vcpu_latency = true; |
| info->postcopy_non_vcpu_latency = bc->non_vcpu_faults ? |
| (bc->non_vcpu_blocktime_total / bc->non_vcpu_faults) : 0; |
| info->has_postcopy_blocktime = true; |
| /* Convert ns -> ms */ |
| info->postcopy_blocktime = (uint32_t)(bc->total_blocktime / SCALE_MS); |
| info->has_postcopy_vcpu_blocktime = true; |
| info->postcopy_vcpu_blocktime = list_blocktime; |
| info->has_postcopy_latency = true; |
| info->postcopy_latency = faults ? (latency_total / faults) : 0; |
| info->has_postcopy_vcpu_latency = true; |
| info->postcopy_vcpu_latency = list_latency; |
| info->has_postcopy_latency_dist = true; |
| info->postcopy_latency_dist = latency_buckets; |
| } |
| |
| static uint64_t get_postcopy_total_blocktime(void) |
| { |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| PostcopyBlocktimeContext *bc = mis->blocktime_ctx; |
| |
| if (!bc) { |
| return 0; |
| } |
| |
| return bc->total_blocktime; |
| } |
| |
| /** |
| * receive_ufd_features: check userfault fd features, to request only supported |
| * features in the future. |
| * |
| * Returns: true on success |
| * |
| * __NR_userfaultfd - should be checked before |
| * @features: out parameter will contain uffdio_api.features provided by kernel |
| * in case of success |
| */ |
| static bool receive_ufd_features(uint64_t *features) |
| { |
| struct uffdio_api api_struct = {0}; |
| int ufd; |
| bool ret = true; |
| |
| ufd = uffd_open(O_CLOEXEC); |
| if (ufd == -1) { |
| error_report("%s: uffd_open() failed: %s", __func__, strerror(errno)); |
| return false; |
| } |
| |
| /* ask features */ |
| api_struct.api = UFFD_API; |
| api_struct.features = 0; |
| if (ioctl(ufd, UFFDIO_API, &api_struct)) { |
| error_report("%s: UFFDIO_API failed: %s", __func__, |
| strerror(errno)); |
| ret = false; |
| goto release_ufd; |
| } |
| |
| *features = api_struct.features; |
| |
| release_ufd: |
| close(ufd); |
| return ret; |
| } |
| |
| /** |
| * request_ufd_features: this function should be called only once on a newly |
| * opened ufd, subsequent calls will lead to error. |
| * |
| * Returns: true on success |
| * |
| * @ufd: fd obtained from userfaultfd syscall |
| * @features: bit mask see UFFD_API_FEATURES |
| */ |
| static bool request_ufd_features(int ufd, uint64_t features) |
| { |
| struct uffdio_api api_struct = {0}; |
| uint64_t ioctl_mask; |
| |
| api_struct.api = UFFD_API; |
| api_struct.features = features; |
| if (ioctl(ufd, UFFDIO_API, &api_struct)) { |
| error_report("%s failed: UFFDIO_API failed: %s", __func__, |
| strerror(errno)); |
| return false; |
| } |
| |
| ioctl_mask = 1ULL << _UFFDIO_REGISTER | |
| 1ULL << _UFFDIO_UNREGISTER; |
| if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) { |
| error_report("Missing userfault features: %" PRIx64, |
| (uint64_t)(~api_struct.ioctls & ioctl_mask)); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis, |
| Error **errp) |
| { |
| ERRP_GUARD(); |
| uint64_t asked_features = 0; |
| static uint64_t supported_features; |
| |
| /* |
| * it's not possible to |
| * request UFFD_API twice per one fd |
| * userfault fd features is persistent |
| */ |
| if (!supported_features) { |
| if (!receive_ufd_features(&supported_features)) { |
| error_setg(errp, "Userfault feature detection failed"); |
| return false; |
| } |
| } |
| |
| #ifdef UFFD_FEATURE_THREAD_ID |
| /* |
| * Postcopy blocktime conditionally needs THREAD_ID feature (introduced |
| * to Linux in 2017). Always try to enable it when QEMU is compiled |
| * with such environment. |
| */ |
| if (UFFD_FEATURE_THREAD_ID & supported_features) { |
| asked_features |= UFFD_FEATURE_THREAD_ID; |
| } |
| #endif |
| |
| /* |
| * request features, even if asked_features is 0, due to |
| * kernel expects UFFD_API before UFFDIO_REGISTER, per |
| * userfault file descriptor |
| */ |
| if (!request_ufd_features(ufd, asked_features)) { |
| error_setg(errp, "Failed features %" PRIu64, asked_features); |
| return false; |
| } |
| |
| if (qemu_real_host_page_size() != ram_pagesize_summary()) { |
| bool have_hp = false; |
| /* We've got a huge page */ |
| #ifdef UFFD_FEATURE_MISSING_HUGETLBFS |
| have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS; |
| #endif |
| if (!have_hp) { |
| error_setg(errp, |
| "Userfault on this host does not support huge pages"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Callback from postcopy_ram_supported_by_host block iterator. |
| */ |
| static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp) |
| { |
| const char *block_name = qemu_ram_get_idstr(rb); |
| ram_addr_t length = qemu_ram_get_used_length(rb); |
| size_t pagesize = qemu_ram_pagesize(rb); |
| QemuFsType fs; |
| |
| if (length % pagesize) { |
| error_setg(errp, |
| "Postcopy requires RAM blocks to be a page size multiple," |
| " block %s is 0x" RAM_ADDR_FMT " bytes with a " |
| "page size of 0x%zx", block_name, length, pagesize); |
| return 1; |
| } |
| |
| if (rb->fd >= 0) { |
| fs = qemu_fd_getfs(rb->fd); |
| if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) { |
| error_setg(errp, |
| "Host backend files need to be TMPFS or HUGETLBFS only"); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Note: This has the side effect of munlock'ing all of RAM, that's |
| * normally fine since if the postcopy succeeds it gets turned back on at the |
| * end. |
| */ |
| bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) |
| { |
| ERRP_GUARD(); |
| long pagesize = qemu_real_host_page_size(); |
| int ufd = -1; |
| bool ret = false; /* Error unless we change it */ |
| void *testarea = NULL; |
| struct uffdio_register reg_struct; |
| struct uffdio_range range_struct; |
| uint64_t feature_mask; |
| RAMBlock *block; |
| |
| if (qemu_target_page_size() > pagesize) { |
| error_setg(errp, "Target page size bigger than host page size"); |
| goto out; |
| } |
| |
| ufd = uffd_open(O_CLOEXEC); |
| if (ufd == -1) { |
| error_setg(errp, "Userfaultfd not available: %s", strerror(errno)); |
| goto out; |
| } |
| |
| /* Give devices a chance to object */ |
| if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) { |
| goto out; |
| } |
| |
| /* Version and features check */ |
| if (!ufd_check_and_apply(ufd, mis, errp)) { |
| goto out; |
| } |
| |
| /* |
| * We don't support postcopy with some type of ramblocks. |
| * |
| * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked |
| * all possible ramblocks. This is because this function can be called |
| * when creating the migration object, during the phase RAM_MIGRATABLE |
| * is not even properly set for all the ramblocks. |
| * |
| * A side effect of this is we'll also check against RAM_SHARED |
| * ramblocks even if migrate_ignore_shared() is set (in which case |
| * we'll never migrate RAM_SHARED at all), but normally this shouldn't |
| * affect in reality, or we can revisit. |
| */ |
| RAMBLOCK_FOREACH(block) { |
| if (test_ramblock_postcopiable(block, errp)) { |
| goto out; |
| } |
| } |
| |
| /* |
| * userfault and mlock don't go together; we'll put it back later if |
| * it was enabled. |
| */ |
| if (munlockall()) { |
| error_setg(errp, "munlockall() failed: %s", strerror(errno)); |
| goto out; |
| } |
| |
| /* |
| * We need to check that the ops we need are supported on anon memory |
| * To do that we need to register a chunk and see the flags that |
| * are returned. |
| */ |
| testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | |
| MAP_ANONYMOUS, -1, 0); |
| if (testarea == MAP_FAILED) { |
| error_setg(errp, "Failed to map test area: %s", strerror(errno)); |
| goto out; |
| } |
| g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize)); |
| |
| reg_struct.range.start = (uintptr_t)testarea; |
| reg_struct.range.len = pagesize; |
| reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; |
| |
| if (ioctl(ufd, UFFDIO_REGISTER, ®_struct)) { |
| error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno)); |
| goto out; |
| } |
| |
| range_struct.start = (uintptr_t)testarea; |
| range_struct.len = pagesize; |
| if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) { |
| error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno)); |
| goto out; |
| } |
| |
| feature_mask = 1ULL << _UFFDIO_WAKE | |
| 1ULL << _UFFDIO_COPY | |
| 1ULL << _UFFDIO_ZEROPAGE; |
| if ((reg_struct.ioctls & feature_mask) != feature_mask) { |
| error_setg(errp, "Missing userfault map features: %" PRIx64, |
| (uint64_t)(~reg_struct.ioctls & feature_mask)); |
| goto out; |
| } |
| |
| /* Success! */ |
| ret = true; |
| out: |
| if (testarea) { |
| munmap(testarea, pagesize); |
| } |
| if (ufd != -1) { |
| close(ufd); |
| } |
| return ret; |
| } |
| |
| /* |
| * Setup an area of RAM so that it *can* be used for postcopy later; this |
| * must be done right at the start prior to pre-copy. |
| * opaque should be the MIS. |
| */ |
| static int init_range(RAMBlock *rb, void *opaque) |
| { |
| const char *block_name = qemu_ram_get_idstr(rb); |
| void *host_addr = qemu_ram_get_host_addr(rb); |
| ram_addr_t offset = qemu_ram_get_offset(rb); |
| ram_addr_t length = qemu_ram_get_used_length(rb); |
| trace_postcopy_init_range(block_name, host_addr, offset, length); |
| |
| /* |
| * Save the used_length before running the guest. In case we have to |
| * resize RAM blocks when syncing RAM block sizes from the source during |
| * precopy, we'll update it manually via the ram block notifier. |
| */ |
| rb->postcopy_length = length; |
| |
| /* |
| * We need the whole of RAM to be truly empty for postcopy, so things |
| * like ROMs and any data tables built during init must be zero'd |
| * - we're going to get the copy from the source anyway. |
| * (Precopy will just overwrite this data, so doesn't need the discard) |
| */ |
| if (ram_discard_range(block_name, 0, length)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * At the end of migration, undo the effects of init_range |
| * opaque should be the MIS. |
| */ |
| static int cleanup_range(RAMBlock *rb, void *opaque) |
| { |
| const char *block_name = qemu_ram_get_idstr(rb); |
| void *host_addr = qemu_ram_get_host_addr(rb); |
| ram_addr_t offset = qemu_ram_get_offset(rb); |
| ram_addr_t length = rb->postcopy_length; |
| MigrationIncomingState *mis = opaque; |
| struct uffdio_range range_struct; |
| trace_postcopy_cleanup_range(block_name, host_addr, offset, length); |
| |
| /* |
| * We turned off hugepage for the precopy stage with postcopy enabled |
| * we can turn it back on now. |
| */ |
| qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE); |
| |
| /* |
| * We can also turn off userfault now since we should have all the |
| * pages. It can be useful to leave it on to debug postcopy |
| * if you're not sure it's always getting every page. |
| */ |
| range_struct.start = (uintptr_t)host_addr; |
| range_struct.len = length; |
| |
| if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) { |
| error_report("%s: userfault unregister %s", __func__, strerror(errno)); |
| |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Initialise postcopy-ram, setting the RAM to a state where we can go into |
| * postcopy later; must be called prior to any precopy. |
| * called from arch_init's similarly named ram_postcopy_incoming_init |
| */ |
| int postcopy_ram_incoming_init(MigrationIncomingState *mis) |
| { |
| if (foreach_not_ignored_block(init_range, NULL)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis) |
| { |
| int i; |
| |
| if (mis->postcopy_tmp_pages) { |
| for (i = 0; i < mis->postcopy_channels; i++) { |
| if (mis->postcopy_tmp_pages[i].tmp_huge_page) { |
| munmap(mis->postcopy_tmp_pages[i].tmp_huge_page, |
| mis->largest_page_size); |
| mis->postcopy_tmp_pages[i].tmp_huge_page = NULL; |
| } |
| } |
| g_free(mis->postcopy_tmp_pages); |
| mis->postcopy_tmp_pages = NULL; |
| } |
| |
| if (mis->postcopy_tmp_zero_page) { |
| munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size); |
| mis->postcopy_tmp_zero_page = NULL; |
| } |
| } |
| |
| /* |
| * At the end of a migration where postcopy_ram_incoming_init was called. |
| */ |
| int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) |
| { |
| trace_postcopy_ram_incoming_cleanup_entry(); |
| |
| if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) { |
| /* Notify the fast load thread to quit */ |
| mis->preempt_thread_status = PREEMPT_THREAD_QUIT; |
| /* |
| * Update preempt_thread_status before reading count. Note: mutex |
| * lock only provide ACQUIRE semantic, and it doesn't stops this |
| * write to be reordered after reading the count. |
| */ |
| smp_mb(); |
| /* |
| * It's possible that the preempt thread is still handling the last |
| * pages to arrive which were requested by guest page faults. |
| * Making sure nothing is left behind by waiting on the condvar if |
