| /* |
| * internal execution defines for qemu |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| /* allow to see translation results - the slowdown should be negligible, so we leave it */ |
| #define DEBUG_DISAS |
| |
| /* is_jmp field values */ |
| #define DISAS_NEXT 0 /* next instruction can be analyzed */ |
| #define DISAS_JUMP 1 /* only pc was modified dynamically */ |
| #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ |
| #define DISAS_TB_JUMP 3 /* only pc was modified statically */ |
| |
| struct TranslationBlock; |
| |
| /* XXX: make safe guess about sizes */ |
| #define MAX_OP_PER_INSTR 32 |
| /* A Call op needs up to 6 + 2N parameters (N = number of arguments). */ |
| #define MAX_OPC_PARAM 10 |
| #define OPC_BUF_SIZE 512 |
| #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) |
| |
| /* Maximum size a TCG op can expand to. This is complicated because a |
| single op may require several host instructions and regirster reloads. |
| For now take a wild guess at 128 bytes, which should allow at least |
| a couple of fixup instructions per argument. */ |
| #define TCG_MAX_OP_SIZE 128 |
| |
| #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) |
| |
| extern target_ulong gen_opc_pc[OPC_BUF_SIZE]; |
| extern target_ulong gen_opc_npc[OPC_BUF_SIZE]; |
| extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE]; |
| extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE]; |
| extern target_ulong gen_opc_jump_pc[2]; |
| extern uint32_t gen_opc_hflags[OPC_BUF_SIZE]; |
| |
| typedef void (GenOpFunc)(void); |
| typedef void (GenOpFunc1)(long); |
| typedef void (GenOpFunc2)(long, long); |
| typedef void (GenOpFunc3)(long, long, long); |
| |
| #if defined(TARGET_I386) |
| |
| void optimize_flags_init(void); |
| |
| #endif |
| |
| extern FILE *logfile; |
| extern int loglevel; |
| |
| int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb); |
| int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb); |
| unsigned long code_gen_max_block_size(void); |
| void cpu_gen_init(void); |
| int cpu_gen_code(CPUState *env, struct TranslationBlock *tb, |
| int *gen_code_size_ptr); |
| int cpu_restore_state(struct TranslationBlock *tb, |
| CPUState *env, unsigned long searched_pc, |
| void *puc); |
| int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb, |
| int max_code_size, int *gen_code_size_ptr); |
| int cpu_restore_state_copy(struct TranslationBlock *tb, |
| CPUState *env, unsigned long searched_pc, |
| void *puc); |
| void cpu_resume_from_signal(CPUState *env1, void *puc); |
| void cpu_exec_init(CPUState *env); |
| int page_unprotect(target_ulong address, unsigned long pc, void *puc); |
| void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
| int is_cpu_write_access); |
| void tb_invalidate_page_range(target_ulong start, target_ulong end); |
| void tlb_flush_page(CPUState *env, target_ulong addr); |
| void tlb_flush(CPUState *env, int flush_global); |
| int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
| target_phys_addr_t paddr, int prot, |
| int mmu_idx, int is_softmmu); |
| static inline int tlb_set_page(CPUState *env, target_ulong vaddr, |
| target_phys_addr_t paddr, int prot, |
| int mmu_idx, int is_softmmu) |
| { |
| if (prot & PAGE_READ) |
| prot |= PAGE_EXEC; |
| return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu); |
| } |
| |
| #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ |
| |
| #define CODE_GEN_PHYS_HASH_BITS 15 |
| #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) |
| |
| /* maximum total translate dcode allocated */ |
| |
| /* NOTE: the translated code area cannot be too big because on some |
| archs the range of "fast" function calls is limited. Here is a |
| summary of the ranges: |
| |
| i386 : signed 32 bits |
| arm : signed 26 bits |
| ppc : signed 24 bits |
| sparc : signed 32 bits |
| alpha : signed 23 bits |
| */ |
| |
| #if defined(__alpha__) |
| #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024) |
| #elif defined(__ia64) |
| #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */ |
| #elif defined(__powerpc__) |
| #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024) |
| #else |
| /* XXX: make it dynamic on x86 */ |
| #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024) |
| #endif |
| |
| //#define CODE_GEN_BUFFER_SIZE (128 * 1024) |
| |