| * that unlikely case happened. |
| */ |
| WITH_QEMU_LOCK_GUARD(&mis->page_request_mutex) { |
| if (qatomic_read(&mis->page_requested_count)) { |
| /* |
| * It is guaranteed to receive a signal later, because the |
| * count>0 now, so it's destined to be decreased to zero |
| * very soon by the preempt thread. |
| */ |
| qemu_cond_wait(&mis->page_request_cond, |
| &mis->page_request_mutex); |
| } |
| } |
| /* Notify the fast load thread to quit */ |
| if (mis->postcopy_qemufile_dst) { |
| qemu_file_shutdown(mis->postcopy_qemufile_dst); |
| } |
| qemu_thread_join(&mis->postcopy_prio_thread); |
| mis->preempt_thread_status = PREEMPT_THREAD_NONE; |
| } |
| |
| if (mis->have_fault_thread) { |
| Error *local_err = NULL; |
| |
| /* Let the fault thread quit */ |
| qatomic_set(&mis->fault_thread_quit, 1); |
| postcopy_fault_thread_notify(mis); |
| trace_postcopy_ram_incoming_cleanup_join(); |
| qemu_thread_join(&mis->fault_thread); |
| |
| if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) { |
| error_report_err(local_err); |
| return -1; |
| } |
| |
| if (foreach_not_ignored_block(cleanup_range, mis)) { |
| return -1; |
| } |
| |
| trace_postcopy_ram_incoming_cleanup_closeuf(); |
| close(mis->userfault_fd); |
| close(mis->userfault_event_fd); |
| mis->have_fault_thread = false; |
| } |
| |
| if (should_mlock(mlock_state)) { |
| if (os_mlock(is_mlock_on_fault(mlock_state)) < 0) { |
| error_report("mlock: %s", strerror(errno)); |
| /* |
| * It doesn't feel right to fail at this point, we have a valid |
| * VM state. |
| */ |
| } |
| } |
| |
| postcopy_temp_pages_cleanup(mis); |
| |
| trace_postcopy_ram_incoming_cleanup_blocktime( |
| get_postcopy_total_blocktime()); |
| |
| trace_postcopy_ram_incoming_cleanup_exit(); |
| return 0; |
| } |
| |
| /* |
| * Disable huge pages on an area |
| */ |
| static int nhp_range(RAMBlock *rb, void *opaque) |
| { |
| const char *block_name = qemu_ram_get_idstr(rb); |
| void *host_addr = qemu_ram_get_host_addr(rb); |
| ram_addr_t offset = qemu_ram_get_offset(rb); |
| ram_addr_t length = rb->postcopy_length; |
| trace_postcopy_nhp_range(block_name, host_addr, offset, length); |
| |
| /* |
| * Before we do discards we need to ensure those discards really |
| * do delete areas of the page, even if THP thinks a hugepage would |
| * be a good idea, so force hugepages off. |
| */ |
| qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE); |
| |
| return 0; |
| } |
| |
| /* |
| * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard |
| * however leaving it until after precopy means that most of the precopy |
| * data is still THPd |
| */ |
| int postcopy_ram_prepare_discard(MigrationIncomingState *mis) |
| { |
| if (foreach_not_ignored_block(nhp_range, mis)) { |
| return -1; |
| } |
| |
| postcopy_state_set(POSTCOPY_INCOMING_DISCARD); |
| |
| return 0; |
| } |
| |
| /* |
| * Mark the given area of RAM as requiring notification to unwritten areas |
| * Used as a callback on foreach_not_ignored_block. |
| * host_addr: Base of area to mark |
| * offset: Offset in the whole ram arena |
| * length: Length of the section |
| * opaque: MigrationIncomingState pointer |
| * Returns 0 on success |
| */ |
| static int ram_block_enable_notify(RAMBlock *rb, void *opaque) |
| { |
| MigrationIncomingState *mis = opaque; |
| struct uffdio_register reg_struct; |
| |
| reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb); |
| reg_struct.range.len = rb->postcopy_length; |
| reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING; |
| |
| /* Now tell our userfault_fd that it's responsible for this area */ |
| if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, ®_struct)) { |
| error_report("%s userfault register: %s", __func__, strerror(errno)); |
| return -1; |
| } |
| if (!(reg_struct.ioctls & (1ULL << _UFFDIO_COPY))) { |
| error_report("%s userfault: Region doesn't support COPY", __func__); |
| return -1; |
| } |
| if (reg_struct.ioctls & (1ULL << _UFFDIO_ZEROPAGE)) { |
| qemu_ram_set_uf_zeroable(rb); |
| } |
| |
| return 0; |
| } |
| |
| int postcopy_wake_shared(struct PostCopyFD *pcfd, |
| uint64_t client_addr, |
| RAMBlock *rb) |
| { |
| size_t pagesize = qemu_ram_pagesize(rb); |
| trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb)); |
| return uffd_wakeup(pcfd->fd, |
| (void *)(uintptr_t)ROUND_DOWN(client_addr, pagesize), |
| pagesize); |
| } |
| |
| /* |
| * NOTE: @tid is only used when postcopy-blocktime feature is enabled, and |
| * also optional: when zero is provided, the fault accounting will be ignored. |
| */ |
| static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb, |
| ram_addr_t start, uint64_t haddr, uint32_t tid) |
| { |
| void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb)); |
| |
| /* |
| * Discarded pages (via RamDiscardManager) are never migrated. On unlikely |
| * access, place a zeropage, which will also set the relevant bits in the |
| * recv_bitmap accordingly, so we won't try placing a zeropage twice. |
| * |
| * Checking a single bit is sufficient to handle pagesize > TPS as either |
| * all relevant bits are set or not. |
| */ |
| assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb))); |
| if (ramblock_page_is_discarded(rb, start)) { |
| bool received = ramblock_recv_bitmap_test_byte_offset(rb, start); |
| |
| return received ? 0 : postcopy_place_page_zero(mis, aligned, rb); |
| } |
| |
| return migrate_send_rp_req_pages(mis, rb, start, haddr, tid); |
| } |
| |
| /* |
| * Callback from shared fault handlers to ask for a page, |
| * the page must be specified by a RAMBlock and an offset in that rb |
| * Note: Only for use by shared fault handlers (in fault thread) |
| */ |
| int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, |
| uint64_t client_addr, uint64_t rb_offset) |
| { |
| uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| |
| trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb), |
| rb_offset); |
| if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) { |
| trace_postcopy_request_shared_page_present(pcfd->idstr, |
| qemu_ram_get_idstr(rb), rb_offset); |
| return postcopy_wake_shared(pcfd, client_addr, rb); |
| } |
| /* TODO: support blocktime tracking */ |
| postcopy_request_page(mis, rb, aligned_rbo, client_addr, 0); |
| return 0; |
| } |
| |
| static int blocktime_get_vcpu(PostcopyBlocktimeContext *ctx, uint32_t tid) |
| { |
| int *found; |
| |
| found = g_hash_table_lookup(ctx->tid_to_vcpu_hash, GUINT_TO_POINTER(tid)); |
| if (!found) { |
| /* |
| * NOTE: this is possible, because QEMU's non-vCPU threads can |
| * also access a missing page. Or, when KVM async pf is enabled, a |
| * fault can even happen from a kworker.. |
| */ |
| return -1; |
| } |
| |
| return *found; |
| } |
| |
| static uint64_t get_current_ns(void) |
| { |
| return (uint64_t)qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| } |
| |
| /* |
| * Inject an (cpu, fault_time) entry into the database, using addr as key. |
| * When cpu==-1, it means it's a non-vCPU fault. |
| */ |
| static void blocktime_fault_inject(PostcopyBlocktimeContext *ctx, |
| uintptr_t addr, int cpu, uint64_t time) |
| { |
| BlocktimeVCPUEntry *entry = blocktime_vcpu_entry_alloc(cpu, time); |
| GHashTable *table = ctx->vcpu_addr_hash; |
| gpointer key = (gpointer)addr; |
| GList *head, *list; |
| gboolean result; |
| |
| head = g_hash_table_lookup(table, key); |
| if (head) { |
| /* |
| * If existed, steal the @head for list operation rather than |
| * freeing it, making sure steal succeeded. |
| */ |
| result = g_hash_table_steal(table, key); |
| assert(result == TRUE); |
| } |
| |
| /* |
| * Now the key is guaranteed to be absent. Two cases: |
| * |
| * (1) There's no existing entry, list contains the only one. Insert. |
| * (2) There're existing entries, after stealing we own it, prepend the |
| * result and re-insert. |
| */ |
| list = g_list_prepend(head, entry); |
| g_hash_table_insert(table, key, list); |
| |
| trace_postcopy_blocktime_begin(addr, time, cpu, !!head); |
| } |
| |
| /* |
| * This function is being called when pagefault occurs. It tracks down vCPU |
| * blocking time. It's protected by @page_request_mutex. |
| * |
| * @addr: faulted host virtual address |
| * @ptid: faulted process thread id |
| * @rb: ramblock appropriate to addr |
| */ |
| void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, |
| RAMBlock *rb) |
| { |
| int cpu; |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| PostcopyBlocktimeContext *dc = mis->blocktime_ctx; |
| uint64_t current; |
| |
| if (!dc || ptid == 0) { |
| return; |
| } |
| |
| /* |
| * The caller should only inject a blocktime entry when the page is |
| * yet missing. |
| */ |
| assert(!ramblock_recv_bitmap_test(rb, (void *)addr)); |
| |
| current = get_current_ns(); |
| cpu = blocktime_get_vcpu(dc, ptid); |
| |
| if (cpu >= 0) { |
| /* How many faults on this vCPU in total? */ |
| dc->vcpu_faults_count[cpu]++; |
| |
| /* |
| * Account how many concurrent faults on this vCPU we trapped. See |
| * comments above vcpu_faults_current[] on why it can be more than one. |
| */ |
| if (dc->vcpu_faults_current[cpu]++ == 0) { |
| dc->smp_cpus_down++; |
| /* |
| * We use last_begin to cover (1) the 1st fault on this specific |
| * vCPU, but meanwhile (2) the last vCPU that got blocked. It's |
| * only used to calculate system-wide blocktime. |
| */ |
| dc->last_begin = current; |
| } |
| |
| /* Making sure it won't overflow - it really should never! */ |
| assert(dc->vcpu_faults_current[cpu] <= 255); |
| } else { |
| /* |
| * For non-vCPU thread faults, we don't care about tid or cpu index |
| * or time the thread is blocked (e.g., a kworker trying to help |
| * KVM when async_pf=on is OK to be blocked and not affect guest |
| * responsiveness), but we care about latency. Track it with |
| * cpu=-1. |
| * |
| * Note that this will NOT affect blocktime reports on vCPU being |
| * blocked, but only about system-wide latency reports. |
| */ |
| dc->non_vcpu_faults++; |
| } |
| |
| blocktime_fault_inject(dc, addr, cpu, current); |
| } |
| |
| static void blocktime_latency_account(PostcopyBlocktimeContext *ctx, |
| uint64_t time_us) |
| { |
| /* |
| * Convert time (in us) to bucket index it belongs. Take extra caution |
| * of time_us==0 even if normally rare - when happens put into bucket 0. |
| */ |
| int index = time_us ? (63 - clz64(time_us)) : 0; |
| |
| assert(index >= 0); |
| |
| /* If it's too large, put into top bucket */ |
| if (index >= BLOCKTIME_LATENCY_BUCKET_N) { |
| index = BLOCKTIME_LATENCY_BUCKET_N - 1; |
| } |
| |
| ctx->latency_buckets[index]++; |
| } |
| |
| typedef struct { |
| PostcopyBlocktimeContext *ctx; |
| uint64_t current; |
| int affected_cpus; |
| int affected_non_cpus; |
| } BlockTimeVCPUIter; |
| |
| static void blocktime_cpu_list_iter_fn(gpointer data, gpointer user_data) |
| { |
| BlockTimeVCPUIter *iter = user_data; |
| PostcopyBlocktimeContext *ctx = iter->ctx; |
| BlocktimeVCPUEntry *entry = data; |
| uint64_t time_passed; |
| int cpu = entry->cpu; |
| |
| /* |
| * Time should never go back.. so when the fault is resolved it must be |
| * later than when it was faulted. |
| */ |
| assert(iter->current >= entry->fault_time); |
| time_passed = iter->current - entry->fault_time; |
| |
| /* Latency buckets are in microseconds */ |
| blocktime_latency_account(ctx, time_passed / SCALE_US); |
| |
| if (cpu >= 0) { |
| /* |
| * If we resolved all pending faults on one vCPU due to this page |
| * resolution, take a note. |
| */ |
| if (--ctx->vcpu_faults_current[cpu] == 0) { |
| ctx->vcpu_blocktime_total[cpu] += time_passed; |
| iter->affected_cpus += 1; |
| } |
| trace_postcopy_blocktime_end_one(cpu, ctx->vcpu_faults_current[cpu]); |
| } else { |
| iter->affected_non_cpus++; |
| ctx->non_vcpu_blocktime_total += time_passed; |
| /* |
| * We do not maintain how many pending non-vCPU faults because we |
| * do not care about blocktime, only latency. |
| */ |
| trace_postcopy_blocktime_end_one(-1, 0); |
| } |
| } |
| |
| /* |
| * This function just provide calculated blocktime per cpu and trace it. |
| * Total blocktime is calculated in mark_postcopy_blocktime_end. It's |
| * protected by @page_request_mutex. |
| * |
| * Assume we have 3 CPU |
| * |
| * S1 E1 S1 E1 |
| * -----***********------------xxx***************------------------------> CPU1 |
| * |
| * S2 E2 |
| * ------------****************xxx---------------------------------------> CPU2 |
| * |
| * S3 E3 |
| * ------------------------****xxx********-------------------------------> CPU3 |
| * |
| * We have sequence S1,S2,E1,S3,S1,E2,E3,E1 |
| * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3 |
| * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 - |
| * it's a part of total blocktime. |