| /* estimated block size for TB allocation */ |
| /* XXX: use a per code average code fragment size and modulate it |
| according to the host CPU */ |
| #if defined(CONFIG_SOFTMMU) |
| #define CODE_GEN_AVG_BLOCK_SIZE 128 |
| #else |
| #define CODE_GEN_AVG_BLOCK_SIZE 64 |
| #endif |
| |
| #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE) |
| |
| #if defined(__powerpc__) || defined(__x86_64__) |
| #define USE_DIRECT_JUMP |
| #endif |
| #if defined(__i386__) && !defined(_WIN32) |
| #define USE_DIRECT_JUMP |
| #endif |
| |
| typedef struct TranslationBlock { |
| target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ |
| target_ulong cs_base; /* CS base for this block */ |
| uint64_t flags; /* flags defining in which context the code was generated */ |
| uint16_t size; /* size of target code for this block (1 <= |
| size <= TARGET_PAGE_SIZE) */ |
| uint16_t cflags; /* compile flags */ |
| #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */ |
| #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */ |
| #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */ |
| #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */ |
| |
| uint8_t *tc_ptr; /* pointer to the translated code */ |
| /* next matching tb for physical address. */ |
| struct TranslationBlock *phys_hash_next; |
| /* first and second physical page containing code. The lower bit |
| of the pointer tells the index in page_next[] */ |
| struct TranslationBlock *page_next[2]; |
| target_ulong page_addr[2]; |
| |
| /* the following data are used to directly call another TB from |
| the code of this one. */ |
| uint16_t tb_next_offset[2]; /* offset of original jump target */ |
| #ifdef USE_DIRECT_JUMP |
| uint16_t tb_jmp_offset[4]; /* offset of jump instruction */ |
| #else |
| unsigned long tb_next[2]; /* address of jump generated code */ |
| #endif |
| /* list of TBs jumping to this one. This is a circular list using |
| the two least significant bits of the pointers to tell what is |
| the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = |
| jmp_first */ |
| struct TranslationBlock *jmp_next[2]; |
| struct TranslationBlock *jmp_first; |
| } TranslationBlock; |
| |
| static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) |
| { |
| target_ulong tmp; |
| tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); |
| return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK; |
| } |
| |
| static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) |
| { |
| target_ulong tmp; |
| tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); |
| return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) | |
| (tmp & TB_JMP_ADDR_MASK)); |
| } |
| |
| static inline unsigned int tb_phys_hash_func(unsigned long pc) |
| { |
| return pc & (CODE_GEN_PHYS_HASH_SIZE - 1); |
| } |
| |
| TranslationBlock *tb_alloc(target_ulong pc); |
| void tb_flush(CPUState *env); |
| void tb_link_phys(TranslationBlock *tb, |
| target_ulong phys_pc, target_ulong phys_page2); |
| |
| extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
| |
| extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE]; |
| extern uint8_t *code_gen_ptr; |
| |
| #if defined(USE_DIRECT_JUMP) |
| |
| #if defined(__powerpc__) |
| static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) |
| { |
| uint32_t val, *ptr; |
| |
| /* patch the branch destination */ |
| ptr = (uint32_t *)jmp_addr; |
| val = *ptr; |
| val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc); |
| *ptr = val; |
| /* flush icache */ |
| asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory"); |
| asm volatile ("sync" : : : "memory"); |
| asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory"); |
| asm volatile ("sync" : : : "memory"); |
| asm volatile ("isync" : : : "memory"); |
| } |
| #elif defined(__i386__) || defined(__x86_64__) |
| static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) |
| { |
| /* patch the branch destination */ |
| *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); |
| /* no need to flush icache explicitely */ |
| } |
| #endif |
| |
| static inline void tb_set_jmp_target(TranslationBlock *tb, |
| int n, unsigned long addr) |
| { |
| unsigned long offset; |
| |
| offset = tb->tb_jmp_offset[n]; |
| tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); |
| offset = tb->tb_jmp_offset[n + 2]; |