| * S1 - here is last_begin |
| * Legend of the picture is following: |
| * * - means blocktime per vCPU |
| * x - means overlapped blocktime (total blocktime) |
| * |
| * @addr: host virtual address |
| */ |
| static void mark_postcopy_blocktime_end(uintptr_t addr) |
| { |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| PostcopyBlocktimeContext *dc = mis->blocktime_ctx; |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| unsigned int smp_cpus = ms->smp.cpus; |
| BlockTimeVCPUIter iter = { |
| .current = get_current_ns(), |
| .affected_cpus = 0, |
| .affected_non_cpus = 0, |
| .ctx = dc, |
| }; |
| gpointer key = (gpointer)addr; |
| GHashTable *table; |
| GList *list; |
| |
| if (!dc) { |
| return; |
| } |
| |
| table = dc->vcpu_addr_hash; |
| /* the address wasn't tracked at all? */ |
| list = g_hash_table_lookup(table, key); |
| if (!list) { |
| return; |
| } |
| |
| /* |
| * Loop over the set of vCPUs that got blocked on this addr, do the |
| * blocktime accounting. After that, remove the whole list. |
| */ |
| g_list_foreach(list, blocktime_cpu_list_iter_fn, &iter); |
| g_hash_table_remove(table, key); |
| |
| /* |
| * If all vCPUs used to be down, and copying this page would free some |
| * vCPUs, then the system-level blocktime ends here. |
| */ |
| if (dc->smp_cpus_down == smp_cpus && iter.affected_cpus) { |
| dc->total_blocktime += iter.current - dc->last_begin; |
| } |
| dc->smp_cpus_down -= iter.affected_cpus; |
| |
| trace_postcopy_blocktime_end(addr, iter.current, iter.affected_cpus, |
| iter.affected_non_cpus); |
| } |
| |
| static void postcopy_pause_fault_thread(MigrationIncomingState *mis) |
| { |
| trace_postcopy_pause_fault_thread(); |
| qemu_sem_wait(&mis->postcopy_pause_sem_fault); |
| trace_postcopy_pause_fault_thread_continued(); |
| } |
| |
| /* |
| * Handle faults detected by the USERFAULT markings |
| */ |
| static void *postcopy_ram_fault_thread(void *opaque) |
| { |
| MigrationIncomingState *mis = opaque; |
| struct uffd_msg msg; |
| int ret; |
| size_t index; |
| RAMBlock *rb = NULL; |
| |
| trace_postcopy_ram_fault_thread_entry(); |
| rcu_register_thread(); |
| mis->last_rb = NULL; /* last RAMBlock we sent part of */ |
| qemu_event_set(&mis->thread_sync_event); |
| |
| struct pollfd *pfd; |
| size_t pfd_len = 2 + mis->postcopy_remote_fds->len; |
| |
| pfd = g_new0(struct pollfd, pfd_len); |
| |
| pfd[0].fd = mis->userfault_fd; |
| pfd[0].events = POLLIN; |
| pfd[1].fd = mis->userfault_event_fd; |
| pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */ |
| trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd); |
| for (index = 0; index < mis->postcopy_remote_fds->len; index++) { |
| struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds, |
| struct PostCopyFD, index); |
| pfd[2 + index].fd = pcfd->fd; |
| pfd[2 + index].events = POLLIN; |
| trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr, |
| pcfd->fd); |
| } |
| |
| while (true) { |
| ram_addr_t rb_offset; |
| int poll_result; |
| |
| /* |
| * We're mainly waiting for the kernel to give us a faulting HVA, |
| * however we can be told to quit via userfault_quit_fd which is |
| * an eventfd |
| */ |
| |
| poll_result = poll(pfd, pfd_len, -1 /* Wait forever */); |
| if (poll_result == -1) { |
| error_report("%s: userfault poll: %s", __func__, strerror(errno)); |
| break; |
| } |
| |
| if (!mis->to_src_file) { |
| /* |
| * Possibly someone tells us that the return path is |
| * broken already using the event. We should hold until |
| * the channel is rebuilt. |
| */ |
| postcopy_pause_fault_thread(mis); |
| } |
| |
| if (pfd[1].revents) { |
| uint64_t tmp64 = 0; |
| |
| /* Consume the signal */ |
| if (read(mis->userfault_event_fd, &tmp64, 8) != 8) { |
| /* Nothing obviously nicer than posting this error. */ |
| error_report("%s: read() failed", __func__); |
| } |
| |
| if (qatomic_read(&mis->fault_thread_quit)) { |
| trace_postcopy_ram_fault_thread_quit(); |
| break; |
| } |
| } |
| |
| if (pfd[0].revents) { |
| poll_result--; |
| ret = read(mis->userfault_fd, &msg, sizeof(msg)); |
| if (ret != sizeof(msg)) { |
| if (errno == EAGAIN) { |
| /* |
| * if a wake up happens on the other thread just after |
| * the poll, there is nothing to read. |
| */ |
| continue; |
| } |
| if (ret < 0) { |
| error_report("%s: Failed to read full userfault " |
| "message: %s", |
| __func__, strerror(errno)); |
| break; |
| } else { |
| error_report("%s: Read %d bytes from userfaultfd " |
| "expected %zd", |
| __func__, ret, sizeof(msg)); |
| break; /* Lost alignment, don't know what we'd read next */ |
| } |
| } |
| if (msg.event != UFFD_EVENT_PAGEFAULT) { |
| error_report("%s: Read unexpected event %ud from userfaultfd", |
| __func__, msg.event); |
| continue; /* It's not a page fault, shouldn't happen */ |
| } |
| |
| rb = qemu_ram_block_from_host( |
| (void *)(uintptr_t)msg.arg.pagefault.address, |
| true, &rb_offset); |
| if (!rb) { |
| error_report("postcopy_ram_fault_thread: Fault outside guest: %" |
| PRIx64, (uint64_t)msg.arg.pagefault.address); |
| break; |
| } |
| |
| rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb)); |
| trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address, |
| qemu_ram_get_idstr(rb), |
| rb_offset, |
| msg.arg.pagefault.feat.ptid); |
| retry: |
| /* |
| * Send the request to the source - we want to request one |
| * of our host page sizes (which is >= TPS) |
| */ |
| ret = postcopy_request_page(mis, rb, rb_offset, |
| msg.arg.pagefault.address, |
| msg.arg.pagefault.feat.ptid); |
| if (ret) { |
| /* May be network failure, try to wait for recovery */ |
| postcopy_pause_fault_thread(mis); |
| goto retry; |
| } |
| } |
| |
| /* Now handle any requests from external processes on shared memory */ |
| /* TODO: May need to handle devices deregistering during postcopy */ |
| for (index = 2; index < pfd_len && poll_result; index++) { |
| if (pfd[index].revents) { |
| struct PostCopyFD *pcfd = |
| &g_array_index(mis->postcopy_remote_fds, |
| struct PostCopyFD, index - 2); |
| |
| poll_result--; |
| if (pfd[index].revents & POLLERR) { |
| error_report("%s: POLLERR on poll %zd fd=%d", |
| __func__, index, pcfd->fd); |
| pfd[index].events = 0; |
| continue; |
| } |
| |
| ret = read(pcfd->fd, &msg, sizeof(msg)); |
| if (ret != sizeof(msg)) { |
| if (errno == EAGAIN) { |
| /* |
| * if a wake up happens on the other thread just after |