| if (offset != 0xffff) |
| tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); |
| } |
| |
| #else |
| |
| /* set the jump target */ |
| static inline void tb_set_jmp_target(TranslationBlock *tb, |
| int n, unsigned long addr) |
| { |
| tb->tb_next[n] = addr; |
| } |
| |
| #endif |
| |
| static inline void tb_add_jump(TranslationBlock *tb, int n, |
| TranslationBlock *tb_next) |
| { |
| /* NOTE: this test is only needed for thread safety */ |
| if (!tb->jmp_next[n]) { |
| /* patch the native jump address */ |
| tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr); |
| |
| /* add in TB jmp circular list */ |
| tb->jmp_next[n] = tb_next->jmp_first; |
| tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n)); |
| } |
| } |
| |
| TranslationBlock *tb_find_pc(unsigned long pc_ptr); |
| |
| #ifndef offsetof |
| #define offsetof(type, field) ((size_t) &((type *)0)->field) |
| #endif |
| |
| #if defined(_WIN32) |
| #define ASM_DATA_SECTION ".section \".data\"\n" |
| #define ASM_PREVIOUS_SECTION ".section .text\n" |
| #elif defined(__APPLE__) |
| #define ASM_DATA_SECTION ".data\n" |
| #define ASM_PREVIOUS_SECTION ".text\n" |
| #else |
| #define ASM_DATA_SECTION ".section \".data\"\n" |
| #define ASM_PREVIOUS_SECTION ".previous\n" |
| #endif |
| |
| #define ASM_OP_LABEL_NAME(n, opname) \ |
| ASM_NAME(__op_label) #n "." ASM_NAME(opname) |
| |
| extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
| extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; |
| extern void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
| |
| #if defined(__hppa__) |
| |
| typedef int spinlock_t[4]; |
| |
| #define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 } |
| |
| static inline void resetlock (spinlock_t *p) |
| { |
| (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1; |
| } |
| |
| #else |
| |
| typedef int spinlock_t; |
| |
| #define SPIN_LOCK_UNLOCKED 0 |
| |
| static inline void resetlock (spinlock_t *p) |
| { |
| *p = SPIN_LOCK_UNLOCKED; |
| } |
| |
| #endif |
| |
| #if defined(__powerpc__) |
| static inline int testandset (int *p) |
| { |
| int ret; |
| __asm__ __volatile__ ( |
| "0: lwarx %0,0,%1\n" |
| " xor. %0,%3,%0\n" |
| " bne 1f\n" |
| " stwcx. %2,0,%1\n" |
| " bne- 0b\n" |
| "1: " |
| : "=&r" (ret) |
| : "r" (p), "r" (1), "r" (0) |
| : "cr0", "memory"); |
| return ret; |
| } |
| #elif defined(__i386__) |
| static inline int testandset (int *p) |
| { |
| long int readval = 0; |
| |
| __asm__ __volatile__ ("lock; cmpxchgl %2, %0" |
| : "+m" (*p), "+a" (readval) |
| : "r" (1) |
| : "cc"); |
| return readval; |
| } |
| #elif defined(__x86_64__) |
| static inline int testandset (int *p) |
| { |
| long int readval = 0; |
| |
| __asm__ __volatile__ ("lock; cmpxchgl %2, %0" |
| : "+m" (*p), "+a" (readval) |
| : "r" (1) |
| : "cc"); |
| return readval; |
| } |
| #elif defined(__s390__) |
| static inline int testandset (int *p) |
| { |
| int ret; |
| |
| __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n" |
| " jl 0b" |
| : "=&d" (ret) |
| : "r" (1), "a" (p), "0" (*p) |
| : "cc", "memory" ); |
| return ret; |
| } |
| #elif defined(__alpha__) |
| static inline int testandset (int *p) |
| { |
| int ret; |
| unsigned long one; |
| |
| __asm__ __volatile__ ("0: mov 1,%2\n" |
| " ldl_l %0,%1\n" |
| " stl_c %2,%1\n" |
| " beq %2,1f\n" |
| ".subsection 2\n" |
| "1: br 0b\n" |
| ".previous" |
| : "=r" (ret), "=m" (*p), "=r" (one) |
| : "m" (*p)); |
| return ret; |
| } |
| #elif defined(__sparc__) |
| static inline int testandset (int *p) |
| { |
| int ret; |
| |
| __asm__ __volatile__("ldstub [%1], %0" |
| : "=r" (ret) |
| : "r" (p) |
| : "memory"); |
| |
| return (ret ? 1 : 0); |
| } |
| #elif defined(__arm__) |
| static inline int testandset (int *spinlock) |
| { |
| register unsigned int ret; |
| __asm__ __volatile__("swp %0, %1, [%2]" |
| : "=r"(ret) |
| : "0"(1), "r"(spinlock)); |
| |
| return ret; |
| } |
| #elif defined(__mc68000) |
| static inline int testandset (int *p) |
| { |
| char ret; |
| __asm__ __volatile__("tas %1; sne %0" |
| : "=r" (ret) |
| : "m" (p) |
| : "cc","memory"); |
| return ret; |
| } |
| #elif defined(__hppa__) |
| |
| /* Because malloc only guarantees 8-byte alignment for malloc'd data, |
| and GCC only guarantees 8-byte alignment for stack locals, we can't |