| * the poll, there is nothing to read. |
| */ |
| continue; |
| } |
| if (ret < 0) { |
| error_report("%s: Failed to read full userfault " |
| "message: %s (shared) revents=%d", |
| __func__, strerror(errno), |
| pfd[index].revents); |
| /*TODO: Could just disable this sharer */ |
| break; |
| } else { |
| error_report("%s: Read %d bytes from userfaultfd " |
| "expected %zd (shared)", |
| __func__, ret, sizeof(msg)); |
| /*TODO: Could just disable this sharer */ |
| break; /*Lost alignment,don't know what we'd read next*/ |
| } |
| } |
| if (msg.event != UFFD_EVENT_PAGEFAULT) { |
| error_report("%s: Read unexpected event %ud " |
| "from userfaultfd (shared)", |
| __func__, msg.event); |
| continue; /* It's not a page fault, shouldn't happen */ |
| } |
| /* Call the device handler registered with us */ |
| ret = pcfd->handler(pcfd, &msg); |
| if (ret) { |
| error_report("%s: Failed to resolve shared fault on %zd/%s", |
| __func__, index, pcfd->idstr); |
| /* TODO: Fail? Disable this sharer? */ |
| } |
| } |
| } |
| } |
| rcu_unregister_thread(); |
| trace_postcopy_ram_fault_thread_exit(); |
| g_free(pfd); |
| return NULL; |
| } |
| |
| static int postcopy_temp_pages_setup(MigrationIncomingState *mis) |
| { |
| PostcopyTmpPage *tmp_page; |
| int err, i, channels; |
| void *temp_page; |
| |
| if (migrate_postcopy_preempt()) { |
| /* If preemption enabled, need extra channel for urgent requests */ |
| mis->postcopy_channels = RAM_CHANNEL_MAX; |
| } else { |
| /* Both precopy/postcopy on the same channel */ |
| mis->postcopy_channels = 1; |
| } |
| |
| channels = mis->postcopy_channels; |
| mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels); |
| |
| for (i = 0; i < channels; i++) { |
| tmp_page = &mis->postcopy_tmp_pages[i]; |
| temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (temp_page == MAP_FAILED) { |
| err = errno; |
| error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s", |
| __func__, i, strerror(err)); |
| /* Clean up will be done later */ |
| return -err; |
| } |
| tmp_page->tmp_huge_page = temp_page; |
| /* Initialize default states for each tmp page */ |
| postcopy_temp_page_reset(tmp_page); |
| } |
| |
| /* |
| * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages |
| */ |
| mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (mis->postcopy_tmp_zero_page == MAP_FAILED) { |
| err = errno; |
| mis->postcopy_tmp_zero_page = NULL; |
| error_report("%s: Failed to map large zero page %s", |
| __func__, strerror(err)); |
| return -err; |
| } |
| |
| memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size); |
| |
| return 0; |
| } |
| |
| int postcopy_ram_incoming_setup(MigrationIncomingState *mis) |
| { |
| Error *local_err = NULL; |
| |
| /* Open the fd for the kernel to give us userfaults */ |
| mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK); |
| if (mis->userfault_fd == -1) { |
| error_report("%s: Failed to open userfault fd: %s", __func__, |
| strerror(errno)); |
| return -1; |
| } |
| |
| /* |
| * Although the host check already tested the API, we need to |
| * do the check again as an ABI handshake on the new fd. |
| */ |
| if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) { |
| error_report_err(local_err); |
| return -1; |
| } |
| |
| if (migrate_postcopy_blocktime()) { |
| assert(mis->blocktime_ctx == NULL); |
| mis->blocktime_ctx = blocktime_context_new(); |
| } |
| |
| /* Now an eventfd we use to tell the fault-thread to quit */ |
| mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC); |
| if (mis->userfault_event_fd == -1) { |
| error_report("%s: Opening userfault_event_fd: %s", __func__, |
| strerror(errno)); |
| close(mis->userfault_fd); |
| return -1; |
| } |
| |
| postcopy_thread_create(mis, &mis->fault_thread, |
| MIGRATION_THREAD_DST_FAULT, |
| postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE); |
| mis->have_fault_thread = true; |
| |
| /* Mark so that we get notified of accesses to unwritten areas */ |
| if (foreach_not_ignored_block(ram_block_enable_notify, mis)) { |
| error_report("ram_block_enable_notify failed"); |
| return -1; |
| } |
| |
| if (postcopy_temp_pages_setup(mis)) { |
| /* Error dumped in the sub-function */ |
| return -1; |
| } |
| |
| if (migrate_postcopy_preempt()) { |
| /* |
| * This thread needs to be created after the temp pages because |
| * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately. |
| */ |
| postcopy_thread_create(mis, &mis->postcopy_prio_thread, |
| MIGRATION_THREAD_DST_PREEMPT, |
| postcopy_preempt_thread, QEMU_THREAD_JOINABLE); |
| mis->preempt_thread_status = PREEMPT_THREAD_CREATED; |
| } |
| |
| trace_postcopy_ram_enable_notify(); |
| |
| return 0; |
| } |
| |
| static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr, |
| void *from_addr, uint64_t pagesize, RAMBlock *rb) |
| { |
| int userfault_fd = mis->userfault_fd; |
| int ret; |
| |
| if (from_addr) { |
| ret = uffd_copy_page(userfault_fd, host_addr, from_addr, pagesize, |
| false); |
| } else { |
| ret = uffd_zero_page(userfault_fd, host_addr, pagesize, false); |
| } |
| if (!ret) { |
| qemu_mutex_lock(&mis->page_request_mutex); |
| ramblock_recv_bitmap_set_range(rb, host_addr, |
| pagesize / qemu_target_page_size()); |
| /* |
| * If this page resolves a page fault for a previous recorded faulted |
| * address, take a special note to maintain the requested page list. |
| */ |
| if (g_tree_lookup(mis->page_requested, host_addr)) { |
| g_tree_remove(mis->page_requested, host_addr); |
| int left_pages = qatomic_dec_fetch(&mis->page_requested_count); |
| |
| trace_postcopy_page_req_del(host_addr, mis->page_requested_count); |
| /* Order the update of count and read of preempt status */ |
| smp_mb(); |
| if (mis->preempt_thread_status == PREEMPT_THREAD_QUIT && |
| left_pages == 0) { |
| /* |
| * This probably means the main thread is waiting for us. |
| * Notify that we've finished receiving the last requested |
| * page. |
| */ |
| qemu_cond_signal(&mis->page_request_cond); |
| } |
| } |
| mark_postcopy_blocktime_end((uintptr_t)host_addr); |
| qemu_mutex_unlock(&mis->page_request_mutex); |
| } |
| return ret; |
| } |
| |
| int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset) |
| { |
| int i; |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| GArray *pcrfds = mis->postcopy_remote_fds; |
| |
| for (i = 0; i < pcrfds->len; i++) { |
| struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); |
| int ret = cur->waker(cur, rb, offset); |
| if (ret) { |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Place a host page (from) at (host) atomically |
| * returns 0 on success |
| */ |
| int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, |
| RAMBlock *rb) |
| { |
| size_t pagesize = qemu_ram_pagesize(rb); |
| int e; |
| |
| /* copy also acks to the kernel waking the stalled thread up |
| * TODO: We can inhibit that ack and only do it if it was requested |
| * which would be slightly cheaper, but we'd have to be careful |
| * of the order of updating our page state. |
| */ |
| e = qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb); |
| if (e) { |
| return e; |
| } |
| |
| trace_postcopy_place_page(host); |
| return postcopy_notify_shared_wake(rb, |
| qemu_ram_block_host_offset(rb, host)); |
| } |
| |
| /* |
| * Place a zero page at (host) atomically |
| * returns 0 on success |
| */ |
| int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, |
| RAMBlock *rb) |
| { |
| size_t pagesize = qemu_ram_pagesize(rb); |
| trace_postcopy_place_page_zero(host); |
| |
| /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE |
| * but it's not available for everything (e.g. hugetlbpages) |
| */ |
| if (qemu_ram_is_uf_zeroable(rb)) { |
| int e; |
| e = qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb); |
| if (e) { |
| return e; |
| } |
| return postcopy_notify_shared_wake(rb, |
| qemu_ram_block_host_offset(rb, |
| host)); |
| } else { |
| return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb); |
| } |
| } |
| |
| #else |
| /* No target OS support, stubs just fail */ |
| void fill_destination_postcopy_migration_info(MigrationInfo *info) |
| { |
| } |
| |
| bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp) |
| { |
| error_report("%s: No OS support", __func__); |
| return false; |
| } |
| |
| int postcopy_ram_incoming_init(MigrationIncomingState *mis) |
| { |
| error_report("postcopy_ram_incoming_init: No OS support"); |
| return -1; |
| } |
| |
| int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis) |
| { |
| g_assert_not_reached(); |
| } |
| |
| int postcopy_ram_prepare_discard(MigrationIncomingState *mis) |
| { |
| g_assert_not_reached(); |
| } |
| |
| int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb, |
| uint64_t client_addr, uint64_t rb_offset) |
| { |
| g_assert_not_reached(); |
| } |
| |
| int postcopy_ram_incoming_setup(MigrationIncomingState *mis) |
| { |
| g_assert_not_reached(); |
| } |
| |
| int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from, |
| RAMBlock *rb) |
| { |
| g_assert_not_reached(); |
| } |
| |
| int postcopy_place_page_zero(MigrationIncomingState *mis, void *host, |
| RAMBlock *rb) |
| { |
| g_assert_not_reached(); |
| } |
| |
| int postcopy_wake_shared(struct PostCopyFD *pcfd, |
| uint64_t client_addr, |
| RAMBlock *rb) |
| { |
| g_assert_not_reached(); |
| } |
| |
| void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid, |
| RAMBlock *rb) |
| { |
| } |
| #endif |
| |
| /* ------------------------------------------------------------------------- */ |
| void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page) |
| { |
| tmp_page->target_pages = 0; |
| tmp_page->host_addr = NULL; |
| /* |
| * This is set to true when reset, and cleared as long as we received any |
| * of the non-zero small page within this huge page. |
| */ |
| tmp_page->all_zero = true; |
| } |
| |
| void postcopy_fault_thread_notify(MigrationIncomingState *mis) |
| { |
| uint64_t tmp64 = 1; |
| |
| /* |
| * Wakeup the fault_thread. It's an eventfd that should currently |
| * be at 0, we're going to increment it to 1 |
| */ |
| if (write(mis->userfault_event_fd, &tmp64, 8) != 8) { |
| /* Not much we can do here, but may as well report it */ |
| error_report("%s: incrementing failed: %s", __func__, |
| strerror(errno)); |
| } |
| } |
| |
| /** |
| * postcopy_discard_send_init: Called at the start of each RAMBlock before |
| * asking to discard individual ranges. |
| * |
| * @ms: The current migration state. |
| * @offset: the bitmap offset of the named RAMBlock in the migration bitmap. |
| * @name: RAMBlock that discards will operate on. |
| */ |
| static PostcopyDiscardState pds = {0}; |
| void postcopy_discard_send_init(MigrationState *ms, const char *name) |
| { |
| pds.ramblock_name = name; |
| pds.cur_entry = 0; |
| pds.nsentwords = 0; |
| pds.nsentcmds = 0; |
| } |
| |
| /** |
| * postcopy_discard_send_range: Called by the bitmap code for each chunk to |
| * discard. May send a discard message, may just leave it queued to |
| * be sent later. |
| * |
| * @ms: Current migration state. |
| * @start,@length: a range of pages in the migration bitmap in the |
| * RAM block passed to postcopy_discard_send_init() (length=1 is one page) |
| */ |
| void postcopy_discard_send_range(MigrationState *ms, unsigned long start, |
| unsigned long length) |
| { |
| size_t tp_size = qemu_target_page_size(); |
| /* Convert to byte offsets within the RAM block */ |
| pds.start_list[pds.cur_entry] = start * tp_size; |
| pds.length_list[pds.cur_entry] = length * tp_size; |
| trace_postcopy_discard_send_range(pds.ramblock_name, start, length); |
| pds.cur_entry++; |
| pds.nsentwords++; |
| |
| if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) { |
| /* Full set, ship it! */ |
| qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, |
| pds.ramblock_name, |
| pds.cur_entry, |
| pds.start_list, |
| pds.length_list); |
| pds.nsentcmds++; |
| pds.cur_entry = 0; |
| } |
| } |
| |
| /** |
| * postcopy_discard_send_finish: Called at the end of each RAMBlock by the |
| * bitmap code. Sends any outstanding discard messages, frees the PDS |
| * |
| * @ms: Current migration state. |
| */ |
| void postcopy_discard_send_finish(MigrationState *ms) |
| { |
| /* Anything unsent? */ |
| if (pds.cur_entry) { |
| qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file, |
| pds.ramblock_name, |
| pds.cur_entry, |
| pds.start_list, |
| pds.length_list); |
| pds.nsentcmds++; |
| } |
| |
| trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords, |
| pds.nsentcmds); |
| } |
| |
| /* |
| * Current state of incoming postcopy; note this is not part of |
| * MigrationIncomingState since it's state is used during cleanup |
| * at the end as MIS is being freed. |
| */ |