| be assured of 16-byte alignment for atomic lock data even if we |
| specify "__attribute ((aligned(16)))" in the type declaration. So, |
| we use a struct containing an array of four ints for the atomic lock |
| type and dynamically select the 16-byte aligned int from the array |
| for the semaphore. */ |
| #define __PA_LDCW_ALIGNMENT 16 |
| static inline void *ldcw_align (void *p) { |
| unsigned long a = (unsigned long)p; |
| a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1); |
| return (void *)a; |
| } |
| |
| static inline int testandset (spinlock_t *p) |
| { |
| unsigned int ret; |
| p = ldcw_align(p); |
| __asm__ __volatile__("ldcw 0(%1),%0" |
| : "=r" (ret) |
| : "r" (p) |
| : "memory" ); |
| return !ret; |
| } |
| |
| #elif defined(__ia64) |
| |
| #include <ia64intrin.h> |
| |
| static inline int testandset (int *p) |
| { |
| return __sync_lock_test_and_set (p, 1); |
| } |
| #elif defined(__mips__) |
| static inline int testandset (int *p) |
| { |
| int ret; |
| |
| __asm__ __volatile__ ( |
| " .set push \n" |
| " .set noat \n" |
| " .set mips2 \n" |
| "1: li $1, 1 \n" |
| " ll %0, %1 \n" |
| " sc $1, %1 \n" |
| " beqz $1, 1b \n" |
| " .set pop " |
| : "=r" (ret), "+R" (*p) |
| : |
| : "memory"); |
| |
| return ret; |
| } |
| #else |
| #error unimplemented CPU support |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| static inline void spin_lock(spinlock_t *lock) |
| { |
| while (testandset(lock)); |
| } |
| |
| static inline void spin_unlock(spinlock_t *lock) |
| { |
| resetlock(lock); |
| } |
| |
| static inline int spin_trylock(spinlock_t *lock) |
| { |
| return !testandset(lock); |
| } |
| #else |
| static inline void spin_lock(spinlock_t *lock) |
| { |
| } |
| |
| static inline void spin_unlock(spinlock_t *lock) |
| { |
| } |
| |
| static inline int spin_trylock(spinlock_t *lock) |
| { |
| return 1; |
| } |
| #endif |
| |
| extern spinlock_t tb_lock; |
| |
| extern int tb_invalidated_flag; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| void tlb_fill(target_ulong addr, int is_write, int mmu_idx, |
| void *retaddr); |
| |
| #define ACCESS_TYPE (NB_MMU_MODES + 1) |
| #define MEMSUFFIX _code |
| #define env cpu_single_env |
| |
| #define DATA_SIZE 1 |
| #include "softmmu_header.h" |
| |
| #define DATA_SIZE 2 |
| #include "softmmu_header.h" |
| |
| #define DATA_SIZE 4 |
| #include "softmmu_header.h" |
| |
| #define DATA_SIZE 8 |
| #include "softmmu_header.h" |
| |
| #undef ACCESS_TYPE |
| #undef MEMSUFFIX |
| #undef env |
| |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr) |
| { |
| return addr; |
| } |
| #else |
| /* NOTE: this function can trigger an exception */ |
| /* NOTE2: the returned address is not exactly the physical address: it |
| is the offset relative to phys_ram_base */ |
| static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr) |
| { |
| int mmu_idx, index, pd; |
| |
| index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| mmu_idx = cpu_mmu_index(env); |
| if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code != |
| (addr & TARGET_PAGE_MASK), 0)) { |
| ldub_code(addr); |
| } |
| pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK; |
| if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { |
| #if defined(TARGET_SPARC) || defined(TARGET_MIPS) |
| do_unassigned_access(addr, 0, 1, 0); |
| #else |
| cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); |
| #endif |
| } |
| return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base; |
| } |
| #endif |
| |
| #ifdef USE_KQEMU |
| #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG)) |
| |
| int kqemu_init(CPUState *env); |
| int kqemu_cpu_exec(CPUState *env); |
| void kqemu_flush_page(CPUState *env, target_ulong addr); |
| void kqemu_flush(CPUState *env, int global); |
| void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr); |
| void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr); |
| void kqemu_cpu_interrupt(CPUState *env); |
| void kqemu_record_dump(void); |
| |
| static inline int kqemu_is_ok(CPUState *env) |
| { |
| return(env->kqemu_enabled && |
| (env->cr[0] & CR0_PE_MASK) && |
| !(env->hflags & HF_INHIBIT_IRQ_MASK) && |
| (env->eflags & IF_MASK) && |
| !(env->eflags & VM_MASK) && |
| (env->kqemu_enabled == 2 || |
| ((env->hflags & HF_CPL_MASK) == 3 && |
| (env->eflags & IOPL_MASK) != IOPL_MASK))); |
| } |
| |
| #endif |