| static PostcopyState incoming_postcopy_state; |
| |
| PostcopyState postcopy_state_get(void) |
| { |
| return qatomic_load_acquire(&incoming_postcopy_state); |
| } |
| |
| /* Set the state and return the old state */ |
| PostcopyState postcopy_state_set(PostcopyState new_state) |
| { |
| return qatomic_xchg(&incoming_postcopy_state, new_state); |
| } |
| |
| /* Register a handler for external shared memory postcopy |
| * called on the destination. |
| */ |
| void postcopy_register_shared_ufd(struct PostCopyFD *pcfd) |
| { |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| |
| mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds, |
| *pcfd); |
| } |
| |
| /* Unregister a handler for external shared memory postcopy |
| */ |
| void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd) |
| { |
| guint i; |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| GArray *pcrfds = mis->postcopy_remote_fds; |
| |
| if (!pcrfds) { |
| /* migration has already finished and freed the array */ |
| return; |
| } |
| for (i = 0; i < pcrfds->len; i++) { |
| struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i); |
| if (cur->fd == pcfd->fd) { |
| mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i); |
| return; |
| } |
| } |
| } |
| |
| void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file) |
| { |
| /* |
| * The new loading channel has its own threads, so it needs to be |
| * blocked too. It's by default true, just be explicit. |
| */ |
| qemu_file_set_blocking(file, true); |
| mis->postcopy_qemufile_dst = file; |
| qemu_sem_post(&mis->postcopy_qemufile_dst_done); |
| trace_postcopy_preempt_new_channel(); |
| } |
| |
| /* |
| * Setup the postcopy preempt channel with the IOC. If ERROR is specified, |
| * setup the error instead. This helper will free the ERROR if specified. |
| */ |
| static void |
| postcopy_preempt_send_channel_done(MigrationState *s, |
| QIOChannel *ioc, Error *local_err) |
| { |
| if (local_err) { |
| migrate_set_error(s, local_err); |
| error_free(local_err); |
| } else { |
| migration_ioc_register_yank(ioc); |
| s->postcopy_qemufile_src = qemu_file_new_output(ioc); |
| trace_postcopy_preempt_new_channel(); |
| } |
| |
| /* |
| * Kick the waiter in all cases. The waiter should check upon |
| * postcopy_qemufile_src to know whether it failed or not. |
| */ |
| qemu_sem_post(&s->postcopy_qemufile_src_sem); |
| } |
| |
| static void |
| postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque) |
| { |
| g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); |
| MigrationState *s = opaque; |
| Error *local_err = NULL; |
| |
| qio_task_propagate_error(task, &local_err); |
| postcopy_preempt_send_channel_done(s, ioc, local_err); |
| } |
| |
| static void |
| postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque) |
| { |
| g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task)); |
| MigrationState *s = opaque; |
| QIOChannelTLS *tioc; |
| Error *local_err = NULL; |
| |
| if (qio_task_propagate_error(task, &local_err)) { |
| goto out; |
| } |
| |
| if (migrate_channel_requires_tls_upgrade(ioc)) { |
| tioc = migration_tls_client_create(ioc, s->hostname, &local_err); |
| if (!tioc) { |
| goto out; |
| } |
| trace_postcopy_preempt_tls_handshake(); |
| qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt"); |
| qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake, |
| s, NULL, NULL); |
| /* Setup the channel until TLS handshake finished */ |
| return; |
| } |
| |
| out: |
| /* This handles both good and error cases */ |
| postcopy_preempt_send_channel_done(s, ioc, local_err); |
| } |
| |
| /* |
| * This function will kick off an async task to establish the preempt |
| * channel, and wait until the connection setup completed. Returns 0 if |
| * channel established, -1 for error. |
| */ |
| int postcopy_preempt_establish_channel(MigrationState *s) |
| { |
| /* If preempt not enabled, no need to wait */ |
| if (!migrate_postcopy_preempt()) { |
| return 0; |
| } |
| |
| /* |
| * Kick off async task to establish preempt channel. Only do so with |
| * 8.0+ machines, because 7.1/7.2 require the channel to be created in |
| * setup phase of migration (even if racy in an unreliable network). |
| */ |
| if (!s->preempt_pre_7_2) { |
| postcopy_preempt_setup(s); |
| } |
| |
| /* |
| * We need the postcopy preempt channel to be established before |
| * starting doing anything. |
| */ |
| qemu_sem_wait(&s->postcopy_qemufile_src_sem); |
| |
| return s->postcopy_qemufile_src ? 0 : -1; |
| } |
| |
| void postcopy_preempt_setup(MigrationState *s) |
| { |
| /* Kick an async task to connect */ |
| socket_send_channel_create(postcopy_preempt_send_channel_new, s); |
| } |
| |
| static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis) |
| { |
| trace_postcopy_pause_fast_load(); |
| qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); |
| qemu_sem_wait(&mis->postcopy_pause_sem_fast_load); |
| qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); |
| trace_postcopy_pause_fast_load_continued(); |
| } |
| |
| static bool preempt_thread_should_run(MigrationIncomingState *mis) |
| { |
| return mis->preempt_thread_status != PREEMPT_THREAD_QUIT; |
| } |
| |
| void *postcopy_preempt_thread(void *opaque) |
| { |
| MigrationIncomingState *mis = opaque; |
| int ret; |
| |
| trace_postcopy_preempt_thread_entry(); |
| |
| rcu_register_thread(); |
| |
| qemu_event_set(&mis->thread_sync_event); |
| |
| /* |
| * The preempt channel is established in asynchronous way. Wait |
| * for its completion. |
| */ |
| qemu_sem_wait(&mis->postcopy_qemufile_dst_done); |
| |
| /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */ |
| qemu_mutex_lock(&mis->postcopy_prio_thread_mutex); |
| while (preempt_thread_should_run(mis)) { |
| ret = ram_load_postcopy(mis->postcopy_qemufile_dst, |
| RAM_CHANNEL_POSTCOPY); |
| /* If error happened, go into recovery routine */ |
| if (ret && preempt_thread_should_run(mis)) { |
| postcopy_pause_ram_fast_load(mis); |
| } else { |
| /* We're done */ |
| break; |
| } |
| } |
| qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex); |
| |
| rcu_unregister_thread(); |
| |
| trace_postcopy_preempt_thread_exit(); |
| |
| return NULL; |
| } |
| |
| bool postcopy_is_paused(MigrationStatus status) |
| { |
| return status == MIGRATION_STATUS_POSTCOPY_PAUSED || |
| status == MIGRATION_STATUS_POSTCOPY_RECOVER_SETUP; |
| } |